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Abstract: In recent years, many companies have chosen to outsource data and other data compu-
tation tasks to cloud service providers to reduce costs and increase efficiency. However, there are
risks of security and privacy breaches when users outsource data to a cloud environment. Many
researchers have proposed schemes based on cryptographic primitives to address these risks under
the assumption that the cloud is a semi-honest participant and query users are honest participants.
However, in a real-world environment, users’ data privacy and security may be threatened by the
presence of malicious participants. Therefore, a novel scheme based on secure multi-party compu-
tation is proposed when attackers gain control over both the cloud and a query user in the paper.
We prove that our solution can satisfy our goals of security and privacy protection. In addition, our
experimental results based on simulated data show feasibility and reliability.

Keywords: privacy-preserving; security; encryption; cloud computing

1. Introduction

Cloud computing, as a progressive paradigm of information technology, offers the
capability of on-demand delivery of diverse computing services such as storage, processing
power, and application platforms. On the one hand, many enterprises and even govern-
ments have been attracted to using cloud computing to address issues in their business
due to its ubiquity, convenience, and on-demand network access [1,2]. On the other hand,
security has always been a major issue hindering the widespread adoption of cloud com-
puting technologies [3,4]. The inherent nature of cloud computing causes users to lose
control over cloud servers, which may raise concerns and doubts regarding security and
privacy risks. Moreover, cloud computing service providers fail to accurately report secu-
rity vulnerabilities, further exacerbating the situation [5,6]. For instance, Accenture, one
of the biggest consulting and management firms in the world, experienced a data breach
due to misconfigured AWS storage buckets. It has been reported that LinkedIn, a large
enterprise social networking site, suffered a loss of 167 million account credentials in a
data leak [7]. The k-nearest neighbor (KNN) query, serving as a fundamental module for
data set querying and everyday data mining tasks, has found extensive application in
various scenarios such as multi-keyword ranked search [8], network intrusion detection [9],
recommended systems [10], etc. Generally, privacy-preserving techniques for the secure
outsourcing of KNN classification mainly employ fast multi-party computation and ho-
momorphic encryption. To enable privacy-preserving calculation in secure multi-party
computation, non-colluding parties use shared execution computation based on secret
values, ensuring that the values or computation results remain inaccessible unless there is
collusion. However, existing schemes mostly assume the participating entities to be semi-
trusted or trusted and non-colluding. Nonetheless, malicious participants live in the real
world to disrupt or steal the model. Therefore, further research is needed to enhance the
security of outsourcing schemes and reduce computational overhead under the assumption
of malicious adversaries.
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In this paper, we aim to efficiently perform privacy-preserving KNN classification
over malicious participants in outsourced cloud environments. In the proposed scheme,
our contributions are as follows:

1. In this study, we propose a solution based on somewhat homomorphic encryption
(SHE) [11,12] to address security and privacy concerns when a user outsources sen-
sitive data to a cloud. This solution, that the outsourced data are encrypted and
stored on the cloud, can eliminate potential security and privacy risks. This outsourc-
ing stage’s primary goal is to ensure the confidentiality and integrity of sensitive
information in cloud environments.

2. Inspired by [13], a secure computation protocol based on garbled circuits is proposed
to address the security and privacy issues in data interaction between two clouds. In
this protocol, each cloud can only obtain its garbled data and cannot access the raw
data from the other cloud, thereby ensuring data confidentiality.

3. The subordinate phrase of maintaining the anonymity of the QU’s identity, daring
the authentication process, does not appear to modify the subject of a proposed
solution. A proposed solution introduces a Fujisaki–Okamoto commitment (FO)-
based [14,15] lightweight anonymous two-way authentication protocol between a
cloud and a querying user. The authentication process in our novel protocol ensures
the anonymity of a query user by using the commitment.

4. Finally, the security model, security definitions, and security requirements in a mali-
cious dyadic cloud environment are given. And we prove that our solution can satisfy
our security and privacy protection goals. In addition, our experimental results based
on simulated data show feasibility and reliability.

The structure of the rest of the study is as follows: In Section 2, we provide an overview
of the relevant paper. Section 3 presents the foundational knowledge and critical notations
necessary for understanding the proposed scheme. In Section 4, we introduce our proposed
solution’s system model, threat model, and design goals. In Section 5, our novel scheme is
proposed. Subsequently, in Section 6, we prove the security of the proposed scheme. In
Section 7, we experimentally evaluate the performance of the proposed scheme. Finally, in
Section 8, we conclude the paper along with future work.

2. Related Work

KNN has been extensively studied as one of the fundamental operations in data
mining and machine learning. In recent years, significant research has been conducted
on privacy-preserving KNN queries and classification to safeguard data security and
query privacy.

The paper [16] proposed an asymmetric inner product-preserving encryption (ASPE)
algorithm to encrypt the original data points in the data set, which uses a reversible random
matrix as the encryption and decryption key for the data points. Then, the authors proposed
a series of different schemes to enhance the security of the ASPE scheme. Although this
scheme partially solves the secure outsourcing problem of KNN classification, it assumes
that the querying user is entirely trustworthy and shares the private decryption key of the
data owner. Under this assumption, attackers only need to collude with any querying user
to decrypt the ciphertext data set, which poses significant security risks.

The paper [17–19] considered the untrustworthy behavior of querying users. It pro-
posed using the Paillier encryption algorithm to encrypt the querying data points, thereby
ensuring that querying users could not obtain the data owner’s private decryption key.
To further enhance the scheme’s security, the paper [20] designed a secure KNN query
outsourcing scheme using a additive homomorphic cryptosystem, achieving data privacy,
query privacy, and result privacy. However, the high cost of querying users limits its
practical application in the real world.

Recently, the paper [21] proposed a more efficient location-based KNN cloud query
scheme, which uses an improved Paillier homomorphic encryption technique to resist rain-
bow attacks. None of these studies considered the integrity of the results. Other research has
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focused on designing secure protocol building blocks such as those utilizing the ElGamal
encryption algorithm in the paper [22] or protocols for secure frequency and computation
of majority class in the paper [23]. Subsequent schemes [24–26] have sought to enhance
the security and efficiency of outsourced KNNs but have faced computational overhead
challenges associated with query data point encryption, reducing their practicality.

