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Abstract: Palabuhanratu Bay is a location in the southern part of Java Island with a high lobster 

population. Based on field observation, the lobster population in Palabuhanratu Bay is dominated 

by Panulirus homarus (green sand lobster), Panulirus versicolor (bamboo lobster), Panulirus penicillatus 

(black lobster), and Panulirus ornatus (pearl lobster). This study aimed to develop a spatial model 

using satellite-derived data to predict potential lobster harvest grounds in Palabuhanratu Bay. The 

Earth observational satellite data used were multispectral Landsat 8-SR imagery, and information 

about chlorophyll-a, salinity, total suspended solids (TSSs), sea surface temperature (SST), and 

distance from the coastline was extracted. Multiple linear regression was applied to build the 

prediction model, which was validated using 10-fold cross-validation. The result of the lobster 

harvest prediction model agreed with the root-mean-square error (RMSE) and adjusted R2 values 

of 0.326 and 0.708, respectively. The distribution of lobsters was strong at the following preferred 

ranges: chlorophyll-a: 1.1-1.7 mg/m3; salinity: 20.2-23.7 ppt; TSS: 40-56.4 mg/L; SST: 29.5-29.9 °C; and 

distance from the coastline: 500-4700 m. In this study, the habitats of four species of lobsters and 

their relationships with satellite-derived parameters were evaluated. 
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1. Introduction 

Sukabumi Regency is a potential lobster-producing area in Indonesia, specifically in 

the Palabuhanratu Bay area of West Java Island (Figure 1). The waters of Palabuhanratu 

are characteristic of coral waters, the main habitat of lobsters [1]. Lobsters are a potential 

fishery commodity and are important for export because of their economic value [2]. 

According to the Director General of Indonesian Fishery Product Processing and 

Marketing, in 2014, 69.4% of Indonesia’s lobsters were exported to China and 22.6% were 

exported to Taiwan. These exports collectively weighed 3427 tonnes and were worth US$ 

42.8 million [3]. The majority of lobsters caught in Palabuhanratu Bay are Panulirus 

homarus (green sand lobster), Panulirus versicolor (bamboo lobster), Panulirus penicillatus 

(black lobster), and Panulirus ornatus (pearl lobster). [4]. Lobsters have been caught at 

several locations around the Palabuhanratu Bay area, including the waters of Cisolok, 

Karang Hawu, Karang De’et, Cimandiri, Sanggra Wayang, Jampang, and Karang Hantu. 

In addition to being potential lobster harvest grounds, Palabuhanratu Bay also has the 

potential for lobster cultivation. Palabuhanratu Bay is located in West Java Province, 

Indonesia, between the coordinates 06°57′ S, 106°22′ E and 07°07′ S, 106°33′ E. 

Palabuhanratu Bay is bordered by the Cisolok, Cikakak, Palabuhanratu, and Simpenan 

districts (Figure 1), and it is the largest bay along the southern coast of Java Island [5]. 
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Figure 1. Research location. Red dots show the collected lobster catch points. 

Oceanographic conditions, such as the physical and chemical aspects of seawater, 

determine the productivity of the waters [6]. Lobster habitats are dependent on chemical 

aspects of the coastal environment and are spatially distributed along the coastline. The 

biology of lobsters is influenced by oceanographic conditions, including chlorophyll-a 

[7,8], TSSs (total suspended solids) [9,10], temperature [11–13], substrate [14,15], salinity 

[16], and other environmental variables [17,18]. It is time-consuming and expensive to 

conduct observations of oceanographic conditions using conventional methods over a 

wide area; therefore, remote sensing on a large scale is more cost-effective than field 

surveys for the periodic collection of large-scale habitat data [19]. Remote sensing and 

geographic information systems can be applied to extract coastal and marine parameters 

related to the characteristics of lobster habitats by identifying useful types of data, 

approaches, and algorithms as quick solutions for water quality assessments. 

