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Abstract: This article proposes a new method to inject backdoors in RSA (the public-key cryptosystem
invented by Rivest, Shamir, and Adleman) and other cryptographic primitives based on the integer
factorization problem for balanced semi-primes. The method relies on mathematical congruences
among the factors of the semi-primes based on a large prime number, which acts as a “designer
key” or “escrow key”. In particular, two different backdoors are proposed, one targeting a single
semi-prime and the other one a pair of semi-primes. This article also describes the results of tests
performed on a SageMath implementation of the backdoors.
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1. Introduction

Impairing the robustness of cryptographic applications is a sensitive topic. The interest
in direct attacks, vulnerabilities, and backdoors for all currently used ciphers is certainly
justified by economic and geopolitical reasons. If a vulnerable implementation of a cryp-
tographic algorithm is surreptitiously distributed, an “evil” actor or a national security
agency might easily access any sort of sensitive and precious information. However, “le-
gal” actors might exist that openly mandate or encourage the adoption of cryptographic
implementations that include backdoors, in order to realize “key escrow” mechanisms.
For instance, a national country might legislate that judiciary representatives must always
be able to recover any kind of encrypted communication involved in a criminal case.

Until a few years ago, it was only conjectured [1] that major security agencies were able
to decrypt a large portion of the world’s encrypted traffic, mainly thanks to vulnerabilities
hidden in pseudo-random generators or major cryptographic algorithms and applications.
Some examples of this practice might be the Hans Bühler case in 1994 [2], the Dual-EC al-
gorithm proposed in 2004 by the US National Institute of Standards and Technologies [3,4],
and perhaps the OpenBSD backdoor incident that emerged in 2010 [5,6]. However, in the
last few years many government bodies have openly talked about enforcing by law “re-
sponsible encryption” or “exceptional access to encrypted documents” [7,8]: essentially,
these are just more palatable words for “escrow key” and “backdoors”.

The approach to backdoor construction has changed in the last few years. In the
past, the focus was mainly on weaknesses in pseudo-random generators or software
implementations that might allow attackers to predict some secret data of the target users.
Nowadays, the emphasis is on theoretical backdoors based on mathematical properties
of the cryptographic primitives. The main advantage of this new approach is that it is
very difficult to discover a mathematical backdoor by just looking at the cryptographic
algorithm. For example, Bannier and Filiol [9] showed in 2017 how a block cipher similar
to the Advanced Encryption Standard (AES) can be devised so that it includes, by design,
a hidden mathematical backdoor that allows a knowledged attacker to effectively break the
cipher and recover the key.

Evil actors and legal actors pursue very different goals. This fact justifies the adoption
of very different backdoor mechanisms. An evil actor is primarily concerned with how
convenient triggering the backdoor is and secondarily how well the backdoor mechanism is
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hidden from the final user; however, it is not crucially important to also preserve the security
of the cipher. Thus, a backdoor introduced by an evil actor might even be a vulnerability
hidden in a cipher implementation such that anyone knowing about its existence could
easily break the cipher and recover the encrypted messages. For instance, a mechanism
that can be easily exploited might be based on a semi-prime generator that selects just one
of the primes at random, while the other prime is fixed. The Euclidean algorithm applied
to two different vulnerable semi-primes outputs the fixed prime; thus, anyone can easily
break the cipher even if the fixed prime is not known in advance. Perhaps not surprisingly,
there are a lot of very weak public keys in the Internet [10,11]. However, a legal actor does
not want to significantly impair the security of a cryptographic algorithm, because the final
users might just refuse to adopt an insecure cipher. A backdoor introduced by legal actors
is likely a vulnerability embedded in a cryptographic implementation that allows only
“authorized” actors to decipher the encrypted messages without knowing the private keys
of the final users. Usually, this means that the retrieval of the encrypted messages can be
performed only if the actor knows a secret escrow key related to the backdoor itself.