To improve the practicality of the scheme, the paper [27] put forward a plan that attains
database security, data owner key secrecy, query privacy, and data access pattern hiding.
In this scheme, data owners do not participate in the online process, the computational
burden on querying users is minimal, and the cloud server can efficiently perform encrypted
KNN classification. The paper [28] proposed a KNN query protocol that ensures both
high accuracy and efficiency while maintaining the privacy of spatial data. By applying
cryptographic transformations based on Moore curves, the protocol achieves efficient KNN
queries and protects sensitive information without compromising accuracy. The paper [29]
proposed an efficient KNN query and classification scheme based on the K-dimensional
tree for outsourced data privacy protection. In this scheme, the original data are encrypted
using order-preserving encryption (OPE) and the Paillier cryptosystem, and the data are
indexed using kd-tree technology to improve query speed. The paper [30] proposed a
KNN set similarity search scheme in cloud computing environments that is efficient, secure,
and verifiable. The scheme utilizes one-way hash functions and homomorphic encryption
techniques to ensure the correctness and integrity of query results without revealing the
privacy of the data, and it has good scalability. The paper [31] proposed an efficient and
secure cloud computing SEKNN query scheme based on obfuscation circuits, secret sharing,
and Yao protocols to build a more secure and efficient sorting algorithm. It aims to solve
the problems of inefficiency and suspicious security in existing articles. This scheme can
achieve fast and secure KNN queries in a semi-honest model in cloud computing.

In the subsequent research, numerous secure approximate KNN query schemes have
been proposed by researchers. Another approach to preserving privacy while searching
encrypted data sets outsourced to the cloud is outlined in [32]. It enables the cloud to
recognize the KNN data points within the encrypted data set that are near the encrypted
user query. The querying user is then provided with the returned search results. This
scheme claims that the data owner always retains the keys and does not need to be shared
with others. It aims to overcome the limitations of earlier cutting-edge works, such as
the need for key distribution by the data owner and the provision of some storage at
the querying user end using non-collusive cloud servers. Nevertheless, this method
compromises the security level by inadvertently exposing the access pattern of the data
to the cloud server despite ensuring the privacy of the outsourced data set and queries.
Based on their research, it is questionable whether the exposure of the data access pattern
is a concern when the data are encrypted. Additionally, the system employs an AES
algorithm to encrypt the original data. According to cryptographic transformation, this
method reduces communication overhead. It thus can effectively provide the KNN of a
query while preserving the privacy of location information and spatial data. However,
the encryption used by this scheme is AES, which is semantically insecure and raises
additional privacy issues. The ASPE technique is utilized in [33] to design an effective
scheme for secure similarity search. The system effectively compares the similarity between
two points using the characteristics of ASPE, constructs an index based on B+ trees, and
achieves an efficient similarity search. However, this scheme does not support result
verification and cannot guarantee the integrity of results. The paper [34] proposes a fully
non-interactive KNN algorithm based on fully homomorphic encryption, with complexity
quadratic in terms of the database size. However, it assumes that most voting is conducted
in plaintext, a significant security vulnerability. The paper [35] introduced a new method
of addressing privacy and authentication security issues in KNN queries. This method
protects data privacy and identity verification by applying cryptography and encryption
techniques. However, it is essential to implement extra security measures to protect keys
and authentication credentials from potential malicious attacks. HE-V is introduced in [36]



Cryptography 2023, 7, 59 4 of 19

for conducting KNN on encrypted data, incorporating majority voting for assigning class
labels. The proposed solution encompasses every step of the KNN algorithm and can
handle encrypted data comprehensively, guaranteeing no information leakage throughout
the procedure.

In the research work on multi-query user search, a protocol for secure computation
using query users’ multiple keys for KNN queries is proposed in [37]. In this scenario,
the data owner and each query user possess individual keys, eliminating the need for key
sharing between them. While data privacy and query attributes are maintained, and the
data owner’s direct involvement is avoided, the access pattern remains unprotected. In
the context of multi-query user settings, more work must be performed to guarantee data
security and result integrity effectively. Based on this problem, a secure and verifiable
KNN query for multi-query users is proposed in [38]. MSVKNN strives to achieve precise
outcomes while safeguarding the confidentiality of data, questions, results, and access
patterns and guaranteeing the accuracy and entirety of results in multi-query user scenarios.
A proposal has been made for implementing a verifiable, secure index to facilitate private
search and result verification for users with multiple queries.

In conclusion, all the research is based on the operation of the cloud in a semi-honest
model, while the querying users are assumed to be in an honest model. However, in the
real world, we still encounter malicious actors and the possibility of semi-honest users
during querying. Therefore, this paper aims to investigate how to enhance the security of
outsourcing schemes under the assumption of the cloud being maliciously exploited and
querying users being dishonest. Taking into consideration real-world scenarios will make
the research more comprehensive and practical.

3. Preliminary

In this section, we present some essential preliminary concepts for our scheme.

3.1. Somewhat Homomorphic Encryption

Somewhat homomorphic encryption (SHE) is a family of algorithms that can perform
both additive and multiplicative homomorphic encryption with a limited number of opera-
tions—if operations are allowed for an arbitrary time. The limiting factor is the divergence
of noise introduced into the ciphertext, primarily by multiplication. The algorithm pro-
posed in Reference [11] is employed as the implementation scheme for SHE in this paper.
The plaintext space of our scheme is the polynomial ring Rp = Zp[X]/Φu(x), where p is a
large prime and Φu(x) is a u-order cyclotomic polynomial. The SHE scheme comprises the
key generation algorithm, the encryption algorithm, and the decryption algorithm. The
key generation algorithm is a probabilistic algorithm that inputs the security parameters
u, p, and L and produces a key pair (PK, SK) as output. Note that u and p determine the
plaintext space, and L determines the depth to which SHE can support homomorphic
multiplication. The ENC is a probabilistic algorithm that takes PK and plaintext m as inputs
and outputs in the ciphertext EPK(m). The DEC algorithm is deterministic, with the input
being the ciphertext EPK(m) and the private key SK and the output being the plaintext m.
SHE possesses the following homomorphic properties:

1. Homomorphic addition: Given two ciphertexts EPK(x) and EPK(y), there exists an
operation ⊕ such that EPK(x + y) = EPK(x)⊕ EPK(y). Given a ciphertext EPK(x) and
an open constant α, EPK(x + α) = EPK ⊕ α.