Remote sensing data on multispectral images, such as those collected by Landsat 8 

satellite imaging, are useful for marine monitoring because the spatial resolution of 

Landsat 8 is 30 m [20], which is regarded as medium resolution and can be applied to a 

wide area of coverage. The availability of consistent data every 16 days [20] gives Landsat 

8 the ability to support research that requires a series of observations. Landsat 8 also 

possesses various bands as tools to implement marine monitoring algorithms, such as the 

red, green, blue, and near infra-red bands [20], which can detect chlorophyll-a, salinity, 

and total suspended solids (TSSs). Landsat 8 also possesses the thermal infrared sensor 

band [20], which can detect sea surface temperature (SST) values. Landsat-8-derived 

oceanographic information has been widely used to model the potential occurrence of 

marine resources such as shrimp, tuna, and other pelagic species. Among the advantages 

of satellite-derived oceanographic information are free access and timeseries availability, 

which make this type of information suitable for monitoring and operational purposes. 

Lobsters are among the marine resources with high potential for commercialization. 

Operational monitoring of their abundance is one of the ways to sustain their populations. 

Research on spatial modeling of lobsters has mostly been carried out on lobster habitats 
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and distributions. The identification of lobsters’ preferred habitats [21] can be linked to 

the density, abundance, and biomass of each habitat type to allow the prediction of the 

spatial distribution of lobsters in a particular area [22]. The distribution of lobsters can be 

used to determine the relationship between the population and marine conservation areas 

that can support lobsters [23]. In Indonesia, the lobster studies that have been conducted 

have been limited to biodiversity studies [24,25], spatial bio-economic models [26,27], 

social ecology aspects [28], population density [29], and habitat suitability [16]. The 

research on lobsters in Indonesia has not yet focused on the spatial prediction of potential 

lobster harvest areas. This paper takes a new look at the prediction of potential lobster 

harvest grounds using a spatial linear regression model based on a recorded capture 

dataset, as well as satellite-derived data. 

2. Materials and Methods 

2.1. Lobster Catches 

This study used data from lobster catches at 23 sample points taken during 

November 2016 [30] and monthly lobster harvest data taken from March 2015 to 

November 2016. The retrieval of data on the numbers, weight, and species of lobsters 

harvested in Palabuhanratu Bay was carried out from March 2015 to November 2016. The 

23 observation points were collected to determine the number, type, sex, carapace length, 

weight, and exact location of lobsters by following the route of a lobster catching trip 

conducted by fishermen. The lobsters were collected using a single-layer net consisting of 

polyamide with a mesh size of 5 inches (12.7 cm) [30], equipped with buoys, weights, and 

ropes to form a basic gill net [30]. The monthly data on lobster catches was obtained in the 

form of lobster number data, which we converted into kilograms by multiplying the 

number of lobsters by the average weight of each type of lobster caught. These data 

originated from the purchase of lobsters from fishermen by the data collectors [30]. 

The types of lobsters caught in Palabuhanratu Bay are the green sand lobster 

(Panulirus homarus), bamboo lobster (Panulirus versicolor), black lobster (Panulirus 

penicillatus), and pearl lobster (Panulirus ornatus), as shown in Figure 2. The sand lobster 

has a maximum body length of 31 cm with an average body length of 20-25 cm and a 

carapace length of approximately 12 cm [31]. This species has a greenish or brownish base 

color with bright spots scattered over the surface of the abdominal segment and white 

spots on the legs [31]. The bamboo lobster has an average body length of no more than 30 

cm with a maximum body length of 40 cm [31]. This species is characterized by a green 

head and abdomen with a black carapace [31]. The black lobster has a body length of 20–

30 cm with a maximum size of 40 cm [32]. This species has a dark blue and black body, 

irregular spots on the abdomen, and a white stripe on the legs [32]. Pearl lobsters can reach 

a body length of 60 cm with an average of 20-35 cm [32]. This species has a greenish and 

slightly bluish body in the carapace, and each segment of the abdomen is covered with a 

thick dark line located in the middle, with medium-sized yellowish patches [32]. 

 

Figure 2. Lobster type in Palabuhanratu Bay [30]. 
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2.2. Satellite-Derived Parameters 

Data on chlorophyll-a, salinity, TSSs, SST, and distance from the coastline were 

obtained from Landsat 8 Surface Reflectance (Landsat 8-SR) imagery. Landsat 8-SR is 

generated from a special software called Landsat 8 Surface Reflectance Code (LaSRC). 