Among the most widespread cryptographic algorithms, RSA [12] deserves special con-
sideration, because it is conveniently used to protect any kind of sensitive data transmitted
over the Internet. It is commonly believed that RSA has been properly designed and that,
by itself, it does not contain hidden vulnerabilities. However, a large number of attacks to
RSA have been proposed since its invention. These attacks span from directly factoring
the semi-prime in the public key to exploiting weaknesses in the generation algorithm for
the prime factors; for a survey, see [13]. Furthermore, several RSA backdoors have been
proposed: they are specially crafted values in RSA parameters that allow a knowledgeable
attacker to recover the private key from publicly available information. For an in-depth
discussion of several RSA backdoors, see [14].

This article proposes a new idea to inject backdoors in RSA key generators, which was
loosely inspired by the concept of “implicit hints” of May and Ritzenhofen [15] in pairs of
semi-primes. However, this idea differs significantly from the backdoors based on implicit
hints and, as far as I know, from any other published backdoor proposal (a preliminary
version of this work has been published as a preprint [16]).

More specifically, May and Ritzenhofen proposed the implicit factorization problem
(IFP), which is based on the premise that two or more semi-primes with factors sharing some
common bits can be factored with some variants of the Coppersmith’s algorithm [17,18].
The authors stated that “[. . . ] one application of their result is malicious key generation of
RSA moduli, i.e., the construction of backdoored RSA moduli”. In my opinion, however,
a backdoor based on shared bits, as described in [15], is not really effective for RSA. It is
practically not possible to exploit this backdoor in large “balanced” semi-primes, such as
those used in currently used RSA moduli, because the time required by the Coppersmith’s
algorithm to factor a semi-prime grows exponentially as the size difference of the factors
becomes smaller. Moreover, this vulnerability is self-evident to anyone looking at the
factors, because there would be a long run of identical bits in the two values; thus, such
backdoors cannot be easily concealed from the owner of the private keys.

The new idea is the following: rather than including in the bit expansions of the factors
a long run of identical bits, the bit expansions include portions of correlated bits, where the
correlation is bound to a secret designer key not known to the owner of the backdoored
keys. In practice, the backdoor designer enforces some mathematical conditions on the
values of the factors, such as congruences with a modulo for a large prime (of nearly the
same size of the factors), which acts as the designer key.

Following the IFP approach in [15], I firstly devised a backdoor (named the TSB, Twin
Semi-prime Backdoor) based on mutual correlations between the factors of two distinct
semi-primes. Afterwards, I devised a simpler backdoor (named the SSB, Single Semi-prime
Backdoor) based on the same idea but suitable for injecting a backdoor in a single semi-
prime. The backdoors can be applied to RSA and also to any other cipher whose security is
based on the difficulty of the integer factorization of semi-primes.
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A key difference from the IFP approach is that in triggering the backdoors, that is,
in order to factor the semi-prime(s) by exploiting the designer key, there is no need to apply
some variant of the Coppersmith’s algorithm. Therefore, if the value of the designer key
is known, factoring the semi-prime(s) is easy and efficient. However, if the designer key
is not known, there seems to be no efficient way to factor the semi-prime(s). Moreover,
without the designer key, there seems to be no efficient way to detect the existence of the
backdoor, even when looking at the distinct prime factors of the semi-prime(s). Of course,
significant progresses in quantum computing might affect the robustness of the proposed
backdoors. However, such progresses will likely have a significant impact on all aspects of
the RSA algorithm.

The rest of the article is organized as follows. Section 2 includes some mathematical
notations and an introduction to the basic RSA algorithm. Section 3 includes a discus-
sion of the prior works related to RSA backdoors and the implicit factorization problem
(IFP). Section 4 presents the simpler backdoor, the SSB, while Section 5 presents the more
sophisticated backdoor for a pair of semi-primes, the TSB. Finally, Section 6 includes the
conclusions of this work.

2. Preliminaries

In this article, a ≡ b (mod c) denotes the relation in which a− b is a multiple of c;
often the shorter notation a ≡c b will be used. The notation a mod b denotes the operation
remainder of the division a/b; hence, a ≡c (a mod c) and 0 ≤ a mod c < c.

If N ≥ 0 is an integer, its size in bits is defined as `(N) = max{1, dlog2(N + 1)e}.
Writing x ' y means that x and y are equal or differ by at most one, while x ≈ y means
that x and y differs by a value negligible with respect to the sizes of x and y. If N ≈ 2n,
for any large n, then `(N) ' log2 N; that is, both `(N) and log2 N may be considered to be
approximately equal to n, ignoring a ±1 difference in size.

