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Abstract: Fatty acids (FAs), especially the polyunsaturated fatty acids (PUFAs), play
pivotal roles in growth and development. Fish possess a remarkable ability to synthesize
PUFAs, rendering them a crucial and significant source of these essential FAs for human
consumption. Despite extensive research on the metabolic processes of FAs, the primary
processes underlying FA content variation and corresponding regulatory mechanisms
remain largely unexplored. We quantified the muscular FA profiles of 304 common carp
samples. High variation in muscle FA content among samples was observed, with the
coefficients of variation ranging from 0.36 to 0.92. With genome-wide association studies
(GWAS), we identified 1410 SNPs significantly associated with the FA content. The genetic
variation at genes participating in oxidation, ubiquitination, and transcriptional factors
was associated with the content of multiple FAs, while few variants were observed in the
FA-synthesis genes. For the total PUFA (TPUFA) content, transcriptome analysis of groups
with the highest and lowest TPUFA content identified 715 differentially expressed genes
(DEGs), including genes involved in oxidation and ubiquitination. Using multiple genomic
selection programs with the associated SNPs for FA content, we obtained high and positive
correlations ranging from 0.65 to 0.92 between the real FA contents and estimated breeding
values. These findings manifested the major-effect processes governing the differences in
muscular FA content and their regulatory mechanisms. The optimal genomic selection
programs provide novel and feasible perspectives to enhance FA content in common carp.

Keywords: FA profiles; genome; transcriptome; fatty acids; common carp

Key Contribution: This study suggests more contributions of oxidation, ubiquitination,
and transcriptional factors to the differences in FA concentrations than in biosynthesis;
revealing, via the integration of lipidome, genome, and transcriptome analysis, the primary
processes regulating the FA content diversity in common carp. These findings deepen the
understanding of the molecular mechanisms underlying the differences in fish FA content
and offer guidance for GS to enhance fish fillet nutritional quality.
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1. Introduction
Fatty acids (FAs) play indispensable roles in a multitude of physiological processes.

They are crucial for energy storage [1], stabilizing membrane structure [2], and participating
in multiple signaling pathways [3]. In particular, the poly-unsaturated fatty acids (PUFAs),
such as eicosapentaenoic acid (EPA, C20:5n3) and docosahexaenoic acid (DHA, C22:6n3),
are of utmost importance for the health, growth [4], and development of both humans
and fish. Fish possess a remarkable ability to synthesize PUFAs and serve as a major
dietary source of the PUFAs [5]. The muscular PUFA content varies significantly across fish
species and even among strains within the same species [6]. Enhancing the endogenous
PUFA synthesis capacity or decreasing PUFA consumption in fish can substantially reduce
dependence on exogenous fish oil, elevate the quality of fish fillets, and confer health
benefits [7,8]. Therefore, it is desirable to identify the primary processes influencing
muscular FA content and elucidate regulatory mechanisms.

FA metabolism encompasses a series of intricate biological processes, including uptake,
transport, synthesis, and oxidation. The FA translocase cluster of differentiation 36 (CD36)
is a well-characterized receptor involved in the uptake of FAs [9]. The fatty acid-binding pro-
teins (FABPs) [10], fatty acid transporter proteins (FATPs) [11], and free fatty acid receptors
(FFARs) [12] are all integral to the FA transportation. FA synthesis requires stearoyl-CoA de-
saturases (SCDs), acetyl-CoA carboxylases (ACCs), fatty acid synthases (FASNs) [13], elon-
gases of very long chain fatty acids (ELOVLs) [14], and fatty acid desaturases (FADs) [15].
The ELOVLs and FADs are essential for PUFA biosynthesis. In the mitochondria [16],
β-oxidation involves a series of enzymes, including fatty-acid-CoA ligases (FACLs), acyl-
CoA synthetases (ACSs), carnitine palmitoyltransferases (CPTs), acyl-CoA dehydrogenases
(ACADs), enoyl-CoA hydratases (ECHs), hydroxy acyl-CoA dehydrogenases (HADHs),
and acetyl-CoA acetyltransferases (ACATs), and NAD(P)H dehydrogenases (NDEs) [17].
For FA oxidation in the peroxisome, acyl-CoA oxidases (ACOXs) [18], enoyl-CoA reductases
(ECRs) [19], and peroxisomal biogenesis factors (PEXs) are involved [20]. The ω-oxidation
in the endoplasmic reticulum requires cytochrome P450 monooxygenases [21], alcohol
dehydrogenases (ADHs), and aldehyde dehydrogenases (ALDHs). Beyond these primary
processes, post-translational modifications of these proteins, including phosphorylation,
methylation, acetylation, glycosylation, and ubiquitination, have a profound impact on FA
metabolism [22,23]. Moreover, both transcriptional and post-transcriptional levels have
been extensively explored to understand the regulatory mechanisms of FAs. Many tran-
scription factors regulating the primary FA metabolism processes were identified, including
the specificity protein (Sp) gene family [24], peroxisome proliferator-activated receptors
(PPARs) [25], and sterol regulatory element binding proteins (SREBPs) [26]. Additionally,
many microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have been found to
regulate lipid metabolism at the post-transcriptional level [27,28]. Given that numerous
metabolic pathways are intricately involved in FA metabolism, the key pathways regulating
differences in the composition and content of muscular FAs among individuals remain
elusive and have not been fully explored. Uncovering the major-effect genes and pivotal
metabolic pathways, as well as clarifying their regulatory mechanisms on the differences in
the FA concentrations, will provide novel and feasible directions to enhance the FA contents
of fish fillets.

