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Abstract: The Number Theoretic Transform (NTT) has been widely used to speed up polynomial
multiplication in lattice-based post-quantum algorithms. All NTT operands use modular arithmetic,
especially modular multiplication, which significantly influences NTT hardware implementation effi-
ciency. Until now, most hardware implementations used Digital Signal Processing (DSP) to multiply
two integers and optimally perform modulo computations from the multiplication product. This
paper presents a customized Lattice-DSP (L-DSP) for modular multiplication based on the Karatsuba
algorithm, Vedic multiplier, and modular reduction methods. The proposed L-DSP performs both
integer multiplication and modular reduction simultaneously for lattice-based cryptography. As a
result, the speed and area efficiency of the L-DSPs are 283 MHz for 77 SLICEs, 272 MHz for 87 SLICEs,
and 256 MHz for 101 SLICEs with the parameters q of 3329, 7681, and 12,289, respectively. In addition,
the N−1 multiplier in the Inverse-NTT (INTT) calculation is also eliminated, reducing the size of the
Butterfly Unit (BU) in CRYSTAL-Kyber to about 104 SLICEs, equivalent to a conventional multiplica-
tion in the other studies. Based on the proposed DSP, a Point-Wise Matrix Multiplication (PWMM)
architecture for CRYSTAL-Kyber is designed on a hardware footprint equivalent to 386 SLICEs.
Furthermore, this research is the first DSP designed for lattice-based Post-quantum Cryptography
(PQC) modular multiplication.

Keywords: post-quantum cryptography (PQC); lattice-based cryptography (LBC); CRYSTAL-Kyber;
FALCON; number theoretic transform (NTT); point-wise-matrix-multiplication (PWMM)

1. Introduction

In 2016, the National Institute of Standards and Technology (NIST) initiated the PQC
standardization process. This project aims to develop, deploy, and standardize new post-
quantum cryptosystems before any large-scale quantum computers come into being. In
July 2022, NIST announced the results of the third round with four candidates to be stan-
dardized for Public Key Encryption (PKE) and Digital Signature Algorithm (DSA) [1]. Most
are Lattice-Based Cryptographic (LBC) algorithms, CRYSTAL-Kyber [2], and CRYSTAL-
Dilithium/FALCON [3,4], respectively.

Lattice-based cryptographic constructions are primarily based on solving the Learning-
With-Error (LWE) and its variants problem (CRYSTAL-Kyber, Dilithium) or NTRU lattices
(FALCON). Implementing the LBC cryptosystem requires performing polynomial multi-
plication, the most hardware-intensive operation. There are two ways to do polynomial
multiplication: the Schoolbook polynomial multiplication and the multiplication based
on NTT. Schoolbook multiplication is inefficient for polynomial multiplication because
it has a O(N2) complexity. NTT is the special Discrete Fourier Transform case over a
finite field. NTT-based multiplication enhances polynomial multiplication, reducing O(N2)
complexity to quasi-linear complexity O(N · logN). In order to improve the efficiency of
the LBC cryptosystem, NTT optimization is necessary. Furthermore, all NTT operations
are modulo operations on prime q, including modular addition, subtraction, and mul-
tiplication. Performing modular multiplication is a highly intricate task that demands
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significant hardware resources. Thus, improving modular multiplication can enhance the
performance of NTT/INTT and the entire cryptosystem. The optimization problem of
modulo computations for multiplication has garnered significant attention in hardware
implementations of LBC post-quantum cryptography research.

The accelerator proposals for NTT/INTT are mainly focused on optimizing modulo
calculations from the product of multiplying two integers. Montgomery [5] and Barrett [6]
are two commonly used constant-time modular reduction algorithms. The Montgomery
method has received less attention as it needs to be done in the “Montgomery domain”.
On the other hand, the Barret method is more efficient and is used more frequently in
LBC cryptosystems [7]. Barrett reduction utilizes pre-computed values to approximate
the division by the modulus. The modular multiplication based on the Barret method
requires three multiplications, one for the two input coefficients and two for the constants.
A variation of the Barret algorithm in [8], called Shift-Add-Multiply-Subtract-Subtract
(SAMS2), replaces constant multipliers with simple bit shifts, additions, and subtractions,
which are less expensive than multiplication and division operands. Studies [9–11] have
applied the SAMS2 method for parameters q = 7681 and 12,289.

In the study [12], Plantard introduced a novel constant-time modular reduction al-
gorithm. Like the Montgomery and Barrett algorithms, Plantard multiplication utilizes
pre-computed values and requires three multiplications for modular multiplication. But,
when performing NTT/INTT with pre-computed twiddle factors, the number of Plantard
multiplications can be reduced by one. In another study [13], J. Huang et al. enhanced the
Plantard method to accommodate signed integers as input and narrowed the range of the
modulus q to

(
− q

2 ; q
2
)
.

Another effective method for reducing modulus in the LBC system is to utilize the
characteristic property of prime number q [14,15]. This approach enables modular calcula-
tions through lightweight operations, including bit-wise, addition, and subtraction. An
alternative and more straightforward method for high-order bits modulus q is using the
look-up tables, as demonstrated in [16].

In a different research study [17], Longa et al. proposed a method called K-RED, which
utilizes a special format of NTT-applicable primes, q = k · 2m + 1 . This method primarily
includes multiplying by a small coefficient (k) and subtracting, resulting in significantly
lower computational costs than other methods. The product input c = a · b is reduced to
the signed integer r ≡ k · c(modq). In study [18], Bisheh-Niasar et al. based on the K-RED
method and introduced the K2-RED method by applying K-RED twice for CRYSTAL-Kyber.
Furthermore, the cumulative coefficients, k/k2, can be eliminated by merging k−1/k−2 into
the twiddle factor ω/ω−1 in NTT/INTT processes. In particular, in study [19], Li et al.
used the −k · 2m ≡ 1(modq) property of the modulo q calculation, which helps to apply
the K-RED method to the Point-Wise-Multiplication (PWM) process. Additionally, the
multiplication by a factor of N−1 has been removed in the INTT process.