If h is an integer, hek denotes the k most significant bits of h (a value from 0 to 2k − 1),
while hck denotes the k less significant bits.

A semi-prime is a number N such that N = p q where p and q are primes. Therefore,
`(N) ' `(p) + `(q). If `(p) ' `(q), then the semi-prime is said to be balanced. When
considering sequences of semi-primes Ni = pi qi (i = 1, 2, . . .), it is assumed that they have
a common size n = `(Ni), for every i; furthermore, the primes qi have a common size
`(qi) = α; it follows that all primes pi have the same size n− α.

The RSA public key cryptosystem was invented by Rivest, Shamir, and Adleman [12] in
1977. In its simplest form, the algorithm is based on a balanced semi-prime N = p q and a
couple of exponents e, d such that gcd(e, φ(N)) = 1 and ed ≡ 1 (mod φ(N)). Here, φ(N)
denotes the Euler’s totient function, which can be easily computed as (p− 1)(q− 1) if the
prime factors p and q are known. Theoretically, the value of e could be random, while
the value of d can be computed from e and φ(N) using the Extended Euclidean algorithm.
The pair (N, e) is the “public key” of RSA, and the encryption function is Me mod N.
Either the pair (p, q) or the pair (N, d) is the “private key”, and the decryption function is
(Me)d mod N ≡ Msφ(N)+1 ≡ M(Msφ(N)) ≡ M(1s) ≡ M (mod N). Of course, factoring N
allows an attacker to recover the private key from the public key, because from p and q we
can compute φ(N) and then d ≡ e−1 (mod φ(N)).

3. Related Work

Many authors proposed to classify backdoors embedded in cryptographic applications
according to several, different criteria. Following [19], there exist three types of backdoors:
(1) weak backdoors, (2) information transfer via subliminal channels, and (3) SETUP mech-
anisms. Weak backdoors are based on modifications of the cryptographic protocol such
that it would be possible for anyone to break the cipher and recover the secret data. Vul-
nerabilities falling under the information transfer via subliminal channels category allow
an attacker to exploit the cryptographic protocol in such a way to create a hidden commu-
nication channel that cannot be intercepted or unambiguously detected. Finally, SETUP
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(Secretly Embedded Trapdoor with Universal Protection) mechanisms create vulnerabilities
in the cryptographic protocols that cannot be easily exploited by third-party attackers.

SETUP mechanisms were firstly proposed by Young and Yung [20,21] in 1996: they
coined the term “kleptography” to denote the usage of cryptographic primitives in order
to design “safe” backdoors in other cryptographic protocols. Following the classical
distinction between asymmetric and symmetric cryptography, SETUP mechanisms can
lead to asymmetric backdoors and symmetric backdoors.

In an asymmetric backdoor, the information required to recover the encrypted mes-
sages is protected by an asymmetric cipher. Usually, this means that some data that allow
an actor to recover any user private key are encrypted with the public key of the designer
of the RSA implementation and stored inside the corresponding user public key. Any actor
that knows the corresponding designer private key may extract the data from the user
public key and decipher them to recover the user private key. Notice that in this case the
RSA implementation is “tamper resistant”: even reverse engineering cannot reveal the
designer private key.

In a symmetric backdoor, however, the designer key that allows an actor to recover
the user private key from the user public key is stored in some form inside the RSA
implementation itself. To be secure and undetected, the RSA implementation (perhaps
a physical device) must be “tamper proof”.

Existing RSA backdoors may also be categorized according to the place where the
backdoor’s specific data are stored: either in the semi-prime N alone or also in the exponent
e of any public key (N, e). “Exponent-based” backdoors are somewhat easier to devise,
because e could theoretically be any random value coprime with φ(N). However, most
RSA implementations make use of special fixed values for the public exponent, such as
small values or values with a small Hamming weight, in order to improve the efficiency
of the RSA algorithm. Thus, exponent-based backdoors cannot be easily hidden from the
final user and can be perceptively slower than honest RSA implementations. Backdoors
embedded in the public key’s semi-prime do not limit the choice of the public exponent;
however, they must address a crucial problem: how to encode information about the
factorization of the semi-prime in the semi-prime itself, in such a way that the information
is encrypted with a secret key and, possibly, the pair (p, q) is indistinguishable from a pair
of primes generated by an honest RSA implementation.