Common carp (Cyprinus carpio, Cypriniformes) is widely cultivated worldwide, ac-
counting for approximately 10% of global freshwater aquaculture production [29]. Nutri-
tionally valuable, this freshwater fish contains 11.8–18% protein and 6.8–12.4% fat, with n-6
fatty acids comprising 1.3–14.8% of its lipid content [30]. Carp, a freshwater species, under-
goes de novo monounsaturated fatty acid (MUFA) lipogenesis of C18:1 from acetyl-CoA, as
well as de novo polyunsaturated fatty acid (PUFA) lipogenesis of C18:3n-6 from C18:2n-6
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and C18:4n-3 from C18:3n-3 [31]. Remarkably, their essential fatty acid requirements can
be adequately met through plant-derived 18-carbon fatty acids [32]. Notably, carp culture
has the potential to become a net producer of PUFA, benefiting human health if fish with a
high capacity for fatty acid (FA) synthesis are selected.

As a tetraploid fish, common carp encodes more PUFA-synthesis enzymes than other
diploid fishes. We have previously characterized the functions of two duplicated FAD2 and
two duplicated ELOVL5 genes [33]. Our previous findings revealed significant diversity in
FA contents among common carp individuals [34]. Scanning the SNPs in the promoters
and coding regions of these four genes identified relatively few polymorphisms [33–36].
These results already suggested that the FA-synthesis genes are not the major-effect genes
responsible for the differences in muscular FA content and that the presence of other genetic
variants contributes to the differences in those. Multi-omics analysis, combining genome,
transcriptome, or proteome, revealed the organism information of the whole genome, RNA
transcript in tissues, and protein, and is a powerful tool to study the regulatory mechanisms
of economic traits [37]. In this study, we combined genome, transcriptome, and FA profiles
analysis to identify the major-effect genes and primary metabolic pathways and clarify
their mechanisms regulating differences in FA content. Finally, we explored the predictive
abilities of multiple Genomic Selection (GS) methods to select fish with fillet FA content.
Our findings not only reveal the major-effect processes regulating differences in the muscle
FA content but also contribute to the development of breeding strategies to improve the
flesh quality of common carp.

2. Materials and Methods
2.1. Sampling

This study was conducted according to the guidelines of the Declaration of China for
ethical review of laboratory animal welfare (GB/T 35892-2018) and was approved by the
Animal Care and Use Committee of the Chinese Academy of Fishery Sciences (protocol
code ACUC-CAFS-20201202, approval date 27 December 2020). All procedures adhered to
established standards for the ethical care and use of animals in scientific research.

Juvenile common carp were reared in the same pond at the FangShan experimental
base of the Chinese Academy of Fishery Sciences (Beijing, China) for one year. They were
fed with a commercial diet (30% protein and 4% crude fat; TongWei, Sichuan, China)
three times daily. After one year, 304 common carp individuals (one-year-old, body
weight: 316.50 ± 5.86 g) were collected and euthanized with an MS222 solution (40 mg/L).
Body weight was recorded for each fish. Fin tissue was collected for DNA extraction
and genome resequencing. Muscle samples below the dorsal fin were obtained for FA
quantification, and liver tissue was collected for transcriptome analysis.

2.2. FA Profiles Analysis of Common Carp Muscle

Muscle tissues were freeze-dried, ground, and weighed. The absolute crude fat
content of the examined muscle was determined using the Soxhlet extraction method
with a Soxtec™ 8000 apparatus (FOSS, Hilleroed, Denmark). FAs from each fish muscle
sample were converted to fatty acid methyl esters (FAMEs), purified, and analyzed using
gas chromatography (7890A, Agilent Technologies, Wilmington, DE, USA) equipped with
a flame ionization detector (FID) and a DB–FFAP capillary column [36]. FA types were
identified by comparing retention times with those of a Supelco 37 Component FAME
standard mix (Nu-Chek Prep Inc., Elysian, MN, USA). The proportion of each FA was
calculated as (area of one FA/total area of all FAs) × 100. The absolute content of each
single FA was equal to its relative content multiplied by the absolute crude fat content.
The total saturated FA (TSFA), total monounsaturated fatty acids (TMUFA), and total
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polyunsaturated fatty acids (TPUFA) contents were calculated by summing the respective
single FA contents.

Stringent criteria were applied to exclude FAs and samples and minimize pheno-
typic errors: (1) FAs with content < 0.10 mg/g across all individuals were excluded.
(2) Samples with fewer than 10 retained FAs were discarded. (3) Outliers (values exceeding
the mean ± 3 times the standard deviation) were removed. Individuals with outliers in
two or more FAs were excluded. After filtering off data from samples prone of these errors,
Spearman correlation coefficients between any two types of FAs were calculated using the
R ‘cor.test’ function and visualized using the R ‘heatmap’ function [37].

2.3. Genome Re-Sequencing, Genotyping, and Diversity Analysis

Genomic DNA was extracted from fin tissue using the DNeasy Blood and Tissue
Kit (Qiagen, Hilden, Germany). DNA concentration and integrity were assessed using
a NanoDrop 8000 spectrophotometer (NanoDrop Technologies, Wilmington, USA) and
1% agarose gel electrophoresis. Libraries with a 350-bp insert size were constructed and
sequenced on a HiSeq platform in 150 bp paired-end mode. Reads were cleaned with
Trimmomatic [38] and aligned to the common carp genome [39] using BWA [40] with
default parameters. Alignments were ordered using SAMtools (v1.14) [41].

Two data filtration steps were applied to retain only high-quality SNPs. Duplicate
alignments were marked using MarkDuplicates in GATK (v4.6.1.0) [42]. Variants were
called using HaplotypeCaller and GenotypeGVCFs in GATK and then classified into SNPs
and Indels using SelectVariants. SNPs were filtered using bcftools (v1.14) [41] with parame-
ters: QD < 2, FS > 60, MQ < 30, haplotype score > 13, RankSum < −8, sequencing depths < 4,
mapping qualities < 20. High-quality SNPs were retained using PLINK (v1.90) [43] with a
missing rate < 10% and minor allele frequency (MAF) > 5%.

