
Citation: Nicholas, G.S.; Aklekar, D.V.;

Thakar, B.; Saqib, F. Secure

Instruction and Data-Level

Information Flow Tracking Model for

RISC-V. Cryptography 2023, 7, 58.

https://doi.org/10.3390/

cryptography7040058

Academic Editor: Josef Pieprzyk

Received: 17 August 2023

Revised: 9 November 2023

Accepted: 13 November 2023

Published: 16 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Article

Secure Instruction and Data-Level Information Flow Tracking
Model for RISC-V
Geraldine Shirley Nicholas *,†, Dhruvakumar Vikas Aklekar, Bhavin Thakar † and Fareena Saqib *

Electrical and Computer Engineering, University of North Carolina at Charlotte, Charlotte, NC 28262, USA;
daklekar@uncc.edu (D.V.A.); bthakar1@uncc.edu (B.T.)
* Correspondence: gnichola@uncc.edu (G.S.N.); fsaqib@uncc.edu (F.S.)
† These authors contributed equally to this work.

Abstract: With the proliferation of electronic devices, third-party intellectual property (3PIP) inte-
gration in the supply chain of the semiconductor industry and untrusted actors/fields have raised
hardware security concerns that enable potential attacks, such as unauthorized access to data, fault
injection and privacy invasion. Different security techniques have been proposed to provide resilience
to secure devices from potential vulnerabilities; however, no one technique can be applied as an
overarching solution. We propose an integrated Information Flow Tracking (IFT) technique to enable
runtime security to protect system integrity by tracking the flow of data from untrusted communica-
tion channels. Existing hardware-based IFT schemes are either fine-, which are resource-intensive, or
coarse-grained models, which have minimal precision logic, providing either control-flow or data-
flow integrity. No current security model provides multi-granularity due to the difficulty in balancing
both the flexibility and hardware overheads at the same time. This study proposes a multi-level
granularity IFT model that integrates a hardware-based IFT technique with a gate-level-based IFT
(GLIFT) technique, along with flexibility, for better precision and assessments. Translation from the
instruction level to the data level is based on module instantiation with security-critical data for
accurate information flow behaviors without any false conservative flows. A simulation-based IFT
model is demonstrated, which translates the architecture-specific extensions into a compiler-specific
simulation model with toolchain extensions for Reduced Instruction Set Architecture (RISC-V) to
verify the security extensions. This approach provides better precision logic by enhancing the tagged
mechanism with 1-bit tags and implementing an optimized shadow logic that eliminates the area
overhead by tracking the data for only security-critical modules.

Keywords: information flow tracking (IFT); hardware security; ISA; toolchain; software attacks;
gate-level IFT; RISC-V

1. Introduction

The rise in smart technology, Internet of Things (IoT) and Heterogeneous Systems
on Chips (SoCs) have facilitated the connected ecosystem; however, automation has intro-
duced several supply chain and runtime attack surfaces. Securing connected interfaces
and tracking the authenticity of data from untrusted communication channels is a major
security concern. Memory corruption vulnerabilities, code injection, buffer overflow attacks
and other software-based attacks compromise untrusted channels to control the flow of
applications with malicious data.

Security measures to protect interfaces and data propagation via channels are critical
in the framework of preserving the confidentiality and integrity of data. The IFT approach
is used for the detection of data attacks and memory corruption by tracking the flow of data
through the untrusted communication channels [1,2]. The IFT approach labels malicious
data with tags to denote security policies and tracks data propagation to determine the
authenticity of data at runtime. IFT features may be used as static verification during the
design phase and provide dynamic checking during functional modes at runtime.

Cryptography 2023, 7, 58. https://doi.org/10.3390/cryptography7040058 https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography7040058
https://doi.org/10.3390/cryptography7040058
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://doi.org/10.3390/cryptography7040058
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography7040058?type=check_update&version=1


Cryptography 2023, 7, 58 2 of 20

The IFT model is classified on the level of abstraction, precision logic and verification
techniques [3]. This study proposes a novel technique that supports both instruction-level
and gate-level secure propagation. The existing techniques include fine-grained models
that use high-precision data-dependent labels and coarse-grained models with upper-
bound data labels. These individual models contribute to a particular granularity-based
precision logic, resulting in limited security properties supported via the given model. Gate-
level information flow tracking is based on shadow logic supporting precise models but
results in complex design computations, leading to scaling issues and complexity in GLIFT
logic. On the contrary, Dynamic Information Flow Tracking (DIFT) [4] is an Instruction
Set Architecture (ISA)-based hardware approach with conservative tracking rules. This
approach provides coarse-grained granularity but lacks adaptability for different ISAs, thus
limiting its applications.

Most DIFT designs focus on protecting the target software but fail to protect the
information flow between third-party IPs (3PIPs), which can perform security-critical
functions [5]. Furthermore, SoC-level-based DIFT designs with bus extensions for 3PIP
protection are not flexible, leading to system overheads. Therefore, by considering the
precision and granularity of a system, an IFT model may provide both levels of granularity
for better precision, along with securing the integrity of the system.The proposed approach
makes use of instruction-based and gate-level-based models, providing both fine- and
coarse-grained granularity by integrating the models and optimizing systems to enhance
the performance of the combined models. This approach further implements a novel
hardware-to-software simulation-based IFT model to exhibit a correlation with toolchain
modification and leverages the RISC-V platform to provide security extensions for the
processor ISA.

Hardware-based IFT models often modify architectures or use co-processors, leading
to overhead and proprietary complexity. Therefore, an open-source, supporting, modular
and extensible RISC-V base platform is used to support secure applications. The proposed
technique leverages the architecture’s flexibility by adding secure extensions and the IFT
model with RISC-V ISA. Gate-level IFT is applied to security-critical datapath modules
with enhanced shadow logic to minimize the design complexity of the model. This study
makes the following contributions:

• A RISC-V-based coarse-grained hardware-based Information Flow Tracking frame-
work with a tagged mechanism is proposed and demonstrated at an architectural
level, which detects security violations at runtime.

• A RISC-V-based fine-grained gate-level-based Information Flow Tracking framework
for a security-critical datapath using optimized shadow logic is demonstrated with
minimal overhead.

• Toolchain extensions with a hardware-to-simulation-based correlation IFT RISC-V
model are implemented and verified with better precision.

The paper is organized as follows: Section 2 describes the background work of the
existing IFT models with a RISC-V architecture. Section 3 illustrates the threat model, and
Section 4 presents the proposed design approach. The experimental evaluation and results
of the proposed model are described in Section 5. Security analysis, limitations and future
work are discussed in Sections 6 and 7.

2. Background Studies

Information flow tracking techniques support hardware- and software-based imple-
mentations and depend on the explicit and implicit flow of data to design the conditional
behaviors for the model. The following section discusses the existing IFT approaches based
on precision granularity models.

2.1. Coarse-Grained IFT Models

Architectural-level IFT implementations provide a coarse-grained precision logic with
a dedicated tag mechanism for security policies and metadata propagation. Hardware-



Cryptography 2023, 7, 58 3 of 20

based approaches depend on the architectural features and datapath of an ISA model.
Coarse-grained models track control sensitive information in an application, along with
program variables and other independent labels. Access and information flow with tags
can be associated with a dedicated co-processor or a modified ISA with tag modules.
IFT models protect systems from buffer overflow attacks and memory corruption via
identifying malicious data [6,7].

