
Citation: Trivedi, D.; Boudguiga, A.;

Kaaniche, N.; Triandopoulos, N.

SigML++: Supervised Log Anomaly

with Probabilistic Polynomial

Approximation. Cryptography 2023, 7,

52. https://doi.org/10.3390/

cryptography7040052

Academic Editor: Josef Pieprzyk

Received: 30 August 2023

Revised: 2 October 2023

Accepted: 17 October 2023

Published: 19 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Article

SigML++: Supervised Log Anomaly with Probabilistic
Polynomial Approximation†

Devharsh Trivedi 1,* , Aymen Boudguiga 2 , Nesrine Kaaniche 3 and Nikos Triandopoulos 1

1 Stevens Institute of Technology, Hoboken, NJ 07030, USA; ntriando@stevens.edu
2 CEA-List, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; aymen.boudguiga@cea.fr
3 Télécom SudParis, Institut Polytechnique de Paris, 91000 Évry, France; kaaniche.nesrine@telecom-sudparis.eu
* Correspondence: dtrived5@stevens.edu
† This paper is an extended version of our paper published in the 7th International Symposium on Cyber

Security, Cryptology and Machine Learning (CSCML 2023), Beer Sheva, Israel, 29–30 June 2023.

Abstract: Security log collection and storage are essential for organizations worldwide. Log analysis
can help recognize probable security breaches and is often required by law. However, many organiza-
tions commission log management to Cloud Service Providers (CSPs), where the logs are collected,
processed, and stored. Existing methods for log anomaly detection rely on unencrypted (plaintext)
data, which can be a security risk. Logs often contain sensitive information about an organization
or its customers. A more secure approach is always to keep logs encrypted (ciphertext). This paper
presents “SigML++”, an extension of “SigML” for supervised log anomaly detection on encrypted
data. SigML++ uses Fully Homomorphic Encryption (FHE) according to the Cheon–Kim–Kim–Song
(CKKS) scheme to encrypt the logs and then uses an Artificial Neural Network (ANN) to approximate
the sigmoid (σ(x)) activation function probabilistically for the intervals [−10, 10] and [−50, 50]. This
allows SigML++ to perform log anomaly detection without decrypting the logs. Experiments show
that SigML++ can achieve better low-order polynomial approximations for Logistic Regression (LR)
and Support Vector Machine (SVM) than existing methods. This makes SigML++ a promising new
approach for secure log anomaly detection.

Keywords: sigmoid function approximation; private machine learning; fully homomorphic encryption;
log anomaly detection; supervised machine learning; probabilistic polynomial approximation

1. Introduction

Information security tools like the Intrusion Detection System (IDS), Intrusion Preven-
tion System (IPS), and Security Information and Event Management (SIEM) are designed to
help organizations defend against cyberattacks. A Security Operations Center (SOC) uses
these security tools to analyze logs collected from endpoints, such as computers, servers,
and mobile devices. The logs can contain information about system events, user activity,
and security incidents. The SOC uses this information to identify anomalies and potential
threats. The SOC may generate an alert to notify the appropriate personnel if an anomaly is
detected. The logs collected from endpoints are typically unstructured textual data. These
data can be challenging to analyze manually. SIEM tools can help automate the analysis
of these logs and identify potential threats. SIEM tools collect logs from various sources,
known as Security Analytics Sources (SASs). An SAS can be a mobile or stationary host or
an information and data security tool such as an IDS. SIEM tools use these data to monitor
for security threats in near-real time. If a threat is detected, the SIEM tool can generate an
alert and take appropriate action, such as blocking traffic or isolating an infected system.

As shown in Figure 1, a typical corporate network is connected to the Internet behind
a firewall, which is divided into a Local Area Network (LAN), Wide-Area Network (WAN),
and Demilitarized Zone (DMZ). An SAS client is typically a LAN or WAN endpoint

Cryptography 2023, 7, 52. https://doi.org/10.3390/cryptography7040052 https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography7040052
https://doi.org/10.3390/cryptography7040052
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0000-0001-6374-7249
https://orcid.org/0000-0001-6717-8848
https://doi.org/10.3390/cryptography7040052
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography7040052?type=check_update&version=1

Cryptography 2023, 7, 52 2 of 20

that transmits security or audit logs to an SIEM. An SIEM can be placed in the network
along with an IDS/IPS or placed outside the network and connected via the Internet.
There are three types of endpoints in any organization based on their isolation from the
Internet: (i) edge nodes, gateways, or machines with a public IP; (ii) machines on LAN- or
WAN-like high-power consumption devices like servers and laptops, mid-power devices
like smartphones, and low-power Internet of Things (IoT) or embedded devices; and
(iii) machines in a Demilitarized Zone (DMZ) like email or FTP servers.

DMZ

Internet

Router

Firewall

Switch

WLAN
LAN

Email
Server

App / Web
Server

Database
Server

Stationary Clients Mobile Clients

IPS

IDS

Figure 1. In a typical corporate network architecture, an IPS is placed after the Firewall and before
the Switch to monitor and block traffic if required actively; alternatively, an IDS is connected to the
Switch for passive analysis.

A firewall is typically a network’s first line of defense, and an IDS or IPS can accompany
it. An IPS is placed between the Firewall and switch to detect and prevent threats, while an
IDS is connected to the Switch to monitor network activity passively and detect attacks.
Additionally, one could have antivirus software running on the endpoints. An Advanced
Persistent Threat (APT) attacker is assumed to be outside the network and compromises
and gains unauthorized access to one of the endpoints. Log anomaly detection aims to
trace the trail left behind by the APT attacker while gaining unauthorized access. This trail
is called the IoC and is identified from the device logs. Logs from different devices are
collected and fed to a central SIEM server outside the corporate network for storage and
anomaly detection. These logs are collected, parsed, and correlated to generate alerts if
anomalies are detected. An example of correlation in logs is the detection of new DHCP
servers that use UDP protocols on specific ports.

Besides the logs collected from network devices, application servers, and end-user
systems, a SIEM may collect other confidential organization information (Figure 2), such as
business locations, active directory information, and ERP server data. These SAS inputs
contain a large amount of sensitive data, so protecting the security and privacy of the data
collected for anomaly detection is imperative.

Cryptography 2023, 7, 52 3 of 20

IDS / IPS

Routers

Firewalls

Switches

Email
Servers

Web
Servers

Database
Servers

Domain
Controllers Application

Servers

ERP
Servers

Active
Directories

Business
Locations

Network
Maps

Configurations &
Asset Information

Business
Processes

Software
Inventories

Access
Points

End-user Systems

Business
Units

SIEM

Figure 2. Security Analytics Sources (SAS) of an SIEM.

As shown in Figure 3, a typical log anomaly (or intrusion) detection scheme consists
of the following components:

1. A “log collector” to collect logs from diverse applications operating on a SAS.
2. A “transmitter” that sends logs to the SIEM, which is usually encrypted to safeguard

against eavesdropping in the communication channel.
3. A “receiver” to amass, store, decrypt, and ascertain the transmitted logs’ integrity.
4. A “parser” to convert the data into a structured form used by the SIEM vendor to

process the decrypted logs for storage and analysis.
5. An “anomaly detector” that uses proprietary algorithms to render parsed logs and

transmit alerts for anomalies.

SOCs use a variety of storage options for their SIEM databases, depending on their
specific needs and requirements, including (i) servers located on-premises, (ii) Storage Area
Network (SAN) or Network-Attached Storage (NAS), and (iii) cloud-based storage services,
such as Amazon S3 [1] or Azure Blob Storage [2].

In a SOC, the relative jitter for the Log Collector (LC), Transmitter (TX), Receiver
(RX), Parser (PA), and Anomaly Detector (AD) is the variation in the time it takes for each
component to process a log event. Various factors, such as network latency, hardware
performance, and software complexity, can cause this jitter. The AD has the highest relative
jitter, followed by the PA, RX, TX, and LC. The AD is the most complex component,
requiring more time to analyze each log event. The relative jitter of each component can
significantly impact the overall performance of the SOC. For example, if the AD has a
high relative jitter, detecting anomalies in the log data may take longer. This can lead to
increased security risks. The relative jitter of each component can be reduced by (i) using
high-performance hardware, (ii) optimizing the software, (iii) reducing network latency,
and (iv) using load-balancing techniques in a SOC to improve overall performance and
reduce security risks.