This article proposes two backdoors embedded in the semi-primes of the RSA’s public
keys; as a matter of fact, the backdoors apply to any cryptographic protocol based on the
integer factorization of semi-primes. Related work concerning exponent-based backdoors
is not further discussed here; examples of these backdoors can be found in [14,22–24].

3.1. Symmetric Backdoors

The proposed SSB algorithm implements a symmetric backdoor, because the escrow
key is fixed and hard-cabled in the hardware or software device that generates the vulner-
able semi-primes. As we shall see, the TSB might be considered both a symmetric or an
asymmetric backdoor.

The first RSA backdoor was proposed by Anderson [25] in 1993. It is a symmetric
backdoor embedded in the public key’s semi-prime: let β be an m-bit secret prime (the
“backdoor key”), and let πβ and π′β be pseudo-random functions that, given a seed in
argument, produce a (n − m)-bit value (in the original article, n = 256 and m = 200).
For any vulnerable 2n-bit semi-prime N = pq, let t, t′ <

√
β be (m/2)-bit random numbers

that coprime with β, and let p = πβ(t) · β + t and q = π′β(t
′) · β + t′. Given N and β, it is

possible to compute tt′ = N mod β, then factor the m-bit number tt′, and finally compute p
and q. Kaliski [26] proved that it is possible to discover the backdoor by either computing
the continued fraction p/q, because the expansion likely contains an approximation of
the fraction πβ(t)/π′β(t

′), or by finding a reduced basis of a suitable lattice built on the
primes of two vulnerable moduli. He also showed that the backdoor can be detected by
the lattice method when 14 or more non-factored vulnerable moduli are available. It is
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easy to observe that Kaliski’s detection algorithm can be easily defeated by introducing
a “dynamic backdoor key” whose exact value depends, for instance, on an incremental
counter. However, another drawback of Anderson’s backdoor is that m ≈ 3/4 · n; hence,
triggering the backdoor for currently used public key sizes might require factoring a too
large integer.

The first backdoor proposed in this article, the SSB, is similar to Anderson’s construc-
tion, in that triggering the backdoor involves as first step computing the remainder of the
integer division of the semi-prime and the designer (escrow) key. However, a key difference
from Anderson’s idea is the form of the primes p and q, which allows the SSB to escape
detection by Kaliski’s algorithms and to avoid factoring a large integer when exploiting
the backdoor.

In 2003, Crepéau and Slakmon [23] presented, among several other exponent-based
backdoors, a semi-prime-based backdoor that relies on Coppersmith’s attack [18] and
encrypts the factor p in the RSA modulus N = p q in such a way that the bits in Nen/8 have
the correct distribution for a random semi-prime, while the middle n/4 bits of N are an
encryption, via a pseudo-random function πβ, of pen/4. The SSB and TSB backdoors use
an entirely different mechanism and do not rely on Coppersmith’s attack, which means
that they can be efficiently exploited even on very large balanced semi-primes.

In 2008, Joye [27] studied the performances of generating a semi-prime N in which
some bits are prescribed; he developed as an example an RSA symmetric backdoor based
on the Coppersmith’s attack in which some of the bits of p are encrypted in q. While this
study is relevant when analyzing the generation times of any semi-prime backdoor, their
proposal is entirely different than the present one.

The symmetric backdoor proposed by Patsakis [28] in 2012 is based on yet another
idea: the parameterized, randomized backdoor algorithm decomposes an integer as a sum
of squares in a way depending on a designer’s secret parameter. The backdoor consists of
imposing that the semi-prime, once decomposed using the secret parameter, can be easily
solved by a nonlinear system whose solutions are properly bounded.