FlexiTaint is an architectural-level IFT model [8] that supports an accelerator with
tainted security policies and extends the processor’s datapath for tag propagation. DIFT [9]
is a hardware-based approach with an ARM co-processor to track and debug traces using
static analysis. Hardware-Assisted Data-Flow Isolation (HDFI) [10] and HyperFlow [11] are
hardware-based RISC-V implementations that implement tagged mechanisms and security
policies for information flow control. Exploitable Buffer Overflow Detection by Information
Flow Tracking (BOFT) [12] is an automated framework with an extensive library for explicit
and implicit IFT that integrates formal verification with IFT and leverages symbolic execution
but adds extensive instrumentation for taint propagation. Mixed-mode IFT (MIT) [13] provides
byte granularity by decoupling the tracking logic from program execution by using the taint
semantics at compile time, which is dependent on runtime logs.

Christian Palmiero et al. [14] proposes a feasible RISC-V core without any runtime
overhead to detect memory corruption attacks by adding security tags to user-supplied
inputs. Self-authenticated [15] secure boot with application runtime security provides
information flow tracking with shared memory to reduce the area overhead of the system.
Hybrid-mode IFT with Taint (HIT) semantics extraction and replay [16] integrates static
information analysis and DIFT via compile-time extraction to detect sensitive data leakage
with a modest performance overhead. Tagged Memory Assisted for Fine-grained Data-Flow
Integrity (TMDFI) models [17] uses lowRISC open-source tag-memory-based architecture
for runtime data integrity with a limitation of an 8-bit memory tag that can support
256 tags sufficient for small embedded applications. Tagged memory based on hardware
uses static analysis techniques to perform security policies on target programs to mitigate
data-oriented attacks [18].

FineDIFT [19] is a hardware-based mechanism that generates data-flow graphs of
a running process with a co-processor to provide flexibility, but the metadata storage
requirements result in several limitations of software instrumentation. Kejun Chen et al.
summarize current DIFT solutions, referring to the over-tainting problem that leads to high
false positive rates [5]. Security policies with customization can be achieved by adopting
parallel tag propagation schemes in these models. Optimal-decision-based DIFT [20] uses
an analytical algorithm for indirect flow propagation with an arbitrary number of tag types
for flexibility. Cryptographic Return Address Stack (CRAS) [21] and Return-Address-Stack-
Based Side-Channel LEakage(RASSLE) [22] are return address stack models that protect
the stack from leakage channels. A tag-based model results in architectural overhead, as
the memory is modified to incorporate tag bits or complex lattice structures or built for
securing the data. An efficient model needs to limit the hardware design overheads and
provide IFT capabilities in the hardware design.

A tagging mechanism assigns a tag bit to untrusted data and tracks the propagation
of data using tag bits. Figure 1 illustrates an example in which incoming data from an
untrusted source (input [20]) is assigned a tag bit, and the IFT module in the background
tracks the data using the value of the tag bits to indicate if the data are spurious or safe. All
incoming data are assigned a tag bit, with a value of 1 or 0 indicating unsafe or trusted data,
respectively. If the data are copied to string1, it is identified as an untrusted source, and the
IFT module tracks the data associated with string1. This approach is based on hardware
design implementation wherein a one-bit tag is assigned to untrusted sources and an IFT
module, which consists of different units, tracks the tag bits to authenticate the data based
on the security policies for the information flow.



Cryptography 2023, 7, 58 4 of 20

Figure 1. Tag bits assigned to untrusted sources via the IFT module.

2.2. Fine-Grained IFT Models

IFT implementations also support fine-grained models with data labels associated
with only data flow and do not focus on control-flow transfers. This approach focuses on a
gate-level IFT model, which is a fine-grained model associated with Boolean gates in which
the information flow appears at the gate-level netlist and provides better precision logic.
GLIFT [23] is a shadow-logic-based technique that adds logic to all the gates, resulting in
design complexity and overhead. Data-flow logic [24] serves as a backbone, which is used
in several proposed techniques, including [25–27], where optimized labeling and enhanced
encoding techniques help to reduce complexity but affect the precision logic of the system. An
asset-based GLIFT [28] model provides structural checking with security properties.

Gate-level-based leakage detection [29] with parser and logic modules for formal
verification detects leaky paths but results in intense computation complexity for large
designs. A multi-bit label tracking model [30] quantitatively detects information leakage
with area constraints, as the multi-bit labels are directly proportional to the number of
gates in the circuit. A unified model for gate-level propagation [31] generates synthesizable
propagation logic to be used in Electronic Design Automation (EDA) tools where attribute
labels at different levels of precision are addressed for the faults, with the flexibility to be
used in different emulation platforms.

A gate-level-based IFT model consists of gates and shadow logic for all gates, as
represented in Figure 2. For each gate, a separate shadow logic is implemented (a and b
are the inputs with an output o) and the shadow consists of inputs, along with untrusted
inputs, which affect the output. Such a scheme results in additional area overhead. The
proposed scheme reduces the complexity of the gate-level model and enables tracking of
the data-critical modules, such as crypto engines and security accelerators, rather than
tracking the whole module. This proposed technique integrates the tagged mechanism and
provides coarse and fine granularity in tracking the data.

Figure 2. Gate-level IFT with shadow logic.



Cryptography 2023, 7, 58 5 of 20

2.3. Modular ISA (RISC-V)

RISC-V is an open-source, extensible ISA with a minimal instruction set, providing
a flexible customized processor. RISC-V supports several security applications, such as
Common Evaluation Platform (CEP) [32], to identify security properties and, thus, stands
as a major concern in the security of the underlying design model. The RISC-V security
committee has proposed an abstraction-augmented aISA that extends a bridge between
hardware and software beyond the traditional ISA for control [33]. RISC-V extensions to
support the IFT model provide strong timing-sensitive security behavior by leveraging the
flexibility of the architecture, which is otherwise not possible with traditional ISAs.

The RISC-V toolchain consists of GNU Compiler Collection (GCC) and Clang/Low-
Level Virtual Machine (LLVM) compilers and provides different backend library support
for customization [34]. Simulator models, such as Spike and Qemu, are used as reference
models for RISC-V ISA [35,36]. Isadora [37] framework uses a minimal testbench to run an
automated trace generator for information tracking, which limits access to the full RISC-V
toolchain, leading to false positives. The toolchain modification with customization in
a simulation model achieves a correlation between the hardware and software and can
enable the evaluation of security extensions effectively. The proposed work integrates
hardware and software by translating the architecture-specific extensions to compiler-
specific simulation models, thereby enabling system-level security with higher accuracy.

3. Threat Model

The threat model assumes the device is in an untrusted field and has the runtime
vulnerability of stealthy modifications to the input channels to circumvent the security
layer. An adversary can use an untrusted communication channel to exploit vulnerable
codes by providing malicious inputs to the system. The application is further vulnerable to
permitting modification in the configuration parameters through software-based attacks.
This work focuses on memory corruption through buffer overflow attacks and return ad-
dress attacks. Furthermore, the proposed techniques evaluate data-level leakage detection
in the functional modules.

3.1. Buffer Overflow Attacks

The memory structure is an important aspect of an architecture in which the stack
plays an important role in storing the temporary variables created via a function. When a
program is executed, the information is stored, along with the parameters, return address
and base pointer. An adversary can exploit user inputs without bound checking with
excess data that can overwrite the return address [38] and other memory locations [39],
with malicious data leading to system compromise or running malicious codes that may
leak critical information from the system.

Figure 3 shows the overall memory structure with a buffer overflow attack caused by
the sample program. The memory structure consists of the stack and heap structure along
with other sections to be stored in the memory. In Figure 3, a string (str1) is passed with a
size larger than the buffer size, causing the return address to be overwritten. This example
shows the buffer overflow attack and the need for security policies to detect and eliminate
this scenario before the return address is modified.A security policy can assign tag bits to
the data return address to catch the attack and prevent corrupting the parameter from a
buffer overflow attack.



Cryptography 2023, 7, 58 6 of 20

Figure 3. Memory structure with buffer overflow attack.