Cryptography 2023, 7, 52 4 of 20

Enterprises frequently employ a third-party cloud vendor for the SOC. Third-party
cloud services lessen the complexity and deliver flexibility for organizations. Nonetheless,
Cloud Service Consumers (CSCs) must commission their data—and their customers’ data—
to Cloud Service Providers (CSPs), who are often incentivized to monetize these data.
Meanwhile, ordinances such as the US Consumer Online Privacy Rights Act (COPRA) [3],
the US State of California Consumer Privacy Act (CCPA) [4], and the EU General Data
Protection Regulation (GDPR) [5] strive to safeguard consumers’ privacy. Non-compliant
institutions are subjected to stringent fines and deteriorated reputations. This outcome is a
trade-off between data utility and privacy.

Collect
Log

Parse
Log

Encrypt
Log

Decrypt
Log

SIEM
Storage

Alert

SAS inputs

Analyze
Log

Anomaly?

SK

Cloud Service Consumer (CSC) Cloud Service Provider (CSP)

Figure 3. Log anomaly detection with contemporary encryption schemes.

Exporting log data to an SIEM deployed on a third-party CSP is perilous, as the CSP
requires access to plaintext (unencrypted) log data for alert generation. Moreover, the
CSP may have adequate incentives to accumulate user data. These data are stored in the
CSP’s servers and thus encounter diverse privacy and security threats like data leakage and
the misuse of information [6–11]. Thus, shielding these logs’ privacy and confidentiality
is crucial. We present Fully Homomorphic Encryption (FHE) to permit CSCs to ensure
privacy without sabotaging their ability to attain insights from their data.

Traditional cloud storage and computation approaches using contemporaneous cryp-
tography mandate that customer data be decrypted before operating on them. Thus,
security policies are deployed to avert unauthorized admission to decrypted data. CSCs
must entrust the Access Control Policies (ACPs) incorporated by their CSPs for data privacy
(Figure 4). With FHE, data privacy is accomplished by the CSC via cryptography, leverag-
ing rigid mathematical proofs. Consequently, the CSP will not be admitted to unencrypted
customer data for computation and storage without a valid Secret Key (SK).

Privacy Barrier Privacy Barrier

Figure 4. Traditional cloud model (left) vs. FHE cloud model (right).

FHE allows calculations to be performed on encrypted data without decrypting them
first. The results of these computations are stored in an encrypted form. Still, when
decrypted, they are equivalent to the results that would have been obtained if the computa-

Cryptography 2023, 7, 52 5 of 20

tions had been performed on the unencrypted data. Plaintexts are unencrypted data, while
ciphertexts are encrypted data. FHE can enable privacy-preserving storage and compu-
tation and process encrypted data in commercial cloud environments. It is a promising
technology with a wide range of potential applications.

For privacy-preserving log anomaly detection, one can use a hardware-based solution
(e.g., a Trusted Execution Environment (TEE)) or a software-based approach (e.g., FHE).
SGX-Log [12] and Custos [13] achieved private log anomaly detection using a TEE with
Intel SGX. However, TEEs have limitations as to how much data can be stored. For example,
Intel SGX has a limit of 128 MB. Hence, bit-wise FHE schemes like TFHE [14] or word-wise
FHE schemes like BFV [15,16] and CKKS [17] are better for more significant amounts
of data. Concrete-ML from Zama [18] used TFHE, which is efficient for smaller-scale
arithmetic. Still, it is inefficient for more significant arithmetic operations (while amortized
performance in CKKS can be improved with batching). For word-wise FHE schemes, one
can employ BFV for integers and CKKS for approximate arithmetic. Hence, for Machine
Learning (ML) tasks, CKKS is a better choice. Aymen et al. [19] used BFV for SVMs with a
linear kernel. They experimentally calculated the best scaling factor value to convert floats
to integers for better accuracy, which is not required in CKKS. SigML [20] used CKKS for
LR and SVM.

1.1. Contributions

Our contributions can be summarized as follows:

• First, we formulate a supervised binary classification problem for log anomaly detec-
tion and implement it with the CKKS cryptosystem (in Section 4).

• Second, we propose novel ANN-based third-degree sigmoid approximations in the
intervals [−10, 10] and [−50, 50] (in Section 5).

• Third, we evaluated the performance of various sigmoid approximations in the en-
crypted domain, and our results showed better accuracy and Σ-ratio (in Section 6).

1.2. Organization

This paper is organized as follows:

• First, we describe the building blocks of our protocols in Section 2, where we review
FHE in Section 2.1 and present polynomial approximations for the sigmoid (σ(x))
activation function in Section 5.

• Next, we review the previous work in Section 3.
• Then, we describe our methodology in Section 4.
• Finally, we discuss our experimental results in Section 6.

2. Background

This section details CKKS, a fully homomorphic encryption scheme, and deterministic
and probabilistic polynomial approximation schemes.

2.1. Fully Homomorphic Encryption

This work utilizes the CKKS [17] scheme as a fully homomorphic encryption scheme.
CKKS varies from other FHE schemes (such as BFV [15,16], BGV [21], and TFHE [14]) in
the way in which it interprets encryption noise. Indeed, CKKS treats encryption noise as
part of the message, similar to how floating-point arithmetic approximates real numbers.
This means the encryption noise does not eliminate the Most Significant Bits (MSBs) of the
plaintext m as long as it stays small enough. CKKS decrypts the encryption of message m
as an approximated value m + e, where e is a slight noise. The authors of CKKS suggested
multiplying plaintexts by a scaling factor ∆ prior to encryption to lessen precision loss
after adding noise during encryption. CKKS also sustains batching, a process for encoding
many plaintexts within a single ciphertext in a Single Instruction Multiple Data (SIMD)

Cryptography 2023, 7, 52 6 of 20

fashion. We describe CKKS as a set of probabilistic polynomial-time algorithms regarding
the security parameter λ.

The algorithms are:

• CKKS.Keygen—generates a key pair.
• CKKS.Enc—encrypts a plaintext.
• CKKS.Dec—decrypts a ciphertext.
• CKKS.Eval—evaluates an arithmetic operation on ciphertexts.

The level of a ciphertext is l if it is sampled from Zql [X]/(XN + 1). Let L, q0 and ∆ be
integers. We set ql = ∆l · q0 for any l integer in J0, LK.

• (evk, pk, sk)← CKKS.Keygen(1λ, L): generates a secret key (sk) for decryption, a public
key (pk) for encryption, and a publicly available evaluation key (evk). The secret key
(sk) is a sample from a random distribution over Z3[X]/(XN + 1). The public key (pk)
is computed as

pk = ([−a · sk + e]qL , a) = (p0, p1)

where a is sampled from a uniform distribution over ZqL [X]/(XN + 1), and e is sam-
pled from an error distribution over ZqL [X]/(XN + 1). evk is utilized for relinearization
after the multiplication of two ciphertexts.

• c ← CKKS.Encpk(m): encrypts a message m into a ciphertext c utilizing the public
key (pk). Let v be sampled from a distribution over Z3[X]/(XN + 1). Let e0 and e1 be
small errors. Then, the message m is encrypted as

c = [(v · pk0, v · pk1) + (m + e0, e1)]qL = (c0, c1).

• m← CKKS.Decsk(c): decrypts a message c into a plaintext m utilizing the secret key
(sk). The message m can be recovered from a level l ciphertext thanks to the function
m = [c0 + c1 · sk]ql . Note that with CKKS, the capacity of a ciphertext reduces each
time a multiplication is computed.

• c(f) ← CKKS.Evalevk(f , c(1), c(2), . . . , c(k)): estimates the function f on the encrypted
inputs (c(1), c(2), . . . , c(k)) using the evaluation key evk.

2.2. Polynomial Approximations

This section describes commonly used (deterministic) function interpolation tech-
niques like the (i) Taylor, (ii) Fourier, (iii) Pade, (iv) Chebyshev, (v) Remez, and our (vi)
probabilistic ANN scheme.

2.2.1. Taylor

The Taylor series (Equation (1)) is a mathematical expression approximating a function
as an infinite sum of terms expressed in terms of the function’s derivatives at a single point
a, called the center of the Taylor series. The Maclaurin series is a particular case of the
Taylor series where the center of the series is a = 0. In other words, a Maclaurin series
is a Taylor series centered at zero. It is a power series that permits the calculation of an
approximation of a function f (x) for input values near zero, given that the values of the
successive derivatives of the function at zero are known. The Maclaurin series can be used
to find the antiderivative of a complicated function, approximate a function, or compute an
incomputable sum. In addition, the partial sums of a Maclaurin series provide polynomial
approximations for the function.

∞

∑
n=0

f (n)(a)
(x− a)n

n!
= f (a) + f ′(a)(x− a) +

f ′′(a)
2!

