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Abstract: Watermarking is a viable approach for safeguarding the proprietary rights of digital media.
This study introduces an innovative fast Fourier transform (FFT)-based phase modulation (PM)
scheme that facilitates efficient and effective blind audio watermarking at a remarkable rate of
508.85 numeric values per second while still retaining the original quality. Such a payload capacity
makes it possible to embed a full-color image of 64 × 64 pixels within an audio signal of just
24.15 s. To bolster the security of watermark images, we have also implemented the Arnold transform
in conjunction with chaotic encryption. Our comprehensive analysis and evaluation confirm that the
proposed FFT–PM scheme exhibits exceptional imperceptibility, rendering the hidden watermark
virtually undetectable. Additionally, the FFT–PM scheme shows impressive robustness against
common signal-processing attacks. To further enhance the visual rendition of the recovered color
watermarks, we propose using residual neural networks to perform image denoising and super-
resolution reconstruction after retrieving the watermarks. The utilization of the residual networks
contributes to noticeable improvements in perceptual quality, resulting in higher levels of zero-
normalized cross-correlation in cases where the watermarks are severely damaged.

Keywords: blind audio watermarking; phase modulation; numeric embedding; watermark denoising;
super-resolution enhancement

1. Introduction

In today’s digital era, a vast array of multimedia data, spanning text, images, audio,
and videos, are stored in digital formats for easy distribution and retrieval across the Inter-
net. Correspondingly, digital watermarking emerges as a pivotal technology to safeguard
the proprietary rights associated with multimedia content [1]. When content faces the
threat of misappropriation or plagiarism, the presence of proprietary information (called
the watermark) embedded within the host media can promptly unveil illicit attempts.

In this study, our primary focus centers on the pragmatic aspects of audio watermark-
ing. Although researchers have explored the watermarking technology for decades, there
is still much room before its widespread adoption by the general public. One conjecture for
this phenomenon could be the absence of captivating applications and appealing opera-
tional modes. For audio watermarking, the considerations typically hinge on three critical
criteria: payload capacity, imperceptibility, and robustness. Capacity pertains to the volume
of information embedded in the host audio. Imperceptibility gauges the extent to which the
audio’s fidelity remains intact after watermarking, while robustness signifies the resilience
against malicious attacks or unintentional alterations during network transmission. The
tradeoffs amidst the abovementioned considerations are intricate. Enhancing embedding
capacity can often come at the cost of audio quality, thereby conflicting with imperceptibil-
ity requirements. Similarly, diminishing embedding strength might preserve audio quality
but potentially weaken robustness. Consequently, a practical audio watermarking method
must harmonize these competing demands.
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Audio watermarking can be categorized into two primary groups: non-blind (in-
cluding semi-blind) and blind methods [2], based on the level of information needed for
watermark recovery. Non-blind methods necessitate access to the original multimedia
source or related side information during watermark extraction, whereas blind methods
operate without these prerequisites. In practice, blind watermarking is often favored since
it eliminates the need for access to the sources, which may not always be available.

To increase public interest in audio watermarking technology, we explore the pos-
sibility of hiding color images in audio. Considering the information content of audio
watermarks, the first challenge is how to increase the achievable capacity, and the second is
how to enhance the recognizability of the extracted watermarks. In this study, we propose
developing a new type of numeric embedding scheme to address the capacity issue and
utilizing deep learning techniques to enhance the clarity and legibility of the extracted
watermark images.

The contributions of this study will encompass two dimensions: (1) the inception of a
pioneering blind watermarking scheme capable of direct and effective numeric embedding,
thereby facilitating the effort to embed color images into audio signals; (2) the incorporation
with deep neural networks (DNN) to promote the visual recognizability of watermark
images extracted from watermarked audio, thereby improving their visual appeal.

The subsequent sections of this paper are structured as follows. Following the intro-
duction in the opening section, we offer a literature review and outline our research plan
in Section 2. Section 3 introduces a groundbreaking scheme that facilitates the watermark
embedding of pixel values into selective coefficients within the FFT domain. Section 4
presents our experimental findings, accompanied by an in-depth discussion of impercepti-
bility and robustness assessments. In Section 5, we detail DNNs for watermark denoising
and super-resolution. Finally, Section 6 provides our concluding remarks.

2. Literature Review and Research Planning

Audio watermarking can be implemented in the temporal and transform domains.
Transform-domain methods are prevalent because they exploit signal features and human
auditory properties. This category encompasses well-known techniques such as the discrete
cosine transform (DCT) [3–6], discrete (or fast) Fourier transform (DFT/FFT) [7–10], dis-
crete wavelet transform (DWT) [4,11–14], and singular value decomposition (SVD) [15–17].
While transform-domain methods typically excel in terms of robustness and impercep-
tibility, they inevitably incur computational overhead due to transformations between
different domains.

In the past, researchers developed a variety of approaches to perform blind audio
watermarking, including quantization index modulation (QIM) [18,19], spread spectrum
(SS) [20–22], echo-hiding [23,24], and patchwork [5,25]. These approaches mainly aimed
to embed binary information into audio signals. QIM and its variants have been the most
popular because they provide a reasonable tradeoff among three conflicting requirements:
capacity, imperceptibility, and robustness.