LaSRC generates the top of atmosphere (TOA) reflectance and the TOA brightness 

temperature (BT) using calibration parameters from the metadata [33]. Landsat 8-SR has 

a spatial resolution of 30 m per pixel [33], which became the spatial resolution basis for 

developing the spatial model. The Landsat 8-SR time series images were accessed using 

the Google Earth Engine app [34]. The chemical conditions of the seawater were extracted 

with various algorithms implemented using the Landsat 8-SR satellite imagery. The value 

of chlorophyll-a was estimated using the Wibowo (1994) algorithm following Firdaus 

(2017) [35]; the salinity was estimated using the Cilamaya (2019) algorithm [36]; the TSSs 

were estimated using the algorithm of Budhiman et al. (2004) [37]; and the SST was 

estimated using the algorithm of Syariz et al. (2015) with band 11 [38]. These algorithms 

(Table 1) have been validated previously and are in good agreement with the field 

measurement dataset [39]. 

Table 1. Selected algorithms for predicting lobster catches. 

Algorithms 

Chl − a(mg/m�) = 0.2818 ×  �
Red +  NIR

Green
�

�.���

 (1) 

Salinity (ppt) = 139.556970 + (86.21318 × Ln (Blue)) − (24.62518 × Ln (Red)) (2) 

TSS (mg/L) = 7.9038 × exp(23.942 ×  Red) (3) 

SST (℃) = −0.0197BT11� + 0.2881BT11 + 29.004 (4) 

Furthermore, from the satellite images, the 23 observed sample values and the 23 

extraction values for chlorophyll-a, salinity, TSSs, SST, and distance from the coastline 

were tested using multiple linear regression to produce a predictive model for lobster 

harvests (Figure 3). The extraction values from Landsat 8-SR were calculated by the mean 

of monthly imagery for November 2016 because the observation time did not coincide 

with the date the satellite image was taken. The prediction model was validated using the 

cross-validation (CV) method. If the resulting model showed good results, this meant that 

the prediction model could be implemented in other satellite images, which would 

produce a lobster catch distribution prediction. The distribution of these predictions was 

then classified into three classes with the Jenks Natural Break Classification method [40], 

which produced a predicted area for potential lobster catches. The kilograms per pixel 

were summed in a high-potential harvest area to validate model performance with 

monthly recorded data. To determine preferred conditions for the potential lobster 

harvest grounds, we used only 10 samples of lobsters that could be found and that 

represented the preferred water quality conditions for lobsters (Figure 3). 
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Figure 3. Research methodology. 

2.3. Multiple Linear Regression 

Multiple linear regression analysis fits a linear relationship between two or more 

independent variables (X1, X2, …, Xn) and a dependent variable (Y). This analysis is used 

to determine the direction of the positive or negative relationship between the 

independent variables and the dependent variable, and to predict the value of the 

independent variables if the value of the dependent variable increases or decreases. 

Simple or multiple linear regression models can be obtained by estimating the parameters 

with certain methods. The maximum likelihood estimation method and the ordinary least 

squares method can be used to estimate the parameters of a simple linear regression 

model or a multiple linear regression model. [41]. The general form of the multiple linear 

regression model is as follows [41]: 

Y = a + b1X1+ b2X2 +…..+ bnXn. (5) 

where Y is the number of lobsters caught, a is offset, X is oceanographic derived 

information, i.e., chlorophyll-a, salinity, TSSs, SST, depth, and distance from the coastline, 

and bn is a coefficient determined by linear regression analysis using a set of lobster catch 

data with the oceanographic derived information. 

The prediction model generated from the regression must be validated with 10-fold 

CV, which is one of the recommended CV methods for choosing the best model because 

it tends to provide less biased estimates of accuracy compared to other types of CVs [42]. 

By default, 10-fold CV uses 75% of the data for training and 25% of the data for testing. 

Moreover, this study tested several options of data training and testing separation. This 

model performs training and data testing 10 times and generates predictive errors from 
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each model installation, which is then averaged to determine the predictive statistics for 

the model. The results can be seen in the values of the root-mean-square error (RMSE) and 

the coefficient of determination (R2) in the following equation [43,44]: 

RMSE = (
∑(�����)�

�
)�/�, (6) 

where y is the observed value, ŷ is the predicted value, i is the sequence of data in the 

database, and n is the total amount of data. 