2. Homomorphic multiplication: Given two ciphertexts EPK(x) and EPK(y), there exists
an operation ⊗ such that EPK(x× y) = EPK(x)⊗ EPK(y). Given a ciphertext EPK(x)
and an open constant α, EPK(x× α) = EPK ⊗ α.

The SHE scheme supports single-instruction multiple data (SIMD) [12], which can
encode several messages into a single ciphertext, and the operations on the ciphertext
can be applied to several different messages simultaneously. Assume that PACK de-
notes the pack operation that can pack l different messages x = (x1, x2, . . . , xl) ∈ Zl

p into

plaintext space Rp element x
′
; unpack denotes the unpack operation that restores x

′
to
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x = (x1, x2, · · · , xl). Given an arbitrary vector (x, y, α) ∈ Zl
p, computer x

′
= PACK(x),

y
′
= PACK(x), α

′
= PACK(α), we encrypt x

′
, y
′

to obtain EPK(x
′
), EPK(y

′
), and the follow-

ing equation exists.

unpack(DEC(EPK(x
′
)⊕ EPK(y

′
))) = (x1 + y1, x2 + y2, ..., xl + yl)

unpack(DEC(EPK(x
′
)⊕ α)) = (x1 + α1, x2 + α2, · · · , xl + αl) (1)

unpack(DEC(EPK(x
′
)⊗ EPK(y

′
))) = (x1 × y1, x2 × y2, · · · , xl × yl)

unpack(DEC(EPK(x
′
)⊗ α)) = (x1 × α1, x2 × α2, · · · , xl × αl) (2)

3.2. Elliptic Curves

An elliptic curve (ECC) defined over a finite field Zp is denoted by E = p, a, b, G, n.
All points on the curve satisfy the equation

y3 = x3 + bx + a(mod p)

∀a, b ∈ Zp, 4b3 + 27a2 6= 0(mod p) (3)

where G is a point (of order n) on the curve E, called the generating point.

3.3. Fujisaki–Okamoto Commitment Agreement

Let s be a safe number and h a large composite number. Neither Alice nor Bob knows
the factorization of h, m ∈ Z∗n2 , n ∈ (m). Alice does not know the orders of logg h and logh g,
with g and h being prime numbers greater than 160 bits, making it infeasible to compute the
discrete logarithm in the cyclic group they generate. Alice picks r ∈ (2sh + 1, · · · , 2sh− 1)
at random, computes F(x, r) = mxnr mod h, and sends F(x, r) to x with respect to m and
n. This commitment scheme is statistically safe. On the one hand, Alice cannot find the
discrete logarithm that makes x1 6= x2, F(x1, r1) = F(x2, r2) unless it can decompose n or
can pick up the discrete logarithm; on the other hand, F(x, r) does not statistically reveal
any information to Bob.

It is said that the commitment value of x and F(x, r) is a commitment to x since only
Alice knows the commitment value of F(x, r) = mxnr mod h and the random number (x, r).

3.4. Non-Contact Commitment

The concept of non-contact commitment was first introduced by the authors of [39],
and later the authors of [40] designed a mechanism for bit commitment based on it. In this
article, the focus is on the verification of each participant’s information in conjunction with
a non-contact commitment mechanism.

This mechanism has the following characteristics:
Correctness: For all CRS, if i f (C, δ)← COMCRS(x), then CHKCRS(C, δ) = x.
Binding: For all polynomial time attackers A, it can output (C, δ, δ

′
) with a negligible

probability of A(CRS), so that CHKCRS(C, δ) 6= CHKCRS(C, δ
′
) and ⊥/∈ CHKCRS(C, δ) 6=

CHKCRS(C, δ
′
). It can be ignored with probability A(CRS) that the output (C, δ, δ

′
) gives

CHKCRS(C, δ) 6= CHKCRS(C, δ
′
) as well as ⊥/∈ CHKCRS(C, δ) 6= CHKCRS(C, δ

′
).

Hiddenness: For all polynomial time attackers A, all of CRS and (x, x
′
) ∈ 0, 1n are

ignored as below.

‖Pr(C,δ)←COMCRS(x)[A(C) = 1]− Pr(C,δ′ )←COMCRS(x′ )[A(C) = 1]| (4)

3.5. Garbled Circuits

For any function f , garbled circuits allow two participants to securely compute the
function value f (x, y) without revealing their respective holdings x and y. The core idea of
a garbled circuit is that one party (the circuit generator) first encrypts the Boolean circuit
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corresponding to function f and its input x and sends the encrypted Boolean circuit and
input to the other party (the circuit calculator). The circuit computation side interacts with
the circuit generation side to obtain the encrypted value of its input y. Then, it performs
operations on the encrypted Boolean circuit in combination with the encrypted value of the
received x. The result is that both parties can compute the function value f (x, y) without
obtaining valid information from each other’s inputs.

4. System Model, Threat Model, and Design Goals

In this section, we present the notations, system model, threat model, and design goals
of the scheme.

4.1. Notations

We give the notations used in this paper as shown in Table 1.

Table 1. Notations.

Notation Description

⊕ homomorphic addition
⊗ homomorphic multiplication
D data set of n labeled samples
d each sample dimension in the data

t, l, s1, s2 the secret parameters
m1, m2, n1, n2 random numbers selected in the cyclic group

q a private plain query point for the query user
r1, r2, x user’s secret parameters
q1, q2, ω random parameters

NC a random number
Com1, Com2 the user’s commitment computed

PKQU the QU’s public key
SKQU the QU’s private key

q
′ q of the encrypted query points

c
′
q encrypted KNN classification label set

cq KNN categorical tag set
Rp = Zp[X]/Φu(x) polynomial ring

Kd session key

4.2. System Model

In this paper, our privacy-preserving KNN classification system involves two non-
colluding clouds, data owners, and query users, as shown in Figure 1.