Nevertheless, as far as we know, studies presently focus on optimizing from the
input multiplication. This study aims to design a DSP for modular multiplication by
developing a multiplication unit for two integer inputs and utilizing advanced modular
reduction techniques. In particular, the Karatsuba algorithm is used to subdivide the size
of multiplication by half. Partial multiplications are performed using the Vertical and
Crosswise algorithm, which speeds up computation. The results of the multiplications are
reduced to bit-widths following the K-RED method’s condition using the pre-computed
look-up table. Finally, the K-RED method is applied to calculate the result of the modulo
operation, a · b (mod q).

The major contributions of this paper are as follows:

• Proposes the first specialized DSP that performs modular multiplication for the
CRYSTAL-Kyber PQC algorithm, called Kyber-DSP (K-DSP).
The K-DSP performs the multiplication of two input integers and modular reduction
for the prime q = 3329. The architecture reaches a high frequency of 283 MHz, and
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the area is only 77 SLICEs, equivalent to 77% of a typical DSP. This result completely
outperforms traditional methods of modular multiplication that rely on DSP.

• The proposed Lattice-DSP (L-DSP) configuration optimizes the BU in NTT/INTT.
In addition to saving on hardware resources, using the proposed L-DSP also eliminates
the N−1 multiplication in the INTT process. As a result, the BU architecture requires
minimal hardware resources. Choosing the architecture for NTT accelerators based on
Decimation-In-Time (DIT), Decimation-In-Frequency (DIF), or both has become more
flexible and easier. In CRYSTAL-Kyber, the BU architecture reaches a high frequency
of 283 MHz while occupying an area equivalent to one DSP.

• Designs a K-DSP-based PWMM architecture designed for CRYSTAL-Kyber.
PWM calculation in CRYSTAL-Kyber is more complicated than other LBC algorithms,
requiring at least four multiplications for two PWM results. This study introduces a
specific PWM structure for CRYSTAL-Kyber that uses K-DSP. Furthermore, the cumu-
lative computation of matrix multiplication is combined with PWM while maintaining
the same hardware cost for all three Kyber security levels (1, 3, and 5). The architecture
that implements PWMM on the NTT domain includes PWM and Point-Wise Addition
(PWA). The proposed PWMM operating frequency reaches 275 MHz with a hardware
area of 386 SLICEs, equivalent to closely 4 DSPs.

• Extended with L-DSP design for prime numbers q = 7681 and 12,289.
The proposed DSP design method is ideal for NTT-friendly algorithms with a prime
factor q = k · 2m + 1. By applying this design to the case where q = 7681 and 12,889,
it has been proven that the method still allows for a high operating frequency of
272 MHz and 256 MHz while using 87 SLICEs and 101 SLICEs of hardware resources.

The remainder of the paper is organized as follows. Section 2 introduces the theore-
tical background of LBC, specifically the CRYSTAL-Kyber algorithm, and describes the
NTT-based polynomial multiplication. Section 3 discusses in more detail the existing im-
plementation studies for modular reduction. Section 4 presents the implementation of a
DSP design for modular multiplication and builds upon the BU and PWMM architectures.
Section 5 compares the performance of the proposed DSP and the designs built on it with
the state-of-the-art reference implementations of Field-Programmable Gate Arrays (FPGAs).
Finally, in Section 6, the conclusion of the paper is presented.

2. The Background

In this section, the CRYSTAL-Kyber algorithm is selected as the research basis for the
improvement proposals applicable to other LBC algorithms. From a hardware implementa-
tion perspective, CRYSTAL-Kyber is designed to do all the polynomial multiplication using
NTT. Also, the parameter set of CRYSTAL-Kyber is the smallest with (N, q) = (256, 3329),
and PWM operation requires more difficult hardware complexity.

Unlike other LBCs, FALCON is very complex in hardware implementation due to
having to perform polynomial multiplication on complex and integer number domains [20].
Fortunately, verification of FALCON is simple and high-performing. This crucial advantage
led NIST to select FALCON for standardization with Dilithium after the third-round finalist.
Thus, Kyber’s improvements to polynomial multiplication over the integer domain can be
applied to enhance FALCON’s verification performance.

2.1. CRYSTAL-Kyber

CRYSTAL-Kyber is built based on the hardness of the Module-LWE problem. Kyber
employs a two-stage construction for achieving an INDistinguishability under a Chosen-
Ciphertext Attack (IND-CCA) secure Key-Encapsulation Mechanism (KEM). First, an
IND-Chosen Plaintext Attack (CPA)-secure public-key encryption scheme is built called
Kyber.CPA. Then, the Fujisaki-Okamoto transform is applied to build the CCA-secure KEM.

Kyber operates on Rq = Zq[X]/(XN + 1) with module rank k = 2, 3, and 4, providing
security levels 1, 3, and 5 for Kyber512, Kyber768, and Kyber1024, respectively. In the
first round of NIST [21], the prime q was chosen as 7681 and satisfying q ≡ 1(mod 2N),
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where N = 256 is the degree of the modular polynomial. In the second round of the NIST
competition [22], the Kyber team reduced the q value from 7681 to 3329 as research [23]
showed that this value of q also supports very fast NTT-based polynomial multiplication.
Simultaneously, q = 3329 also requires a smaller noise range while maintaining the same
level of security as Kyber(v01). Table 1 lists the parameters of Kyber(v03), where η1 and η2
are the parameters of the central binomial distribution.

Table 1. Parameter sets for CRYSTAL-Kyber (v03).