The genome was partitioned into non-overlapping 1Mb blocks, and the SNP density
of each block was calculated. The functional effects of SNPs upon their closest genes
were annotated using Annovar (v2020Jun08) [44]. SNPs were classified into nine types:
5′ untranslated region (5′ UTR), 3′ UTR, upstream region, downstream region, exonic,
intronic, intergenic, non-coding RNA (ncRNA), and splicing mutation. Exonic SNPs were
further classified as non-synonymous, synonymous, stop gain, and stop loss.

A population genetic diversity was assessed with VCFtools (v0.1.17) [45] and measured
using nucleotide sequence diversity (π) and observed heterozygosity (Ho).

2.4. GWAS

Principal components (PCs) were estimated using PLINK (v1.90) [43] and the first
five PCs were added as covariates into the fixed-effect model for association tests. Kinship
coefficients were calculated using a centered relatedness matrix and included as covariates
in GWAS. A mixed linear model (MLM) was performed with GEMMA (v0.98.5) [46].

Genome-wide suggestive and significance thresholds were determined by dividing
100 and 10 with the high-quality SNP number, respectively [47]. Manhattan and quantile-
quantile (Q-Q) plots were generated using the rMVP (v1.3.5) package [48] in R Studio
(v4.3.2) [37]. The SNPs with p-values below the suggestive threshold were considered to
be associated with the trait. The proportion of variance explained (PVE) by a SNP was
calculated using the formula [49]:

PVE =
2β2MAF(1 − MAF)

2β2MAF(1 − MAF) + (se(β))22NMAF(1 − MAF)

where β is the SNP effect estimated with GEMMA.



Fishes 2025, 10, 234 5 of 23

2.5. Candidate Gene Identification and Enrichment Analysis

For each FA, candidate genes within 100 kb upstream and downstream of suggestive
SNPs were identified using bedtools (v2.30.0) [50]. Gene Ontology (GO) enrichment
analysis of the candidate genes was performed with TBtools (v2.15) [51]. All p-values
were corrected using the Benjamini–Hochberg (BH) method [52]. Terms with corrected
p-values < 0.05 were considered significant.

2.6. Conserved FA-Associated Genes Between Common Carp and Rainbow Trout

Blay et al. [53] genotyped rainbow trout samples using the 57 K SNP Axiom Trout
Genotyping Array and discovered 338 candidate genes to be associated with the content of
at least one of six FAs (LA, ARA, EPA, MUFA, PUFA, and n-6 PUFA). To identify conserved
candidate genes associated with FA content between common carp and rainbow trout,
we compared this gene set with our candidate genes using BLASTP (v2.12.0) [54] with an
E-value of 10−6. Genes with sequence similarity > 50% and sequence coverage > 50% were
considered conserved.

2.7. Identifying DEGs Related to TPUFA Content

From these 280 samples, we selected 30 fish with the highest total polyunsaturated
fatty acid (TPUFA) content and another 30 fish with the lowest TPUFA content. Total RNA
from the liver tissues of these 60 fish was isolated using TRIzol reagent (Qiagen, San Diego,
CA, USA). RNA integrity was assessed using agarose gel electrophoresis. Sequencing
libraries were constructed using the Stranded RNA Library Prep Kit (Illumina, San Diego,
CA, USA) and sequenced on the Illumina Novaseq 6000 platform.

Raw RNA-seq reads were initially processed using fastp (v3.3) [55], aligned to the ref-
erence genome [39] using HISAT2 (v2.2.1) [56], and quantified using StringTie (v2.2.3) [57],
with the expression level of each gene being represented as fragments per kilobase per
million mapped reads (FPKMs). To identify DEGs, we employed the DESeq2 (v1.34.0) soft-
ware [58] to compare the gene expression profile between the high-TPUFA group and the
low-TPUFA group. DEGs were defined as those with an expression level fold-change ≥ 2
and a false discovery rate (FDR) ≤ 0.05. A volcano plot visualizing the expression pat-
terns of the up-regulated or down-regulated DEGs was created using the ggplot2 pack-
age [59]. GO enrichment analysis of DEGs was conducted using TBtools (v2.15) to infer
their inferred functions [51].

2.8. Quantitative Real-Time PCR Validation of the Core Genes Related to the TPUFA Content

We cross-referenced TPUFA-associated genes with the DEGs to identify the core genes.
These genes were in proximity to the genetic variants associated with the TPUFA content
and exhibited expression differences between groups with different TPUFA levels. Their
expression patterns were validated with quantitative real-time PCR (qRT-PCR). Liver RNA
from another ten fish (five with high TPUFA content and five with low TPUFA content) was
extracted and reverse-transcribed into cDNA using the HiScript II Reverse Transcriptase kit
(Vazyme, Nanjing, China). Primers for the candidate genes (Table S1) were designed using
Primer-Premier 6 software (Premier Biosoft Interpairs, Palo Alto, CA, USA), with actin
as the reference gene. The qPCR reaction was constructed using SYBR qPCR Master Mix
(Vazyme, China) and operated on the QuantReady K9600 system (QuantGene, Shanghai,
China). The 20-µL reaction system consisted of 11 µL 2× Universal SYBR qPCR mix, 0.4 µL
each of forward and reverse primers, 1 µL cDNA template, and 7.20 µL ddH2O. The
amplification program began with an initial denaturation at 95 ◦C for 1 min, followed
by 42 cycles of denaturation at 95 ◦C for 5 s, and annealing at 60 ◦C for 30 s. Finally, a
melt-curve analysis was conducted at 95 ◦C for 15 s, 60 ◦C for 1 min, and 95 ◦C for 15 s. The
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2−∆∆CT method was used to analyze the expression levels of DEGs [60]. For each gene, the
expression difference between the two groups was compared using a one-tailed Wilcoxon
rank-sum test [61]. A gene was confirmed as differentially expressed by qRT-PCR if the
p-value was less than 0.05.