In 2017, Nemec, Sys, and others [29] exposed ROCA (Return of Coppersmith’s Attack),
a critical vulnerability (perhaps unintentional) in the key generation algorithm of the
RSALib library, which is written, adopted, and distributed to third parties by Infineon, one
of the top producers of cryptographic hardware devices. This work raised much interest
because the flaw was already present in devices produced in 2012 and the total number
of affected devices and, consequently, vulnerable keys is huge. In any N = p q generated
by the flawed RSALib, all primes p and q have the form k ·Mt + (65, 537a mod Mt), where
Mt is the primorial number composed by the product of the first t primes, and k, a are
random integers. The values of t for semi-primes of bit length n = 512, 1024, 2048, and 4096
are, respectively, t = 39, 71, 126, and 225. This means that the number of truly random
bits in each of the primes is reduced, respectively, to 98, 171, 308, and 519. In order to
find the factors of a vulnerable semi-prime, a variant of the Coppersmith’s attack is used:
it is possible to efficiently factor N = p q when the value p mod M is known. Hence,
the recovering procedure determines a suitable divisor M of Mt of size `(M) ≥ n/4 (to
reduce the search space for a), guesses an exponent a, computes 67,537a mod M, and factors
N. It is also easy to verify whether a given key is flawed: N is likely vulnerable if the discrete
logarithm log65,537 N mod Mt exists. Actually, this logarithm can be easily computed by
the Pohlig–Hellman algorithm [30] because Mt is the product of many small consecutive
primes. Hence, ROCA arguably belongs to the weak backdoor category.

3.2. Asymmetric Backdoors

The proposed TSB algorithm can be used to implement both symmetric and asymmet-
ric backdoors. In fact, the TSB makes use of an embedded designer key but also generates
two distinct semi-primes. If both semi-primes are used to build two distinct public keys,
both available to a third-party attacker, then tampering with the TSB device may expose the
designer key and break the keys. The TSB can be used to generate a public key (from one of
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the generated semi-primes) and a dedicated escrow key composed by the hard-coded large
prime inside the device and the other semi-prime, which must be considered the designer’s
secret key. This is a reasonable scenario for cryptographic keys used in a highly-secure work
environment. In this second case, the TSB must be considered an asymmetric backdoor,
because tampering with the device is not enough to break an already generated key.

The first examples of asymmetric backdoors proposed by Young and Yung [20] in 1996
were exponent-based. However, that article also includes the description of an asymmetric
semi-prime-based backdoor named PAP, for “Pretty Awful Privacy”. The backdoor designer
defines a designer’s RSA public key (N′ = p′q′, e′) and private key (p′, q′, d′), where
`(N′) = n/2. Let FK and GK be invertible functions depending on a fixed key K that
transform a seed of n/2 bits in a pseudo-random value of n/2 bits. In order to create a
backdoor, the designer first chooses a prime p of bit length n/2 at random then searches
the smallest value K such that ρ = FK(p) < N′. ρ is then encrypted as ρ2 = GK(ρ

e′ mod
N′). The RSA semi-prime N results from the search of a prime q such that the n/2 most
significant bits of N = p q coincide with ρ2. The attacker can easily break the public key
by extracting ρ2 from N then starting an exhaustive search of the value for K that, when
applied to the inverse permutations G−1

K and F−1
K , permits the extraction of the proper

factor p using the RSA private key (p′, q′, d′).
In a series of articles published between 1997 and 2008, Young and Yung [21,31–33]

proposed several kleptographic backdoors for RSA using different cryptographic algo-
rithms for embedding the factor p in N. Specifically, in [21] the backdoor PAP2 is embedded
in the RSA semi-prime via the ElGamal protocol [34]; that is, encrypting p in N is based
on a Diffie–Hellman key exchange. In [31] the backdoor PP, for “Private Primes”, is based
on Rabin’s cryptosystem [35]; it also differs from the one described in [21] because it uses
non-volatile memory to store the number of generated backdoored keys so as lower the
probability of producing the same key twice. In [32] the encryption of the factor p inside
the semi-prime N is achieved by means of an elliptic curve Diffie–Hellman key exchange.
In 2008, Young and Yung [33] revisited the backdoor proposed in [32] and implemented it
on the OpenSSL library. After some optimization effort, this implementation was made
faster than the original OpenSSL RSA key generation methods.

In 2010, Patsakis [28,36] proposed yet another kleptographic mechanism that relies on
Coppersmith’s attack and forges p and q so that the most significant bits of both of them
are of the form (a + r)e′ mod N′, where a is a secret design parameter, r is a random value,
and (N′, e′) is the designer’s asymmetric public key.