N q k η1 η2

Kyber512 256 3329 2 3 2
Kyber768 256 3329 3 2 2
Kyber1024 256 3329 4 2 2

2.2. NTT-Based Polynomial Multiplication

The NTT-based multiplication is commonly used for LBCs. It involves transforming
polynomials from coefficient representation to the NTT domain, performing pointwise
operations, and then returning the result to the integer domain using the INTT transfor-
mation. Using NTT, the multiplication of two integer polynomials with N terms can be
performed with a low computational cost of O(N · logN). Especially, the prime q must be
chosen with condition q ≡ 1(mod 2N) to avoid zero-padding when performing NTT-based
multiplication, which is also known as Negative-Wrap Convolution (NWC) [24]. For the
prime q = 3329 of Kyber(v02/03), the field Zq contains primitive N-th roots of unity but
not primitive 2N-th roots. Thus, the NTT of polynomial f ∈ Rq is a vector of 128 degree-1
polynomials with two coefficients each and is defined as,

NTT( f ) = f̂ = ( f̂0 + f̂1X, f̂2 + f̂3X, . . . , f̂254 + f̂255X), (1)

where coefficients f̂i are defined as,

f̂2i =
127

∑
j=0

f2jζ
(2br7(i)+1)j (2)

f̂2i+1 =
127

∑
j=0

f2j+1ζ(2br7(i)+1)j (3)

with ζ is the 256-th root of unity in Zq and i = 0, . . . , 127 is a 7-bit unsigned integer
represented in binary form as i = [i6, i5, i4, i3, i2, i1, i0]. br7(i) is the bit reversal of i, where
br7(i) = [i0, i1, i2, i3, i4, i5, i6]. As a result, a 256-term polynomial in Kyber is divided into
two 128-term polynomials by parity, and NTT is applied to each one. After NTT, the
PWM of the two components f and g of Rq, denoted by f̂ ◦ ĝ, is performed by conducting
128 multiplications of linear polynomials modulo X2 − ζ2br(i)+1. Specifically,

h = f · g = INTT(NTT( f ) ◦ NTT(g)), (4)

where ĥ = f̂ ◦ ĝ is defined as,

ĥ = ĥ2i + ĥ2i+1X = ( f̂2i + f̂2i+1X)(ĝ2i + ĝ2i+1X) mod(X2 − ζ2br(i)+1) (5)

Finally, the point-wise multiplications in Kyber are defined as,

ĥ2i = f̂2i ĝ2i + f̂2i+1 ĝ2i+1 · ζ2br(i)+1 (6)

ĥ2i+1 = f̂2i ĝ2i+1 + f̂2i+1 ĝ2i (7)



Cryptography 2023, 7, 46 5 of 17

3. Related Works

LBC operations are performed on the ring Rq = Zq[X]/(XN + 1), where q is a prime
number and N is a power-of-two. Modular multiplication is the most time-consuming
operand in NTT and can be expressed as follows:

a× b = c ≡ x mod q (0 ≤ a, b, x < q; 0 ≤ c < q2) (8)

Several classical algorithms are available to enhance the efficiency of modular reduc-
tion, such as Montgomery reduction and Barret reduction. The Montgomery method is
infrequently used due to the resource consumption of conversions into and out of the
“Montgomery domain” [25,26]. In contrast, the Barret method is widely adopted and has
many improved variants. The basic idea behind Barret’s algorithm is to pre-compute
the inverse of modulus q and use simple bit shifting and multiplication instead of costly
division. Algorithm 1 utilizes Barrett reduction to compute the product of two integers
modulo q.

Algorithm 1 Modular Multiplication by Barret Reduction [7]

Input: a, b, q ∈ Z
Output: a× b(mod q)

Pre-computation
1: k = dlog2 qe;
2: r = 2k;
3: µ =

⌊
r2

q

⌋
;

Multiplication
4: z = a× b;

Barret reduction
5: m1 =

⌊ z
r
⌋
;

6: m2 = m1 × µ;
7: m3 =

⌊m2
r
⌋
;

8: t = z−m3 × q;
9: if t ≥ q then

10: return t− q
11: else
12: return t
13: end if

In LBC algorithms, the q value is fixed, allowing pre-computation of k, r, and µ. Barrett-
based modular multiplication commonly employs DSPs for multiplying input coefficients
and the constant µ, while multiplying by q is efficiently achieved using bitwise shifts
and additions. In study [27], Dang et al. applied a variation of Barret reduction in [28]
to select parameter values (α, β) and design a single-constant-multiplier for multiplying
by the constant µ. LBC schemes based on NTT implementation using signed integers
can eliminate modular addition at each butterfly unit [25,29,30]. The optimized Barrett
reduction algorithm for signed integer inputs has been further enhanced by study [31]
to narrow its output range to

(
− q

2 , q
2
)
. This improvement effectively limits the growth of

coefficients after each butterfly unit, resulting in better performance. The SAMS2 method
simplifies multiplication by bit shifting, addition, and subtraction [8–11]. This significantly
reduces the hardware architecture but increases latency due to multiple subtractions. A
look-up table can be used to speed up, but it is inefficient in terms of area.