R2 = (
�(���)�(��)(��)

�[�(���)�(��)�[�(���)�(��)�]
)�, (7) 

where y is the dependent variable, x is the independent variable, and n is the total amount 

of data. 

The estimation algorithms were then implemented using the Landsat 8-SR satellite 

imagery from November 2016, which produced the data on the distribution of 

chlorophyll-a, salinity, TSSs, and SST. We then extracted the values of the distribution of 

chlorophyll-a, salinity, TSSs, SST, depth, and distance from the coastline based on the 

sample points of the lobster catch data. All extraction values and lobster catch data were 

used for multiple linear regression tests to produce a predictive spatial model of lobster 

harvest potential. The multiple linear regression was implemented with the spatial dataset 

of oceanographic derived parameters to create the spatial distribution of potential lobster 

harvest areas. Then, cross-validation was carried out on the model to evaluate its 

performance. The prediction model and the estimation algorithms were then 

implemented using the Landsat 8-SR satellite imagery from March 2015 to November 2016 

to determine the distribution of lobster harvest potential. All of these processes were run 

in the Google Earth Engine [34] for image preprocessing, extracting the oceanographic 

derived information. For the correlation analysis, multiple linear regression, and accuracy 

assessment, this used “stats” [45], “raster” [46], and “gdal” [47] packages for R 

calculations. The distribution of potential catches can be analyzed by classifying areas as 

low, medium, or high potential, so we grouped them into three classes with the Jenks 

Natural Break Classification. The Jenks Natural Break Classification determines the best 

value for arranging data into different classes by minimizing the average deviation of each 

class from the class mean while maximizing the deviation of each class from the mean of 

the other groups [40]. 

3. Results 

3.1. Preferred Conditions for Potential Lobster Harvest Grounds 

Lobsters were found under specific environmental conditions (10 observation points 

with lobsters caught = 0) and, under some conditions, lobsters were not found (13 points 

with lobsters caught ≥1). Figure 4 shows that the distribution of lobsters was strongly 

associated with the following ranges of environmental parameters: chlorophyll-a: 1.1-1.7 

mg/m3; salinity: 20.2-23.7 ppt; TSSs: 40-56.4 mg/L; SST: 29.5-29.9 °C; and distance from the 

coastline: 500-4700 m. In the highest lobster harvest areas, the salinity and TSS also had 

the highest ranges of values. 
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Figure 4. The harvest weights of lobsters under different ranges of environmental conditions. 

3.2. Correlation Between Potential Lobster Harvest Grounds and Environmental Factors 

There were very strong relationships between lobster catches and the salinity and 

TSS variables (Figure 5). This is because the level of salinity can affect the metabolic 

response of lobsters, which, in turn, affects their distribution, movement, and migration 

patterns [18]. The level of TSSs can affect the abundance of phytoplankton and water 

turbidity levels [31], and lobster habitats are located in turbid waters [1]. In addition, there 

were adequate relationships between lobster catches and two other variables, SST and 

chlorophyll-a, while there was a weak relationship between lobster catches and distance 

from the coastline. The number of lobsters caught at 23 sample points was used as the 

dependent variable when building a predictive model for lobster harvest potential in this 

study.  
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Figure 5. Correlations (R) between variables. A value that is close to ±1 has a high correlation, and vice versa. 

3.3. Spatial Prediction of Potential Lobster Harvest Grounds 

The model was calculated using 23 points of lobster catch data: the average values of 

chlorophyll-a, salinity, TSSs, and SST in November 2016, derived from Landsat 8-SR 

satellite imagery using estimator algorithms; and distance-from-coastline data. The 

combination of chlorophyll-a, salinity, TSSs, SST, and distance from the coastline were 

used as independent variables to build a predictive model for lobster harvest potential. 

Based on data processing using the multiple linear regression method, the results of the 

prediction model for the potential of lobster catches were obtained. 