The watermark can be any form of digital data, such as text, binary logos, images,
biometric signatures, encoded multimedia, and random sequence patterns. Among the
possible options for audio watermarking, binary bit-composed image logos have consis-
tently dominated the landscape of relevant research. Such a condition is conceivably due
to the easy verification process via visual examination. Given the historical success of
black-and-white binary logos as watermarks, a natural query arises: why not harness
full-color images as watermarks? However, embedding a full-color image into an audio
signal necessitates a substantial capacity allowance. Balancing this demand for capacity
becomes particularly intricate, especially when considering robustness and imperceptibility
simultaneously.

Our research goal is to hide full-color images in audio over an acceptable time while
the embedded watermark images are still retrievable even after commonly encountered
attacks. Unfortunately, no currently available approaches are capable of coping with this
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goal. To pave the research gap, our foremost objective revolves around crafting a novel
watermarking scheme that excels in capacity, robustness, and imperceptibility. Yet, even
with a high-capacity audio watermarking approach, encapsulating a color image within a
limited audio timeframe poses notable challenges. Hence, our second priority in this study
is to utilize the latest popular deep neural networks to enhance the visual presentation of
extracted watermark images.

Based on our past research experience in audio watermarking, we hypothesize that
methods previously used to implement binary embeddings can be adapted to accommodate
numeric watermarking. Furthermore, considering what deep neural networks can do in
image processing, we hypothesize that deep neural networks can play an important role in
watermark enhancement.

Our research methodology turns out to be the following steps: (1) design a numeric
watermarking method that enables the embedding of pixel values into transform-domain
coefficients; (2) find the influential factors and the corresponding metrics to measure
the performance; (3) collect and analyze data to justify the feasibility of our hypotheses;
(4) report what we discover in this study.

3. Numeric Watermark Embedding

To facilitate the goal of hiding full-color watermark images into audio within an
acceptable timeframe, we need a new numeric watermarking scheme to carry out
watermark embedding.

3.1. Watermark Encryption

To enhance the security of the watermark, we employ both the Arnold transform [26]
and chaotic encryption [27] to scramble the image. The Arnold transform, a classic encryp-
tion technique, permutes the coordinates within a square matrix. In the context of a color
image containing N × N pixels with three color channels, this permutation is individually
applied to the image matrix in each color channel.[

i′

j′

]
=

[
α β
γ δ

]K1[i
j

]
mod(N) (1)

where (i, j) and (i′, j′) represent the original and permuted coordinates of the specific
pixel, respectively. mod(·) signifies the modulus function. The parameter K1 denotes a
permutation number that functions as the first encryption key. The transformation matrix’s
four parameters in Equation (1) must adhere to the rule that |aδ− βγ| = 1.

Let us define W′ = {w′(i, j)}N×N = {w(i′, j′)}N×N as the permuted matrix of a color
channel after the Arnold transformation. The subsequent encryption process involves
generating a sequence denoted as {h(n)}N2 , possessing a matching length of N2, through
the utilization of a chaotic map [27]:

h(n + 1) =

{ 1
µ h(n), if 0 ≤ h(n) < µ;
1−h(n)

1−µ , if µ ≤ h(n) < 1,
(2)

where µ ∈ (0, 1) denotes a system parameter, which can be employed as the second
encryption key, designated as K2. The initial value h(0) , K3 ∈ (0, 1) serves as the third
encryption key. A slight variation of K2 or K3 can lead to a distinct trajectory. The resulting
sequence {h(n)} is then merged with W′ using conditional complement as below:

w′′ (i, j)| 1 ≤ i ≤ N
1 ≤ j ≤ N

=

{
255− w′(i, j), if h(n)|n=iN+j ≥ 0.5;
w′(i, j), otherwise.

(3)

Finally, the matrix elements are converted into a one-dimensional data stream and later
embedded into the audio signal one by one.
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3.2. FFT-Based Phase Modulation

We employ a segmentation strategy to embed watermark information into an audio
signal. Specifically, the host audio signal is first divided into frames at the transmitting
end, and the watermark is sequentially hidden piece by piece into each frame. Once the
watermarked audio signal is obtained at the receiving end, we extract the information
hidden in each frame after confirming frame synchronization. All retrieved data is then
gathered together, followed by decryption to restore the watermark. Figure 1 illustrates the
concept of frame segmentation. Within each frame, a small buffer of length LT is reserved
to ensure a smooth transition across boundaries. The actual watermark embedding takes
place in the remaining portion with a length of LW .
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We have previously introduced a unified FFT Framework [28] for performing high-
performance self-synchronous blind audio watermarking. It was demonstrated that the
adaptive vector norm modulation (AVNM) scheme is highly effective in delivering im-
perceptible binary watermarking. Here, we extend the applicable functions for numerical
watermarking. After dividing the audio signal x(i) into frames, we apply FFT to the
watermarking portion in each frame, as follows:

X(m)
W (k) =

LW−1

∑
n=0

x(m)
W (n)e−i 2πkn

LW , k = 0, 1, · · · , LW − 1. (4)

where x(m)
W (n) = x(i)|i=(m−1)×(LT+LW )+n denotes the audio signal located in the water-

marking portion of the mth frame. Term LW represents the length of FFT and LT denote a
small interval for establishing a smooth transition across frame boundaries.