(x− a)2 + . . . +
f (k)(a)

k!
(x− a)n + . . . (1)

2.2.2. Fourier

The Fourier series can be represented in sine-cosine, exponential, and amplitude-phase
forms. For a sine-cosine form, the coefficients are

Cryptography 2023, 7, 52 7 of 20

A0 =
1
P

∫ P/2

−P/2
f (x)dx

An =
2
P

∫ P/2

−P/2
f (x) cos

(
2πnx

P

)
dx (2)

Bn =
2
P

∫ P/2

−P/2
f (x) sin

(
2πnx

P

)
dx

With these coefficients, the Fourier series is

f (x) ∼ A0 +
∞

∑
n=1

An cos
(

2πnx
P

)
+ Bn sin

(
2πnx

P

)
(3)

For an exponential form, the coefficients are

c0 = A0

cn = (An − iBn)/2, for n > 0 (4)

cn = (A−n + iB−n)/2, for n < 0

By substituting Equation (2) into Equation (4),

cn =
1
P

∫ P/2

−P/2
f (x)e−

2πinx
P dx (5)

With these definitions, we can write the Fourier series in exponential form:

f (x) =
∞

∑
n=−∞

cn · e
2πinx

P (6)

2.2.3. Pade

Given a function f and two integers m ≥ 0 and n ≥ 1, the Pade approximant of order
[m/n] is the rational function

R(x) =
Σm

j=0ajxj

1 + Σn
k=1bkxk =

a0 + a1x + a2x2 + . . . + amxm

1 + b1x + b2x2 + . . . + bnxn , (7)

which agrees with f (x) to the highest possible order, amounting to

f (0) = R(0),

f ′(0) = R′(0),

f ′′(0) = R′′(0), (8)
...

f (m+n)(0) = R(m+n)(0)

Equivalently, if R(x) is expanded in a Taylor series at 0, its first m + n terms would
cancel the first m + n terms of f (x), and as such

f (x)− R(x) = cm+n+1xm+n+1 + cm+n+2xm+n+2 + . . . (9)

2.2.4. Chebyshev

The Chebyshev polynomial of degree n is denoted Tn(x) and is given by the formula

Tn(x) = cos (n arccos x) (10)

Cryptography 2023, 7, 52 8 of 20

The first few Chebyshev polynomials of this kind are

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1 (11)

. . .

Tn+1(x) = 2xTn(x)− Tn−1(x)

If f (x) is an arbitrary function in the interval [−1, 1], and if N coefficients cj,
j = 0, . . . , N − 1, are defined by

cj =
2
N

N

∑
k=1

f (xk)Tj(xk) =
2
N

N

∑
k=1

f

[
cos

(
π(k− 1

2)

N

)]
cos

(
π j(k− 1

2)

N

)
, (12)

then, we obtain the approximation formula

f (x) ≈
[

N−1

∑
k=0

ckTk(x)

]
− 1

2
co (13)

2.2.5. Remez

Given a function, f (x) to be approximated and a set X of n + 2 points x1, x2, . . . , xn+2
in the approximation interval, the extrema of the Chebyshev polynomial are usually linearly
mapped to the interval. The Remez algorithm is the following:

1. Solve the system of linear equations

b0 + b1xi + . . . + bnxn
i + (−1)iE = f (xi); i = 1, 2, . . . , n + 2 (14)

for the unknowns b0, b1, . . . , bn and E.
2. Use bi as coefficients to form a polynomial Pn.
3. Find the set M of points of local maximum error |Pn(x)− f (x)|.
4. If the errors at every m ∈ M are alternate in sign (+/−) and of equal magnitude, then

Pn is the minimax approximation polynomial. If not, replace X with M and repeat the
abovementioned steps.

2.2.6. ANN

While Artificial Neural Networks (ANNs) are known for their universal function
approximation properties, they are often treated as black boxes and used to calculate the
output value. We propose the use of a basic three-layer Perceptron (Figure 5) consisting of
an input layer, a hidden layer, and an output layer, with both hidden and output layers
having linear activations to generate the coefficients for an approximation polynomial
of a given order. In this architecture, the input layer is dynamic, with the input nodes
corresponding to the desired polynomial degrees. While having a variable number of
hidden layers is possible, we fix it at a single layer with a single node to minimize the
computation. We show coefficient calculations for a third-order polynomial (d = 3); a
univariate function f (x) = y; and an input x, actual output y, and predicted output yout.
The input layer weights are

{w1, w2, . . . , wd} = {w1, w2, w3} = {x, x2, x3}

, and the biases are {b1, b2, b3} = bh. Thus, the output of the hidden layer is

yh = w1x + w2x2 + w3x3 + bh

Cryptography 2023, 7, 52 9 of 20

x1

x2

xd

bh bout

w1

w2

wd

wout yout

Linear
Activation

Linear
Activation

Back-propogation
Loss minimization

Input
Layer

Hidden
Layer

Output
Layer

x

Figure 5. Polynomial approximation using ANN.

The predicted output is calculated by

yout = wout · yh + bout = w1woutx + w2woutx2 + w3woutx3 + (bhwout + bout) (15)

Where the layer weights {w1wout, w2wout, w3wout} are the coefficients for the approxi-
mating polynomial of order three and the constant term is bhwout + bout.

Since the predicted output (yout) is probabilistic, it must be fine-tuned with hyperpa-
rameter tuning, as incorrect results lead to erroneous (inefficient) approximations.

Trivedi [22] provided third and seventh-degree polynomial approximations for uni-
variate Sign(x) ∈ {−1, 0, 1} and Compare(a − b) ∈ {0, 1

2 , 1} functions in the intervals
[−1, 1] and [−5,−5]. Trivedi [22] empirically showed that their novel ANN polynomials
improved up to 15% accuracy (regarding losses) over Chebyshev’s.

3. Related Work

This section discusses previous research on privacy-preserving log management ar-
chitectures. Zhao et al. [23] proposed a system called Zoo to minimize latency in data
processing and reduce the amount of raw data exposed to the Cloud Service Provider
(CSP). Zoo is deployed on Customer-owned Edge Devices (CEDs) rather than on the cloud,
and it supports the composition, construction, and easy deployment of Machine Learning
(ML) models on CEDs and local devices. Zoo is implemented in the OCaml language on
top of the open-source numerical computing system Owl [24]. In addition to CEDs, Zoo
can be deployed on cloud servers or a hybrid of both. This can further reduce the data
exposed to the CSP and its communication costs. Repositioning ML-based data analytics to
edge devices from the cloud poses hurdles such as resource limitations, a scarcity of usable
models, and difficulty deploying user services. Additionally, deploying services on a CED
environment introduces problems for the CSP, as the privacy of ML models (weights) must
be shielded from the CED.

Ray et al. [25] proposed a set of protocols for the anonymous uploading, retrieving,
and deleting of log records in the cloud using the Tor [26] network. Their scheme addresses
integrity and security issues throughout the log management, including log collection,
transmission, retrieval, and storage. However, their logging client is operating-system-
specific, and privacy is not guaranteed because logs can be identified by their tag values.

Zawoad et al. [27,28] presented Secure Logging as a Service (SecLaaS), which stores
and provides access to logs generated by Virtual Machines (VMs) running in the cloud.
SecLaaS ensures the confidentiality and integrity of these logs, which the CSCs own.
SecLaaS encrypts some Log Entry (LE) information utilizing a public key shared by the

Cryptography 2023, 7, 52 10 of 20

security agents to ensure confidentiality. The private key to decrypt the log is shared among
the security agents. An auditor can verify the integrity of the logs utilizing the Proof of Past
Log (PPL) and the Log Chain (LC). However, SecLaaS cannot encrypt all the fields of the
LE, as the CSP needs to be able to search the storage by some fields. Additionally, using a
shared public key violates the CSC’s data privacy.

Rane and Dixit [29] presented BlockSLaaS, a blockchain-assisted Secure Logging-
as-a-Service system for cloud environments. BlockSLaaS aims to make the cloud more
auditable and forensic-friendly by securely storing and processing logs while tackling multi-
stakeholder collusion problems and ensuring integrity and confidentiality. The integrity
of logs is assured by utilizing the immutable property of blockchain technology. Cloud
Forensic Investigators (CFIs) can only access the logs for forensic investigation through
BlockSLaaS, which preserves the confidentiality of logs. To ensure the privacy of the CSC,
the Node Controller (NC) encrypts each log entry utilizing the CFI’s public key, CFIPK. The
CFI can then utilize its secret key, CFISK, to decrypt the logs, preserving the confidentiality
of the CSC’s logs. However, this scheme utilizes the CFI’s public key, which violates the
data privacy of the CSC. A more effective privacy-preserving scheme would use a different
keying mechanism, such as a private blockchain or a Trusted Execution Environment (TEE).