3.2. Return Address Attacks

The return address attack targets return to libc, in which an adversary injects a mali-
cious code that executes a hidden function in the background, which can go undetected by
the system [40]. This attack does not need an executable stack or a shellcode but instead
causes the main code to jump to the malicious program.

Figure 4 illustrates the return address attack via a procedure call where the input data
from an untrusted communication channel affects the return address. In this example,
the return address of the main function is saved in the stack, and it calls the get_fn() for
which the local variables are created and specific space is allocated to the buffer. The
input/output string data from the untrusted communication channel exceeds the limit of
the buffer capacity and overwrites the return address. The return address is now modified
via the procedure call function, which assigns the return address pointing to the adversary’s
malicious code to be executed.

To protect the return address from such attacks, an address space randomization
protection scheme is used in most systems but this technique is vulnerable to side-channel
attacks. Hence, to protect the system from return address attacks, new custom instructions
can be implemented to track the flow of the address using tags in an IFT model.

Figure 4. Buffer return address attack.



Cryptography 2023, 7, 58 7 of 20

3.3. Data-Level Leakage

Hardware designs are potentially vulnerable to the leakage of sensitive information
from security-critical modules, such as cryptographic engines and data processing accel-
erators, where maliciously added hardware Trojan can be activated to trigger a payload
condition [41]. The analysis or tracking of data requires access to a gate-level netlist to
check the inputs that influence the outputs. Modeling the integrity properties of data at the
gate level is performed via gate-level IFT using shadow logic [23,42].

Figure 5 shows an example of a Trojan insertion in a gate-level circuit consisting of
logic gates. The inputs (a, b, c, and d) are given to OR gates, and the result is XORed, which,
in turn, is given as input to the NAND gate. A Trojan input (T) is fed as another input to
the NAND gate, which acts as a hidden trigger. When the trigger input is 1, the output is
affected via the input, resulting in an activated signal that triggers the hidden function to be
enabled. The secret keys are leaked or replaced by the function executed by an adversary.
Thus, the violation of key integrity is tracked by information flow properties, which are
implemented using gate-level IFT models providing fine-grained precision logic.

Figure 5. Trojan insertion in gate-level circuits.

4. CF-IFT Technique—Integrated Coars- and Fine-Grained IFT

The proposed hardware-based IFT technique is an integrated coarse-grained-based
data tracking technique enriched with a fine-grained modular gate-level IFT module
for security-critical datapaths. The proposed scheme is demonstrated on a simulation
model with toolchain support to track return addresses to prevent memory corruption and
software attacks. To the author’s knowledge, this is a novel effort that integrates toolchain
support for RISC-V security extensions along with multi-granularity for better accuracy
and preventing false positives in the system.

4.1. Architectural Model

The architectural model is demonstrated on a RISC-V platform enriched with security
extensions in the model, which detects and stops software attacks on memory to mitigate
corruption-based attacks. Security policies protect a system from different untrusted
sources; these countermeasures are demonstrated by protecting the return address with an
extendable tag mechanism. The tag mechanism module consists of a modular approach
that assigns tag bits and tracks the propagation of the tags during runtime to detect
spurious data.

4.1.1. RISC-V

A RISC-V core features both 32- and 64-bit variants with fixed-length 32-bit instructions
and variable-length encoding for customizable applications [43]. The proposed scheme
integrates the security features and extends them to the instruction set level. RISC-V is
a load–store architecture, in which only load and store instructions access the memory;
the IFT model focuses on the load and store instructions to check the integrity level of the
memory contents. The loads are encoded in I-type format, and the store instructions are
encoded in S-type format. Two new instructions are added to the ISA, which is used to
provide security checks for the 1-bit tag in the tag mechanism [44]. Based on the load and
store encoding specified in the RISC-V core, the new instructions are as follows:



Cryptography 2023, 7, 58 8 of 20

• In the load instruction encoding: LDTCHECK;
• In the store instruction encoding: SDTCHECK.

The new store instruction encoding is used to store data and assign a tag bit to the address
of the data, that is, if the data are evaluated as spurious, a tag bit is assigned as 1 or 0. The
new load instruction encoding is used to load the data and check if the tag bit is 1 or 0. A
tag module is designed, in which an array table is assigned for the tag bits. The array table
is assigned a separate virtual access with a tag cache instead of the main memory to protect
the table access. The Control and Status Register (CSR) in the ISA offers custom address space
for unused addresses, which is used to assign a new status for the tag values and mismatch
conditions, which results in an exception. The core is extended to add the tag bit along with
the read and write requests to accommodate the new tag bit. The tag module is used to check
the address of the load and store instructions to reduce the overhead in the architecture.

4.1.2. Tag Mechanism

The tag module consists of the tag initialization, tag propagation and tag checking
modules. The usage of 1-bit tags reduces the overhead, and additionally, memory access
takes place separately in the tag cache. The tag initialization module assigns tags to all the
data addresses from untrusted sources using the custom-added load and store instructions.
The purpose of the tag propagation unit is to track the tag bits from all the data addresses
and store the details of the tags in the tag cache. Minimal information along the path is
stored in the tag cache to avoid overhead. Finally, the tag-checking module is used to check
the tag bits for all the data addresses after a procedure call, and if there is a mismatch in the
tag bit, then an exception is raised.

The checking unit checks all the properties associated with the security policies for
the data. Based on the security policies, the data are assigned as spurious and tracked
completely to protect them from being modified or affecting the memory, leading to
different attacks. Figure 6 shows the overall system design with the RISC-V core Tag
mechanism and gate-level IFT with shadow logic, in which individual units are used to
protect the memory from software attacks and data leakage.

Figure 6. RISC-V core with tag mechanism and gate-level IFT.



Cryptography 2023, 7, 58 9 of 20

The ISA-level IFT model is integrated at the microarchitecture level and has introduced
secure instructions, specifically, load and store. The proposed technique is demonstrated
on the RISC-V processor’s datapath and control logic. The integrated gate-level IFT uses
the data-level logic of only the security-critical modules. Both models interact using the
tilelink interface, as shown in Figures 6 and 7, with the expanded core integration of the
tag module inside the core.

Figure 7. Tag module.

As shown in Figure 7, the ISA-level tag module in the RISC-V core is updated as the
signal propagates through the datapath at the coarse-grained level. The processor datapath
cycle is modified with the tag initialization, tag propagation and tag check processes for the
secure load and store instructions. The first process of the tag initialization module adds a
1-bit tag to the new instruction and moves to the next process of tag propagation. The tag
propagation module integrates the tag propagation through the instruction cycle of fetch,
decode, execute, memory access and write back for the secure load and store instructions.
Finally, the tag check module checks the tag bit associated with the tag cache with security
policies to raise an exception.

4.1.3. Security Policies

Potentially malicious input/output channels for a system are identified via security
policies [45,46]. Focusing on memory corruption, the security policies are associated with
the load/store instructions and the return addresses. All user-supplied data are marked as
malicious since they use the load/store instructions with source and destination addresses.
The program counter value is also tracked as the return address and needs to be protected
from modification. The tag check rules are applied to the secure custom instructions with
tag bits, and an exception is raised if the tag values mismatch to mitigate the attack.

If a conditional branch instruction is executed, the tag check module checks for the
address using the tag bits and permits the execution only if the tag bits match with the
table or terminate the call, thus providing a coarse granularity model with better precision.
The security policies for protecting the return address assign checking rules for tracking all
procedure calls, along with user input data.