Huang et al. enhanced the Plantard algorithm for a larger range of inputs and a smaller
range of outputs [13]. The improved Plantard method saves one multiplication compared
to the latest Montgomery and Barrett methods. However, the drawback of this method
is that it still requires three multiplications when calculating the PWM and necessitates
doubling the width of the pre-computed intermediate twiddle factors.
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Several methods have been proposed for modular reduction to optimize the area
and speed of NTT accelerator with specific q parameter. Study [14] utilized the form of
q = 2l1 ± 2l2 ± · · · ± 1 to replace multiplications in Barret reduction with bit shifts, addi-
tion, and subtraction operations. Aikata et al. implemented this technique for the Kyber
q = 3329 case [32]. Some recent studies involve calculating the modulus q of higher-order bits
in the product of multiplying two 12-bit integers, c[23 : 0] = a× b. In studies [15,33], the
property 212 ≡ 29 + 28 − 1(mod 3329) is used to gradually reduce the higher-order bits to an
arithmetic combination of the smaller bit arrays. Similarly, in study [34], the bit width of the
multiplication product is reduced from 24 to 15, and then apply Barret algorithm. This method
is useful in reducing the multiplication size during Barret reduction. Additionally, a different
format of q = δ · 2e + 1, is used to propose a modulus reduction algorithm for Kyber [35]. This
algorithm divides the product c into two corresponding parts, c = c1 · 2e + c0, and replaces
the large modulus q with the smaller modulus δ. A simpler and more efficient alternative is
introduced in [16]. Zhang et al. used the pre-computed look-up table to store the calculations
of c[23 : 20] · 220(mod 3329), c[19 : 16] · 216(mod 3329), and c[15 : 12] · 212(mod 3329). The
higher-order bits are used as the input address of the look-up tables, and the outputs are the
corresponding modular operations. Finally, the modulo operation of the product c[23 : 0] is
calculated by adding the four numbers on the ring R3329.

Another new modular reduction approach, K-RED, is proposed in study [17]. The K-RED
method utilizes the characteristics of Proth numbers represented as q = k · 2m + 1 where k is
a small number, m is a natural number. This approach presents two functions: K-RED and
KRED-2X, which take any integer c and return an integer d such that d ≡ k · c mod q and
d ≡ k2 · c mod q, respectively. The K-RED method performs one multiplication with a constant
factor of k and one subtraction, as described in Algorithm 2. Multiplying by k is achieved with
bit shifting and addition, significantly reducing computational costs compared to other methods.
However, to correct the reduction results, the output of K-RED must be multiplied by the factor
k−1/k−2. Bisheh-Niasar et al. in [18] followed this scheme and proposed K2-RED, by applying
K-RED twice in CRYSTAL-Kyber with constant k = 13 and m = 8. The multiplication by k−1/k−2

can be combined with the pre-computed twiddle factor ω in NTT/INTT for faster computation
with fewer hardware resources. In study [36], Ni et al. segmented the product into two parts.
The look-up table method is employed for the bits exceeding 20, while the remaining portion
underwent the K-RED technique. This method is simple but requires one more adder. The
K2-RED is extended to Kl-RED for different NTT parameters, where l = dt/me is the number
of loops, and t is the bit-length of input coefficients [37]. However, K-RED is not appropriate
for PWM calculations with random multipliers. Fortunately, this drawback can be resolved by
using the property of−k · 2m ≡ 1(mod q), as demonstrated in study [19]. Li et al. applied the
K-RED method with modifications in input value and output calculations. In particular, the
input product c is multiplied by two, and the subtraction in K-RED is changed sign. Therefore,
the output is calculated as,

r ≡ 2c (mod q) ≡ (−k · N) ·
(

N
2

)−1
(mod q) (9)

with (k, N) = (13,256) and −13 · 256 ≡ 1 (mod 3329) for the case of Kyber, the Equation (9)
is equivalent to r ≡ 128−1 · c (mod 3329). During the INTT process, multiplying by 128−1

is considered post-processing. As a result, K-RED can be applied to PWM processes,
eliminating the need for post-processing in Kyber by using this method.

Algorithm 2 K-RED Modular Reduction Algorithm [17]

Input: c, parameter: m,k.
Output: d ≡ k · c(modq)

1: d0 = c(mod(2m));
2: d1 = c/2m;
3: Return (kd0 − d1)
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4. Proposed Hardware Design

The modular reduction of LBCs typically begins with the DSP-based multiplication
product, but small multiplication widths can result in suboptimal area usage. As a result,
in this section, we present a K-DSP architecture as the basis for implementing BUs in
NTT/INTT processes. Further, we propose a PWMM unit for Kyber using the K-DSP and
extend the L-DSP design method to other LBC cases with q = 7681 and 12,289.

4.1. K-DSP

The K-DSP performs modular multiplication of two 12-bit coefficients, a[11 : 0] and
b[11 : 0], to produce a 12-bit result c[11 : 0] on the ring R3329. The proposed architecture of
K-DSP is shown in Figure 1 with three computational stages. In the initial stage, we employ
the Karatsuba algorithm to partition a 12-bit multiplication operation into three discrete
components: two 6-bit multiplications and one 7-bit multiplication, respectively aH · bH ,
aL · bL, and (aH + aL) · (bH + bL). Subsequently, the summation of these partial products
is calculated using the look-up table method. As a result of this procedure, the bit-width
of the product is reduced from 24 bits to 20 bits. Finally, the K-RED method is utilized to
ascertain the modulus q of the 20-bit product.

{ }
12

12

14

6 12

6

12

12

19

14

aH

aL
bH

bL

c mod q

Multiplier Adder Subtractor LUT { } Concatenation

12

K-RED Unit

18

13

20

7

7

aH

bH

aL

bL

6

6

6

6

Figure 1. The proposed architecture of K-DSP.

The choice of multiplier design significantly impacts the speed and area of the pro-
posed DSP. This study selects the Vedic multiplier based on the Vertical and Crosswise
technique for designing 6-bit and 7-bit multipliers due to its shorter critical path than
the conventional array multipliers [38]. Vedic multipliers are performed in parallel, and
the partial products are added together by two or three levels of the adder [39]. Figure 2
shows the 3-bit multiplier architecture of two numbers a[a2, a1, a0] and b[b2, b1, b0]. The
architecture comprises nine AND gates, three full adders, and three half adders.