Bittau et al. [30] presented a principled systems architecture called Encode, Shuffle,
Analyze (ESA) for performing large-scale monitoring with high utility while safeguarding
user privacy. ESA guarantees the privacy of monitored users’ data by processing it in a
three-step pipeline:

1. Encode: The data are encoded to control their scope, granularity, and randomness.
2. Shuffle: The encoded data are shuffled to break their linkability and guarantee that

individual data items become “lost in the crowd” of the batch.
3. Analyze: The anonymous, shuffled data are analyzed by a specific analysis engine

that averts statistical inference attacks on analysis results.

The authors implemented ESA as a system called PROCHLO, which develops new
techniques to harden the three steps of the pipeline. For example, PROCHLO uses Stash
Shuffle, a novel, efficient, and scalable oblivious-shuffling algorithm based on Intel’s SGX, a
TEE. TEEs provide isolated execution environments where code and data can be protected
from the host system. However, using a TEE like Intel SGX may only be practical for some
devices and infeasible for legacy and low-resourced systems. Additionally, TEEs limit the
amount of data that can be secured.

Paul et al. [31] presented a secure collective learning protocol for sharing classified
time-series data within entities to partially train the parameters of a binary classifier model.
They approximated the sigmoid activation function (σ(x)) to a polynomial of degree seven.
They presented a collective learning protocol to apply Homomorphic Encryption (HE)
to fine-tune the last layer of a Deep Neural Network (DNN) securely. However, degree-
seven approximation using an HE method is counterproductive for resource-constrained
machines, such as wireless sensors or Internet-of-Things (IoT) devices.

The work most comparable to ours on log confidentiality during transmission and
analysis using FHE techniques was presented by Boudguiga et al. [19]. In their scheme,
the authors examined the feasibility of using FHE to furnish a privacy-preserving log
management architecture. They utilized Support Vector Machines (SVMs) with a linear
kernel to assess the FHE classification of Intrusion Detection System (IDS) alerts from the
NSL-KDD dataset. In their scheme, they encrypted the input data from an SAS using the
BFV scheme and performed FHE calculations on the encrypted data using the SIEM weights
in plaintext. The encrypted results for each log entry were then sent back to the SAS for
decryption. However, this approach could be vulnerable to inference attacks by malicious
SAS, such as attribute inference, membership inference, and model inversion attacks. Our
“Aggregate” scheme helps prevent most of these attacks, as it only sends a total anomaly
score (sum) per block instead of predictions or labels per input, thus minimizing the data
inferred by the attacker.

SigML, proposed by Trivedi et al. [20], uses the CKKS scheme and presents:

Cryptography 2023, 7, 52 11 of 20

1. Ubiquitous configuration—This is similar to other works and sends an encrypted
result for every log entry.

2. Aggregate configuration—This reduces communication and computation require-
ments by sending a single result for a block of log entries.

SigML compares three approximations of the sigmoid function: σ1(x), σ3(x), and
σ5(x). These approximations are used for a Logistic Regression (LR) and Support Vec-
tor Machine (SVM) model. The authors observed that the LR and SVM models trained
from scikit-learn [32] did not perform well with the sigmoid activation for the “Aggre-
gate” configuration. Therefore, they designed Sigmoid-LR (σLR) to improve performance.
Sigmoid-LR uses a kernel A = X ·W + b to reduce the errors of sigmoid(a) with the learn-
ing rate rlearn and the number of iterations riter. The inputs and labels are X, Y ∈ [0, 1]. This
paper presents “SigML++”, an extension of SigML [20]. SigML++ improves the results
of SigML with LR and SVM models using a novel ANN approximation. SigML++ also
evaluates third-order polynomials in the intervals [−10, 10] and [−50, 50].

4. Proposed Solution

Our threat model considers an SAS (CSC) and an SIEM (CSP) for simplicity. The SAS
is the client that wants to generate anomaly alerts from logs while preserving its privacy.
Consequently, the SIEM server should be oblivious to the data received and refrain from
comprehending the log information. On the other hand, the SIEM also desires to shield the
weights and coefficients of the ML model used to detect intrusion anomalies and generate
alerts. Thus, the SAS should refrain from learning about the model information.

For log analysis using FHE, log parsing shifts from the SIEM to the SAS. Instead of the
SIEM decrypting and parsing the logs, the SAS collects and parses unstructured logs to a
structured form and normalizes the data. Data normalization helps to enhance ML model
prediction. The SAS uses FHE to generate an encryption key (pk/sk), a decryption key (sk),
and an evaluation key (evk). The parsed log inputs are encrypted using the public key (pk)
or secret key (sk). We use the CKKS scheme for FHE, better suited for floating-point value
calculations. CKKS is more suited for arithmetic on real numbers, where one can obtain
approximate but close results, while BFV is more suited for arithmetic on integers. The
SIEM performs homomorphic computations on the encrypted inputs and the ML model’s
coefficients in plaintext, using the evaluation key (evk) generated by the SAS. The encrypted
results are then passed to the SAS. The SAS decrypts the results with the secret key (sk),
infers whether there was an anomaly, and generates an alert accordingly.

We present (i) “Ubiquitous” and (ii) “Aggregate” configurations similar to SigML.
While the “Ubiquitous” configuration is similar to prevalent research works, the “Aggregate”
configuration reduces the computation and communication requirements of the SAS.

The configurations differ in how SIEM results are generated and processed at the SAS:

1. Ubiquitous—The SIEM sends one encrypted result per user input.
2. Aggregate—Only one result is sent to the encrypted domain for all the user inputs.

This technique helps reduce communication costs and uses much fewer resources
on the SAS to decrypt a single encrypted result rather than one encrypted result per
encrypted input.

In the “Ubiquitous” configuration (Figure 6), the SAS sends encrypted parsed inputs to
the SIEM for analysis, and the SIEM performs homomorphic calculations on the encrypted
inputs and unencrypted weights. The SIEM sends one encrypted result to the SAS for every
encrypted log entry in the received block. The SAS decrypts all the results and evaluates
the labels for all the individual log entries. In this configuration, the disadvantage is the
data leakage used for training or the model weights, as a dishonest client can perform
inference attacks.

In the “Aggregate” configuration (Figure 6), the SAS sends a block of encrypted parsed
inputs as before. The SIEM performs homomorphic computation with plaintext model
weights for each input in the received block, applies sigmoid approximation to individual
encrypted results, and sums (via homomorphic additions) all encrypted results.

Cryptography 2023, 7, 52 12 of 20

Collect
Log

Parse
Log

Encrypt
Log

FHE
x and +

SIEM
Storage

Alert
SAS inputs

Decrypt
Result(s)

Score/
Anomaly?

EVK

Cloud Service Consumer (CSC) Cloud Service Provider (CSP)

FHE

Σ

Figure 6. Encrypted log anomaly detection in Ubiquitous and Aggregate configurations (the dashed
block is an extra component in Aggregate mode for encrypted additions).

The sigmoid activation is a mathematical function that approximates the outputs of
a machine learning model in the [0, 1] range. In log anomaly detection, a label 0 corre-
sponds to a “normal” class, and a 1 corresponds to an “anomalous” class. In the proposed
procedure, the SAS receives only one result per block of messages. This saves network
bandwidth, as the SAS does not need to receive individual ciphers (encrypted labels) for
each message. Additionally, the SAS only needs to decrypt one cipher (encrypted total) per
block, which saves storage and computation overhead. The SAS decrypts the result and
assesses the sum for the block of messages. If there are no abnormalities in the block, the
totality should be 0. Otherwise, it should be the count of anomalous inputs.

Another advantage of this configuration is that it utilizes an anomaly score per block
of log entries and functions as a litmus test for log anomalies. For example, a SOC engineer
may prefer to examine the block of logs with a higher anomaly score than a block with
a much lower score. Furthermore, if there are successive blocks with higher than usual
anomaly scores, it may function as an IoC. The drawback of this configuration is that the
SAS cannot pinpoint which entry in the block is anomalous.

As shown in Table 1, n is the number of logs, TE(p) is the time taken to encrypt a
single message, SE(p) is the bytes occupied by a single ciphertext, TD(c) is the time taken
to decrypt a single ciphertext, and SD(c) is the bytes occupied by a single (decrypted)
message. We first trained the ML models using LR and SVM in plaintext and performed
inference on encrypted data, as the inputs to the model are encrypted. The calculations
were performed on plaintext weights of the model, yielding the encrypted results. This
also helped to create a baseline to compare the performance of various approximations in
encrypted domains.

Table 1. Comparison of “Ubiquitous” and “Aggregate” configurations.