4.2. Gate-Level Model

Gate-level model components track security-sensitive paths using fine-grained infor-
mation flow at the logic blocks by performing a composition of augmented logic blocks [47].
In the fine-grained IFT, implicit, explicit and covert information flow is tracked at the data
level. In an integrated CF-IFT scheme, the gate-level design focuses on a specific security
critical module and its corresponding datapath to minimize the security overhead and
performance, as compared to only gate-level IFT models. Special critical modules, such as
crypto engines and accelerators, that share secret keys or security-critical information are
considered the logic blocks to which gate-level IFT is applied.



Cryptography 2023, 7, 58 10 of 20

Without any hardware design modification, this approach is integrated with the RISC-
V core as a separate module to perform information policies for user-instantiated critical
modules. Each input and output of the entire module is tainted, and a shadow logic
library for the tainted gates is implemented. Security policies are matched with the tainted
information for the module under test. The tainted inputs for the gates are determined by
detecting the arbitrary changes in the inputs that affect the output, leading to data leakage
and faults and triggering hidden functionalities.

4.2.1. Shadow Logic for Tainted Gates

All data bits propagating from the input to the output are marked as tainted if the tainted
input influences the output. Considering the example in Figure 2, we have two OR gates and
one AND gate, with a and b as inputs and o as the output. In an OR gate, with reference to the
truth table for the two inputs, additional tainted inputs are added, such that when the inputs
are toggled and output is affected by the tainted input,it is considered malicious and marked
to be tracked through the whole information flow. Based on the minterms, the shadow logic is
formed for the OR gate, and similarly, this is conducted for the AND gate.

The shadow gate library is formed for all basic gates and compared with the main
logic to mark the tainted output bits. The information flow policy checking module is used
to track the flow based on the security policies implemented. Precision logic is indicated
based on the tainted information. If the security policy is violated, the output flowing from
the input is considered spurious with information leakage.

4.2.2. Information Flow Policy Checking

The security policies for the logic gates and the associated tainted bits are implemented
for all the gates in comparison with the shadow logic library [48]. Initially, the module
to be tracked is selected by the user. The module or the application is then converted to
a gate-level netlist to track the information flow of individual data and is separated into
sub-modules.The gate-level IFT module obtains the information and security policies from
the shadow logic and the IFT policy checking rules unit to determine the tainted inputs,
the exact location of data leakage and spurious inputs. The gate-level IFT unit tracks these
untrusted information paths and raises an exception if there is a change in the output and
information flow, resulting in malicious data detection.

Figure 8 demonstrates the high-level automation flow of gate-level IFT integration to the
security-critical datapaths to the cryptographic cores. The cryptographic cores are complex
and may have multiple rounds performing computationally extensive operations. The core is
evaluated on the security properties and selects the submodules that are critical to perform
runtime execution analysis. As shown in Figure 8, the Advanced Encryption Standard (AES)
module is divided into the submodules of the encryption and decryption cores that use T-tables
for the substitution of bytes. T-tables are vulnerable to cache attacks that can maliciously update
the substitution and/or leak information. The T-table sub-module is selected for fine-grained
gate-level IFT integration to monitor signals using shadow logic. The gate-level IFT unit tracks
the untrusted information paths, raises an exception if there is a change in output and detects
malicious data propagation during runtime.

This approach is efficient with no hardware modification and integrated along with
architecture-level IFT, which enables an accurate and performance-efficient model. De-
pending on the application or micro-architectures added to the system, gate-level IFT is
performed on any critically sensitive modules. For example, in crypto engines, the keys in
the AES encryption module can be tracked using gate-level IFT to check integrity and data
leakage from the system.

Figure 9 shows the simplified shadow logic for a two-input OR gate. In this example,
input b is considered untrusted, and the shadow logic truth table is highlighted to show
the tainted input affecting the output. If a = 0 and b is untrusted, then the output (o) = 0/1,
and when a = 1 and b is untrusted, then the output (o) = 1/0, which proves that the output
is affected via the input b. Similarly, the shadow logic library holds the truth table for all



Cryptography 2023, 7, 58 11 of 20

gates, the tainted data are tracked using this logic and the exact location that leads to data
leakage is found.

Figure 8. Gate-level IFT model flow.

Figure 9. OR gate shadow logic truth table.

4.3. Simulation Model

Spike is a RISC-V ISA simulator, with the ISA specification integration, that acts as
a reference model for RISC-V. This work extends the simulator capabilities and enables
new security extensions to detect runtime attacks in the RISC-V simulation model. The
capability enriches the software simulation model to correlate with the hardware model
to monitor runtime IFT. This is, to the best of the author’s knowledge, the first effort to
integrate security features at the simulation level and can result in the security integration
of EDA tools.

The goal of compiler/assembler modification is to extend the ISA for several instruction
set extensions. The Spike ISA simulator is used to test the modification of ISA at the software
level and is divided into different modules. Each module is responsible for simulating a block
of architecture, and adding new blocks in the simulator yields new security extensions in
the model. The initial step is to declare the instruction in the instruction format to generate
matching and masking address values for the new instruction. The following step is to describe



Cryptography 2023, 7, 58 12 of 20

the instruction length, number of operands and functionality, as the hardware model along
with the corresponding address and master address are introduced.

Figure 10 shows the field format for the RISC-V architecture to add the new instructions
in the RISC-V opcode structure. The highlighted red fields are modified to accommodate the
new instructions in the toolchain. The check tag and store tag functions are implemented to
execute the tag condition for the return address along with security policies to determine
the tagged flow.

Figure 10. Field format to add new instructions in RISC-V.

To simulate the newly added instructions in the Spike simulator, functions are added to
the tag module to check and store tag bits. For the IFT simulation module, a buffer overflow
attack in which the user input data are untrusted is implemented and demonstrates that
the secure IFT model can detect the modified return address and mitigate the attack. The
location of the stored return address on the stack is retrieved by causing the buffer overflow
attack. The toolchain support provides the flexibility to add security policies and develop
test beds to carry out security analysis for RISC-V ISA with minimal design overhead and
better precision logic.

5. Experimental Results
5.1. Architectural Model

In the tag module, the tags labeled for the return addresses and data are processed,
and the information is stored in the tag cache. Similar to the load/store instructions, the
security-enhanced tag-based load/store instructions are used for adding tags to only the
return addresses and the user-defined data. Figure 11 shows the pseudocode for the tag
module along with the tag cache, where a class is created for the tag cache with various tag
parameters. Check functions are implemented for tag matching, which includes a counter
to maintain the tag array for the tag cache and is updated based on entries. Security policy
functions are written to fetch the tags and match the tag bits for validation.

Cryptography 2023, 1, 0 12 of 20

Figure 10. Field format to add new instructions in RISC-V.

To simulate the newly added instructions in the Spike simulator, functions are added to
the tag module to check and store tag bits. For the IFT simulation module,a buffer overflow
attack in which the user input data are untrusted is implemented and demonstrates that
the secure IFT model can detect the modified return address and mitigate the attack. The
location of the stored return address on the stack is retrieved by causing the buffer overflow
attack. The toolchain support provides the flexibility to add security policies and develop
test beds to carry out security analysis for RISC-V ISA with minimal design overhead and
better precision logic.

5. Experimental Results
5.1. Architectural Model

In the tag module, the tags labeled for the return addresses and data are processed,
and the information is stored in the tag cache. Similar to the load/store instructions, the
security-enhanced tag-based load/store instructions are used for adding tags to only the
return addresses and the user-defined data. Figure 11 shows the pseudocode for the tag
module along with the tag cache, where a class is created for the tag cache with various tag
parameters. Check functions are implemented for tag matching, which includes a counter
to maintain the tag array for the tag cache and is updated based on entries. Security policy
functions are written to fetch the tags and match the tag bits for validation.

Figure 11. Pseudo code for tag module with tag cache.