1. Dyadic cloud: In our system, two independent clouds are denoted as CA and CB, re-
spectively. They both maintain the data provided by the data owners. Through a series
of secure protocols, they can answer multiple queries in a way that preserves privacy.

2. Data owner (DO): Our solution requires that the DO generates and encrypts its data
with SHE and then uploads the encrypted data to a cloud.

3. Query user (QU): An anonymous two-way authentication protocol based on Fujisaki–
Okamoto commitment is adopted between a cloud and the QU. Next, our solution
requires that a QU submits its encrypted sample to a cloud when it needs to query
some information. A cloud will respond to the QU’s query when it receives a QU’s
request—the QU recovery query results.

It is important to note that these two non-colluding clouds are practical in a commercial
environment. For instance, a CA may belong to Amazon, while a CB could be Microsoft’s
Azure. Once colluding with each other is discovered by others, customers can lose trust in
either of them, leading to a significant loss in market share for both companies. Various
privacy-preserving machine learning schemes have adopted this non-collusive dual-cloud
model, as it can effectively minimize QUs’ computational and communication costs [41].
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Data Owners Query Users

Cloud A Cloud B

Dataset

encryption
Data exchange between 

clouds

Encrypted sample

Return encryption 

classification results

...

Dataset

encryption

Dataset

encryption

Figure 1. System model.

4.3. Threat Model

In our scheme, we assumed that the CA is a semi-honest participant, the CB is a
malicious participant, and some QUs are semi-honest participants.

1. The malicious CB may illegally collect and infer the true identity of a QU, and the CB
can reconstruct sensitive information based on storage location information. In an
outsourcing system, the CB can arbitrarily deviate from the specified computation
task. It not only tries to capture users’ private information but also may return a
deliberately forged result to fool the QU.

2. The semi-honest QU that an attacker compromised may access the system by imper-
sonating a legitimate QU, and it also performs a replay attack or observes messages
between a cloud and a legitimate QU to capture another QU’s privacy.

4.4. Design Goals

This article proposes a scheme to enhance security in the query and outsourcing
process. Based on associated security protocols such as garbled circuits, homomorphic
encryption, and anonymous authentication, the scheme eliminates threats in the query and
outsourcing process. Our new plan fulfills the following security objectives.

1. Privacy of data outsource: A DO’s plaintext data and private key are uniquely known
only to itself and will not be disclosed to other participating parties.

2. Privacy of query data: The data access pattern in the ciphertext KNN classification pro-
cess ensures that the data points in the ciphertext data set corresponding to the KNN
classification labels are not disclosed to the cloud. Additionally, the authentication
process between a QU and the cloud ensures the confidentiality of the real identity.
While adversaries can obtain the pseudonym of the QU, they cannot deduce any
relevant information about the real identity of the QU, thereby preventing potential
privacy leakage risks.

3. Privacy of interaction between clouds: In the protocol of secure mean calculation,
data privacy is ensured as each cloud can only access its own obfuscated data, thereby
preventing access to the original data of another cloud.
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5. Our Scheme

In this section, we propose a novel KNN classification scheme with enhanced privacy
protection, which includes four parts: data outsourcing, query data, data interaction
between clouds, and query result recovery.

5.1. Plaintext Encoding

The SHE technique is utilized to encrypt outsourced data. A problem that needs
to be addressed when we use SHE for classification computation is that the plaintext
space of the SHE algorithm is a polynomial ring Rp = Zp[X]/Φu(x), while the data in the
outsourced data typically include floating-point numbers and negative numbers. Therefore,
our approach converts the data to Zp and then utilizes the PACK operation in SHE to
encode l different data a = (a1, a2, · · · , al) ∈ Zl

p into the plaintext space Rp. In particular,
for a floating-point or integer value x, we select a large integer γ multiplied by x and
then round the result to an integer (p + x) ∈ Zp. For negative integer x, it is denoted as
(p + x) ∈ Zp in this study.

One additional issue to address when using SHE for classification computation is
the prevention of result overflow during the calculation process. Our approach com-
bines the Chinese remainder theorem (CRT) to tackle this problem. Specifically, we select
multiple prime numbers p1, p2, · · · , ph as the modulus of the plaintext space for the SHE
and generate h corresponding public–private key pairs (PKi, SKi, i ∈ [1, h]. For a large
integer x > pi, it is encoded into the plaintext space Rpi and encrypted using PKi to ob-
tain Epki

(x). In our notation, we represent the ciphertext of x under h different keys as
Epk(x) = (Epk1(x), Epk2(x), · · · , Epkh

(x)).

5.2. Security of Data Outsourcing

In this stage, each DO uses SHE technology to encrypt their respective data and
encrypts them to upload them to the CA.

The implementation steps are as follows:

• Step 1: Select an element from a discrete Gaussian distribution s← χ, s ∈ R.
• Step 2: Select an element pi, e, pi ∈ Rp from Rp.
• Step 3: Set the public key to PK = (p0, p1), where p0 = −(p1s + te), and the private

key is SK = s.

• Step 4: A DO utilizes the expansion factor γ to expand and round each of the sample
data and transforms each sample’s class label Ci into a 0-1 vector ci. If the condition
Ci = lt is satisfied, the t-th position in ci is set to 1, while the other bits are set to 0.

• Step 5: The DO divides data value D into s blocks, each containing l samples. We
assume the total number of samples n is a multiple of l. For each data block i, the DO
bundles l data records with the same attribute j and encrypts them with public key
PK to obtain Aij.

• Step 6: The DO encrypts the class labels corresponding to each sample in data block i
to obtain Cit.

• Step 7: The DO receives and transmits the encrypted data Epk(D) to CA.