2.9. Genomic Selection for Content of Different FAs

The breeding values (BVs) for each single FA, TSFA, TMUFA, and TPUFA were esti-
mated using BWGS (v0.2.1) [62]. This tool incorporates 12 breeding methods, including
genomic best linear unbiased prediction (GBLUP) [63], empirical best linear unbiased
prediction (EGBLUP), ridge regression (RR), LASSO, elastic net (EN), Bayesian ridge regres-
sion (BRR), Bayesian LASSO (BL), Bayes A (BA), Bayes B (BB), random forest regression
(RF), support vector machine (SVM), and Bayes C (BC). For each method, 10 indepen-
dent cross-validation replicates were performed. In each replicate, the 280 samples were
randomly divided into a reference set (90%) and a validation set (10%). The genotypes
and FA contents in the reference group were used to train the breeding method. The
genotypes of the validation samples were input into the trained method to predict the BVs.
To evaluate the predictive ability, for each replicate, Pearson correlation coefficient between
the actual contents and the predicted BVs of the validation samples was calculated [64].
Mean correlation coefficients and their standard deviation (SD) were computed across
10 replicates. Mean squared error of prediction (MSEP) and corresponding SD-MSEP were
also calculated.

3. Results
3.1. Diverse Muscular FA Contents

We quantified 21 types of FAs in common carp. After excluding FAs with contents be-
low 0.10 mg/g, 13 high-content FAs were retained for subsequent analysis, including three
SFAs, three MUFAs, and seven PUFAs (Tables 1 and S2). After excluding 24 outlier samples
due to apparent phenotypic measurement errors, 280 samples and their corresponding
phenotypes were used for analysis. The average contents of TMUFA (7.82 mg/g) and
TPUFA (6.48 mg/g) were higher than that of TSFA (5.19 mg/g), indicating a predominance
of unsaturated FAs in common carp muscle.

Table 1. FA contents in common carp muscle (mg/g).

Mean SD Min Max CV

C14:0 0.17 0.15 0.00 2.20 0.89
C16:0 3.80 1.51 0.91 10.10 0.40
C18:0 1.18 0.45 0.24 3.13 0.38
TSFA 5.19 1.99 1.21 12.88 0.38
C16:1 0.53 0.35 0.01 2.01 0.66

C18:1n-9 6.89 3.15 1.65 18.11 0.46
C20:1n-9 0.27 0.15 0.01 0.93 0.55
TMUFA 7.82 3.52 2.02 20.28 0.45
C18:2n-6 4.66 1.96 0.02 11.31 0.42
C18:3n-3 0.30 0.15 0.00 0.71 0.50
C18:3n-6 0.10 0.07 0.00 0.47 0.68
C20:2n-6 0.13 0.05 0.00 0.37 0.42
C20:3n-6 0.25 0.15 0.00 1.01 0.58
C20:4n-6 0.57 0.40 0.00 2.25 0.69
C22:6n-3 0.48 0.44 0.00 2.38 0.92
TPUFA 6.48 2.50 1.13 14.01 0.39

Note: SD, standard deviation; Min, minimum; Max, maximum; CV, coefficient of variation.
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The contents of different FAs varied significantly. C16:0 was the most abundant SFA
(3.80 mg/g), C18:1n-9 was the major MUFA (6.89 mg/g), and C18:2n-6 was the most
prevalent PUFA (4.66 mg/g). Among PUFAs, n-6 PUFAs were about seven times more
abundant than n-3 PUFAs. Most n-3 PUFAs, except C18:3n-3 and C22:6n-3, were below
the detection limit. Moreover, individual variation in FA contents was significant, with
the coefficient of variation for detected FA contents ranging from 0.36 to 0.92. Principal
component analysis (PCA) based on all phenotypic values showed that most individuals
clustered together, but a few were more dispersed, demonstrating phenotypic diversity
among samples (Figure 1a).
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Figure 1. Summary of the diversities of FA contents. (a) Principal component analysis (PCA) of
common carp samples for the content of 16 FAs. (b) A heatmap of the pairwise Pearson’s correlation
among 16 FAs, where × represents no significant correlation between any two types of FAs.

Among 120 pairs of FA traits for pair cross-calculation, 82.5% exhibited signifi-
cantly positive correlations (correlation coefficients > 0.12, p ≤ 0.05), and 30% had high
correlations > 0.70. Additionally, 18 pairs displayed no significant correlations. Notably,
C20:4n-6 had no significant correlation with other FAs except C20:3n-6 (Figure 1b and Table S3),
suggesting that its biosynthesis is closely linked only to C20:3n-6. In contrast, the content
of C22:6n-3 was significantly negatively correlated with C16:1, C18:1n-9, and TMUFA.

3.2. SNP Distribution Biases and Genetic Diversities

After processing the raw data, a total of 280 individuals collectively yielded 6.7 Tb
of clean resequencing data, with more than 92.85% of the bases having a quality score
surpassing Q30 (Table S4). The average clean data per sample was 22.05 Gb, and 98.37% of
the reads were successfully mapped to the reference genome, accompanied by an average
sequencing depth of 14.72-fold. We identified 2,757,424 high-quality SNPs, resulting in an
average SNP density of 1.64 SNPs per kilobase across the entire genome. The nucleotide
diversity (π) was 3.45 × 10−4, and the observed heterozygosity (Ho) was 0.27. With these
SNPs, the subtle genetic kinship among the samples was uncovered (Figure 2a).
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chromosome length in Mb. Different colors correspond to distinct SNP densities. (c) Functional
annotation of SNPs to their closest genes.