The Xilinx Artix-7 Field Programmable Gate Array (FPGA) board is used to prototype
and run the modified RISC-V rocket chip using Vivado. A user-defined application is modified
to run a buffer overflow attack to test the architecture. The LookUp Table and Flip Flops for
the proposed IFT model are compared with the Cryptographic Return Address Stack (CRAS)-
based countermeasures [16], as shown in Table 1. The proposed model uses 10528 LUTs and
7113 Flip Flops to implement the proposed IFT model in the RISC-V architecture, which is
fewer resources than the CRAS model. The CRAS model further uses a separate stack for
storing the return addresses to eliminate data leakage from shared memory. The result shows
that the overall increase in the usage of LookUp Table (LUT) resources does not exceed 1%.
The overall FPGA resources, which are used in addition to the application, are used as the tags

Figure 11. Pseudo code for tag module with tag cache.

The Xilinx Artix-7 Field Programmable Gate Array (FPGA) board is used to prototype
and run the modified RISC-V rocket chip using Vivado. A user-defined application is modified



Cryptography 2023, 7, 58 13 of 20

to run a buffer overflow attack to test the architecture. The LookUp Table and Flip Flops for
the proposed IFT model are compared with the Cryptographic Return Address Stack (CRAS)-
based countermeasures [16], as shown in Table 1. The proposed model uses 10,528 LUTs and
7113 Flip Flops to implement the proposed IFT model in the RISC-V architecture, which is
fewer resources than the CRAS model. The CRAS model further uses a separate stack for
storing the return addresses to eliminate data leakage from shared memory. The result shows
that the overall increase in the usage of LookUp Table (LUT) resources does not exceed 1%.
The overall FPGA resources, which are used in addition to the application, are used as the tags
and a copy of inputs processed in a parallel manner. The tag module utilizes the distributed
LUTs of the application and does not impact the processor’s area overhead.

Table 1. Resource utilization of the IFT module.

Architecture LUT FF

Proposed tag-based IFT 10,528 7113

Cryptographic Return Address Stack (CRAS) 11,468 6130

5.2. Gate-Level Model

The security properties of the gate-level IFT and verification are analyzed on ISCAS-85
Benchmark circuits using the critical datapaths.

Netlist and Submodules

The combinational circuit c432 interrupt controller is considered to illustrate the gate-
level IFT implemented in the hardware. The circuit consists of 36 inputs and 7 outputs with
a total of 160 gates in which each channel is enabled on priority based on the bus requests.
The initial circuit is converted to a gate-level netlist using the implemented algorithm and
is verified as the module to be tracked. The module is classified into submodules based on
the information and critical data. Finally, the gate-level IFT logic is used to compare the
submodule to be tracked with the shadow logic library. The security policies are applied to
track the gates in which the output is affected by the input. This gives a set of trusted input
gates and untrusted input gates that need to be tracked.

The gate-level IFT model tracks the untrusted gates and detects information leakage
by analyzing the data of all untrusted gate inputs. A variation in the data flow is observed
and raises an interrupt, indicating a malicious information flow that is hidden in the
ISA abstraction. This model provides fine precision logic to accurately predict untrusted
data. Implemented as a separate automated model, this provides less area overhead when
compared to other existing GLIFT models, which increases the area by 70% by doubling
the gates for shadow logic.

The Xilinx PYNQ FPGA board is used to demonstrate the gate-level IFT model with the
c432 ISCAS-85 benchmark circuits. As the RISC-V specification is highly flexible, different
soft processor variants can be used as a tool to study the threat model. Building flexible
Inter and Intra-ISA variations for comparison with the RISC-V family helps in analyzing
the security extensions. RISC-V IP is implemented using the Vivado tool for the PYNQ
board, supporting the overlay. The overlay acts as a bridge between the designed IP and
the FPGA. Figure 12 shows the PYNQ flow with the RISC-V IP and Advanced Extensible
Interface (AXI) designed for the PYNQ board using the overlay. GLIFT is integrated with
the IP to track the datapath of the security-critical modules.

Figure 13 shows the gate-level IFT detecting the untrusted gate in the submodule m2
for the c432 circuit. The circuit is divided into submodules, from which we focus on one of
the modules, that is, module 2, implementing priority encoder B, as shown in Figure 13 line
2. Priority encoder B is selected to be tracked with untrusted inputs, and the model detects
the fault at the NAND gate based on the shadow logic libraries and the sequence of inputs.
It classifies the gates based on the shadow gate libraries and points out the untrusted gate.
Similarly, with different sets of input, the model detects the untrusted gates and tracks the



Cryptography 2023, 7, 58 14 of 20

gates further during runtime to detect the leakage of critical data and the modification of
data inputs and raises a security function call if there is a detection of malicious data inputs.

Figure 12. PYNQ flow with the RISC-V IP and AXI Interface.

Figure 13. Gate-level IFT detecting the untrusted gate (NAND) for the submodule priority encoder B
in the c432 circuit.

Table 2 shows the execution of the shadow logic to detect the untrusted gates in the
circuit of different benchmarks. Individual security critical modules that are vulnerable to
data leakage through input datapath can be tracked to identify the location of the untrusted
inputs based on the proposed model, which improves the execution time, as the other



Cryptography 2023, 7, 58 15 of 20

paths do not require shadow logic integration, leading to a precise model without design
modification or scaling.

For the GLIFT, the resource utilization shown in Table 3 indicates that the proposed
RISC-V-based GLIFT uses only 4506 LookUp Tables, 4753 Flip Flops, 188 LUTRAMs and
16 BBRAMs, as compared to the overall IFT-integrated RISC-V SoC. The overall coverage
of the IFT-integrated datapaths and control paths is optimized, as the security-critical
paths are identified for the fine-grained IFT, and the other paths are controlled via the
microarchitectural-level IFT. This integrated IFT scheme reduces area overhead without
penalizing the detailed IFT control over the security datapaths.

Table 2. The execution time of ISCAS 85, 89, as well as the EPFL benchmarks.

Benchmark No. of Inputs No. of Outputs No. of Gates Shadow Logic
Execution (s)

C432 36 7 160 186

S398 3 6 119 177

Adder 256 129 2162 556

Alu + crtl 7 26 306 373

Memory-crtl (submodule) 1204 1231 8956 984

Table 3. Resource utilization of GLIFT module.

Architecture LUT FF LUTRAM BBRAM

SoC with proposed
IFT integration 53,200 106,400 17,400 140

Proposed IFT-only
overhead 4506 4753 188 16

Percentage
overhead of IFT

integration
8.5% 4.5% 1.1% 11%

Figure 14 shows the relative utilization percentage graph with the SoC, where only
8.5% of the LUT is utilized for the RISC-V IP.

Figure 14. Relative resource utilization.

5.3. Simulation Model

The IFT framework is tested on the Spike simulator by implementing a buffer overflow
attack. The new instructions are used with the stack operations where the return address is
saved. Tag bits are assigned to the return address and the data to be stored on the stack. If there
is a mismatch, an exception is raised, and the program execution is stopped by mitigating the



Cryptography 2023, 7, 58 16 of 20

buffer overflow attack. The newly added SDTCHECK is used to assign a tag bit for the return
address, and the LDTCHECK is used to check the tag corresponding to the return address in
the tag cache. This framework protects the stack by using customized instructions where the
new return address compromised by an adversary is not loaded on the stack.

Figure 15 shows a buffer overflow C code with a segmentation fault, in which the
vulnerable function has an argument str1 passed to the buffer of size 5 using string copy.
This will cause a segmentation fault if the allocated memory address is exceeded, but if
bypassed, it may access restricted locations and an adversary can gain access to the return
address. This proves that even though the segmentation fault exception exits the program
execution and prevents the program from accessing the protected memory location stored
on the stack, it can still cause leakage of critically important data.