The AVNM [28] is subsequently employed to embed an 8-bit synchronization code
and an 8-bit frame index into low-frequency FFT coefficients. In our design, the 16-bit
embedding requires the participation of 20 low-frequency FFT coefficients. Among these
20 coefficients, the first 16 are employed to embed binary bits and the remaining 4 are
reserved to maintain the same energy level for retrieving quantization steps. As for the
remaining FFT coefficients, they can be used to conceal a series of pixel values obtained
from a color image. The AVNM can be viewed as a derivation of the quantization index
modulation [18], which adjusts the target FFT coefficient towards two sets of intervals.
The distinctive advantage of the AVNM lies in its adaptive control over the quantization
step size. This feature ensures that the quantization noise remains below the perceptible
threshold and that the quantization steps are retrievable during watermark extraction.
Thanks to the inherent self-synchronizing capability of the AVNM, autonomous frame
synchronization can be maintained between the transmitting and receiving ends.

Figure 2 illustrates the procedural steps of watermark embedding. The left portion of
the inner loop illustrates the binary embedding procedure facilitated by the AVNM. On
the right-hand side of Figure 2, we deploy another FFT-based watermarking scheme for
numeric embedding. Given that the primary content of the watermark comprises a data
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stream derived from a color image, the task of embedding such a volume of information
presents a challenge for conventional binary watermarking methods. Consequently, we
introduce an innovative numeric watermarking method, named phase modulation (PM),
to address this challenge.
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It is widely acknowledged that the human auditory system exhibits relatively low
sensitivity to variations in phase [29]. Hence, the key to imperceptible audio watermark-
ing primarily involves manipulating the FFT phase while keeping the FFT magnitude
unchanged. Since each FFT coefficient comprises a real and an imaginary component,
our scheme for numerical embedding involves the manipulation of the ratio between the
magnitudes of these two components. Precisely, we identify the component with the larger
magnitude and utilize it as the baseline unit. Subsequently, we modulate the extent of the
other component based on the intended numeric value, such as a pixel value extracted
from a color image.

If
∣∣∣Re
{

X(m)
W (k)

}∣∣∣ ≥ ∣∣∣Im{X(m)
W (k)

}∣∣∣
X̂(m)

W (k) = Re
{

X(m)
W (k)

}
+ i · sgn

(
Im
{

X(m)
W (k)

})
·
∣∣∣Re
{

X(m)
W (k)

}∣∣∣ · w(m)
v (k−bNV)

255

else

X̂(m)
W (k) = sgn

(
Re
{

X(m)
W (k)

})
·
∣∣∣Im{X(m)

W (k)
}∣∣∣ · w(m)

v (k−bNV)
255 + i · Im

{
X(m)

W (k)
} (5)

for k = bNV , bNV + 1, · · · , bNV + lp − 1

where Re{·} and Im{·} represent the real and imaginary components, respectively. The
symbol | · | indicates the absolute value function and sgn( · ) denotes the sign function. The
term w(m)

v (k− bNV) refers to the pixel value to be hidden within the kth FFT coefficient (i.e.,
X(m)

W (k)). bNV denotes the starting position for the FFT coefficients used to embed a total of

lp values. The circumflex accent on X̂(m)
W (k) symbolizes the resultant output. When dealing
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with digital images stored in an unsigned 8-bit integer format, w(m)
v (k− bNV) falls within the

range of 0 to 255. By dividing its value by 255, we obtain a value between 0 and 1.
In Equation (5), adjusting the smaller magnitude relative to the larger one ensures

the preservation of the inequality between the real and imaginary components. In order
to reduce the impact on audio quality, we restore the magnitudes of the involved FFT
coefficients using a scaling approach:

ˆ̂X
(m)

W (k) = X̂(m)
W (k) ·

 σ2(k)

X̂(m)
W (k)

(
X̂(m)

W (k)
)∗


1
2

(6)

with

σ2(k) = max

10−
15
10

lp

bBV+lp−1

∑
k=bBV

X(m)
W (k)

(
X̂(m)

W (k)
)∗

, X(m)
W (k)

(
X̂(m)

W (k)
)∗. (7)

where (·)∗ denotes the complex conjugate operation. Assigning σ2(k) as X(m)
W (k)

(
X̂(m)

W (k)
)∗

is ordinarily adequate to recover the original magnitude. Nevertheless, our experiments
revealed that FFT coefficients with relatively low magnitudes are vulnerable to malicious
attacks. Therefore, we strategically set a minimum threshold at −15 dB below the average
power of the relevant FFT coefficients, specifically referring to the first term enclosed within
the braces of Equation (7). FFT coefficients that do not meet the power threshold are elevated
to this specified level, consequently bolstering the efficacy of the watermarking process.

Figure 3 presents a typical example of watermark embedding using the PM. Within
panel (b), the FFT coefficients, spanning indices 60 to 107, are concurrently shown in
their original and watermarked states. In the visualization, the solid line with a filled
circle signifies the real component of a complex FFT coefficient, while the dashed line
with a hollow shape represents the imaginary counterpart. To enhance clarity, the data
sequences for the original and watermarked coefficients are color-coded in blue and green
correspondingly. Notably, the coefficients positioned at indices 96 to 101 and 104 to 107
serve as instances of power thresholding. In these positions, the initial power levels
(depicted as bars in blue) have been elevated to match the prescribed threshold (illustrated
as bars in green).