Based on Table 2, the prediction model equation for lobster harvest potential is 

Y = −60.7232 − 0.374X1 + 0.554X2 + 0.052X3 + 1.601X4 − 0.001X5, (8) 

where Y is the predicted amount of lobsters caught (kg), X1 is chlorophyll-a (mg/m3), X2 is 

the salinity (‰), X3 is the TSSs (mg/L), X4 is the SST (°C), and X5 is the distance from the 

coastline (m). The constant value of distance (X5) is almost 0, so this variable does not 

significantly affect the lobster harvest model. Based on the F test, a significance level of 

0.000 < 0.05 was obtained. Therefore, we concluded that the six independent variables (X) 

simultaneously had a significant effect on lobster catches (Y). Based on the t test, 

significance levels of <0.05 were obtained with the X2 and X4 variables, so it can be 

concluded that salinity and SST had a significant effect on the lobster catches (Y). This 

model had an RMSE of 0.327, a correlation coefficient (R) of 0.880, and the coefficient of 

determination (R2) and the adjustment were 0.774 and 0.708, respectively. This indicates 

that the variation in the independent variables used in the model could explain 70.8% of 

the variation in the dependent variable (lobster catches), while the remaining 29.2% was 

influenced by other variables that were not examined in this model. A regression model 

with a value of R2 > 0.5 indicates a good model, because it shows that the independent 

variable can adequately explain the dependent variable [48]. 
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Table 2. Multiple linear regression test results. 

 
Unstandardized 

Coefficients 

Standardized 

Coefficients t Sig. 
Collinearity Statistic 

B Std. Error Beta Tolerance VIF 

(Constant) −60.7232 22.445  −2.705 0.015   

Chl-a −0.374 0.628 −0.125 −0.597 0.558 0.383 2.614 

Salinity 0.554 0.202 0.715 2.744 0.014 0.198 5.059 

TSS 0.052 0.044 0.280 1.159 0.2626 0.172 5.820 

SST 1.601 0.718 0.329 2.230 0.0395 0.468 2.135 

Distance −0.001 0.100 −0.049 −0.018 0.9856 0.360 2.780 

Dependent variable: catches. Residual standard error: 0.3266 on 17 degrees of freedom, multiple R-

squared: 0.7742, adjusted R-squared: 0.7078, F-statistic: 11.66 on 5 and 17 DF, p-value: 5.244 × 10−5. 

In the regression calculation, the VIF (variance inflation factor) value was also 

generated. If the VIF value is >10, that would indicate that the regression coefficient of the 

model is a poor estimate due to the effect of multicollinearity [49]. From the data 

processing, it was found that the VIF values of all variables were <10 and the tolerance 

values were >0.1, which indicates that the results of the model were not affected by 

multicollinearity. 

This study used a relatively small amount of data input (23 points), which might 

create a high bias for the accuracy assessment. Therefore, multiple cases of CV were 

performed to determine the range of accuracies. The model was validated using the 10-

times random cross-validation technique in R software with “caret” package [50]. Figure 

6 shows varied RMSE and R2 values across several cases of the training and testing data 

proportions. The accuracies of the RMSE and R2 were 0.2–0.6 and 0.2–0.8, respectively. 

Moreover, this accuracy assessment result naturally showed that increasing the number 

of training datasets can improve the accuracy of the model. 

 

Figure 6. Model cross-validation test. The model improves if the RMSE value is close to 0 and the R2 is close to 1. 

3.4. Lobster Harvest Potential and Relationship with Catch Data in Palabuhanratu Bay 

The regression model was implemented using imagery from other months to 

determine the relationship between the recorded value and the sum of the predicted catch 

in kilograms per pixel. Due to the unavailability of a monthly point catch, the recorded 

monthly data on lobsters purchased from fishermen by a collector in the Palabuhanratu 

fish market were used. It was assumed that the result of the model prediction should be 

followed with the recorded catch data. This study only included satellite imagery that had 

cloud cover below 50% of the trendline. An exponential trendline was used to find the R, 

R2, and adj R2 values, which were 0.753, 0.567, and 0.538, respectively (Figure 7). This 

means that the recorded catch values agreed well with the predicted catch values, and 

that the model could consequently be implemented in other months. Exponential 
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trendlines are curved lines that are useful when data values are increasing or decreasing 

at a growing rate [51]. The good agreement between the model and actual catch data was 

not directly followed by the same value. The sum of the predicted catch in the high-

potential harvest area showed a much higher value than the actual recorded catch. This is 

not unexpected, as the estimated potential should be higher than the fishermen’s 

capability to catch lobsters. 