Configuration
Encryption Decryption

Time Size Time Size

Ubiquitous n · TE(p) n · SE(p) n · TD(c) n · SD(c)
Aggregate TD(c) SD(c)

5. Sigmoid Approximation

Barring message expansion and noise growth, applying the sigmoid activation func-
tion is a substantial challenge in implementing ML with FHE. The sigmoid function is used
in LR and SVMs during classification, so we determined to make it homomorphic. We
further describe techniques to approximate this activation function with a polynomial for
word-wise FHE and compare various polynomial approximations in terms of accuracy,
precision, recall, F1-score, and the Σ-ratio of the predicted sum from sigmoid values to
the sum of all actual binary labels for the test dataset. We denote Md

i , where M is an

Cryptography 2023, 7, 52 13 of 20

approximation method like Taylor (T), Remez (R), Chebyshev (C), or ANN (A); d is the
degree; and i is the interval [−i, i] of the polynomial. We approximate the class C[a, b] of
continuous functions on the interval [a, b] by order-n polynomials in Pn using the L∞-norm
to measure the fit. This is called minimax polynomial approximation since the best (or
minimax) approximation solves

p∗n = arg min
pn∈Pn

max
a≤x≤b

| f (x)− pn(x)| (16)

A minimax approximation is a technique to discover the polynomial p in Equation (16),
i.e., the Remez algorithm [33] is an iterative minimax approximation and outputs the
following results [34] for the interval [−5, 5] and order three:

R3
5(x) = 0.5 + 0.197x− 0.004x3 (17)

The Taylor series (around point 0) of degree three is given by

T3(x) = 0.5 + 0.25x− 0.0208333x3 (18)

The Chebyshev series of degree three for the interval [−10, 10] is

0.5 + 0.139787x + (3.03084e− 26)x2 − 0.00100377x3

We omit the term for x2 to obtain

C3
10(x) = 0.5 + 0.139787x− 0.00100377x3 (19)

Similarly, we obtain the Chebyshev series of degree three for the interval [−50, 50]

C3
50(x) = 0.5 + 0.0293015x− (8.65914e− 6)x3 (20)

We derive the ANN polynomials of degree three for [−10, 10]

A3
10(x) = 0.49961343 + 0.12675145x− 0.00087002286x3 (21)

and for the interval [−50, 50]

A3
50(x) = 0.49714848 + 0.026882438x− (7.728304e− 06)x3 (22)

We compared the Chebyshev and ANN approximations for the sigmoid functions
as shown in Table 2. We calculated the mean absolute error (MAE); mean squared log
error (MSLE); and Huber, Hinge, and Logcosh losses [35,36] for the Chebyshev polynomials
described in Equations (19) and (20) and ANN polynomials from Equations (21) and (22),
e.g., A3

10 recorded an MAE loss of 0.0691 compared to 0.0793 for C3
10.

The lower losses (closer to 0) reflect fewer errors, showing that a better approximation
was achieved using our approach. Comparing their ratios 0.0691

0.0793 = 0.8712, we observed a
≈ 14% improvement (Figure 7).

Table 2. Polynomial approximation losses for the intervals [−10, 10] and [−50, 50].

Interval Method MAE MSLE Huber Hinge Logcosh

[−10, 10] C3
10 0.0793 0.0020 0.0039 0.5593 0.0039

A3
10 0.0691 0.0024 0.0031 0.5646 0.0031

[−50, 50] C3
50 0.1363 0.0115 0.0138 0.5475 0.0136

A3
50 0.1255 0.0124 0.0132 0.5534 0.0131

Cryptography 2023, 7, 52 14 of 20

0.0000

0.2500

0.5000

0.7500

1.0000

1.2500

MAE MSLE Huber Hinge Logcosh

[-10, 10] [-50, 50]

Figure 7. ANN losses relative to Chebyshev losses for the intervals [−10, 10] and [−50, 50].

6. Experimental Analysis

The experiments were conducted on a 2.4 GHz Quad-Core MacBook Pro with an Intel
Core i5 processor and 2133 MHz 8 GB LPDDR3 memory. We used the SEAL-Python [37]
library for Python3 to implement CKKS encryption. Moreover, we used sklearn [38] APIs
for binary classifiers.

6.1. Evaluation Criteria

We compared the performance of the models using the following metrics: precision,
recall, accuracy, and F1-score for the “Ubiquitous” configuration and Σ-ratio for the “Aggre-
gate” configuration. We repeated the experiments on both the NSL-KDD and the balanced
HDFS datasets.

• Precision is the proportion of correctly predicted positive results (true positive, TP)
to the total predicted positive results (TP + false positive, FP). It is also known as the
positive predictive value.

• Recall is the proportion of correctly predicted positive results (TP) to the total actual
positive results (TP + false negative, FN). It is also known as sensitivity or specificity.

• Accuracy is the proportion of all correct predictions (TP + TN) to the total number of
predictions made (TP + FP + TN + FN). It can be calculated as precision divided by
recall or 1− FalseNegativeRate (FNR)

FalsePositiveRate (FPR) .

• The F1-score is a measure that considers both precision and recall. It is calculated as
the harmonic mean of the precision and recall.

• The Σ-ratio is measured for the sigmoid activation function with binary outcomes and
calculated as the ratio of the sum of all predicted labels to the sum of all actual labels.

Precision =
TP

TP + FP
(23)

Recall =
TP

TP + FN
(24)

Accuracy =
TP + TN

TP + FP + TN + FN
(25)

F1− Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(26)

Σ− Ratio =
∑n

i=1 Predicted yi

∑n
i=1 Actual yi

, where yi ∈ {0, 1} (27)

Cryptography 2023, 7, 52 15 of 20

6.2. Datasets

Log datasets are often imbalanced, with most samples belonging to one class. This
can lead to overfitting and a “pseudo-high” accuracy for the trained model. To avoid this,
we proposed the use of balanced datasets. We first used a “Return-1 Model” (Table 3) to
verify the balance of classes in our log anomaly datasets. This model always classifies
samples as “anomalous”. We achieved an accuracy of 48.11% and a Σ-ratio of 2.07 for the
NSL-KDD dataset and an accuracy of 49.99% and Σ-ratio of 2.00 for the HDFS dataset.
We also achieved a recall of 100% for both datasets, as the model always outputs 1 for
“anomaly”. The NSL-KDD [39] dataset is a modified version of the KDD’99 [40] dataset that
solves some of the latter’s intrinsic problems. It contains 148,517 inputs with 41 features and
two observations for score and label. We modified the labels to create a binary classification
problem, with all attack categories consolidated into label 1. This resulted in 77,054 inputs
with label 0 (“normal”) and 71,463 inputs classified as label 1 (“anomalous”). The testing
set comprised 29,704 inputs, with 14,353 instances of label 1 and 15,351 of label 0. The
HDFS_1 [41] labeled dataset from Logpai represents 1.47 GB of HDFS logs forged by
running Hadoop-based map-reduce jobs on over 200 Amazon EC2 nodes for 38.7 h. Hadoop
domain experts labeled this dataset. Of the 11,175,629 log entries accumulated, 288,250
(∼2.58%) are anomalous. We used Drain [42], a log parser, to convert our unstructured log
data into a structured format. For brevity, we omit the textual log data parsing details here.
We created a more undersized, balanced dataset of 576,500 inputs with seven observations
equally distributed among the “normal” and “anomaly” classes. We used 20% of the total
dataset as testing data, with 115,300 inputs, of which 57,838 inputs belonged to label 1 and
57,462 belonged to label 0.

Table 3. Return-1 model performance for NSL-KDD and HDFS.

Dataset Type Accuracy Precision Recall F1-Score Σ-Ratio

NSL-KDD Full (100%) 0.4811 0.4811 1.0000 0.6497 2.0782
Test (20%) 0.4832 0.4832 1.0000 0.6515 2.0695

HDFS Full (100%) 0.4999 0.4999 1.0000 0.6666 2.0000
Test (20%) 0.5016 0.5016 1.0000 0.6681 1.9934

6.3. Test Results

First, we constructed baselines with plain (unencrypted) data, and the results are
exhibited in Table 4. For the NSL-KDD dataset, we accomplished a 93.52% accuracy, 95.02%
precision, and 0.99 Σ-ratio with LR and a 93.30% accuracy, 95.50% precision, and 1.06 Σ-ratio
with SVM. Likewise, for the HDFS (balanced) dataset, we accomplished a 96.83% accuracy,
94.12% precision, and 1.00 Σ-ratio with LR and a 96.81% accuracy, 94.02% precision, and
0.86 Σ-ratio with SVM.