Watermark embedding using the AVNM and PM inevitably leads to substantial
changes in the FFT sequence, which is eventually reflected in the audio waveform. The
altered waveform may sometimes show apparent discontinuities at frame boundaries,
thus leading to perceivable noise in the audio. To avoid such an artificial effect, we can
compensate for the boundary gaps by adjusting the slope of the transitional zone using the
following formula:

ˆ̂x(m)
T (n) = x(m)

T (n) +

 LT−n
LT+1

(
ˆ̂x(m−1)
W (LW − 1)− x(m−1)

W (LW − 1)
)

+ n+1
LT+1

(
ˆ̂x(m)
W (0)− x(m)

W (0)
) ; (8)

for n = 0, 1, 2, · · · , LT − 1.

where x(m−1)
W (LW − 1) and x(m)

W (0) correspond to the leftmost and rightmost neighboring
samples near the transitional zone. Equation (8) serves to rectify deviations occurring at
both boundaries through linear interpolation. This boundary offset adjustment is illustrated
in Figure 4, where the signal curve (depicted in blue) within the transitional zone has been
shifted upwardly on the left side but downwardly on the right side (depicted in red).
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To conclude the discussion above, we summarize the steps for watermark embedding:
Step 0: Prepare the encrypted watermark image as discussed in Section 3.1.
Step 1: Partition the host audio into frames.
Step 2: Take the FFT over the watermarking portion at the current frame, denoted as{

X(m)
W (k)

}
in Equation (4).

Step 3: Perform numeric embedding as in Equation (5).

Step 4: Take the inverse FFT of { ˆ̂X
(m)

W (k)} to obtain the watermarked audio signal,

termed ˆ̂x(m)
W (n).

Step 5: Smooth the transition across frames as in Equation (8).
Step 6: Check if all frames are processed. If not, move to the next and go to Step 2.

Otherwise, terminate.
Extraction of the numerical watermark is a relatively straightforward process. Figure 5

illustrates the flowchart for watermark extraction through the FFT–PM. The required
steps involve:
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Figure 5. Extraction procedure of the FFT–PM scheme.

Step 1: Align the frame boundary by examining the synchronization code, as detailed
in [28].

Step 2: Apply the FFT over the watermarking portion and denote the acquired FFT
sequence as X̃(m)

W (k).
Step 3: Derive the frame index.
Step 4: Compute the pixel values from

{
X̃(m)

W (k)
∣∣∣k = bNV , bNV + 1, · · · , bNV + lp − 1

}
using Equation (9). After determining which of the real and imaginary components of
the specified FFT coefficient has a higher magnitude, we calculate the ratio of the smaller
magnitude to the larger one. When this ratio is multiplied by the dynamic range (255), it
yields the pixel intensity of a primary color.

w̃(m)
v (k− nb) = 255×

min
{∣∣∣Re

{
X̃(m)

W (k)
}∣∣∣, ∣∣∣Im

{
X̃(m)

W (k)
}∣∣∣}

max
{∣∣∣Re

{
X̃(m)

W (k)
}∣∣∣, ∣∣∣Im

{
X̃(m)

W (k)
}∣∣∣} . (9)

Step 5: Check if all frames are complete. If not, move to the next frame and go to
Step 2. Otherwise, proceed to the next step.

Step 6: Assemble pixel values into three matrixes and use decryption keys to decipher
the watermark through the inverse process described in Section 3.1.

4. Performance Evaluation

The test materials for the subsequent experiments encompassed twenty 30-s music
clips sourced from various CD albums. These clips were categorized into four genres:
classical (3), popular (5), rock (5), and soundtracks (5). All audio signals were sampled at
44.1 kHz with 16-bit resolution.

The chosen watermark comprised small color images of 64 × 64 pixels. We eval-
uated nine watermarks collected from the CVG-UGR [30] image database. While the
original dimensions of the color images were 512 × 512 pixels, they were down-sampled to
64 × 64 pixels to suit our specific objectives.

The pixel value w(m)
v (k− bNV) in Equation (5) is sourced from {w′′ (i, j)}mentioned

in Section 3.1. Figure 6 shows the set of watermarks (comprising nine color images of
64 × 64 pixels) alongside their encrypted renditions. This illustration demonstrates the
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chaotic encryption applied to watermark images. Without the accurate encryption keys,
any attempts by an adversary to access the watermark information will be thwarted.
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As for the FFT–PM, we tentatively set the lengths for the transitional and watermarking
segments as LT = 64 and LW = 4096, respectively. Furthermore, we considered the inclusion
of 48 consecutive FFT coefficients (i.e., lp = 48) to accommodate the exact count of pixel values
(8-bit unsigned integer numbers) utilizing PM. Such a design yields a payload capacity of
508.85 (=48 values ×44, 100/(4096+ 64) frames/second) numerics per second (nps).

4.1. Processing Time

We implemented the FFT–PM scheme using MATLAB® 2023a. Our personal com-
puter was equipped with an Intel® Core(TM) i5-13500 CPU, 128 GB RAM, and an RTX
3090 graphics card. Embedding a watermark image of 64 × 64 pixels into an audio signal
of 24.15 s required approximately 83.50 milliseconds, while extracting the watermark from
the watermarked audio needed 37.38 milliseconds on average.

4.2. Imperceptibility Test

Our primary concern is the impact on audio quality when placing the watermark at
different positions within the FFT sequence. The intensity of the host FFT coefficient, as
described in Equation (5), plays a crucial role in determining the disturbance level caused
by watermark embedding. Larger magnitude FFT coefficients generally undergo more
modification, which can enhance robustness but compromise imperceptibility. To select a
suitable index range for the FFT–PM, we conducted a preliminary study on the magnitude
distribution of FFT coefficients using our experimental dataset. Figure 7 displays the root-
mean-squared (RMS) magnitudes for the FFT coefficients in the first 20 Bark scale critical
bands. As shown in this figure, the first five critical bands contain FFT coefficients with
relatively high magnitudes. The RMS level drops below 40 starting from the 6th critical
band, remaining around 20 for the 10th to 12th critical bands. Given that embedding the
watermark in the first five critical bands significantly alters the host audio, we investigate
the feasibility of embedding the watermark in the frequency range starting from the 6th
critical band.