Figure 15. Buffer overflow attack in C with a segmentation fault.

When the segmentation fault is bypassed, the program executes the conventional
RISC-V architecture by successfully executing the buffer overflow attack by modifying the
return address. Such a scenario will cause a memory attack and can be mitigated using
the proposed IFT model, that is, once applied, it results in an exception to terminate the
process. The model identifies the modification of the return address and stops the program
execution by raising an exception to eliminate the buffer overflow attack, as shown in
Figure 16. Figure 16 shows the buffer overflow attack executed successfully without the
IFT model on RISC-V, and Figure 17 shows the IFT module tracking the return address and
eliminating the attack by raising an exception when the return address is modified.

Figure 16. Buffer overflow attack in RISC-V architecture without IFT module.



Cryptography 2023, 7, 58 17 of 20

Figure 17. IFT module implemented eliminating the attack via exception.

6. Security Analysis

In this section, the security extensions provided by the proposed framework to elimi-
nate memory-based attacks are discussed:

• The RISC-V model is vulnerable to leaks such as buffer overflows, return address
attacks, fault injections, etc. An adversary can modify the bit flips or the return address
of the application, leading to compromised data. The data flow of the security-critical
data is analyzed for accuracy via the tag module, providing runtime protection for data
integrity. The security-enhanced RISC-V model thwarts these vulnerabilities via the
multi-granularity Information Flow Tracking to enable early capture and mitigation,
that is, before the malicious instructions of data can impact the outputs or control flow.

• The control-flow hijack of the security-critical modules leaking data or modifying the
IP cores is an important security verification property that is handled by the gate-
level IFT, which restricts the integration to only the critical paths, enabling minimal
overhead in contrast to designs that support full coverage, which add more design
overhead. It provides accuracy with all information flows along all timing channels.

• The simulation model with toolchain extensions supporting custom ISA is flexible
to add new security policies for security analysis. It supports the architectural de-
sign and verification of security extensions to the RISC-V processor. The simulation
model prototypes for accelerating the security verification from an architectural as-
pect to compiler-specific verification. Thus, providing a simulation model makes the
verification process faster and enables fast integration.

• The proposed model protects the system against leakage models by using gate-level
logic and maintains the data-flow integrity by eliminating memory corruption attacks
with accuracy. Thus, the model uses the best of the existing schemes and provides
security at different levels of abstraction.

• The proposed design is a flexible architecture with extensibility that can support the
Common Evaluation Platform (CEP) reference model to protect the system during
runtime. This enables the integration of research to further improve state-of-the-art
security verification for the RISC-V platform, thus supporting hardware security
research, such as side-channel analysis.

7. Limitations and Future Work

The current prototype of the IFT model focuses on modifying the datapath at a microar-
chitectural level. It provides a multi-granularity model that demonstrates the flexibility of
using different soft processor RISC-V architecture variants to study threat models and analyze
security extensions. The results obtained so far are limited to simple applications, with an
emphasis on area overhead and resource utilization in the implemented design. The model
achieves security mechanisms, such as stack protection, with information leakage prevention.

In future work, real-time applications and benchmarks will be incorporated to evaluate
the correctness, efficiency and effectiveness of the implemented model. The system aims
to identify untrusted sources using tag mechanisms and leakage models in specific units
through the use of shadow logic. However, there are tradeoffs to consider in this model:

Tag Table: The two new instructions used for the tag mechanism rely on a tag table,
which can be tampered with using different software attacks. To mitigate this, protection



Cryptography 2023, 7, 58 18 of 20

techniques can be implemented to secure the tag table, and an on-demand allocation
mechanism for tag entry can be employed.

Heap Exploit: The attack scenario in this model focuses only on stack protection,
whereas heap overflows in the dynamically allocated memory can be exploited to overwrite
data in the heap. Further research and enhancements are needed to address this limitation.

Verification Mechanism: Runtime IFT mechanisms can monitor realistic information
flow behaviors but come with higher area and performance overheads. This is because
it is an architectural approach with different levels of abstraction. Balancing the need for
accurate monitoring with the associated overhead is an ongoing challenge.

Overtainted Tag Propagation: The tag propagation in this model may result in high
false positives, as tags can pollute other data during runtime. For example, if a tag is propa-
gated from a general-purpose register through instructions involving memory locations,
the data associated with the initial tag may be considered unsafe, leading to unnecessary
exceptions being raised. This issue can be mitigated by assigning tag memory mapping
and implementing restricted control-flow security policies.

These tradeoffs highlight areas for further research and improvements to the IFT
model, ensuring a more robust and effective approach to analyzing security extensions and
mitigating potential threats.

8. Conclusions

This study proposes a new multi-granularity-based IFT model that utilizes a tagging
mechanism for data-flow integrity and an optimized shadow logic for the leakage model.
The modified RISC-V core with the security extensions of IFT provides system protection
by tracking the data flow from untrusted channels. Furthermore, the hardware-architecture-
specific extensions are translated to a compiler-specific simulation model with minimal design
overhead and verified with a buffer overflow attack model. The hardware design shows less
than 1% of area overhead with better precision logic. In future work, the security policies will
be further enhanced to track the side-channel vulnerabilities for security-critical data.

Author Contributions: Conceptualization, G.S.N. and F.S.; Methodology, G.S.N., D.V.A.; Software,
G.S.N., B.T.; Validation, G.S.N., D.V.A., B.T. and F.S.; Formal analysis, G.S.N. and F.S.; Investigation,
G.S.N.; Resources, G.S.N. and F.S.; Writing—original draft preparation, G.S.N.; Writing—review and
editing, F.S. and G.S.N.; Visualization, G.S.N.; Supervision, F.S. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by NSF (grant numbers: 1814420, 1819694 and 1819687).

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Newsome, J.; Song, D. Dynamic taint analysis for automatic detection, analysis, and signature generation of exploits on commodity

software. In Proceedings of the 12th Annual Network and Distributed System Security Symposium (NDSS ’05), San Diego, CA,
USA, 3 February 2005.

2. Dalton, M.; Kannan, H.; Kozyrakis, C. Raksha. ACM SIGARCH Comput. Arch. News 2007, 35, 482–493. [CrossRef]
3. Hu, W.; Ardeshiricham, A.; Kastner, R. Hardware Information Flow Tracking. ACM Comput. Surv. 2021, 54, 39. [CrossRef]
4. Suh, G.E.; Lee, J.W.; Zhang, D.; Devadas, S. Secure program execution via dynamic information flow tracking. In Proceedings of

the 11th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS XI),
Boston, MA, USA, 7–13 October 2004; Association for Computing Machinery: New York, NY, USA, 2004; pp. 85–96. [CrossRef]

5. Chen, K.; Guo, X.; Deng, Q.; Jin, Y. Dynamic Information Flow Tracking: Taxonomy, Challenges, and Opportunities. Micromachines
2021, 12, 898. [CrossRef]

6. Chen, S.; Xu, J.; Nakka, N.; Kalbarczyk, Z.; Iyer, R. Defeating Memory Corruption Attacks via Pointer Taintedness Detection. In
Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05), Yokohama, Japan, 28 June–1
July 2005; pp. 378–387. [CrossRef]

7. Enck, W.; Gilbert, P.; Han, S.; Tendulkar, V.; Chun, B.-G.; Cox, L.P.; Jung, J.; McDaniel, P.; Sheth, A.N. TaintDroid. ACM Trans.
Comput. Syst. 2014, 32, 1–29. [CrossRef]

http://doi.org/10.1145/1273440.1250722
http://dx.doi.org/10.1145/3447867
http://dx.doi.org/10.1145/1024393.1024404
http://dx.doi.org/10.3390/mi12080898
http://dx.doi.org/10.1109/DSN.2005.36
http://dx.doi.org/10.1145/2619091