Next, we compared order-3 sigmoid approximations, as shown in Equations (17)–(22),
in terms of performance metrics and execution time. We empirically showed that our
ANN-based polynomials performed better in most instances. For the NSL-KDD dataset
and LR model with a CKKS scaling factor of 230, the Chebyshev polynomial C3

10 in the
range [−10, 10] (Equation (19)) yielded a 93.30% accuracy, 94.86% precision, 91.08% recall,
92.93% F1-score, and 1.06 Σ-ratio. Meanwhile, ANN approximation A3

10 in the same range
(Equation (21)) had a 93.42% accuracy, 95.02% precision, 91.16% recall, 93.05% F1-score, and
1.06 Σ-ratio. Thus, A3

10 resulted in 0.13% improvement in accuracy and 0.17% improvement
in precision over C3

10.
We also experimented with different scaling factors of 230 and 240. While this did not

significantly impact the NSL-KDD dataset, we observed improvements for HDFS. For C3
50

with the SVM model, the accuracy improved from 92.63% to 96.81%, the precision from
93.85% to 94.02%, the recall from 91.30% to 100%, and the F1-score from 92.56% to 96.92%
when increasing the scaling factor. We also observed improvements for the Σ-ratio: for A3

10,
it reduced from 7.45 to 7.43 (an ideal value is close to 1).

Cryptography 2023, 7, 52 16 of 20

Table 4. Comparison of performance metrics for sigmoid approximations.

Dataset Model Scale Method Accuracy Precision Recall F1-Score Σ-Ratio

NSL-KDD LR Plain 0.9352 0.9502 0.9138 0.9317 0.9966
R3

5 0.7923 0.9272 0.6186 0.7421 0.6336

230 T3 0.3865 0.3083 0.2167 0.2545 −2.1720
C3

10 0.9330 0.9486 0.9108 0.9293 1.0633
C3

50 0.9351 0.9498 0.9139 0.9315 1.0753
A3

10 0.9342 0.9502 0.9116 0.9305 1.0667
A3

50 0.9120 0.9213 0.8942 0.9076 1.0666

240 T3 0.3870 0.3087 0.2169 0.2548 −2.1649
C3

10 0.9341 0.9501 0.9115 0.9304 1.0634
C3

50 0.9352 0.9502 0.9138 0.9317 1.0752
A3

10 0.9341 0.9501 0.9115 0.9304 1.0668
A3

50 0.9350 0.9537 0.9096 0.9311 1.0660

SVM Plain 0.9330 0.9550 0.9039 0.9287 1.0614
R3

5 0.9326 0.9550 0.9031 0.9283 1.0993

230 T3 0.7743 0.9262 0.5790 0.7126 0.7872
C3

10 0.9312 0.9522 0.9029 0.9269 1.1190
C3

50 0.8426 0.8194 0.8649 0.8649 1.0569
A3

10 0.9239 0.9407 0.8993 0.9195 1.1110
A3

50 0.9311 0.9574 0.8974 0.9264 1.0489

240 T3 0.7762 0.9302 0.5804 0.7148 0.7876
C3

10 0.9330 0.9550 0.9039 0.9287 1.1189
C3

50 0.9330 0.9550 0.9039 0.9287 1.0566
A3

10 0.9329 0.9551 0.9036 0.9287 1.1111
A3

50 0.9318 0.9604 0.8958 0.9270 1.0489

HDFS LR Plain 0.9683 0.9412 0.9992 0.9693 1.0001
R3

5 0.5308 0.5167 0.9992 0.6812 292.6803

230 T3 0.3616 0.4178 0.6928 0.5213 1545.6206
C3

10 0.5561 0.5306 0.9993 0.6931 71.6765
C3

50 0.8899 0.8203 0.9995 0.9011 0.7862
A3

10 0.5560 0.5305 0.9994 0.6931 62.0974
A3

50 0.8932 0.8249 0.9992 0.9037 0.7784

240 T3 0.3616 0.4178 0.6927 0.5212 1542.8804
C3

10 0.5564 0.5307 0.9992 0.6932 71.5496
C3

50 0.8908 0.8216 0.9992 0.9018 0.7835
A3

10 0.5565 0.5308 0.9992 0.6933 61.9845
A3

50 0.8930 0.8247 0.9992 0.9036 0.7794

SVM Plain 0.9681 0.9402 1.0000 0.9692 0.8649
R3

5 0.5605 0.5330 1.0000 0.6953 36.6039

230 T3 0.5513 0.5278 1.0000 0.6910 198.8704
C3

10 0.6356 0.5793 0.9988 0.7333 8.5442
C3

50 0.9263 0.9385 0.9130 0.9256 0.6254
A3

10 0.6397 0.5820 1.0000 0.7358 7.4514
A3

50 0.9682 0.9406 0.9998 0.9693 0.6478

240 T3 0.5518 0.5281 1.0000 0.6912 198.5042
C3

10 0.6357 0.5793 1.0000 0.7336 8.5288
C3

50 0.9681 0.9402 1.0000 0.9692 0.6253
A3

10 0.6399 0.5821 1.0000 0.7359 7.4376
A3

50 0.9682 0.9404 1.0000 0.9693 0.6482

We also improved upon the results reported for SigML. For instance, A3
10 performed

much better than R3
5. For NSL-KDD, with LR, the accuracy was improved from 79.23%

to 93.42%, the precision from 92.72% to 95.02%, the recall from 61.86% to 91.16%, the

Cryptography 2023, 7, 52 17 of 20

F1-score from 74.21% to 93.05%, and the Σ-ratio from 0.63 to 1.06. However, like SigML,
our approximations did not yield good results for the HDFS datasets, specifically in the
Σ-ratio. It would be interesting to approximate the sigmoid function in the [−20, 20] and
[−30, 30] intervals to obtain better results.

We also measured the average time taken for encryption, decryption, and sigmoid
operations, as shown in Table 5. We observed no significant impact from the different
datasets, models, scales, or methods on the average time taken in seconds. We also
measured the total user CPU and system CPU time under different configurations for
completeness. A3

10 was observed to be faster than the other methods.

Table 5. Time taken in seconds for sigmoid approximations.

Dataset Model Scale Method
Average Total (CPU)

Encryption Decryption Sigmoid User System

NSL-KDD LR 230 T3 15.9451 1.2736 25.0283 21,229.5304 31.1183
C3

10 15.8492 1.2750 24.8478 14,151.9965 21.6079
C3

50 16.3591 1.3128 25.6645 57,907.9974 192.8575
A3

10 15.9845 1.2882 25.1456 7098.8882 12.2847
A3

50 16.4581 1.3294 25.8525 50,652.5642 173.5452

240 T3 16.5453 1.3044 26.1130 21,864.5342 86.9118
C3

10 16.3382 1.2872 25.6880 14,527.2336 63.9331
C3

50 16.2095 1.2866 25.3791 72,326.0694 229.5827
A3

10 16.4056 1.2930 25.8025 7249.1064 44.1778
A3

50 16.2132 1.2683 25.5183 65,122.4439 209.3589

SVM 230 T3 15.9461 1.2854 25.1386 21,342.9889 37.2623
C3

10 16.0024 1.2769 25.1158 14,240.9221 27.7670
C3

50 16.3930 1.3225 25.7013 34,780.6294 69.3801
A3

10 16.1102 1.2971 25.3295 7138.4435 17.5237
A3

50 16.0584 1.2954 25.1713 79,472.3131 241.1018

240 T3 16.0374 1.2567 25.0808 43,369.0540 144.5788
C3

10 15.9906 1.2657 25.0830 36,270.2810 133.6592
C3

50 16.1845 1.2751 25.3623 41,969.1462 86.2903
A3

10 16.4235 1.3000 25.8985 29,143.3392 110.3346
A3

50 15.9473 1.2531 25.1184 93,679.2789 260.7503

HDFS LR 230 T3 16.3908 1.2578 25.4707 28,191.8944 96.0272
C3

10 16.4117 1.2704 25.3694 56,176.0993 249.5097
C3

50 16.2385 1.3113 25.1131 83,989.0793 355.9741
A3

10 16.1082 1.2582 24.9673 27,724.1933 75.9279
A3

50 15.9611 1.2891 24.7696 55,177.6614 119.2686

240 T3 16.0785 1.1416 24.8503 27,533.3271 43.9969
C3

10 16.1325 1.1467 24.6902 28,002.8715 42.0600
C3

50 16.1544 1.1475 24.7477 55,939.1609 88.9075
A3

10 16.0655 1.1504 25.0016 82,767.8606 171.9368
A3

50 16.4731 1.1875 25.5487 110,748.7027 309.8314

SVM 230 T3 16.3642 1.2677 25.4733 82,902.0987 212.2604
C3

10 16.0238 1.2588 24.7493 27,494.7062 61.8813
C3

50 15.9412 1.2864 24.7108 54,953.8687 107.4183
A3

10 16.1825 1.2757 25.0942 138,438.5341 379.7756
A3

50 16.3706 1.3089 25.4166 35,159.2336 121.3245

240 T3 16.6737 1.1933 25.8361 83,201.7236 274.1485
C3

10 15.9010 1.1333 24.5346 27,335.2857 46.0062
C3

50 16.0024 1.1422 24.6981 54,971.1042 97.4169
A3

10 15.9279 1.1375 24.6168 27,384.4133 46.0062
A3

50 15.9141 1.1383 24.5868 27,388.0323 43.6415

Cryptography 2023, 7, 52 18 of 20

7. Discussion

This section briefly compares the proposed solution and the most closely related
supervised machine learning technique for regression and classification tasks. While
Support Vector Machines (SVMs) ensure classification by identifying a hyperplane that
maximizes the margin between data points of different classes, Gaussian Process Regression
(GPR) adopts a generative approach using a Gaussian process to model data distributions,
enabling predictions and uncertainty estimations.