Four possible candidates (with the first coefficient at the leftmost position of the 6th,
7th, 8th, and 9th critical bands) were chosen for performing PM in our experiments. In
other words, we pick the 48 FFT coefficients in the four ranges (i.e., [49, 96], [60, 107],
[72, 119], and [85, 132]) as the watermarking subjects. As the watermark is a color image of
64× 64 pixels with three color channels, the time required to embed such a color image is
around 24.15 s (= 64× 64× 3/(48× 44, 100/(4096 + 64))). Besides implementing PM on
the four candidate ranges, we chose the FFT coefficients in the index range [18, 37] to carry
out AVNM binary embedding. As the index range for AVNM embedding does not overlap
any of the four ranges used to perform PM, the watermarking processes of the AVNM and
PM do not interfere with each other.
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Figure 7. RMS values of the FFT magnitudes with standard error deviation bars for the first 20
Bark-scale critical bands.

We measured the variation in imperceptibility using the signal-to-noise ratio (SNR),
as defined in Equation (10), along with the perceptual evaluation of audio quality (PEAQ)
metric [31].

SNR = 10 log10

 ∑
n

x2(n)

∑
n

( ˆ̂x(n)− x(n)
)2

, (10)

where x(n) and ˆ̂x(n) denote the original and watermarked audio signals, respectively.
Meanwhile, the PEAQ metric was an implementation released by the TSP Lab at McGill
University [32]. It offers an objective difference grade (ODG) between −4 and 0, signifying
a perceptual impression from “very annoying” to “imperceptible”.

Table 1 shows the SNR and SDG values when the ANVM and PM operate at 169.62 bits
per second (bps) plus 508.85 nps, respectively. As mentioned earlier, the main task of the
ANVM is to embed the synchronization code and frame index, while the PM is respon-
sible for numeric watermarking. As revealed in Table 1, the ANVM alone resulted in an
SNR of approximately 25 dB. The corresponding ODG turned out to be a value above
zero, suggesting that the binary embedding with ANVM did not cause any perceptible
difference. Such an outcome can be attributed to the exploitation of human auditory prop-
erties, where the quantization noise has been deliberately suppressed below the auditory
masking threshold.

For the watermark (a color image of size 64 × 64) embedded into the four frequency
ranges, the trend of the changes in SNR is consistent with our original expectations. When
the intensity levels of the FFT coefficients become higher, the resulting SNRs go lower. In
this case, the 48 FFT coefficients in the frequency range (II), starting from the 7th Barker
scale, are selected as embedding carriers, and the average SNR just exceeds the minimum
acceptable threshold (i.e., 20 dB) recommended by the International Federation of the
Phonographic Industry (IFPI) [33]. As for the ODGs, the results in Table 1 also exhibit a
similar trend, i.e., the higher the FFT coefficient indexes are, the better the ODG scores.
Nonetheless, the differences in ODGs are negligible. Even for FFT coefficients within the
embedded range (I), the average ODG still holds an excellent score of−0.095. The result can
be attributed to the fact that watermark embedding only affects the spectral phase, while
keeping the spectral magnitude intact. Since the human ear is insensitive to spectral phase
variation, the PEAQ metric emulating the auditory system reflects nearly no difference
between the original and watermarked audio signals.
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Table 1. Statistics of the measured SNRs and ODGs for the watermarks embedded in different index
ranges. The data in the fourth and fifth columns are interpreted as “mean [standard deviation]”.

Embedding
Scheme

FFT Index
Range

Capacity
[Bits/Numbers per Second] SNR ODG

AVNM [18, 37] 169.62 bps 25.004 [1.650] 0.152 [0.014]

PM-(I) [49, 96] 508.85 nps 18.954 [2.218] −0.095 [0.049]

PM-(II) [60, 107] 508.85 nps 20.218 [2.216] −0.069 [0.055]

PM-(III) [72, 119] 508.85 nps 21.260 [2.438] −0.065 [0.082]

PM-(IV) [85, 132] 508.85 nps 22.314 [2.593] −0.052 [0.099]

AVNM + PM-(II) [18, 37] & [60, 107] 169.62 bps + 508.85 nps 18.755 [1.326] −0.094 [0.054]

4.3. Randomness Properties

Apart from the preceding imperceptibility test, we conducted several additional tests
to explore the extent to which audio signals were affected by watermarking. First, we
performed histogram analysis on the watermarked audio signals. Figure 8 depicts the
histograms of the original and watermarked signals as grouped bars in pairs. It can be
seen from the four subplots in Figure 8 that the differences in each pair of histograms were
insignificant and had minimal impact on the overall distribution of data.
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Figure 8. Histograms drawn from the original and watermarked audio signals for watermarking in
four different FFT index ranges.

To understand whether the randomness properties were affected by watermarking,
we also computed the entropy levels of the original and watermarked audio samples,
along with the correlation coefficients of consecutive samples derived from these audio
signals. Table 2 presents the statistical results of these two measures. The tabulated results
revealed that the entropy values between the original and watermarked audio signals were
similar. The variations due to watermarking were within the expected range of statistical
fluctuations. The two compared correlation coefficients were also comparable, suggesting
that the watermarking process did not introduce significant alterations in the sequential
relationships within the audio signal.
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Table 2. Statistics of the measured entropy and correlation coefficients for the watermarks embedded in
four different frequency ranges. The data in each cell are interpreted as “mean [standard deviation]”.