Cryptography 2023, 7, 58 19 of 20

8. Venkataramani, G.; Doudalis, I.; Solihin, Y.; Prvulovic, M. FlexiTaint: A programmable accelerator for dynamic taint propagation.
In Proceedings of the 2008 IEEE 14th International Symposium on High Performance Computer Architecture, Lake City, UT, USA,
16–20 February 2008; pp. 173–184. [CrossRef]

9. Wahab, M.A.; Cotret, P.; Allah, M.N.; Hiet, G.; Lapôtre, V.; Gogniat, G. ARMHEx: A hardware extension for DIFT on ARM-based
SoCs. In Proceedings of the 2017 27th International Conference on Field Programmable Logic and Applications (FPL), Ghent,
Belgium, 4–8 September 2017; pp. 1–7. [CrossRef]

10. Song, C.; Moon, H.; Alam, M.; Yun, I.; Lee, B.; Kim, T.; Lee, W.; Paek, Y. HDFI: Hardware-Assisted Data-Flow Isolation. In
Proceedings of the 2016 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2016; pp. 1–17. [CrossRef]

11. Ferraiuolo, A.; Zhao, M.; Myers, A.; Suh, G. HyperFlow: A Processor Architecture for Nonmalleable, Timing-Safe Information
Flow Security. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON,
Canada, 15–19 October 2018.

12. Hossain, M.M.; Farahmandi, F.; Tehranipoor, M.; Rahman, F. BOFT: Exploitable Buffer Overflow Detection by Information Flow
Tracking. In Proceedings of the 2021 Design, Automation & Test in Europe Conference & Exhibition, Grenoble, France, 1–5
February 2021; pp. 1126–1129. [CrossRef]

13. Hung, Y.-H.; Jheng, B.-J.; Li, H.-W.; Lai, W.-Y.; Mallissery, S.; Wu, Y.-S. Mixed-mode Information Flow Tracking with Compile-time
Taint Semantics Extraction and Offline Replay. In Proceedings of the 2021 IEEE Conference on Dependable and Secure Computing
(DSC), Aizuwakamatsu, Japan, 30 January–2 February 2021; pp. 1–8. [CrossRef]

14. Palmiero, C.; Di Guglielmo, G.; Lavagno, L.; Carloni, L.P. Design and Implementation of a Dynamic Information Flow Tracking
Architecture to Secure a RISC-V Core for IoT Applications. In Proceedings of the 2018 IEEE High-Performance Extreme Computing
Conference (HPEC), Waltham, MA, USA, 25–27 September 2018; pp. 1–7. [CrossRef]

15. Siddiqui, A.S.; Shirley, G.; Bendre, S.; Bhagwat, G.; Plusquellic, J.; Saqib, F. Secure Design Flow of FPGA Based RISC-V
Implementation. In Proceedings of the 2019 IEEE 4th International Verification and Security Workshop (IVSW), Rhodes, Greece,
1–3 July 2019; pp. 37–42. [CrossRef]

16. Hung, Y.-H.; Li, H.-W.; Wu, Y.-S.; Jheng, B.-J.; Huang, Y.-N. HIT: Hybrid-Mode Information Flow Tracking with Taint Semantics
Extraction and Replay. In Proceedings of the 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks Workshops (DSN-W), Luxembourg, 25–28 June 2018; pp. 75–76. [CrossRef]

17. Liu, T.; Shi, G.; Chen, L.; Zhang, F.; Yang, Y.; Zhang, J. TMDFI: Tagged Memory Assisted for Fine-Grained Data-Flow Integrity
Towards Embedded Systems Against Software Exploitation. In Proceedings of the 2018 17th IEEE International Conference on
Trust, Security Furthermore, Privacy in Computing Furthermore, Communications/12th IEEE International Conference on Big
Data Science Furthermore, Engineering (TrustCom/BigDataSE), New York, NY, USA, 1–3 August 2018; pp. 545–550. [CrossRef]

18. Ma, M.; Chen, L.; Shi, G. Dam: A Practical Scheme to Mitigate Data-Oriented Attacks with Tagged Memory Based on Hardware.
In Proceedings of the 2019 26th Asia-Pacific Software Engineering Conference (APSEC), Putrajaya, Malaysia, 2–5 December 2019;
pp. 204–211. [CrossRef]

19. Chen, K.; Arias, O.; Deng, Q.; Oliveira, D.; Guo, X.; Jin, Y. FineDIFT: Fine-Grained Dynamic Information Flow Tracking for
Data-Flow Integrity Using Coprocessor. IEEE Trans. Inf. Forensics Secur. 2022, 17, 559–573. [CrossRef]

20. Sapountzis, N.; Sun, R.; Wei, X.; Jin, Y.; Crandall, J.; Oliveira, D. MITOS: Optimal Decisioning for the Indirect Flow Propagation
Dilemma in Dynamic Information Flow Tracking Systems. In Proceedings of the 2020 IEEE 40th International Conference on
Distributed Computing Systems (ICDCS), Singapore, 29 November–1 December 2020; pp. 1090–1100. [CrossRef]

21. Bruner Grayson, J. A Secure Architecture for Defense against Return Address Corruption. Master’s Thesis, University of
Tennessee, Knoxville, TN, USA, 2021.

22. Chakraborty, A.; Bhattacharya, S.; Alam, M.; Patranabis, S.; Mukhopadhyay, D. RASSLE: Return Address Stack based Side-channel
LEakage. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021, 275–303. [CrossRef]

23. Tiwari, M.; Wassel, H.M.; Mazloom, B.; Mysore, S.; Chong, F.T.; Sherwood, T. Complete information flow tracking from the gates
up. ACM SIGARCH Comput. Arch. News 2009, 37, 109–120. [CrossRef]

24. Hu, W.; Oberg, J.; Irturk, A.; Tiwari, M.; Sherwood, T.; Mu, D.; Kastner, R. Theoretical Fundamentals of Gate Level Information
Flow Tracking. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2011, 30, 1128–1140. [CrossRef]

25. Hu, W.; Oberg, J.; Irturk, A.; Tiwari, M.; Sherwood, T.; Mu, D.; Kastner, R. An Improved Encoding Technique for Gate Level Information
Flow Tracking. In Proceedings of the International Workshop on Logic & Synthesis (IWLS), San Diego, CA, USA, 3–5 June 2011.

26. Hu, W.; Oberg, J.; Mu, D.; Kastner, R. Simultaneous information flow security and circuit redundancy in Boolean gates.
In Proceedings of the 2012 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA,
5–8 November 2012; pp. 585–590.