Figure 3 depicts the proposed 6-bit multiplier architecture based on four 3-bit multi-
pliers and three 6-bit adder units. The adder unit used is the carry save adder to perform
the additions in parallel, improving speed efficiency [40]. A 4-bit Vedic multiplier is also
designed. In the K-DSP architecture, the 3-bit and 4-bit Vedic multipliers are used as the
base multipliers for building up the 6-bit and 7-bit multipliers.

According to the Karatsuba algorithm, multiplication is done in three steps: aH · bH ,
aL · bL, and (aH + aL) · (bH + bL), then subtract aH · bH and aL · bL from the result of
(aH + aL) · (bH + bL) to get the product. A look-up table is designed to compute the
operation [23:18] · 218 mod 3329, with the input address being the [23:18] bits of the product
aH · bH . The final product is then reduced modular to a bit width of 20 bits.
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FA

a0a1

HA

HA

HA

FAFA

b0b0 a0 b1a2 b0 a1 b1 a0 b2a2 b1 a1 b2a2 b2

P(0)P(1)P(2)P(3)P(4)P(5)

a2 a1 a0

b2 b1 b0
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b2 b1 b0

a2 a1 a0

b2 b1 b0

a2 a1 a0

b2 b1 b0

a2 a1 a0

b2 b1 b0

(a)

(b)

Figure 2. (a) 3-bit multiplication by Vertically and Crosswise technique. (b) Architecture block
diagram for 3-bit Vedic multiplier.

The prime parameter in Kyber is q = 13 · 28 + 1, where the factor values are k = 13
and m = 8. The elimination of accumulation is handled differently by implementing K-DSP
in each BU or PWM unit. Consequently, the K-RED-based modular reduction part can be
regarded as a specialized sub-module, which will be further discussed in the following
sub-sections.

3-bit 
multiplier

3-bit 
multiplier

3-bit 
multiplier

3-bit 
multiplier

6-bit adder

aH bH aH bL aL bH aL bL

6-bit adder6-bit adder

P(2:0)
(2:0)

P(5:3)

(5:3) (5:3)

(5:0)

(6)

(5:0)

P(11:6)

(5:0) (5:0)

Figure 3. The architecture of 6-bit Vedic multiplier.

4.2. Butterfly Unit

The NWC technique is utilized in NTT/INTT to avoid doubling the size of the mul-
tiplication polynomial. To compute c = a× b in the ring Rq with NWC, polynomials a
and b must be scaled by a factor ϕ before applying NTT (refered to as pre-processing).
Subsequently, polynomial product c is scaled by a factor N−1 · ϕ−1 after INTT (referred to as
post-processing), and ϕ is the 2N-th primitive root of the unity. Two methods for calculating
the NTT are DIT and DIF, corresponding to the Cooley-Tukey (CT) [41], and Gentleman-
Sande (GS) butterfly configurations [42]. Given a pair of coefficients (a, b) and twiddle
factor ω, the CT and GS butterfly calculations produce the results of (a + b ·ω, a− b ·ω)
and (a + b, (a− b) ·ω), as depicted in Figure 4a,b.
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Figure 4. The configurations of butterfly unit.

In studies [43,44], the ϕ/ϕ−1 multipliers can be merged with NTT and INTT processes.
These methods involve separate butterfly operations: CT for NTT with ϕ and GS for INTT
with ϕ−1. The unified-BU architecture has been proposed for the simultaneous computation
of GS and CT in the study [14], as shown in Figure 4c. In the GS calculation, the factor
N−1 can be pre-computed with the twiddle factor ω for the (a− b) ·ω operation. With the
operation (a + b), in study [45], Zhang et al. proposed replacing the multiplication by N−1

after INTT with the multiplication by 2−1 in each butterfly operand, respectively (a + b)/2.
The hardware architecture for multiplier 2−1 in Rq is achieved simply by implementing
a/2 = (a� 1) + a[0] · q+1

2 .
Butterfly operations are all modular arithmetic. The specific configuration choice

among CT, GS, or both depends on the design of the NTT accelerator. The iterative NTT
architecture uses unified BU for butterfly operations in all stages, such as NTT, INTT,
and PWM with the Kyber case. The latency of iterative NTT increases with the number
of butterfly cores and becomes more complex when handling high-order polynomials.
On the other hand, the NTT pipeline architecture allows for flexibility in selecting BU
configurations and butterfly cores proportional to the number of NTT stages [11,46,47]. In
all cases, modular multiplication is consistently the most hardware-intensive operation and
represents the critical delay path.

In this study, a BU tailored for Kyber is implemented. This architecture employs
K-DSP and comprises one modular addition, one subtraction, and one multiplication. The
resulting output is controlled by mux units, allowing the BU to operate in either CT or GS
mode, as depicted in Figure 4d. The classical K-RED method is applied for the modular
reduction part of K-DSP. The accumulated k = 13 is removed when the inverse k−1 is merged
into the twiddle factor ω. Additionally, the multiplication by N−1 for the GS calculation is
eliminated, as performed at the PWM stage (further details are provided in the subsequent
section). BUs utilize K-DSP units, helping reduce the size and improving the efficiency of
parallel or pipeline architectures when multiple BUs are used.

4.3. Point-Wise Matrix Multiplication Unit

Calculating the ciphertext u = INTT(ÂT ◦ r̂) + e1 is the most intricate operation in
Kyber, with u, r, and e1 are vector polynomials, and A is matrix polynomial. The specific
mathematical expression for the PWMM is shown in Equation (10) for case module rank
k = 2.