Index Range

Entropy (E) Correlation Coefficient (ρ)

Original
EOG

Watermarked
EWM

|EOG−EWM|
Original

ρOG

Watermarked
ρWM

|ρOG−ρWM|

PM-(I)

15.041 [0.312]

14.966 [0.256] 0.105 [0.072]

0.975 [0.019]

0.975 [0.019] 0.000 [4.9 × 10−6]

PM-(II) 14.974 [0.255] 0.096 [0.064] 0.975 [0.019] 0.000 [4.4 × 10−6]

PM-(III) 14.987 [0.267] 0.090 [0.066] 0.975 [0.019] 0.000 [4.2 × 10−6]

PM-(IV) 14.984 [0.265] 0.092 [0.067] 0.975 [0.019] 0.000 [4.6 × 10−6]

In summary, our experimental findings indicate that the watermarking process has
minimal impact on the statistical properties, entropy characteristics, and correlations
between consecutive samples in the audio signals. These results align with our goal of
preserving audio quality and fidelity while embedding the watermark.

4.4. Robustness Test

During the second phase of performance evaluation, we focused on assessing the
robustness of the proposed PM when subjected to various commonly encountered attacks.
The details of the types of attacks and their specifications employed in our experiments
are summarized in Table 3. To gauge the robustness of the proposed PM scheme, we
relied on the zero-normalized cross-correlation (ZNCC) between the original and extracted
watermarks, defined as follows:

ZNCC
(
{wv(l, k, j)}nL×nK×nch

, {w̃v(l, k, j)}nL×nK×nch

)
=

nL
∑

l=1

nK
∑

k=1

nch
∑

j=1
(wv(l,k,j)−wv)×(w̃v(l,k,j)−w̃v)√√√√( nL

∑
l=1

nK
∑

k=1

nch
∑

j=1
(wv(l,k,j)−w)2

)
×
(

nL
∑

l=1

nK
∑

k=1

nch
∑

j=1
(w̃v(l,k,j)−w̃v)

2
) (11)

where wv denotes the mean of the pixel values obtained from the watermark image
{wv(l, k, j)} of size nL × nK × nch.

Table 4 presents the average ZNCC values obtained from the retrieved watermarks
under various attacks. Several conclusions can be deduced from the tabulated results.
Firstly, the watermark (i.e., downsized images) in the frequency range (I) demonstrated the
highest robustness, followed by those in ranges (II)–(IV) in decreasing order. Table 1 also
indicates that the embedded range (I) had the smallest SNR, implying that such watermark
embedding entails stronger strength and thus exhibits better resistance.

Secondly, jittering (i.e., Case K) and MPEG-3 compression at 64 kbps (Case M) were the
two damaging attacks among all attack types. The resulting ZNCC for audio watermarking
in the index range (IV) could be as low as 0.582 for 64 kbps MPEG-3 compression. Apart
from these two attacks, adding white noise with SNR = 20 dB (Case F) also caused more
damage than anticipated. This is related to the vulnerability of the spectral phases to the
attacks mentioned above. Once the phases undergo severe perturbation, we can only expect
a defective watermark. Although the final image appears noisy, a watermark with a ZNCC
value around 0.58 is still visually recognizable. Figure 9 demonstrates the color images
extracted from a typical watermarked audio clip after various attacks. Observations on
these watermark images confirm our earlier discussion about the tabulated data in Table 4.
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Table 3. Attack types and specifications.

Item Type Description

A Resampling Conduct down-sampling to 22,050 Hz and then up-sampling back to 44,100 Hz.

B Requantization Quantize the watermarked signal to 8 bits/sample and then back to 16 bits/sample.

C Zero thresholding Zero out all samples below a threshold, which is set as 0.03 of the maximum dynamic range

D Amplitude scaling Scale the amplitude of the watermarked signal by 0.85.

E Noise corruption (I) Add zero-mean white Gaussian noise to the watermarked audio signal with SNR = 30 dB.

F Noise corruption (II) Add zero-mean white Gaussian noise to the watermarked audio signal with SNR = 20 dB.

G Lowpass filtering Apply a lowpass filter with a cutoff frequency of 4 kHz.

H Lowpass filtering Apply a lowpass filter with a cutoff frequency of 8 kHz.

I DA/AD conversion

Convert the digital audio file to an analog signal and then resampling the analog signal at
44.1 kHz. The DA/AD conversion is performed through an onboard Realtek ALC892 audio
codec, of which the line-out is linked with the line-in using a cable line during playback
and recording.

J Echo addition Add an echo signal with a delay of 50 ms and a decay of 5% to the watermarked audio signal.

K Jittering Delete or add one sample randomly for every 100 samples.

L MPEG-3 compression
@ 128 kbps

Compress and decompress the watermarked audio signal with an MPEG layer III coder at a
bit rate of 128 kbps.

M MPEG-3 compression
@ 64 kbps

Compress and decompress the watermarked audio signal with an MPEG layer III coder at a
bit rate of 64 kbps.

Table 4. Average ZNCCs of the watermarks acquired from different index ranges.