 

Figure 7. Relationship between predicted and observed catches (kg). 

The distribution of potential lobster harvest grounds from March 2015 to November 

2016 can be seen in Figure 8. The spatial distribution of lobster harvest potential was 

divided into three classes: low, moderate, and high potential. The range of values for each 

class is shown in Table 3. 
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Figure 8. Potential lobster harvest grounds. Several months (i.e., January-February 2015, January 2016 and December 

2016) did not have available images due to high cloud coverage. 
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Table 3. Classification of predicted catches. 

Class Predicted Catches in kg/Pixel 

Low 0–2.799 

Moderate 2.800–3.433 

High 3.434–10.791 

Figure 8 shows the distribution of potential lobster harvests during 2016–2017. The 

areas with the highest potential for lobster harvests in March 2015 were in the northwest 

and southeastern parts of the bay, around the waters of Cisolok and Simpenan, with a 

potential area of 54 km2. In April 2015, the area with the highest potential for lobster 

harvests was 4 km2, which had decreased from the previous month and had moved 

further out to sea. Furthermore, in May 2015, the area with the highest potential for lobster 

harvests was 11 km2, which had moved to the southwest of the bay. The area of highest 

lobster harvest potential in June 2015 increased to 128 km2 and was mostly located in the 

deeper areas of the sea. However, in the waters of Ciemas, Simpenan, and Palabuhanratu, 

the potential areas were located around the coast. In July 2015, the area with the highest 

lobster harvest potential was in the deeper seas of the Ciemas and Bayah waters, with an 

area of 35 km2. The highest potential area for lobster harvests in August 2015 then moved 

to the northwest of the bay, with an area of 46 km2. In September 2015, the area with the 

highest potential for lobster harvests tended to be on the coast in the Ciemas and 

Simpenan waters, with an area of 62 km2. The area with the highest potential for lobster 

harvests in October 2015 remained around the coast of Palabuhanratu and Simpenan, but 

had shrunk to 36 km2. Then, in November 2015, the area with the highest potential for 

lobster harvests was around the coast of Simpenan and close to the deeper sea in the west 

of the bay, with an area of 25 km2. 

The beginning of 2016 was preceded by the formation of areas with the highest 

potential for lobster harvests from the north to the west of the bay, in the waters of Cisolok 

and Cikakak and along the coast of Simpenan, with an area of 61 km2. In February 2016, 

the area with the highest potential for lobster harvests moved to the middle of the bay, 

with an area of 92 km2. In April 2016, the area with the highest potential for lobster 

harvests was around the coast of Cisolok and Cikakak, with an area of 14 km2. Then, in 

May 2016, the area with the highest potential for lobster harvests moved toward the 

deeper sea in Bayah, with an area of 11 km2. In June and July, the areas with the highest 

potential for lobster harvests were very small and were located in the east of the bay, with 

areas of 2 and 3 km2, respectively, which was because most of the imagery was obscured 

by clouds. The areas with the highest potential for lobster harvests in September 2016 were 

on the Cikakak and Palabuhanratu coasts and slightly spread out into the deeper sea of 

Cikakak, with an area of 18 km2. Then, in November 2016, the highest potential for lobster 

harvests increasingly moved toward the deep sea, with an area of 11 km2. By contrast, 

March and August 2016 did not have high lobster harvest potential, suggesting that 

lobster fishing is not recommended during these months. 

4. Discussion 

In recent years, the topic of lobster harvesting has become a sensitive issue in 

Indonesia, particularly regarding the commercialization of juvenile lobsters [52]. Even 

though Indonesia’s waters have large potential for harvests of mature lobsters, 

exportation is still dominated by juveniles with less economic value and at greater risk of 

stock collapse. Fishermen likely catch the juveniles because they are easier to catch than 

mature lobsters. However, the over-exploitation of juveniles will cause a loss in terms of 

future lobster resources. The Indonesian government is currently formulating regulations 

for the harvest of juvenile and mature lobsters. 