27. Ryan Kastner, Circuit primitives for monitoring information flow and enabling redundancy. In Proceedings of the 8th International
Conference on Hardware and Software: Verification and Testing (HVC’12), Haifa, Israel, 6–8 November 2012. [CrossRef]

28. Le, T.; Di, J.; Tehranipoor, M.; Wang, L. Tracking data flow at gate-level through structural. In Proceedings of the 2016 International
Great Lakes Symposium on VLSI (GLSVLSI), Boston, MA, USA, 18–20 May 2016; pp. 185–189. [CrossRef]

29. Zhang, Q.; He, J.; Zhao, Y.; Guo, X. A Formal Framework for Gate- Level Information Leakage Using Z3. In Proceedings of the
2020 Asian Hardware Oriented Security and Trust Symposium (AsianHOST), Kolkata, India, 15–17 December 2020; pp. 1–6.
[CrossRef]

http://dx.doi.org/10.1109/HPCA.2008.4658637
http://dx.doi.org/10.23919/FPL.2017.8056767
http://dx.doi.org/10.1109/SP.2016.9
http://dx.doi.org/10.23919/DATE51398.2021.9474045
http://dx.doi.org/10.1109/DSC49826.2021.9346239
http://dx.doi.org/10.1109/HPEC.2018.8547578
http://dx.doi.org/10.1109/IVSW.2019.8854418
http://dx.doi.org/10.1109/DSN-W.2018.00037
http://dx.doi.org/10.1109/TrustCom/BigDataSE.2018.00083
http://dx.doi.org/10.1109/APSEC48747.2019.00036
http://dx.doi.org/10.1109/TIFS.2022.3144868
http://dx.doi.org/10.1109/ICDCS47774.2020.00093
http://dx.doi.org/10.46586/tches.v2021.i2.275-303
http://dx.doi.org/10.1145/2528521.1508258
http://dx.doi.org/10.1109/TCAD.2011.2120970
http://dx.doi.org/10.1007/978-3-642-39611-3_6
http://dx.doi.org/10.1145/2902961.2903040
http://dx.doi.org/10.1109/AsianHOST51057.2020.9358257


Cryptography 2023, 7, 58 20 of 20

30. Zhang, S.; Wang, S.; Wang, J.; Zhou, S.; Yao, Z. Quantitative Analysis of Information Leakage Hardware Trojans in IP Cores. In
Proceedings of the 2022 9th International Conference on Dependable Systems and Their Applications (DSA), Wulumuqi, China,
4–5 August 2022; pp. 431–436. [CrossRef]

31. Blackstone, J.; Wei H.; Althoff, A.; Armaiti, A.; Zhang, L.; Kastner, R. A Unified Model for Gate Level Propagation Analysis. arXiv
2020, arXiv:abs/2012.02791.

32. Common Evaluation Platform Repository. Available online: https://github.com/mitll/CEP (accessed on 20 May 2020).
33. Ge, Q.; Yarom, Y.; Heiser, G. No security without time protection: We need a new hardware-software contract. In Proceedings of

the Asia-Pacific Workshop on Systems (APSys), Jeju Island, Republic of Korea, 27–28 August 2018.
34. Poorhosseini, M.; Nebel, W.; Grüttner, K. A Compiler Comparison in the RISC-V Ecosystem. In Proceedings of the 2020

International Conference on Omni-Layer Intelligent Systems (COINS), Barcelona, Spain, 31 August–2 September 2020; pp. 1–6.
[CrossRef]

35. RISC-V Foundation. 2021. RISC-V Spike. Available online: https://github.com/riscv/riscv-isa-sim (accessed on
25 January 2020).

36. RISCV-QEMU. Available online: https://github.com/riscv/riscv-qemu (accessed on 25 January 2020).
37. Deutschbein, C.; Meza, A.; Restuccia, F.; Kastner, R.; Sturton, C. Isadora: Automated Information Flow Property Generation for

Hardware Designs. In Proceedings of the 5th Workshop on Attacks and Solutions in Hardware Security (ASHES ’21). Association
for Computing Machinery, New York, NY, USA, 5–15 June 2021. [CrossRef]

38. Aleph One. Smashing the Stack for Fun Furthermore, Profit, Phrack #49 Article 14. 1996. Available online: http://www.phrack.
org/issues.html?issue=49&id=14#article (accessed on 25 January 2022).

39. Ozdoganoglu, H.; Vijaykumar, T.N.; Brodley, C.E.; Kuperman, B.A.; Jalote, A. SmashGuard: A Hardware Solution to Prevent
Security Attacks on the Function Return Address. IEEE Trans. Comput. 2006, 55, 1271–1285. [CrossRef]

40. Day, J.; Zhao, Z.; Ma, M. Detecting Return-to-libc Buffer Overflow Attacks Using Network Intrusion Detection Systems. In
Proceedings of the 2010 Fourth International Conference on Digital Society, Saint Maarten, The Netherlands, 10–16 February 2010;
pp. 172–177. [CrossRef]

41. Tiwari, M.; Li, X.; Wassel, H.M.G.; Chong, F.T.; Sherwood, T. Execution leases: A hardware-supported mechanism for enforcing
strong non-interference. In Proceedings of the 2009 42nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), New York, NY, USA, 12–16 December 2009; pp. 493–504. [CrossRef]

42. Wang, C.; Cai, Y.; Zhou, Q. HLIFT: A high-level information flow tracking method for detecting hardware Trojans. In Proceedings
of the 2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC), Jeju, Republic of Korea, 22–25 January 2018;
pp. 727–732. [CrossRef]

43. Waterman, A.; Lee, Y.; Patterson, D.; Asanović, K. The RISCV Instruction Set Manual, Volume I: User-Level ISA Version 2.1; Technical
Report UCB/EECS-2016-118; EECS Department, University of California: Berkeley, CA, USA, 2016.

44. Nicholas, G.S.; Thakar, B.; Saqib, F. Hardware Secure Execution and Simulation Model Correlation using IFT on RISC-V. In
Proceedings of the 2021 on Great Lakes Symposium on VLSI, Virtual Event, 22–25 June 2021; pp. 409–414. [CrossRef]

45. Vachharajani, N.; Bridges, M.J.; Chang, J.; Rangan, R.; Ottoni, G. RIFLE: An Architectural Framework for User-Centric Information-
Flow Security. In Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04), Portland, OR, USA, 4–8
December 2004; pp. 243–254. [CrossRef]

46. Chen, Y.; Jamkhedkar, P.A.; Lee, R.B. A software-hardware architecture for self-protecting data. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security (CCS ’12). Association for Computing Machinery, New York, NY, USA,
14–27 October 2012. [CrossRef]

47. Bidmeshki, M.; Makris, Y. Toward automatic proof generation for information flow policies in third-party hardware IP. In
Proceedings of the 2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), Washington, DC, USA,
5–7 May 2015; pp. 163–168. [CrossRef]

48. Nicholas, G.S.; Thakar, B.; Saqib, F. Multi granular level-based IFT model for RISC-V. In Proceedings of the Second iiScience
International Conference 2021: Recent Advances in Photonics and Physical Sciences, Faisalabad, Pakistan, 29–30 March 2021.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/DSA56465.2022.00063
https://github.com/mitll/CEP
http://dx.doi.org/10.1109/COINS49042.2020.9191411
https://github.com/riscv/riscv-isa-sim
https://github.com/riscv/riscv-qemu
http://dx.doi.org/10.1145/3474376.3487286
http://www.phrack.org/issues.html?issue=49&id=14#article
http://www.phrack.org/issues.html?issue=49&id=14#article
http://dx.doi.org/10.1109/TC.2006.166
http://dx.doi.org/10.1109/ICDS.2010.37
http://dx.doi.org/10.1145/1669112.1669174
http://dx.doi.org/10.1109/ASPDAC.2018.8297408
http://dx.doi.org/10.1145/3453688.3461517
http://dx.doi.org/10.1109/MICRO.2004.31
http://dx.doi.org/10.1145/2382196.2382201
http://dx.doi.org/10.1109/HST.2015.7140256
http://dx.doi.org/10.1117/12.2601036

	Introduction
	Background Studies
	Coarse-Grained IFT Models
	Fine-Grained IFT Models
	Modular ISA (RISC-V) 

	Threat Model
	Buffer Overflow Attacks 
	Return Address Attacks
	Data-Level Leakage

	CF-IFT Technique—Integrated Coars- and Fine-Grained IFT
	Architectural Model
	RISC-V
	Tag Mechanism
	Security Policies

	Gate-Level Model
	Shadow Logic for Tainted Gates 
	Information Flow Policy Checking

	Simulation Model

	Experimental Results
	Architectural Model
	Gate-Level Model
	Simulation Model

	Security Analysis
	Limitations and Future Work
	Conclusions
	References