Attack Type
FFT Index Range

(I) [49, 96] (II) [60, 107] (III) [72, 119] (IV) [85, 132]

0. None 1.000 1.000 1.000 1.000

A 1.000 1.000 1.000 1.000

B 0.996 0.994 0.992 0.989

C 1.000 1.000 1.000 1.000

D 1.000 1.000 1.000 1.000

E 0.959 0.947 0.935 0.920

F 0.786 0.744 0.707 0.670

G 0.999 0.999 0.998 0.998

H 1.000 1.000 1.000 1.000

I 0.894 0.866 0.840 0.813

J 0.947 0.946 0.945 0.943

K 0.747 0.692 0.642 0.588

L 0.953 0.945 0.937 0.929

M 0.667 0.632 0.608 0.582
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Figure 9. Typical watermarks (color images of size 64 × 64) extracted from the proposed FFT–PM
with the FFT index range chosen as [60, 107].

5. Watermark Enhancement

The retrieved watermark image, consisting of 64 × 64 color pixels, suffered from a
resolution deficiency that hindered detailed inspection upon zooming in. However, recent
advances in deep learning techniques have offered the possibility of augmenting image
quality and resolution through very deep super-resolution (SR) networks. The task of SR
reconstruction poses great challenges because the original high-frequency content does
not normally reside in low-resolution images. Analogous to the manner adopted in [34],
we tackle the difficulties by employing a residual learning network to learn the residual
difference between the high-resolution reference image and the up-sampled low-resolution
counterpart. In theory, if the residual network can capture the high-frequency nuances of
a high-resolution image, adding this residual to the up-sampled low-resolution image is
anticipated to mitigate the deficiency of high-frequency components.

The residual network (ResNet), as depicted in Figure 10, serves the dual purpose
of image denoising and super-resolution reconstruction. Its network architecture closely
follows the foundational design pioneered by Ledig et al. [34]. Once the watermark image
is taken into a convolutional (abbreviated as “Conv”) layer with the use of the parametric
rectified linear unit (PReLU) as the activation function, the SR model exploits the traits of
the identity mapping function to learn the high-frequency details. The upper branch of the
depicted network model signifies the residual units of the identity mapping, which is a
stacked structure of a five-layer composite arranged as “convolution, batch normalization
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(BN), PReLU, convolution, and BN”. For precise specifications of each layer, readers are
referred to the original paper [34] for details.
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Figure 10. The residual network for image denoising and super-resolution reconstruction.

Following the combination of the identity mapping and additive residual, the interme-
diate outcome is directed through two stacks, each consisting of “Conv, DepthToSpace2D,
and PReLU” layers. While the “DepthToSpace2D” layer permutes the data from the depth
dimension into two-dimensional (2D) spatial blocks, it effectively captures high-resolution
features from low-resolution feature maps through convolution and subsequent reorgani-
zation across channels. The number within the parentheses of the label denotes the desired
up-sampling multiple in each dimension. Given two DepthToSpace2D(2) layers within the
SR network model, the output has 16 times the original resolution.

Although the ResNet can be employed for noise reduction and resolution reconstruc-
tion, previous studies [35–37] pointed out that the ResNet model often fell short in restoring
high-frequency information due to the inherent over-smoothing tendencies of DNNs. In
response to this limitation, the generative adversarial network (GAN) has been introduced
to address the issue. The conceptual underpinning of the GAN is depicted in Figure 11. In
addition to employing the ResNet model shown in Figure 10 for image generation, another
network model depicted in Figure 12 serves as a discriminator. The discriminator’s role is
to differentiate between real and super-resolved images. Notably, the discriminator used in
this study mirrors the design introduced in [34], except that the final sigmoid layer has been
omitted. Through adversarial competition, the capabilities of both the generator, termed
DθD (·), and the discriminator, termed GθG (·), are progressively enhanced. Eventually, the
images generated by the generative network are supposed to become indistinguishable
from real images by the discriminator. To attain the abovementioned objective, we specifi-
cally chose the hinge loss functions [38], as given below, to iteratively train the generator
and discriminator:

D̂θD = argmin
DθD

Lhinge_D (12)

ĜθG = argmin
GθG

Lhinge_G (13)

with

Lhinge_D = EIHR∼Pre f (IHR)

[
max

(
0, 1− DθD (IHR)

)]
+ EIHR∼PG(ILR)

[
max

(
0, 1 + DθD

(
GθG (ILR)

))]
(14)

Lhinge_G = LSR
MAE + 0.002×LSR

Gen (15)

LSR
MAE = EIHR∼PG(ILR)

[
1

WH

W

∑
x=1

H

∑
y=1

∣∣∣IHR(x, y)− IGθG
(ILR)

(x, y)
∣∣∣] (16)

LSR
Gen = −EIHR∼PG(ILR)

[
DθD

(
GθG (ILR)

)]
(17)

where θG and θD correspond to the model parameters associated with the generator and
discriminator, respectively. E[·] denotes the expectation operation and P(·) stands for a
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probability density function. The discriminator’s loss function (expressed as Lhinge_D) in