Notably, the distribution of SNPs exhibited two distinct biases. Firstly, the chromo-
somal distributions were uneven. Chromosomes A21 and B22 emerged as the hotspots,
harboring the highest number of SNPs, with 94,134 and 85,038 SNPs, respectively. Specifi-
cally, chr A21 demonstrated the highest variant rate (3.71 SNPs per kb). The entire genome
was divided into 1680 1M-length blocks. The average SNP density per block was 1640 SNPs.
However, seven particular blocks stood out prominently, displaying extremely high SNP
densities, exceeding 10,000 SNPs per 1 Mb (Figure 2b). Common carp is a heterotetraploid
bony fish, and its genome can be split into two sets of subgenomes from ancestral diploids,
each consisting of 25 chromosomes, named A subgenome and B subgenome. Secondly, the
distributions of SNPs also showed a discernible bias; the majority of SNPs were located
in intronic (46.51%) and intergenic regions (34.32%). Variants were also present in the up-
stream (2.31%) and downstream regions (2.49%), as well as regulatory regions such as the
5′ UTR, 3′ UTR, and splicing sites. Among the exonic SNPs, 43.01% were non-synonymous,
while 56.26% were synonymous. Additionally, there were 0.66% of SNPs associated with
description stop gain and 0.08% with stop loss (Figure 2c).
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3.3. FA Content-Associated SNPs, Candidate Genes, and Inferred Functions

Utilizing a suggestive threshold of 3.63 × 10−5, we found that the contents of 13 single
FAs (Figures S1 and S2), TSFA (Figure 3a,b), TMUFA (Figure 3c,d), and TPUFA (Figure 3e,f)
had associated SNPs. Ultimately, a unique set of 1410 SNPs was identified, each associated
with at least one FA content. Specifically, 686 SNPs were located within the A subgenome
and 595 within the B subgenome. These 1410 SNPs were in close proximity to the genic,
downstream, or upstream regions of 1391 genes (Table S5). By employing the bedtools
software, we identified 7307 candidate genes within 100 kb upstream and downstream
of these SNPs, each associated with at least one FA content (Tables S6 and S7). Among
these SNPs, 333 pleiotropic SNPs were associated with at least two FA traits (Figure 4),
highlighting their regulatory roles in multiple FA metabolic pathways.
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Figure 3. Genome-wide association analysis. Manhattan plot (a) and Q-Q plot (b) of GWAS for TSFA.
Manhattan plot (c) and Q-Q plot (d) of GWAS for TMUFA. Manhattan plot (e) and Q-Q plot (f) of
GWAS for TPUFA. The blue and dark blue points represent different chromosomes. The red points
represent SNPs for which p-values were lower than the significance threshold. The orange points
represent SNPs for which p-values were lower than the suggestive threshold.



Fishes 2025, 10, 234 10 of 23

Fishes 2025, 10, x FOR PEER REVIEW 10 of 24 
 

 

(f) of GWAS for TPUFA. The blue and dark blue points represent different chromosomes. The red 
points represent SNPs for which p-values were lower than the significance threshold. The orange 
points represent SNPs for which p-values were lower than the suggestive threshold. 

 

Figure 4. An upset plot showing the overlapping SNPs associated with the contents of 16 FAs. The 
vertical axis of the top histogram represents the number of SNPs, and the horizontal axis is the trait 
corresponding to the black dot below. The horizontal axis of the leftmost histogram represents the 
number of SNPs. The gray dots represent traits on the horizontal axis that do not intersect with the 
vertical axis. 

In total, 332 SNPs and 1907 genes were associated with the content of three SFAs and 
TSFA at the suggestive threshold (Figure 3a,b and Table S8). The PVEs by these SNPs 
ranged from 5.93% to 9.99%. These candidate genes included many reported FA-related 

Figure 4. An upset plot showing the overlapping SNPs associated with the contents of 16 FAs. The
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number of SNPs. The gray dots represent traits on the horizontal axis that do not intersect with the
vertical axis.

In total, 332 SNPs and 1907 genes were associated with the content of three SFAs and
TSFA at the suggestive threshold (Figure 3a,b and Table S8). The PVEs by these SNPs
ranged from 5.93% to 9.99%. These candidate genes included many reported FA-related
genes, which participated in β-oxidation (ACSs, FACLs, and NADH-quinone oxidore-
ductase subunit B), ubiquitination, transcriptional factors (Sp1, Sp5, and Sp6), and FA
transporters (FABPs and FFARs). Additionally, for the C14:0 content, G protein-coupled
amine receptor activity and G protein-coupled receptor (GPCR) activity were inferred for
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the candidate genes. FAs serve as ligand activators of specific GPCRs [65], the cascade
reaction by which regulates glucose homeostasis and immune response [66,67]. For the
C18:0 content, the candidate genes enhance Rho signal transduction and small GTPase-
mediated signal transduction. The Rho signal transduction regulates the expression of
many well-known FA-related genes, including PPARs and SREBPs [68,69] (Table S9). Small
GTPase-mediated signal transduction was also demonstrated to regulate the expression
of FA-related genes [70], FA uptake [71], and β-oxidation [72]. The potential genes and
pathways we obtained in SFAs focus on four aspects: β-oxidation, ubiquitination, pathway
factors, and transporters.

Regarding three MUFAs and TMUFA, 429 SNPs were found to be associated with
their content, with PVEs ranging from 5.93% to 13.17% (Figure 3c,d and Table S10). A
total of 2109 candidate genes were identified, each associated with the content of at least
one MUFA. Many reported FA-related genes were detected, participating in processes like
β-oxidation (ACADs, ACSs, and NDEs), ubiquitination, peroxisome oxidation (ECRs),
ω-oxidation (ADHs and ALDHs), and transport (FABPs and FATPs). For the C16:1 content,
the microfilament motor activity and response to reactive oxygen species (ROS) were
inferred by the candidate genes. The microfilament-associated proteins 2 and 3 (ARP2
and ARP3) regulate FA synthesis by modulating the motility of lipid droplets [73]. FA
β-oxidation is known to increase the level of mitochondrial ROS [74]. The microfilament
motor activity was also inferred by the candidate genes associated with the C18:1n-9
content. Intriguingly, gated channel activity was specifically enriched for the candidate
genes associated with the C20:1n-9 content. FAs can modulate the functions of voltage-
gated and ligand-gated ion channels [75] (Table S11), suggesting that increasing FAs levels
might enhance gated channel activities. It is worth noting that we specifically enriched ω

oxidation and peroxisome oxidation in MUFAs.
Overall, 838 SNPs were associated with the content of seven individual PUFAs and