ÂT ◦ r̂ =
[

â00 â01
â10 â11

]T

◦
[

r̂0
r̂1

]
=

[
â00 ◦ r̂0 + â10 ◦ r̂1
â01 ◦ r̂0 + â11 ◦ r̂1

]
(10)
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The PWMM requires two point-wise operations: PWM and PWA. In Kyber, a 256-term
polynomial a(x) = (a0, a1, . . . , a254, a255) is performed NTT process using two 128-point
NTT, one for the even part (a2i(x) = (a0, a2, . . . , a254)) and one for the odd part (a2i+1(x) =
(a1, a3, . . . , a255)). Thus, the PWM on Kyber is multiplying polynomials of the form
â2i + â2i+1 · X. In study [48], Xing et al. proposed using the Karatsuba method to reduce
the number of point-wise multiplications required to calculate ĥ = f̂ ◦ ĝ from five to four,
as follows:

ĥ2i = f̂2i · ĝ2i + f̂2i+1 · ĝ2i+1 · ζ2br(i)+1 (11)

ĥ2i+1 = ( f̂2i + f̂2i+1) · (ĝ2i + ĝ2i+1)− f̂2i · ĝ2i − f̂2i+1 · ĝ2i+1 (12)

The previous section mentioned that the K-RED method can be customized to change
the output value. To remove the post-processing of the INTT stage, the output values
of the PWM calculation should be 128−1 · ĥ2i and 128−1 · ĥ2i+1, which can be achieved
by applying the property −13 · 28 ≡ 1(mod 3329) characteristic. The PWM architec-
ture for Kyber is detailed in Figure 5. Initially, the calculations f̂2i · ĝ2i, f̂2i+1 · ĝ2i+1, and
( f̂2i + f̂2i+1) · (ĝ2i + ĝ2i+1) all use K-DSPs without K-RED unit, resulting in bit widths 20.
The calculation of 2 · ĥ2i+1 is performed using modular addition, modular subtraction, and
bit shifting. Subsequently, the K-RED unit is utilized to get the 128−1 · ĥ2i+1 result. For
the 2 · ĥ2i calculation, the PWM f̂2i+1 · ĝ2i+1 is utilized with K-RED to provide the result in
the ring R3329. The accumulated factor k is eliminated from the PWM with pre-computed
factor k−1 · ζ2br(i)+1. Finally, K-RED is used again to determine the 128−1 · ĥ2i+1 result.

K-DSP
f2i

g2i

K-DSP
f2i+1

g2i+1

f2i

f2i+1

g2i

g2i+1

K-DSP

K-RED K-DSP

K-RED

K-RED SHR0
1

0
1

12'b0

SHR0
1

0
1

12'b0

128-1 . h2i

128-1 . h2i+1

Modular addition Modular subtraction

20

20

21

19

12

12

Left-shift operator

PWM PWA

13–1·ζ2br(i)+1

Figure 5. The proposed architecture of PWMM unit in Kyber implementation.

For PWA calculation, the architecture in Figure 5 shows an efficient and simple way to
perform PWA using a shift register SHR with feedback and modular addition. During the
initial calculation stage, the SHR takes in the output of PWM â00 ◦ r̂0 and adds value 12′b0. In
the following step, the SHR takes in the result of the previous addition and performs another
addition with the outcome of the PWM â10 ◦ r̂1. This architecture requires no hardware cost
changes when implementing different security levels of Kyber, k = 2, 3, and 4, respectively.

4.4. L-DSPs

NTT-based polynomial multiplication is a highly utilized and efficient method for
implementing LBC systems, offering quasi-linear complexity of O(N · logN). To quickly
calculate NTT using NWC, a prime number q is carefully chosen to meet the condition
q ≡ 1 (mod 2N). This guarantees the existence of the N-th and 2N-th primitive roots
of unity (denoted as ω and ζ) in the ring Rq. Consequently, the parameters for the LBC
algorithms require a relatively large value for N and a relatively small modulus q in form
q = k · 2m + 1, where 2N | 2m and k ≥ 3 is considered small integer.
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This study focuses on analyzing and proposing the DSP for commonly used param-
eter sets (N, q) of LBC algorithms, as in Table 2 (referred to as L-DSP). The Kyber team
has adopted the parameter pair (256, 3329) since round 2 of the NIST competition. It is
chosen to address increased bandwidth requirements resulting from removing public key
compression. The advantage of using q = 3329 is that NTT-based polynomial multiplication
can be performed quickly, leading to smaller noise. One drawback to this parameter set is
that PWM calculation is not directly possible.

Table 2. Parameter sets (N, q) of LBC algorithms.

Typical Algorithm N q

CRYSTAL-Kyber (v2,v3) 256 3329
CRYSTAL-Kyber (v1) 256 7681

FALCON 512/1024 12,289

Alternatively, (256, 7681) is the smallest parameter pair that fully supports fast NTT
computation while ensuring high security and the ability to perform direct PWM calcu-
lations. Due to this advantage, many current hardware implementations have adopted
the prime q = 7681 to optimize their systems [11,46,49]. The remaining set (512/1024,
12,289) is utilized in the latest version of FALCON, where the polynomial degree N can
vary depending on the desired security level of the system.

The primary operations that use DSP for modular multiplication are butterfly and
PWM. In the BFU architecture, a coefficient is multiplied by a pre-computed twiddle factor
(ω). The accumulated k can be merged to ω as k−1 ·ω. The value of N does not impact the
K-RED architecture in L-DSP in the case of FALCON. Algorithm 3 outlines the steps for
implementing L-DSP for butterfly computation in a comprehensive and detailed manner.