In the context of (encrypted) anomaly detection, SVMs are often preferred over GPR
for two reasons: (i) GPR tends to be computationally intensive, mainly when dealing with
high-dimensional data. In contrast, SVMs are known for their efficiency in training and
evaluation, making them highly suitable for handling large datasets. (ii) GPR requires
carefully selecting kernel functions and other hyperparameters, which can be challenging.
SVMs are less sensitive to these choices, which makes them easier to use.

8. Conclusions

We implemented an FHE-based solution for supervised binary classification for log
anomaly detection. FHE is a cryptographic technique that allows computations on en-
crypted data without decrypting it. This makes it a promising approach for Privacy-
Preserving Machine Learning (PPML) applications, such as log anomaly detection. In
our solution, we used the CKKS algorithm, which is a popular FHE scheme. We also
approximated the sigmoid activation function, a commonly used function in machine
learning, with novel low-order polynomials. This allowed us to reduce our solution’s com-
munication and computation requirements, making it more suitable for wireless sensors
and IoT devices. Low-order Chebyshev approximations for FHE are widely used in many
privacy-preserving tasks. We compared our ANN-based polynomials with Chebyshev
regarding performance metrics and timings. Our publicly available Python library [43]
supports Taylor, Remez, Fourier, Chebyshev, and ANN approximations.

We empirically show that our polynomials performed better in most cases for the
same amount of computation and multiplication depth. However, comparing our approxi-
mations with composite (iterative) polynomials [44,45] would make an interesting study.
Iterative polynomials have the advantage of generating optimal approximations for the
same multiplicative depth, with the drawback of extra noise and processing due to more
multiplications. Our evaluation of FHE for supervised binary classification was limited to
linearly separable problems. In future work, we plan to implement FHE with other ML
models, such as Recurrent Neural Networks (RNN) and Random Forests (RF). We also plan
to use Chimera [46] and combine TFHE/BFV for assessing the Sigmoid activation function
by approximating it by the Signum(Sign) operation furnished by the TFHE bootstrapping.

Author Contributions: All authors contributed to this study’s conceptualization and methodology.
D.T. contributed to writing—original draft preparation. All authors contributed to writing—review
and editing. D.T. contributed to visualization. A.B. contributed to supervision. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing does
not apply to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Cloud Object Storage—Amazon S3—Amazon Web Services. Available online: https://aws.amazon.com/s3/ (accessed on 16

October 2023).
2. Azure Blob Storage | Microsoft Azure. Available online: https://azure.microsoft.com/en-us/products/storage/blobs/ (accessed

on 16 October 2023).
3. S.3195—Consumer Online Privacy Rights Act. 2021. Available online: https://www.congress.gov/bill/117th-congress/senate-

bill/3195 (accessed on 16 October 2023).

https://aws.amazon.com/s3/
https://azure.microsoft.com/en-us/products/storage/blobs/
https://www.congress.gov/bill/117th-congress/senate-bill/3195
https://www.congress.gov/bill/117th-congress/senate-bill/3195

Cryptography 2023, 7, 52 19 of 20

4. TITLE 1.81.5. California Consumer Privacy Act of 2018 [1798.100–1798.199.100]. 2018. Available online: https://leginfo.
legislature.ca.gov/faces/codes_displayText.xhtml?division=3.&part=4.&lawCode=CIV&title=1.81.5 (accessed on 16 October
2023).

5. EUR-Lex—02016R0679-20160504—EN—EUR-Lex. 2016. Available online: https://eur-lex.europa.eu/eli/reg/2016/679/2016-05
-04 (accessed on 16 October 2023).

6. Durumeric, Z.; Ma, Z.; Springall, D.; Barnes, R.; Sullivan, N.; Bursztein, E.; Bailey, M.; Halderman, J.A.; Paxson, V. The Security
Impact of HTTPS Interception. In Proceedings of the 24th Annual Network and Distributed System Security Symposium, NDSS,
San Diego, CA, USA, 26 February–1 March 2017.

7. Principles for the Processing of User Data by Kaspersky Security Solutions and Technologies | Kaspersky. Available online:
https://usa.kaspersky.com/about/data-protection (accessed on 16 October 2023).

8. Nakashima, E. Israel hacked Kaspersky, then Tipped the NSA That Its Tools Had Been Breached. 2017. Available on-
line: https://www.washingtonpost.com/world/national-security/israel-hacked-kaspersky-then-tipped-the-nsa-that-its-tools-
had-been-breached/2017/10/10/d48ce774-aa95-11e7-850e-2bdd1236be5d_story.html (accessed on 16 October 2023).

9. Perlroth, N.; Shane, S. How Israel Caught Russian Hackers Scouring the World for U.S. Secrets. 2017. Available online:
https://www.nytimes.com/2017/10/10/technology/kaspersky-lab-israel-russia-hacking.html (accessed on 16 October 2023).

10. Temperton, J. AVG Can Sell Your Browsing and Search History to Advertisers. 2015. Available online: https://www.wired.co.
uk/article/avg-privacy-policy-browser-search-data (accessed on 16 October 2023).

11. Taylor, S. Is Your Antivirus Software Spying On You? | Restore Privacy. 2021. Available online: https://restoreprivacy.com/
antivirus-privacy/ (accessed on 16 October 2023).

12. Karande, V.; Bauman, E.; Lin, Z.; Khan, L. SGX-Log: Securing system logs with SGX. In Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, Abu Dhabi, United Arab Emirates, 2–6 April 2017; pp. 19–30.

13. Paccagnella, R.; Datta, P.; Hassan, W.U.; Bates, A.; Fletcher, C.; Miller, A.; Tian, D. Custos: Practical tamper-evident auditing of
operating systems using trusted execution. In Proceedings of the Network and Distributed System Security Symposium, San
Diego, CA, USA, 23–26 February 2020.

14. Chillotti, I.; Gama, N.; Georgieva, M.; Izabachène, M. Faster Fully Homomorphic Encryption: Bootstrapping in Less Than
0.1 Seconds. In Proceedings of the Advances in Cryptology—ASIACRYPT 2016, Hanoi, Vietnam, 4–8 December 2016; Cheon,
J.H., Takagi, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 3–33.

15. Brakerski, Z. Fully Homomorphic Encryption Without Modulus Switching from Classical GapSVP. In Proceedings of the
32nd Annual Cryptology Conference on Advances in Cryptology—CRYPTO 2012, Santa Barbara, CA, USA, 19–23 August 2012;
Volume 7417, pp. 868–886. [CrossRef]

16. Fan, J.; Vercauteren, F. Somewhat Practical Fully Homomorphic Encryption. Cryptology ePrint Archive, Report 2012/144. 2012.
Available online: https://eprint.iacr.org/2012/144 (accessed on 16 October 2023).

17. Cheon, J.H.; Kim, A.; Kim, M.; Song, Y. Homomorphic Encryption for Arithmetic of Approximate Numbers. Cryptology ePrint
Archive, Report 2016/421. 2016. Available online: https://eprint.iacr.org/2016/421 (accessed on 16 October 2023).

18. Frery, J.; Stoian, A.; Bredehoft, R.; Montero, L.; Kherfallah, C.; Chevallier-Mames, B.; Meyre, A. Privacy-Preserving Tree-Based
Inference with Fully Homomorphic Encryption. arXiv 2023, arXiv:2303.01254.

19. Boudguiga, A.; Stan, O.; Sedjelmaci, H.; Carpov, S. Homomorphic Encryption at Work for Private Analysis of Security Logs. In
Proceedings of the ICISSP, Valletta, Malta, 25–27 February 2020; pp. 515–523.

20. Trivedi, D.; Boudguiga, A.; Triandopoulos, N. SigML: Supervised Log Anomaly with Fully Homomorphic Encryption. In
Proceedings of the International Symposium on Cyber Security, Cryptology, and Machine Learning, Beer Sheva, Israel, 29–30
June 2023; Springer: Berlin/Heidelberg, Germany, 2023; pp. 372–388.