TPUFA (Figure 3e,f and Table S12), where 4794 candidate genes were located around
these SNPs. The genes involved in synthesis (ACC and FADS2), β-oxidation (HADHs,
ACADs, and NDEs), transcriptional factors (Sp1, Sp3, Sp7, and PPARγ), ubiquitination,
and FA transporters (FABPs) were identified to be associated with the contents of PUFAs.
To pathway, polyunsaturated fatty acid 5-lipoxygenase (ALOX5), an enzyme catalyzing
the peroxidation of PUFAs, was also identified. The anterior/posterior pattern specifica-
tion, olfactory receptor activity, cell adhesion, and hydrolase activity were significantly
associated with the contents of C18:2n-6, C18:3n-3, C18:3n-6, and C22:6n-3, respectively.
The response to xenobiotic stimulus was observed to be related to C20:3n-6 content. This
response might trigger PPARα expression [76]. For the C20:4n-6 content, the G-protein
beta/gamma-subunit complex binding and plasma membrane region were inferred by
the candidate genes. Finally, for TPUFA content, the cellular response to oxidative stress
was enriched (Table S13). As surplus FA synthesis is known to increase oxidative stress in
adipocytes and induce lipodystrophy [77], samples with high TPUFA content likely possess
a higher capacity to respond to oxidative stress. We specifically annotated genes directly
related to fatty acid synthesis in PUFAs, such as FADS2.

3.4. Conserved FA-Associated Genes Between Common Carp and Rainbow Trout

By comparing two sets of candidate genes associated with FA content, we found
that 226 common carp candidate genes were homologous to 131 rainbow trout genes
(Table S14). The genes regulating oxidation (cytochrome P450), ubiquitination (E3 ubiq-
uitin ligases), and transport (FFARs) were discovered to be associated with FA content
defined in both species. Additionally, genes such as NOD-like Receptor (NLR) family
Caspase recruitment domain (CARD) domain-containing proteins, ras-related proteins, and
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guanine nucleotide-binding proteins, which modulate downstream signaling pathways
or transcription factors and thus affect fatty acid metabolism, were also conserved in both
fishes. Notably, most FA-associated rainbow trout genes were not encompassed in our
candidate gene set, suggest that the genes for FA content diversity are species-specific.

3.5. Differential Gene Expression Between the High-TPUFA and Low-TPUFA Groups

The average clean transcriptome data per sample among 60 samples was 6.18 Gb, and
85% of reads were successfully mapped to the reference genome (Table S15). A total of
715 DEGs were identified, including 162 up-regulated and 553 down-regulated DEGs in
the high-TPUFA group (Figure 5a). Based on the expression levels of these DEGs, the PCA
analysis of the 60 libraries showed a clear separation of two groups, indicating distinct
gene expression patterns (Figure 5b).
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Figure 5. Summary of DEGs between the high-TPUFA samples and low-TPUFA samples identified
by RNA-seq analysis. (a) Volcano plot of RNA-seq analysis. The red and green points indicate
significantly up-regulated and down-regulated genes, respectively. The gray points represent genes
with no significant differences. (b) PCA clustering of 60 samples with the expression levels of
715 DEGs. (c) GO term enrichment of DEGs.

The PUFA transporters (LDL receptor-related protein and LDL receptor adapter
protein), releasers (fatty-acid amide hydrolase), and regulators (NLRP3 and PPARs)
were up-regulated, while the inhibitors (rho GTPase-activating protein 20, and acyl-CoA
thioesterase), peroxidase (ALOX5), β-oxidation (CPT1A), and ubiquitination (E3 ubiquitin
ligase) were down-regulated (Table S16). GO analysis revealed significant enrichment in
immune response, inflammatory response, and hormone-mediated signaling pathways
(Figure 5c). PUFA metabolism is reported to be closely related to the immune response [78]
and hormone-mediated signaling pathway [79]. Thus, increased muscular TPUFA content
would impact immune response and hormone-mediated pathway activity.
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3.6. qRT-PCR Validated the Core Genes Related to TPUFA Content

To identify core genes associated with high TPUFA content, we compared the TPUFA-
associated genes and DEGs. Among the 594 candidate genes related to TPUFA content,
six genes were shared in the DEGs, including one up-regulated gene (focal adhesion
kinase 1-like, FAK1) and five down-regulated genes (Figure 6a). These comprised two non-
encoding RNAs (LOC109047212 and LOC122143902) and three protein-encoding genes,
including gastrula zinc finger protein XlCGF67.1-like, carnitine O-palmitoyltransferase 1,
liver isoform-like (CPT1A), and myosin, light chain kinase a (MYLKA). FAK1 activates
the PI3K/Akt/mTOR signaling pathway, which further up-regulates FA synthesis-related
enzymes [80,81]. Higher expression of FAK1 might boost PUFA synthesis. CPT1A catalyzes
the transport of FA-CoA into mitochondria for the downstream β-oxidation. The down-
regulated CPT1A expression in high-TPUFA samples might reduce β-oxidation activity
and decrease PUFA oxidation.
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Figure 6. Expression patterns of four core genes between the high-TPUFA samples and low-TPUFA
samples were validated with qPCR. (a) Core genes identified by both GWAS and DEGs. Results of
qRT-PCR validation for four core genes in the low-TPUFA and high-TPUFA groups. Red is the qRT-
PCR expression trends, blue is the RNA-seq expression trends. (b) LOC109047212; (c) LOC122143902;
(d) CPT1A; (e) XICGF67.1.