Algorithm 3 L-DSP for Butterfly Unit

Input: n-bit integers: b, ω′ = k−1 ·ω, prime q, and small integers k, m.
Output: r ≡ b ·ω (mod q)

Stage 1: Karatsuba, Vedic multiplier
1: t0 = bH ·ω′H ;
2: t1 = bL ·ω′L;
3: t2 = (bH + bL) · (ω′H + ω′L);

Stage 2: Calculate the product
4: p0 = (t0[n− 1, . . . , n + 2−m])LUT ;
5: p1 = {t0, t1};
6: p2 = t2 − t1 − t0;
7: p = p0 + p1 + p2;

Stage 2: K-RED Reduction
8: d0 = p[m− 1, . . . , 0];
9: d1 = p[n + m− 1, . . . , m];

10: Return (k · d0 − d1)

In the PWM operation, one crucial step involves multiplying the output by the value
N−1 to eliminate post-processing in the INTT. Notably, as the polynomial degree N changes,
the value of N consistently satisfies the condition 2N | 2m, which ensures that the output
can be computed directly as,

r ≡ z · c (mod q) ≡ (−k · 2m) · N−1 · c (mod q) (13)

with z = 2m/N and −k · 2m ≡ 1 (mod q). The Equation (13) is equivalent to r ≡ N−1 ·
c (mod q). Additionally, since z is a power of two, it can be easily multiplied by bit-
shifting the input of the K-RED part. Algorithm 4 provides a detailed outline of the L-DSP
implementation for PWM operation.
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For multiplying coefficients with larger bit-width, it is possible to create an efficient
multiplier design using 3-bit and 4-bit Vedic multiplier circuits as the basic building blocks.

Algorithm 4 L-DSP for PWM Unit

Input: n-bit integers: a, b, prime q, and small integers k, m, z = 2i, degree N.
Output: r ≡ N−1 · a · b (mod q)

Stage 1: Karatsuba, Vedic multiplier
1: t0 = aH · bH ;
2: t1 = aL · bL;
3: t2 = (aH + aL) · (bH + bL);

Stage 2: Calculate the product
4: p0 = (t0[n− 1, .., n + 2−m− i])LUT ;
5: p1 = {t0, t1};
6: p2 = t2 − t1 − t0;
7: p = (p0 + p1 + p2)� i;

Stage 2: K-RED Reduction
8: d0 = p[m− 1, . . . , 0];
9: d1 = p[n + m− 1, . . . , m];

10: Return (d1 − k · d0)

5. Implementation Results

This study introduces and applies the proposed modular multiplication L-DSPs in
BFU and PWMM units of the NTT-based accelerator in the LBC cryptosystem. These
architectures are synthesized and place-and-routed using the Xilinx Vivado 2021.2 suite.
The widely used Xilinx Artix-7 FPGA platform (part number XC7A100tfgg676-3) is selected
to ensure a fair comparison with state-of-the-art hardware implementations. We introduce
the hardware efficiency (E f f .) for a comparative analysis with previous works. A higher
E f f . value is desirable and can be calculated as follows,

E f f =
Frequency× No. o f bits

No. o f LUTs
(Kbps/L) (14)

The study [47] showed a normal DSP with an equivalent conversion rate of 100 SLICEs
or 400 LUTs. We use this ratio for area comparison with other studies.

Table 3 shows the proposed K-DSP architecture for modular multiplication on CRYSTAL-
Kyber, showcasing its speed and area. K-DSP can perform integer multiplication and
modular reduction and operates at a frequency of 283 MHz, occupying an area of only
77 SLICEs, equivalent to 77% of a DPS. It is worth noting that all other studies listed in
the comparison table use DSP for coefficient multiplication. The implementation results of
the K-RED method are better than other methods when performing modular reduction.
Notably, in study [36], by combining the K-RED and LUT methods, the operating frequency
reached 300 MHz with an equivalent area of 50 (+400) LUTs. In [46], heavy multiplications
are efficiently replaced with compact bit-wise operations and additions/subtractions based
on an optimized Barrett algorithm. The hardware results achieved an operating frequency
of 265 MHz and occupied an equivalent area of 81 (+400) LUTs. Study [33] utilizes a
bit-reduce method that is complex and hardware costly. These results demonstrate that
the proposed K-DSP architecture has further optimized modular multiplication, with
significantly improved E f f performance metrics of 1.86×, 2.25×, 2.46×, 2.57×, 4.1×, and
4.2× compared to studies [18,33,36,46,48,50], respectively.



Cryptography 2023, 7, 46 13 of 17

Table 3. Comparison of the proposed modular multiplication DSP for Kyber with other approaches.

Method Freq LUTs FFs SLICEs DSP Eff.
(MHz) (Kbps/L)

Proposed K-DSP 283 228 174 77 0 14,895DSP

[18] K-RED 222 59 (+400) 33 19 (+100) 1 5804

[19] K-RED N/A 54 (+400) 30 18 (+100) 1 N/A

[33] Bit- 159 142 (+400) 79 0 (+100) 1 3520reduce

[36] K-RED, 300 50 (+400) 34 15 (+100) 1 8000LUT

[46] Barret 265 81 (+400) 112 0 (+100) 1 6611

[48] Barret 161 135 (+400) 96 0 (+100) 1 3611

[50] K-RED 232 59 (+400) 70 24 (+100) 1 6065

The results of the K-DSP-based BU implementation for Kyber are displayed in Table 4.
The proposed BU architecture comprises one K-DSP, an adder, and a subtractor for CT and
GS butterfly operations. The operating frequency of this architecture reaches 283 MHz and
takes an area of 104 SLICEs, slightly equal to one DSP. The conventional unified BU archi-
tecture uses two DSPs to perform distinct multiplications, adders, and subtractors for CT
and GS calculations. The studies [33,48] used this architecture and recorded low operation
frequency and high hardware resources of 159 MHz for 774 (+800) LUTs and 161 MHz for
647 (+800) LUTs, respectively. Other studies have built a reduced architecture using only
one DSP for multiplication. With the downsized BU architecture, the study [46] has an
operating frequency of 265 MHz and consumes 186 (+400) LUTs. It is important to mention
that multiplication can impact speed and area. In study [51], a standard implementation of
Kyber’s reference code, modular multiplication consumed more DSPs due to applying both
the Barret and Montgomery algorithms. The proposed BU architecture based on K-DSP
significantly improves the E f f . index compared to the research studies [18,27,33,46,48,50].
The improvement is 2.06×, 2.52×, 3.01×, 3.26×, 8.39×, and 9.22× times, respectively.