21. Brakerski, Z.; Gentry, C.; Vaikuntanathan, V. Fully Homomorphic Encryption without Bootstrapping. Cryptology ePrint Archive,
Paper 2011/277. 2011. Available online: https://eprint.iacr.org/2011/277 (accessed on 16 October 2023).

22. Trivedi, D. Brief Announcement: Efficient Probabilistic Approximations for Sign and Compare. In Proceedings ot the 25th
International Symposium on Stabilization, Safety, and Security of Distributed Systems, Jersey City, NJ, USA, 2–4 October 2023; pp.
289–296.

23. Zhao, J.; Mortier, R.; Crowcroft, J.; Wang, L. Privacy-preserving machine learning based data analytics on edge devices.
In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, New Orleans, LA, USA, 2–7 February 2018;
pp. 341–346.

24. Wang, L. Owl: A General-Purpose Numerical Library in OCaml. 2017. Available online: http://xxx.lanl.gov/abs/1707.09616
(accessed on 16 October 2023).

25. Ray, I.; Belyaev, K.; Strizhov, M.; Mulamba, D.; Rajaram, M. Secure logging as a service—Delegating log management to the
cloud. IEEE Syst. J. 2013, 7, 323–334. [CrossRef]

26. The Tor Project | Privacy & Freedom Online. Available online: https://www.torproject.org/ (accessed on 16 October 2023).
27. Zawoad, S.; Dutta, A.K.; Hasan, R. SecLaaS: Secure logging-as-a-service for cloud forensics. In Proceedings of the 8th ACM

SIGSAC Symposium on Information, Computer and Communications Security, Hangzhou, China, 8–10 May 2013; pp. 219–230.
28. Zawoad, S.; Dutta, A.K.; Hasan, R. Towards building forensics enabled cloud through secure logging-as-a-service. IEEE Trans.

Dependable Secur. Comput. 2015, 13, 148–162. [CrossRef]

https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?division=3. &part=4.&lawCode=CIV&title=1.81.5
https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?division=3. &part=4.&lawCode=CIV&title=1.81.5
https://eur-lex.europa.eu/eli/reg/2016/679/2016-05-04
https://eur-lex.europa.eu/eli/reg/2016/679/2016-05-04
https://usa.kaspersky.com/about/data-protection
https://www.washingtonpost.com/world/national-security/israel-hacked-kaspersky-then-tipped-the-nsa-that-its-tools-had-been-breached/2017/10/10/d48ce774-aa95-11e7-850e-2bdd1236be5d_story.html
https://www.washingtonpost.com/world/national-security/israel-hacked-kaspersky-then-tipped-the-nsa-that-its-tools-had-been-breached/2017/10/10/d48ce774-aa95-11e7-850e-2bdd1236be5d_story.html
https://www.nytimes.com/2017/10/10/technology/kaspersky-lab-israel-russia-hacking.html
https://www.wired.co.uk/article/avg-privacy-policy-browser-search-data
https://www.wired.co.uk/article/avg-privacy-policy-browser-search-data
https://restoreprivacy.com/antivirus-privacy/
https://restoreprivacy.com/antivirus-privacy/
http://doi.org/10.1007/978-3-642-32009-5_50
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2016/421
https://eprint.iacr.org/2011/277
http://xxx.lanl.gov/abs/1707.09616
http://dx.doi.org/10.1109/JSYST.2012.2221958
https://www.torproject.org/
http://dx.doi.org/10.1109/TDSC.2015.2482484

Cryptography 2023, 7, 52 20 of 20

29. Rane, S.; Dixit, A. BlockSLaaS: Blockchain assisted secure logging-as-a-service for cloud forensics. In Proceedings of the
International Conference on Security & Privacy, Jaipur, India, 9–11 January 2019; Springer: Berlin/Heidelberg, Germany, 2019;
pp. 77–88.

30. Bittau, A.; Erlingsson, Ú.; Maniatis, P.; Mironov, I.; Raghunathan, A.; Lie, D.; Rudominer, M.; Kode, U.; Tinnes, J.; Seefeld, B.
Prochlo: Strong privacy for analytics in the crowd. In Proceedings of the 26th Symposium on Operating Systems Principles,
Shanghai, China, 28–31 October 2017; pp. 441–459.

31. Paul, J.; Annamalai, M.S.M.S.; Ming, W.; Al Badawi, A.; Veeravalli, B.; Aung, K.M.M. Privacy-Preserving Collective Learning
With Homomorphic Encryption. IEEE Access 2021, 9, 132084–132096. [CrossRef]

32. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

33. Remez, E.Y. Sur le calcul effectif des polynomes d’approximation de Tschebyscheff. CR Acad. Sci. Paris 1934, 199, 337–340.
34. Chen, H.; Gilad-Bachrach, R.; Han, K.; Huang, Z.; Jalali, A.; Laine, K.; Lauter, K. Logistic regression over encrypted data from

fully homomorphic encryption. BMC Med. Genom. 2018, 11, 3–12. [CrossRef]
35. Module: tf.keras.losses | TensorFlow v2.13.0. Available online: https://www.tensorflow.org/api_docs/python/tf/keras/losses

(accessed on 16 October 2023).
36. API Reference. Available online: https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics (accessed on 16

October 2023).
37. Huelse. Huelse/Seal-Python: Microsoft Seal 4.x for Python. 2022. Available online: https://github.com/Huelse/SEAL-Python

(accessed on 9 May 2022).
38. Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Mueller, A.; Grisel, O.; Niculae, V.; Prettenhofer, P.; Gramfort, A.; Grobler, J.;

et al. API design for machine learning software: Experiences from the scikit-learn project. In Proceedings of the ECML PKDD
Workshop: Languages for Data Mining and Machine Learning, Prague, Czech Republic, 23–27 September 2013; pp. 108–122.

39. Canadian Institute for Cybersecurity. NSL-KDD | Datasets | Research | Canadian Institute for Cybersecurity. 2019. Available
online: https://www.unb.ca/cic/datasets/nsl.html (accessed on 16 October 2023).

40. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009
IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 8–10 July 2009;
IEEE: New York, NY, USA, 2009; pp. 1–6.

41. He, S.; Zhu, J.; He, P.; Lyu, M.R. Loghub: A Large Collection of System Log Datasets towards Automated Log Analytics. arXiv
2008, arXiv:2008.06448

42. He, P.; Zhu, J.; Zheng, Z.; Lyu, M.R. Drain: An online log parsing approach with fixed depth tree. In Proceedings of the 2017
IEEE International Conference on Web Services (ICWS), Honolulu, HI, USA, 25–30 June 2017; IEEE: New York, NY, USA, 2017;
pp. 33–40.

43. Trivedi, D. GitHub-Devharsh/Chiku: Polynomial Function Approximation Library in Python. 2023. Available online: https:
//github.com/devharsh/chiku (accessed on 16 October 2023).

44. Cheon, J.H.; Kim, D.; Kim, D.; Lee, H.H.; Lee, K. Numerical method for comparison on homomorphically encrypted numbers. In
Proceedings of the International Conference on the Theory and Application of Cryptology and Information Security, Kobe, Japan,
8–12 December 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 415–445.

45. Lee, E.; Lee, J.W.; No, J.S.; Kim, Y.S. Minimax approximation of sign function by composite polynomial for homomorphic
comparison. IEEE Trans. Dependable Secur. Comput. 2021, 19, 3711–3727. [CrossRef]

46. Boura, C.; Gama, N.; Georgieva, M.; Jetchev, D. CHIMERA: Combining Ring-LWE-Based Fully Homomorphic Encryption
Schemes. Cryptology ePrint Archive, Report 2018/758. 2018. Available online: https://eprint.iacr.org/2018/758 (accessed on 16
October 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2021.3114581
http://dx.doi.org/10.1186/s12920-018-0397-z
https://www.tensorflow.org/api_docs/python/tf/keras/losses
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics
https://github.com/Huelse/SEAL-Python
https://www.unb.ca/cic/datasets/nsl.html
https://github.com/devharsh/chiku
https://github.com/devharsh/chiku
http://dx.doi.org/10.1109/TDSC.2021.3105111
https://eprint.iacr.org/2018/758

	Introduction
	Contributions
	Organization

	Background
	Fully Homomorphic Encryption
	Polynomial Approximations
	Taylor
	Fourier
	Pade
	Chebyshev
	Remez
	ANN

	Related Work
	Proposed Solution
	Sigmoid Approximation
	Experimental Analysis
	Evaluation Criteria
	Datasets
	Test Results

	Discussion
	Conclusions
	References