In 2016, Wüller, Kühnel, and Meyer [37] proposed an RSA backdoor called PHP,
for “Prime Hiding Prime”, in which the information required to factor N is hidden in N
itself. The idea is to select a prime p such that q = (pe′ · p−1) mod N′ is a prime, where
(N′, e′) is the RSA public key of the designer. To factor N = p q, the designer computes
Nd′ ≡N′ (p · pe′ · p−1)d′ ≡N′ p. An improvement of PHP, called PHP’, is also described
in [37]: here, q = (se′ · p−1) mod N′, where s is the concatenation of n/4 random bits and
pcn/4. Half of the bits of p are enough to recover the factorization of N thanks to the
Coppersmith’s attack.

Markelova [19] revisited Anderson’s idea for a symmetrical backdoor and devised
SETUP mechanisms that protect the backdoor by means of some public key algorithms,
in particular, based on discrete logarithm problems on both finite fields and elliptic curves.
The author also presented a SETUP backdoor exploiting the Chinese Remainder theorem.
The article [19] also includes a discussion of the similarities between these SETUP backdoors
and the ROCA backdoor.

3.3. The Implicit Factorization Problem

In 1985, Rivest and Shamir [38] introduced the oracle complexity as a new way to
look at the complexity of the factorization problem (and the related RSA attack): they
showed that the semi-prime N can be factored in polynomial time if an oracle provides
3/5 of the bits of p. In 1996, Coppersmith [17,18] improved the result by showing that
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an explicit “hint” about the top half bits of p are sufficient for factoring N in polynomial
time. In particular, Coppersmith described some algorithms based on lattice reduction and
the LLL procedure [39] to find small integer roots of univariate modular polynomials or
bivariate integer polynomials. Later [40,41], these algorithms were reformulated in simpler
ways and heuristically extended to the multivariate polynomial case.

The seminal article [15] focusing on “implicit hints” was published in 2009 and it is
due to May and Ritzenhofen. An oracle gives an implicit hint when it does not output the
value of some bits of one of the factors of the semi-prime; rather, the oracle outputs another
semi-prime whose primes share some bits with the factors of the original semi-prime.
The authors formally introduced the implicit factorization problem (IFP) and showed that
two semi-primes N1 and N2 can be factored in time O(n2) if p1ct = p2ct, with t ≥ 2α + 3.
The algorithm is based on a lattice reduction: the search for the unknown primes qi is
reduced to a search for a basis of a suitable lattice by means of the quadratic Gaussian
reduction algorithm. This result implies that only highly imbalanced semi-primes can be
factored, because `(q1) = `(q2) = α; hence, `(pi) > 2 `(qi). The authors also extended this
result to k > 2 semi-primes and showed that a polynomial algorithm based on the Lenstra-
Lenstra-Lovász lattice basis reduction (LLL) algorithm [39] exists if t ≥ αk/(k− 1). For the
balanced case, this result is not useful, because it means that all pi primes are identical;
hence, they can be easily recovered by the Euclidean algorithm. However, the authors
also showed that their method can be used to factor k balanced semi-primes when some
additional conditions are satisfied and n/4 bits are discovered by brute force.

In the following years, many articles improved and extended the results of May and
Ritzenhofen: further details can be found in a survey [42] published in 2018.

All attacks and vulnerabilities based on these results assume that the factors of vul-
nerable semi-primes share some identical bits. From a practical point of view, backdoors
relying on shared identical bits cannot be easily concealed from anyone looking at the
factors, that is, from the owner of the private key. Furthermore, all the results cited in this
section are based on some variants of Coppersmith’s algorithms [17,18]. In contrast, the
proposed backdoors generate semi-primes with factors without common shared bits and
do not require Coppersmith’s algorithm. Therefore, they are difficult to detect and are
much more efficient when applied to balanced semi-primes with a large size, such as those
used in the current RSA public keys.

4. SSB: A Backdoor Embedded in a Single Semi-Prime

This section presents the SSB (Single Semi-prime Backdoor), a proposal for a new back-
door encoded in the value of a semi-prime N. The section first describes the vulnerability
and how the semi-prime is generated; then, it describes the procedure to efficiently factor
the semi-prime, provided that the corresponding escrow key is known. Finally, the section
reports an analysis of the theoretical and practical efficiency of the backdoor.