Table 4. Implementation results of the proposed BU for CRYSTAL-Kyber and comparison with previ-
ous studies.

Freq LUTs FFs SLICEs DSPs Eff.
(MHz) (Kbps/L)

This 283 304 234 104 0 931work

[18] 222 200 (+400) 179 0 (+100) 1 370

[27] 229 440 (+400) 499 0 (+100) 1 286

[33] 159 774 (+800) 394 317 (+200) 2 101

[46] 265 186 (+400) 172 0 (+100) 1 452

[48] 161 647 (+800) 501 0 (+200) 2 111

[50] 208 274 (+400) 181 0 (+100) 1 309

[51] N/A 177 (+2000) 0 0 (+500) 5 N/A

Table 5 shows the effectiveness of the DSP design method for core operations modular
multiplication and butterfly in the NTT accelerator of the LBC cryptosystem. We have
developed L-DSPs and BUs architectures for prime q values in q = k · 2m + 1, specifically
for 3329, 7681, and 12,289. When using L-DSPs, the operating frequencies for q = 3329, 7681,
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and 12,289 are 283 MHz, 272 MHz, and 256 MHz, respectively. The hardware resources
needed for L-DSPs are less than or equal to one DSP, which results in a percentage of the
area used of 77%, 87%, and 101% DSP, respectively. On the other hand, using BUs results
in hardware resource improvements of 104%, 120%, and 136% DSP for the same q values,
respectively. The operating frequencies for BUs are 283 MHz, 260 MHz, and 250 MHz,
respectively. All L-DSPs and BUs architectures have less than 400 LUTs hardware resources,
equivalent to one DSP.

Table 5. Implementation results of the proposed L-DSPs and BU for typical cases of prime q in
LBC cryptosystem.

Architecture Prime Freq LUTs FFs SLICEsNumber q (MHz)

L-DSP
3329 283 228 174 77
7681 272 277 188 87

12,289 256 306 262 101

BU
3329 283 304 234 104
7681 260 362 253 120

12,289 250 393 332 136

The results of implementing the PWMM architecture in Kyber are presented in Table 6.
Other studies utilize BRAM [46] or FIFO [47] to temporarily store the accumulation results,
leading to further hardware resource consumption for the PWA operation. In order to
optimize the NTT accelerator pipelines, our architecture is designed to handle both PWM
and PWA operations. Two different architectures, namely one-PWMM and two-PWMM, are
designed and achieve the highest operating frequency of 275 MHz with cycles and an area
of 128 Clks/1123 LUTs and 64 Clks/2297 LUTs. To be more precise, the hardware resources
take fewer SLICEs than the conversion value of 4 and 8 DSPs, which are equivalent to
386 and 797 SLICEs, respectively. In studies [34–36], the PWM execution is performed
using a shared hardware architecture with BUs. The highest operating frequencies are
achieved in studies [35,36], reaching 300 MHz and 303 MHz, respectively. This is primarily
due to the use of efficient modular reduction modules. In study [46], an architecture
for two-PWM calculation was proposed on Kyber, using 8 DSPs for the multiplications.
The operating frequency of this architecture reaches 265 MHz and consumes hardware
resources of 749 (+3200) LUTs respectively. Our architecture significantly reduces hardware
resources and improves efficiency. The proposed PWMM design reduces ATP(area time
product) by 33.8%, 47.8%, 67.3%, and 71.2% compared to [34–36,46], respectively.

Table 6. Implementation results of the proposed PWMM unit for CRYSTAL-Kyber.

Freq LUTs FFs SLICEs DSPs Cycles ATP Modes(MHz)

This 275 1123 1061 386 0 128 180 PWM,
work 1 PWA

This 275 2297 2081 797 0 64 185 PWM,
work 2 PWA

[34] 200 1740 (+1600) 643 575 (+400) 4 128 624 PWM

[35] 300 1154 (+800) 1031 445 (+200) 2 256 550 PWM

[36] 303 1170 (+1600) 1164 416 (+400) 4 128 345 PWM

[46] 265 749 (+3200) 1103 325 3 (+800) 8 64 272 PWM

Area-Time-Product (ATP) = ((Cycles ·106)× SLICEs) / Freq. 1,2 Number of PWMM units. 3 Since a single slice
contains four LUTs and eight FFs, we convert SLICEs = 1

4 × LUTs + 1
8× FFs.
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6. Conclusions

In this paper, we present a method for designing compact and efficient specialized
hardware implementations for modular multiplication in LBC systems. Using the proposed
approach, we have designed and implemented core architectures within NTT accelerators
for polynomial multiplication. The optimization of the BU architecture is performed to
completely eliminate the need for post-processing in INTT. Consequently, the BU architec-
ture, when simultaneously executing NTT and INTT, has a footprint equivalent to that of
a conventional BU architecture. Additionally, we propose a hardware design for imple-
menting PWMM for the Kyber algorithm. The proposed architecture can perform both
PWM and PWA calculations for all security levels without requiring additional temporary
memory, such as RAM or FIFO buffers.

Furthermore, we have demonstrated the effectiveness of the proposed method by
designing it for common prime parameters q, used in various LBC algorithms. FPGA-
based implementation results show the outperforming hardware efficiency of the K-DSP,
L-DSP, BU, and PWMM architectures compared to existing implementations. The findings
of this paper can further optimize NTT accelerators with pipeline or iterative configura-
tions. Therefore, the proposed architectures represent an important step toward designing
compact and high-performance post-quantum lattice-based cryptography systems on hard-
ware platforms.
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