Among these six core genes, we cannot design suitable primers for FAK1, and MYLKA
had a low expression level, with an average FPKM value < 0.10. The qPCR was performed
on the remaining four core genes. Their expression levels were significantly higher in the
low-TPUFA group than in the high-TPUFA group. Their qPCR expression patterns match
the RNA-seq results (Figure 6b), confirming the reliability of the RNA-seq data.
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3.7. Using the Associated SNPs to Estimate FA Content

Twelve GS methods were applied to predict the breeding values for 13 single FAs,
TSFA, TMUFA, and TPUFA (Figure 7). Overall, most predictions had correlation coefficients
greater than 0.80. Each method exhibited similar predicted abilities. Even at the lowest
accuracy level of accuracy, the GS method still reached 0.64. For C14:0, the EGBLUP method
achieved the highest mean CV of 0.89, followed by the BA program with a CV of 0.81. For
the remaining 15 FAs, the RR method generally outperformed other tools. Specifically, the
EGBLUP program ranked second in 11 FAs, while the BRR method was the second-best for
the other four FAs (C18:3n-3, C20:3n-6, TPUFA, and TSFA). These results indicate that the
associated SNPs for each FA, combined with the optimal prediction tool, can be effectively
used for genetic marker-assisted selection breeding.
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4. Discussion
The limited availability of PUFAs derived from fish constitutes a bottleneck in the

food industry, a challenge that numerous research institutions are vigorously working to
overcome. Our research revealed that there were substantial differences in FA contents
among individual common carp fed within the same pond. These data strongly indicate
the presence of genetic variants responsible for these difference and suggest the viability
of enhancing FA content in fish through genetic selected [82]. The integration of multiple
previous omics data is conducive to our identification of the major-effect pathways and the
associated regulatory mechanisms underlying the differences in muscular FA contents.

To explain the molecular mechanisms of FA metabolism, much previous attention was
paid to investigate mutations or expression changes in the FA-synthesis genes [83,84]. We
observed a few genetic variants or little expression change in the FA-synthesis genes.
Conversely, more genetic variants and higher expression changes were detected in genes
involved in oxidation, ubiquitination, transportation, and transcriptional factors. The FA ox-
idation processes encompass β-oxidation [16], ω-oxidation [21], peroxisome oxidation [19],
and α-oxidation [85] (Figure 8), with the first three being the most prevalent. The core
enzymes in β-oxidation, including ACSs, FACLs, NADH-quinone oxidoreductase subunit
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B, ACADs, NDEs, and HADHs, exhibited polymorphisms and were associated with the
content of multiple FAs. CPT1A, a transporter for β-oxidation, was down-regulated in the
high-TPUFA samples. These data indicated that the β-oxidation pathway has genomic vari-
ants and expression changes, ultimately influencing the level of muscular FAs. Mutations
also occurred in the genes involved in the ω-oxidation (ECRs) and peroxisome oxidation
(ADHs and ALDHs), and these were linked to the contents of MUFAs.
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Ubiquitination, one of the most critical post-translational modifications, plays a pivotal
role in regulating FA metabolism (Figure 8). The ubiquitin proteasome system (UPS)
mediates the degradation of fatty acids [13]. Genes such as CD36, ACCs, FASNs, SCDs,
PPARs, and adipose triglyceride lipases (ATGLs) are prime targets of ubiquitination. Loss
of E3 ubiquitin ligases in the liver led to up-regulation of genes related to FA uptake and
synthesis and down-regulation of β-oxidation-related genes in mice [86]. E3 ubiquitin
ligases can regulate the ubiquitination of ATP-citrate lyase (ACLY), ACC, and FASN [87].
In our study, we observed lower expression levels of E3 ubiquitin ligase in the high-TPUFA
group, suggesting a potential regulatory mechanism through which ubiquitination impacts
TPUFA content. Beyond expression changes, genes within the UPS also show a multitude
of variants.

Beyond PPAR families, the contributions of the SNPs within the Sp gene family to FA
metabolism also merit attention (Figure 8). Sp1 can up-regulate the expression of FADs and
ELOVLs in vertebrate liver [88,89]. SNPs in Sp1, Sp5, and Sp6 were associated with SFA
content, and the SNPs in Sp1, Sp3, and Sp7 were linked to PUFA content. However, in our
DEG study, the expressions of Sp genes were not significantly different between the high-
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TPUFA and low-PUFA groups. We hypothesize that Sp gene family members primarily
regulate changes in FA content by altering non-synonymous mutations in substrate-binding
domains and affecting genes associated with FA synthesis, rather than expression.

Some core genes were identified by comparing the TPUFA-associated genes and
DEGs. Among them, FAK1 up-regulates the expression of enzymes related to fatty acid
synthesis by activating signaling pathways such as mTOR [80], and its high expression
may promote the synthesis of PUFA. CPT1A is responsible for catalyzing fatty acid-CoA
into mitochondria for β-oxidation, and the down-regulation of this gene in high TPUFA
samples may reduce the decomposition of PUFA by reducing the activity of β-oxidation.
We found genetic variants within or in proximity to ncRNAs, where the variants were
significantly associated with the content of multiple FAs. We also validated the differential
expression of two ncRNAs between the two groups, having a significant difference in
TPUFA content. These data suggested the potential involvement of ncRNAs in PUFA
metabolism. NcRNAs have been demonstrated to regulate target genes involved in FA
metabolism at transcriptional, post-transcriptional, translational, and post-translational
levels [90]. In our study, only four genes were selected for qPCR validation because fewer
candidate genes showed significantly different expression in the DEG analysis, likely due
to sample sizes affecting the power to detect candidate genes. In future research, we
will expand the sample size for transcriptome-wide association analysis and subsequent
differential expression analysis in the TPUFA group to further investigate their specific
mechanisms in fatty acid metabolism. Moreover, we will also adopt gene knockdown and
overexpression to confirm these candidate genes’ function in FA metabolism.