The recommended map of potential harvest areas for marine resources (i.e., pelagic 

fishes and tuna) has already been widely used by Indonesian fishermen and has been 
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successful in improving the numbers caught [53]. However, in terms of implementation, 

local authorities’ involvement in disseminating this information has played a large role 

[54,55]. This study proposed a predictive map of lobster harvest grounds that will help 

fishermen increase their probability of catching mature lobsters in open-water areas. If the 

number of successful mature lobster catches increases, this should be followed by 

increased interest from fishermen in catching mature rather than juvenile lobsters. This is 

because the price of a mature lobster is much higher than that of a juvenile lobster. 

Improving the number of mature lobsters caught might be a solution to the problem of 

juvenile lobster exploitation in Indonesia. 

Based on our study, the potential lobster harvest grounds are mostly on the coast of 

the Simpenan waters, which are known to have corals that are preferred by lobsters for 

their habitat [31]. This is reinforced by interviews with fishermen in Palabuhanratu Bay, 

which have shown that lobster catch locations are mostly found around Simpenan. From 

Figure 8, in the month that was classified as having a lower potential, the area with a high 

potential for lobster harvests was larger and toward the deeper sea. This was because, in 

that month, lobsters tend to move into deeper waters at a depth of approximately 37 to 55 

m to spawn [56], which shifted the lobster harvest areas to the deeper sea. The area with 

the highest potential was seen in June 2015, with an area of 128 km2. 

Throughout the observations, Landsat-8 images of Palabuhanratu Bay could not 

always be collected. This was because of limitations of the long temporal resolution 

(revisit time of 16 days) and on the availability of cloud-free data. An alternative is the 

Sentinel-2 (S2) image series, which provides dense observations (revisit time of 5 days 

under S2A and S2B satellites) [57]. However, the S2 images do not have a thermal band, 

which is used for extracting the SST value. As this study found that SST and salinity have 

a strong correlation, they play an important role in modeling lobster harvest areas. This 

fact correlates favorably with studies by Mahima et al. [11], Pradhan et al. [13], and Zhao 

et al. [12] and also further supports the effect of climate change on marine food chains. 

Moreover, SST and salinity were found to be important in the modeling harvest potential 

for other marine resources as well, such as tuna [58] and pelagic fish [59]. 

This study found that the fluctuation in lobster catches could be determined by 

optimal and ideal oceanographic conditions using chlorophyll-a, salinity, TSS, SSTs, 

distance from the coastline, and other oceanographic parameters. This study provided a 

new understanding of the relationship of those parameters to lobster harvest grounds. 

Given that our findings were based only on four species of lobster and a small number of 

samples, the results from such analyses should consequently be treated with considerable 

caution. In future studies, we suggest analyzing the spatial model for each species 

separately, as well as using more samples and more timeseries datasets on lobster catches. 

Furthermore, other physical oceanographic parameters, such as rainfall, ocean currents, 

and tides, can be used to develop better models. 

5. Conclusions 

The variables chlorophyll-a, salinity, TSSs, SST, and distance from the coastline 

simultaneously had a significant effect on lobster catches. From these five variables, the 

lobster harvest prediction model potential was obtained using the multiple linear 

regression method, namely Y = −60.7232 − (0.374 × Chl-a) + (0.554 × Salinity) + (0.052 × TSS) 

+ (1.601 × SST) − (0.001 × Distance). This model had an adjusted R2 value of 0.708; therefore, 

it could be used to predict lobster harvest potential at different times. The sea surface 

temperature, followed by salinity, were the variables most valuable to the prediction 

model. It should be noted that the model was built on the basis of the local algorithm of 

Landsat-8-derived oceanographic parameters, so the presented results are not applicable 

to global predictions, as the algorithm we used might not fit with other regional 

oceanographic characteristics. However, the proposed prediction model followed the 

monthly recorded harvest in an exponential manner. Overall, the predicted potential 
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lobster harvest grounds were generally located off the coast of Simpenan and the highest 

recorded potential area was 128 km2 in June 2015. 
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