Equation (14) results from a fusion of the mean absolute error (MAE), denoted as LSR
MAE,

and an adversarial loss LSR
Gen. The symbols used in Equations (14), (16), and (17) possess

the following interpretations: IHR and ILR denote the high- and low-resolution images,
respectively, and GθG (ILR) implies the super-resolved image derived from ILR through
the generator. The dimensions of the respective images are indicated by W and H. The
basic idea behind the above formulas is to train the generator model GθG (·) to fool the
discriminator DθD (·), whose duty is to distinguish super-resolved images from real images.
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The training dataset for the SR networks comprised 3000 color images extracted from
the IAPR TC-12 database [39]. Before initiating network training, we employed a prepro-
cessing procedure akin to image augmentation to expand the dataset’s diversity. The entire
process consists of the following steps. Each watermarked image was initially cropped
to dimensions of 256 × 256 pixels and subsequently down-sampled to 64 × 64 pixels. We
then chose four music clips representing different genres to simulate watermark extraction
under attack. Apart from the close-loop scenario without attacks, we subjected the four
watermarked audio signals to each attack specified in Table 3. Subsequently, we retrieved
the watermarks using the expressions given in Equation (9). The retrieved 64 × 64-pixel
watermark and its original high-resolution 256 × 256-pixel counterpart were combined to
form an input–output pair for supervised learning. In total, a dataset of 168,000 samples
(4 music clips × 14 attack scenarios × 3000 watermark images) was prepared for training
the SR network. Our objectives were two-fold: firstly, to train the SR networks to reduce
noise stemming from imperfect watermark extraction, and secondly, to achieve a 16-fold
increase in resolution.

Throughout the training phase, we opted for the Adam optimizer and adopted a mini-
batch configuration of 12 observations per iteration. The number of maximum training
epochs was set at 3. The network training was carried out within the MATLAB platform,
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leveraging the computational power of an NVIDIA 3090 GPU to expedite processing speed.
While a training task generally requires tens of hours of work, the image generation in the
test phase only takes an average of 62.9 milliseconds.

Figure 13 demonstrates the enhancement in visual quality due to the employment
of the SR networks. Within each block, the left image comprises the retrieved watermark
on the upper-left corner (termed “w64”), alongside its fourfold up-sampled rendition in
each dimension using bicubic interpolation (“BIw256”). Additionally, the middle and
right images show the results of the SR-ResNet (“SR-ResNetw256”) and SR-GAN (“SR-
GANw256”), respectively. As evident from the distinctive contrasts inside each block of
Figure 13, the SR networks consistently produce satisfactory high-resolution images with
high-frequency details.
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Figure 13. (A–M) Examples of denoised and super-resolved images (arranged as “w64”, “BIw256”,
“SR-REsNetw256”, and “SR-GANw256”) retrieved from the watermarked audio under various
attacks. The label under each subpanel indicates the attack type described in Table 3.

For a quantitative assessment of this enhancement, we conducted a comparative
analysis of the ZNCCs obtained with and without the SR networks. Figure 14 depicts a bar
graph consisting of 14 clusters of ZNCC values derived from the comparison between the
original and retrieved watermarks across various attack scenarios. Each cluster contains
four types of ZNCC values (“w64”, “BIw256”, ”SR-ResNetw256”, and “SR-GANw256”)
corresponding, respectively, to the outcomes obtained from 64 × 64-pixel watermarks,
bicubically interpolated 256 × 256-pixel watermarks, and super-resolved 256 × 256-pixel
watermarks using the SR-ResNet and SR-GAN.

Several inferences can be drawn from Figure 14. Firstly, the bar labeled “w64” cor-
relates closely with the statistical distribution outlined in Table 4. Secondly, employing
bicubic interpolation on the watermark, as evidenced by the bars of “BIw256,” does not
show obvious advantages in ZNCC. In cases where original 256 × 256-pixel images serve
as the target references, the ZNCC experiences slight degradation across all super-resolved
images even when the attack is absent. Thirdly, the SR-ResNet and SR-GAN can actually en-
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hance the ZNCC whenever attacks severely damage the watermarks. The improvement in
ZNCC can be attributed to the denoising capabilities associated with the residual networks.
Notably, the ZNCC values in the case of “SR-GANw256” appear to be somewhat inferior
to those achieved by “SR-ResNetw256.” This outcome can be readily comprehended, as
SR-GAN reconstructs high-frequency details based on learned patterns from the training
phase rather than adhering to the original content. Consequently, these added details tend
to detrimentally affect the similarity measurement in the pixel space.
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6. Conclusions

We have developed a groundbreaking numeric watermarking scheme known as phase
modulation in the FFT domain, which enables an exceptionally high payload capacity. Our
scheme can embed a 64 × 64-pixel color image into an audio clip of merely 24.15 s long.
The fundamental principles of the FFT–PM scheme involve modifying the spectral phases
of specific FFT coefficients while preserving the spectral magnitudes. By leveraging the
human auditory properties, the PM ensures that the watermarked audio remains percep-
tually indistinguishable from the original. Comprehensive and rigorous tests confirmed
the PM’s robustness against a variety of common signal processing attacks, including
resampling, requantization, lowpass filtering, Gaussian noise corruption, and MPEG-3
compression. However, the FFT–PM was less resistant to attacks that caused severe phase
perturbations. Overall, our demonstration of hiding a full-color image within a short audio
clip unequivocally validated the viability of the proposed FFT–PM scheme.

Apart from implementing the FFT–PM for high-capacity blind audio watermarking,
this study also explores the potential of residual networks for watermark enhancement.
As demonstrated by improved ZNCC and visual quality, residual networks have the full
potential to reduce noise and regain better resolution from corrupted image watermarks.
Notably, using color images as watermarks and incorporating deep learning neural net-
works have extended the applicable scope for audio watermarking. In our forthcoming
research endeavors, we are committed to further enhancing the watermarking performance
in robustness and payload capacity. Additionally, we are dedicated to refining the visual
quality of the color watermark images.
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