Selectively breeding fish with higher contents of FAs, including PUFAs, holds promise
for enhancing human nutrition and advancing the aquaculture industry. Although genome-
editing techniques targeting specific FA-synthesis genes can effectively improve muscular
PUFA levels [91], the release of edited animals was still strictly limited [92]. Genome
selection (GS) is an optimal breeding strategy to improve agronomic traits with the trait-
associated SNPs [93]. The GS method was applied in more than 20 species of aquaculture
for disease, growth trait, time to sexual maturation, carcass quality traits, and tolerance
to oxygen, etc. [94]. Compared to pedigree-based estimated breeding values, genomic
selection showed more advantage with accuracy power, genetic diversity from different
populations, and multi-environment [95]. However, it was also limited by the density of
SNPs, sample number, population structure, and kinship in aquaculture. In our study,
considering limitations of population structure, higher SNP density, and the same environ-
ment, most GS methods achieved predicted breeding value greater than 0.80, suggesting
that the GS programs could enhance the muscle FA content in common carp.

5. Conclusions
We integrated genome, transcriptome and FA profile analysis to trace the primary

processes regulating heterogeneit in the muscular FA contents of common carp. The FA
profiles data showed high variation in muscular FA content among samples. Through
GWAS, the genetic variations in the genes participating in the oxidation, ubiquitination,
and transcriptional factors were identified to be associated with the contents of multiple
FAs, while few variants were observed in FA-synthesis genes. The processes of oxidation,
ubiquitination, and transcriptional factor activities play essential roles in diversifying the
muscular TPUFA contents through the effect of genomic variations. The transcriptome
analysis, conducted based on the grouping of samples with extreme TPUFA contents,
identified DEGs that are closely linked to high TPUFA content in common carp. PUFA
transporters, releasers, and regulators were up-regulated, while inhibitors, oxidation and
ubiquitination were down-regulated in the high PUFA samples. The predictive abilities of
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multiple GS methods on FA contents were high and would be applied in future selection
breeding for fillet nutrient quality. Overall, these findings provide deep an understanding
of the molecular mechanisms underlying the discrepancies in fish FA contents and offer
guidance for GS to enhance fish fillet nutritional quality.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fishes10050234/s1. Figure S1: Manhattan plots of the contents of
13 FAs; Supplementary Figure S2: Q-Q plots of the contents of 13 FAs; Table S1: Primer sequences
for qPCR; Table S2: The contents of 16 FAs in 280 individuals.xls; Table S3: Spearman correlations
among the contents of 16 FAs .xls; Table S4: The quality of re-sequencing data; Table S5: Gene
annotation of GWAS significant loci; Table S6: Gene annotation of 100k neighboring GWAS significant
loci relating to 16 FAs traits; Table S7: SNPs and candidate genes associated with three types
of SFAs; Table S8: Enrichment of genes in 100 k region neighboring significant loci relating to
SFAs; Table S9: SNPs and candidate genes associated with three types of MUFAs using GWAS
and gene annotation; Table S10: Enrichment of genes in 100 k region neighboring significant loci
relating to MUFAs; Table S11: SNPs and candidate genes associated with seven types of PUFAs
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Abbreviations
The following abbreviations are used in this manuscript:

FAs Fatty acids
PUFAs polyunsaturated fatty acids
GWAS genome-wide association studies
TPUFA total PUFA
DEGs differentially expressed genes
EPA eicosapentaenoic acid
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DHA docosahexaenoic acid
CD36 cluster of differentiation 36
FABPs fatty acid-binding proteins
FATPs fatty acid transporter proteins
FFARs free fatty acid receptors
SCDs stearoyl-CoA desaturases
ACCs acetyl-CoA carboxylases
FASNs fatty acid synthases
ELOVLs elongases of very long chain fatty acids
FADs fatty acid desaturases
FACLs fatty-acid-CoA ligases
ACSs acyl-CoA synthetases
CPTs arnitine palmitoyltransferases
ACADs acyl-CoA dehydrogenases
ECHs enoyl-CoA hydratases
HADHs hydroxy acyl-CoA dehydrogenases
ACATs acetyl-CoA acetyltransferases
NDEs NAD(P)H dehydrogenases
ACOXs acyl-CoA oxidases
ECRs enoyl-CoA reductases
PEXs peroxisomal biogenesis factors
ADHs alcohol dehydrogenases
ALDHs aldehyde dehydrogenases
PPARs peroxisome proliferator-activated receptors
SREBPs sterol regulatory element binding proteins
lncRNAs long non-coding RNAs
MUFA monounsaturated fatty acid
GS Genomic Selection
TSFA total saturated FA
TMUFA total monounsaturated fatty acids
ncRNA non-coding RNA
Ho observed heterozygosity
PCs Principal components
MLM mixed linear model
Q-Q quantile-quantile
PVE proportion of variance explained
GO Gene Ontology
BH Benjamini-Hochberg
FPKMs fragments per kilobase per million mapped reads
FDR false discovery rate
qRT-PCR quantitative real-time PCR
BVs breeding values
GBLUP genomic best linear unbiased prediction
EGBLUP empirical best linear unbiased prediction
RR ridge regression
EN LASSOelastic net
BRR Bayesian ridge regression
BL Bayesian LASSO
BA Bayes A
BB Bayes B
RF random forest regression
SVM support vector machine
BC Bayes C
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SD standard deviation
MSEP Mean squared error of prediction
PCA Principal component analysis
GPCR G protein-coupled receptor
ROS response to reactive oxygen species
ARP2 microfilament-associated proteins 2
ARP3 microfilament-associated proteins 3
ALOX5 polyunsaturated fatty acid 5-lipoxygenase
NLR NOD-like Receptor
CARD Caspase recruitment domain
CPT1A carnitine O-palmitoyltransferase 1, liver isoform-like
MYLKA myosin, light chain kinase a
UPS ubiquitin proteasome system
ATGLs adipose triglyceride lipases
ACLY ATP-citrate lyase
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