In addition, the data owner generates a random permutation function ϕ for n data,
utilizes it to compute set ζ

′
= ϕ(x), and sends the combined set ϕ, which consists of

the function ϕ and the randomly permuted data, to CA for subsequent encrypted KNN
classification. After the completion of data set outsourcing, the DO remains offline during
the ciphertext KNN classification process.

5.3. Query Privacy

To preserve the identity of a QU during the authentication process, we designed an
anonymous mutual authentication protocol based on the FOC protocol. The essence of a
QU can be accurately verified by verifying the proof that the user holds P, as validated
by CA and CB. We employ ECC cryptography for mutual authentication during the
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authentication procedure. Furthermore, zero-knowledge proof (ZKP) is utilized to conceal
the user’s identity.

In our scheme, we let t, l, s1, s2 denote four security parameters and h denote a large
composite number factorization CA, CB, which the QU is unaware of. m1 and m2 are the two
elements with the highest order in Zh. n1 and n2 are elements in the m1 and m2 generating
groups. The QU is unaware of logm1

n1, logn1
m1, logm2

n2, logn2
m2. H is a hash function.

The QU secretly holds y ∈ [0, a]. Let Com1 = Com11(y, r1) and Com2 = Com12(y, r2) be
two commitments relating to y. In order to demonstrate the QU’s knowledge of y, r1, r2, the
CA and the CB can verify the QU’s commitment {Com1, Com2}, in which {Com1, Com2}
conceals the same secret y.

• Step 1: The QU randomly selects ω ∈ [1, 2l+tb − 1], η1 ∈ [1, 2l+t+s1 h − 1],
η2 ∈ [1, 2l+t+s2 h− 1], by performing the following computation.

W1 = mω
1 nη1

1 mod h (5)

W2 = mω
2 nη2

2 mod h (6)

• Step 2: The QU calculates c = H(W1 ‖W2). Then, the QU computes

I = ω + cx (7)

I1 = η1 + cr1 (8)

I2 = η2 + cr2 (9)

and sends {c, I, I1, I2}, respectively, to CA and CB.
• Step 3: The CA and the CB check if c is satisfied.

c = M(mI
1nI1

1 Com−c
1 mod h ‖ mI

2nI2
2 Com−c

2 mod h) (10)

If the protocol is successfully executed, the CA and the CB will believe that Com1 and
Com2 have concealed the same secret number. If 1/l is negligible, in the random oracle
model, the protocol achieves statistical zero knowledge.

The implementation steps are as follows:

• Step 1: The CA and the CB, respectively, randomly generate NC and send them to the
QU that is requested for signature for anonymous authentication.

• Step 2: After receiving the NC, the QU randomly selects Kd to serve as a session key.
Then, we generate a proof P for the user’s identity in the following manner:

P = {c, I, I1, I2} (11)

where {c, I, I1, I2} is calculated via the following equation.

c = H(W1 ‖W2 ‖ NC)

I = ω + cy

I1 = q1 + cr1

I2 = q2 + cr2 (12)

• Step 3: According to the equation’s results, P is obtained for the QU.
• Step 4: The QU encrypts {Kd, c, I, I1, I2} with the public key PKH and obtains
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λ = EncKu(Kd, c, I, I1, I2) (13)

Then, the QU sends λ to the CA and the CB.
• Step 5: The CA and the CB first decrypt the result of λ with the private key to evidence

the QU and the Kd. Unauthorized cloud entities should not access the secret y stored
by I. When the P provided by the QU is accurate, the following equation holds
according to the FOC protocol. W

′
1 = W1, W

′
2 = W2, where

W
′
1 = mI

1nI1
1 F−c mod h

W
′
2 = mI

2nI2
2 E−c mod h (14)

Then, the CA and the CB can verify the QU according to the following equation.

c = H(mI
1nI1

1 Com−c
1 mod h ‖ mI

2nI2
2 Com−c

2 mod h ‖ NC) (15)

• Step 6: If the above verification is correct, then the QU is legal. The CA and the CB use
the Kd to encode the message and transmit it to the QU for encryption.

• Step 7: If the QU can decrypt the messages sent by the CA and the CB with the Kd,
then the CA and the CB are secure, and authentication is concluded.

Query data encryption
We let the query data point of the QU be q = (q1, q2, · · · , qd), qi ∈ Zh.

• Step 1: The QU initially generates a random number that is positive in value

ε ∈
{

1, · · ·, 2l2
}

and converts q into a d + 1-dimensional vector q̂ = ε(q, 1).

• Step 2: The QU encrypts each element q
′

of vector q̂ with the PKQU obtaining the ci-
phertext query data points and sends them to the CA for ciphertext KNN classification.

q
′
= (EPK(q̂1), EPK(q̂2), · · · , EPK(q̂d+1)) (16)

Note: Before performing SHE encryption, data point pi and query data point q in the
data are transformed into d+1-dimensional vectors p̂i and q̂, respectively. The reason for
the transformation is to use inner product instead of Euclidean distance ‖ pi − q ‖ as the
basis for determining the similarity between data points in KNN, thereby reducing the
computational cost of encrypted KNN classification.

5.4. Security of Data Exchange among Clouds

The bit commitment mechanism in our scheme is mainly based on the universal
random string model. We let CRS be a universal random string and (COMCRS, CHKCRS)
be a non-contact commitment mechanism for n-bit messages. The COMCRS algorithm
selects n-bit message x and random coin toss r as inputs, and as outputs commitment C
and its corresponding path δ. Notation COMCRS(x) is shorthand for COMCRS(x; β) based
on β.

A four-value pair algorithm G = (Gb, En, De, Ev, ev) represents the garbled circuit, as
shown in Figure 2.

Among them, Gb represents a random garbled algorithm that can convert the calcula-
tion of f into a ternary pair of (F, e, r). Here, F represents a garbled circuit, where e is the
encrypted information and r is the decrypted information. En is the encryption algorithm
that maps data value x to input X = En(e, x) of the garbled algorithm. De is the decryption
algorithm y = De(r, Y) that can restore the output Y of the garbled algorithm to the data
value y. Ev is the algorithm for verifying whether the input X of the garbled algorithm
and the garbled circuit F meet the output Y = Ev(F, X) of the garbled algorithm. The
correctness of the garbled circuit refers to all (F, e, r) and input information X supported
by the garbled algorithm Gb(1k, f ), where De(r, Ev(F, En(e, x))) = f (x) and k represent
security parameters.
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Gb

1^k
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x
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X
Y
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x

y
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Figure 2. Structure of the garbled circuit.

A secure average calculation protocol based on garbled circuits aims to obtain the final
calculation result in the presence of malicious participants (the CB). This protocol has three
participants: the CA1 , the CA2 (the CA1 and the CA2 are the two servers of the CA which
are used to verify whether the CB is a malicious participant), and the CB. The CA1 inputs
(x1, t1), the CA2 inputs (x2, t2), and the CB is mainly responsible for the circuit calculation
process, intending to safely calculate y = x1 + x2/t1 + t2.

The implementation steps are as follows:

• Step 1: The CB randomly selects CRS for the promise and, respectively, sends CRS
to the CA1 and the CA2 . The CB generates random number ξ and shares the secret as
ξ = ξ1 ⊕ ξ2, sends ξ1 to the CA1 , and sends ξ2 to the CA2 .

• Step 2: The CA1 selects seed β ← {0, 1}k for pseudo-random function rp f and then
sends β to the CA2 .

• Step 3: The CA1 and the CA2 generate the corresponding circuit Gb(1k, f ) → (F, e, r)
based on function f = (x1 + x2)ξ and randomly select a1, a2 ← {0, 1}4m, for all µ ∈ 4m
and υ ∈← {0, 1} to generate the following commitments:

(Cυ
1,µ, δυ

1,µ)← COMCRS(e[µ, a1[µ]⊕ υ])

(Cυ
2,µ, δυ

2,µ)← COMCRS(e[µ, a2[µ]⊕ υ]) (17)

Finally, the CA1 and the CA2 send to the CB the following message:

(a1[2m + 1 · · · 4m], F,
{

Cυ
1,µ

}
µ,υ

)

(a2[2m + 1 · · · 4m], F,
{

Cυ
2,µ

}
µ,υ

) (18)

• Step 4: If the information sent by the CA1 and the CA2 is different, then the CB will stop.

• Step 5: The CA1 and the CA2 send uncommitted messages δ
x1[µ]⊕a1[µ]
1,µ , δ

ξ1[µ]⊕a1[2m+µ]
1,2m+µ ,

δ
t1[µ]⊕a2[µ]
2,µ , δ

ξ1[µ]⊕a2[2m+µ]
2,2m+µ and δ

x2[µ]⊕a1[m+µ]
1,m+µ , δ

ξ2[µ]⊕a1[3m+µ]
1,3m+µ , δ

t2[µ]⊕a2[m+µ]
2,m+µ ,

δ
ξ2[µ]⊕a2[3m+µ]
2,3m+µ , respectively, to the CB.

• Step 6: For µ ∈ 4m, the CB for any correct o[µ] are used to calculate:

X[µ] = CHKCRS(C
o[µ]
1,µ , δ

o[µ]
1,µ ) (19)

X
′
[µ] = CHKCRS(C

o[µ]
2,µ , δ

o[µ]
2,µ ). (20)

If there is a CHK call, then return ⊥, and then stop. Similarly, the CB knows the data
a1[2m + 1 · · · 4m] and a2[2m + 1 · · · 4m], and the protocol stops if the CA1 or the CA2

cannot unlock ξ1 and ξ2 corresponding to the promise Cξ1[µ]⊕a1[2m+µ]
1,2m+µ , Cξ2[µ]⊕a1[3m+µ]

1,3m+µ ,

Cξ1[µ]⊕a2[2m+µ]
2,2m+µ , Cξ2[µ]⊕a2[3m+µ]

2,3m+µ . Then, CB executes Y ← Ev(F, X), Y
′ ← Ev(F, X

′
) and

sends Y and Y
′

to the CA1 and the CA2 .
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• Step 7: The CA1 and the CA2 calculate whether x1 + x2/t1 + t2 = De(r, Y)/De(r, Y
′
)

holds.

Ciphertext KNN classification
In this protocol, after receiving the ciphertext query sample from QU, CA and CB

jointly perform the ciphertext KNN classification task based on the ciphertext database
uploaded by DO.

The CA performs the following steps:

• Step 1: The CA calculates the ciphertext inner product dst
′
i of the ciphertext query

sample q
′

and the ciphertext data point p
′
i in the ciphertext data, and it obtains the

following set of ciphertext inner products.

dst
′
i =

{
dst

′
1, dst

′
2, · · ·, dst

′
n

}
dst

′
i = p

′
i(q
′
)T (21)

• Step 2: The CA arranges the elements in the set of ciphertext inner product dst
′
i and

the set of ciphertext classification labels V by using the random permutation function
Θ, and it obtains the following two sets of random permutations.

dst
′
= Θ(dst

′
) =

{
dst

′
1, dst

′
2, · · ·, dst

′
n

}
(22)

V = Θ(V) = {v1, v2, · · ·, vn} (23)

The CA sends collection dst and V to CB.

The CB performs the following steps:

• Step 1: The CB uses the received ciphertext inner product set dst
′
=

{
dst

′
1, dst

′
2, · · ·, dst

′
n

}
for KNN search.

• Step 2: The CB bases on the structure obtained by using the ciphertext inner product dst
′

for KNN search, and the ciphertext KNN classification label set C
′
q = {v1, v2, · · ·, vn} is

obtained from the ciphertext classification label set V and sent to the QU.

5.5. Query Result Recovery

After receiving the ciphertext KNN classification label C
′
q sent by CB, for each cipher-

text label in the set, a QU decrypts it using SHE SKQU to obtain the KNN classification
label set Cq.

6. Security Analysis

In this section, the security of our solution will be analyzed.

6.1. Data Outsourcing Security

Theorem 1. SHE-based encryption is secure in data transfer.

Proof. The data transferred between the user and the server are encrypted. Entrusting data
to an untrusted third-party organization or being subjected to hacker attacks can result in
data leakage. The SHE scheme provides strong protection to the data, making it impossible
for attackers to recover the original data. All classified computations are performed within
the encrypted domain, eliminating the need for decryption. As a result, the scheme offers
higher security for remote data storage and leak prevention.

6.2. Query Privacy Security

Definition 1. There exists an efficient algorithm that, when given input |h|, generates an RSA mod
n and an associated element z ∈ Zp (Zp is multiplicative group), where e ∈ {0, 1} and integer
z = ue mod h, if satisfied, is infeasible.
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Definition 2. Finding the integer l, 0 ≤ l ≤ h− 1 such that Q = lP is a challenging task, given
an elliptic curve Com1 defined over a finite field Com2q and a point P ∈ Com1(Com2q) of order
l, 0 ≤ l ≤ h− 1.

Theorem 2. If the probability of CA, CB, or QUs generating each other’s private keys is negligible
in our proposal, the attacker will be unable to successfully impersonate a legitimate CA, CB, or QU.

Proof. Under the condition of the robust RSA assumption, as inferred by [4], Com1(y, r) is
considered a commitment scheme with statistical security, which means that a QU cannot
claim two identical values of y1, y2 (y1 = y2) unless it can factorize h, solve the discrete
logarithm of m in base n, or solve the discrete logarithm of n in base m. In short, assuming
the factorization assumption, it is computationally infeasible to compute {y1, y2, r1, r1}
such that Com1(y1, r1) = Com1(y2, r2).

In summary, the secret parameters P(y, r) satisfying Com1 = mynr mod cannot be ob-
tained by the attacker when accessing sequence Oy,r and commitment {Com1, Com2}. There-
fore, the likelihood of the attacker being able to generate a valid signature
λ = PUB(Ks, c, I, I1, I2, Com1, Com2) is negligible. So, QU authenticity is assured.

Based on the elliptic curve discrete logarithm problem, the probability is negligible for
the CA and the CB to generate their privacy keys SKH1 and SKH2 based on PKH1 and PKH2

and Com1H . Therefore, the authenticity of the CA and the CB is guaranteed.

Theorem 3. Ensuring the anonymity of the QU is a fundamental requirement of our solution,
as it prohibits unauthorized access to personal information, rendering the attacker unable to
retrieve identities.

Proof. According to the FOC protocol, it can be observed that Com1 and Com2 provide no
statistical information to the CA and the CB. In the process of mutual authentication, the QU
generates a proof {c, I, I1, I2} that can be verified by the CA and the CB without disclosing
the actual identity. Additionally, attackers with access to the commitments cannot deduce
the true identity of the QU, including in insider attacks. Hence, achieving user anonymity
is possible.

Theorem 4. An attacker cannot authenticate by replaying legitimate information acquired during
a query.

Proof. In our proposed scheme, the random numbers {NC, r1, r2} are employed exclu-
sively for the current query information, making it arduous for the attacker to acquire
the preceding value. Additionally, the random numbers change with each set of query
information, guaranteeing the freshness of each secret in the current query information. So,
it is challenging to acquire any past query information.

Theorem 5. An attacker cannot authenticate by replaying legitimate information obtained from
query information.

Proof. Two scenarios need to be considered. In our solution, if an attacker attempts to
replay an old message λ = EncPUB(Kd, c, I, I1, I2) for authentication, it must satisfy one of
the following two conditions:

NC = N
′
C (24)

c = c
′
, c = M(W1 ‖W2 ‖ NC), c

′
= H(W1 ‖W2 ‖ N

′
C) (25)

NC is a cloud-selected replay random number.
For the condition NC = N

′
C, due to the selection of CA and CB into a wide range of

data NC, the probability Pr[NC = N
′
C] can be neglected. The hash function selected by
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the QU is assumed to possess ideal collision resistance, which means that the attacker is
unable to produce an identical hash value without knowledge of NC, given the condition
c = c

′
, c = H(W1 ‖ W2 ‖ NC), c

′
= H(W1 ‖ W2 ‖ N

′
C). Hence, our authentication is

resistant to replay attacks.

Theorem 6. An attacker cannot obtain the true identity of users from anonymous authentica-
tion messages.

Proof. ω, q1, q2 are random in the calculation of I, I1, I2, so proof of c, I, I1, I2 is sent to the
CA, and the CB are different each time. The calculation process for W

′
1, W

′
2 is also different

when CA and the CB perform the calculation. As a result, each access is associated with a
unique and newly generated anonymous identity credential. Even if the attacker intercepts
messages for an extended period, they will be unable to acquire any valuable information
that could reveal the real identity of QU. Hence, the attacker cannot extract users’ genuine
identities from the anonymous authentication messages.

6.3. Data Interaction between Clouds Security

Definition 3. Let H ⊂ P be the self of honest participants in set P. Assume that proto-
col Π can securely realize the functionality of F if there exists a polynomial time (PPT) set
Sim = (SimP1 , SimP2 , SimCB) such that, for all semi-honest PPT attackers A, their inputs are
Dx, Dy and auxiliary input is z. For all participating parties, denoted as p∗ ∈ P,

REALp∗
π,A,H,z(ξ, x, y)ξ∈N ≡ IDEALp∗

F,Sim,H,z(ξ, x, y)ξ∈N (26)

where ≡ represents computational indistinguishability.

Theorem 7. The secure computation protocol based on garbled circuits is secure when, at most, one
malicious participant is present.

Proof. Consider CB as a malicious participant and CA as a semi-honest participant. It
must be demonstrated that the secure computation protocol achieves indistinguishability
between the ideal and actual models. In other words, it is impossible to differentiate
between each participant’s interaction information and outputs in the ideal model and the
accurate model during the following interactions.

In a real-world model, it is assumed that there exists a simulator that can simulate
the various behaviors of a semi-honest participant CA and receive inputs (x1, t1), (x2, t2)
from CA1 and CA2 from the protocol execution environment. Simultaneously, the simulator
can mimic the functionality of the generating function Ff by forwarding all inputs to the
simulated Ff . From the execution environment’s standpoint, there is no distinction between
the actual Ff and the simulated Ff since the simulator does not perform any computations
carried out by Ff .

Because in Step 2, CA1 and CA2 uniformly selected the pseudo-random function seed
r, it can be seen from the safety of the pseudo-random function that in Step 2, the actual
model and the ideal model are indistinguishable.

In Step 3, we modify the simulator so that when it generates a commitment, it can
know which commitments will be opened in advance. Firstly, the simulator can tag the
randomly generated number O1, O2 corresponding to which commitment is opened and
compute a1 = O1 ⊕ x1 ‖ x2, a2 = O2 ⊕ t1 ‖ t2. Meanwhile, the simulator obtains numerical
values for (x1, x2) and (t1, t2). Then, the simulator can submit tag values that ensure they
will remain unopened. In this process, as a result of promises being concealed, it becomes
equally impossible to differentiate between the real and ideal models.

In Step 6, the simulated CA1 and CA2 cease execution when De(r, Y
′
) = 1 is reached.

Appropriate modifications are made to the simulator to achieve Y
′ 6= Ev(F, X). Authen-

ticity through the garbled circuit CB achieves Y
′ 6= Ev(F, X) only when De(r, Y

′
) = 1,
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with a negligible probability. Hence, it is equally impossible to distinguish between the
implementation and the ideal models at this stage.

In Step 6, due to the correctness of the garbled circuit, both analog CA1 and CA2 can
obtain outputs. Consequently, assuming no disruption occurred in the preceding phase,
the simulator can be altered into an analog garbled circuit capable of producing (F, X, r).
By simulating the instructions of Ff , we can replicate the output of both CA1 and CA2 . In
this step, the indistinguishability between the real and ideal models is equally ensured
based on the security of the garbled circuit.

In summary, the protocol ensures that the execution environment cannot differentiate
between genuine and ideal models. As a result, the protocol remains secure even in the
presence of a malicious participant represented by CB.

7. Experiment

In this section, an experimental analysis of the performance of our proposed scheme is
conducted. We employed the Python programming language and the SEAL-Python library
to implement SHE in the experiment. The experiments were performed in a Windows
10 environment with an Intel Core i5 2.30 GHz CPU and 16 GB RAM. In our experimental
study, we compared our proposed scheme and the existing secure outsourcing schemes for
KNN classification [18,19]. We primarily employed simulated data for experimental testing.

We conducted performance testing and analysis on three protocols: data outsourcing,
data querying, and data interaction between clouds. Here, all experimental results are the
average of 1000 test runs. Next, we provide a detailed analysis and explanation of the
computational costs for each protocol.

7.1. Data Outsourcing

As shown in Figures 3 and 4, the execution time required for generating the encrypted
synthetic data exhibits linear growth with increasing dimensionless d of the data nodes,
and all have low computational overhead (as shown in Figure 3, it takes approximately
1.2 s for d = 500 and n = 50 K; in Figure 4, it takes around 0.56 s for n = 1000 K and
d = 20). When encrypting the simulation data, compared to the existing schemes [18,19],
our solution combining SHE and SIMD has a relatively low cost, so it has a certain degree
of practicality.

Figure 3. Average database encryption time (s) vs. d [18,19].
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Figure 4. Average database encryption time (s) vs. n [18,19].

7.2. Data Query

Before performing query sample encryption, the QU needs to undergo anonymous
mutual authentication based on FOC with CA and CB, which, although lightweight, still
incur unavoidable computational overhead. Figure 5 demonstrates that our approach
and the approach in [18] exhibit lower computational costs. Conversely, the costs of
the approach in [19] rapidly escalate with an increase in the dimensionless data points,
requiring approximately 120 s of running time for d = 500. In conclusion, our approach
exhibits lower computational costs and superior practicality.

Figure 5. Average query encryption time (s) vs. d [18,19].

7.3. Data Interaction between Clouds

As shown in Figures 6 and 7, in our scheme, the running time is about 14 s when
d = 500 and n = 50 K and approximately 150 s when d = 20 and n = 1000 K. Compared
with existing schemes in [18,19], our approach incurs significant computational overhead
in ciphertext KNN classification due to the requirement of executing secure averaging
protocols based on garbled circuits between CA and CB, resulting in substantial time
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consumption. The primary reason is the need for extensive bit commitment processing in
the garbled circuit section; however, it can withstand attacks from a malicious cloud server
in a dual-cloud environment, making it suitable for our proposed scheme. In future work,
we will focus on improving performance concerning this issue.

Based on the comprehensive analysis of the experiments conducted, our approach
requires additional computational overhead in data encryption, data querying, and data
interaction between the cloud and the user due to potential malicious attackers controlling
both the cloud and the QU. However, it should be noted that our solution still exhibits high
computational efficiency while achieving secure KNN classification in the scenario where
attackers control the cloud and the QU.

Figure 6. Average encrypted KNN classification time (s) vs. d [18,19].

Figure 7. Average encrypted KNN classification time (s) vs. n [18,19].

8. Conclusions

This paper proposes a privacy-preserving KNN query scheme based on a secure multi-
party computation mechanism to address security concerns when malicious attackers
control the cloud and query users. We conducted a detailed security analysis of the
proposed scheme, demonstrating its effectiveness in protecting the data privacy of the DO,
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the QU, and the data interaction privacy between the two clouds. Finally, we evaluated its
performance through experiments. The experimental results indicate that the scheme has a
certain degree of feasibility and reliability.

In subsequent work, we will emphasize the balance between security and efficiency.
Additionally, we will focus on practical applications in real-world scenarios.
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The following abbreviations are used in this manuscript:

KNN k-nearest neighbor
SHE somewhat homomorphic encryption
SIMD single-instruction multiple data
FOC Fujisaki–Okamoto commitment
GEN the generation algorithm
ENC the encryption algorithm
DEC the decryption algorithm
ECC elliptic curve
DO data owner
QU query user
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