4.1. Generation of a Vulnerable Semi-Prime

The first step of the generation of a vulnerable semi-prime is choosing an “escrow
key”, which is a secret value that must be known in order to detect and exploit the backdoor.
The escrow key is a prime T of a size slightly smaller than the size of the primes in the
semi-prime. Thus, if α is the reference bit length of the primes (e.g., α = 512 for RSA-1024),
then `(T) ' α− c, where typically 4 ≤ c ≤ 10 for α ≤ 2048; a good value for α = 512,
1024, and 2048 appears to be c = 7. The backdoor designer must also choose the value of a
constant K, which must be related to the value of α, as discussed later; in particular, it will
be shown that a good practical choice may be K ≈ α.

In order to create a vulnerable semi-prime, two distinct primes p and q, each of them
having a bit length of roughly α, must be generated. The backdoor exists whenever the
following condition holds:

H0. There exists a positive integer k with 1 < k ≤ K such that p ≡T k q.
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Algorithm 1 below can be used to generate the two primes p and q satisfying the
condition H0. It is based on Dirichlet’s theorem stating that there are infinitely many
primes of the form a + b c if gcd(a, b) = 1 (consider b = T and a = k · (q mod T)). The semi-
prime is then computed as N = p q.

Algorithm 1: Generation of a vulnerable semi-prime with escrow key T

GetCorrelPrimes:
Input : α, T, K
Output : p, k

while true do
generate random primes q and r of size α
for k← 2 to K do

p← r + (k q− r) mod T
if p is prime then

return p, q
end

end
end

4.2. Recovering Procedure

The key idea of the SSB, and also the proof that it works as expected, is its recovering
procedure. Formally, the factors of N can be efficiently recovered by knowing in advance
only the semi-prime N and the escrow key T. The values of the parameters α, K, and c may
affect the running time of the recovering procedure; however there is no need to know
them to recover the factors.

The recovering procedure can be split into three phases:

1. Recovering “low-level” coefficients.
2. Recovering “high-level” coefficients.
3. Recovering the factors.

Generally speaking, in a practical implementation of the recovering procedure it might
be convenient to interleave the executions of these three phases. However, here the phases
are discussed independently to simplify the description of the whole procedure.

Example 1. A “running example” may be useful to understand the description of the SSB’s
recovering procedure. Let α = 128, c = 5, K = 30. Pick as a random secret the 123-bit
prime T = 6451117418610792529759522664972769997. Then, pick as vulnerable semi-prime
N = 54577680260424665710663143106120874652519112194523277824721618245793829
954991 (of bit length 255).

4.2.1. Recovering “Low-Level” Coefficients

At the beginning, only N and T are known. The equation N = p q and the equation in
condition H0 imply the following:

N mod T ≡T (p mod T) · (q mod T) (1)

p mod T ≡T (k q) mod T (2)

By combining them, we obtain the following:

N mod T ≡T (k q2) mod T (3)
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Because k ∈ [2, K], where K is a reasonably small constant, we can exhaustively test
every possible value for k and discard any value for which N · k−1 in the Galois field
GF(T) is a quadratic non-residue, that is, discard any value k such that for all integers
γ ∈ [0, T), (N mod T) (k−1 mod T) 6≡T γ2. Here, k−1 denotes the value in GF(T) such that
k · k−1 ≡T 1.

The output of this phase is a list containing candidate values for the “low-level”
coefficient k and the corresponding quadratic residue γ2 in GF(T). The correct value of k
yields γ2 ≡T q2.

Example 2 (Continuing Example 1). There are 14 values for k ∈ [2, 30] that yield a quadratic
residue in GF(T). They are 3, 4, 9, 10, 12, 13, 14, 16, 19, 22, 23, 25, 27, and 30.

4.2.2. Recovering “High-Level” Coefficients

This phase starts by knowing N, T, k, and q2 mod T. Actually, this phase is executed
once for any candidate in the list built in the previous phase; any candidate is discarded as
soon as it yields inconsistent results.

The first step computes the square root of γ2 = q2 mod T in GF(T); that is, it finds the
values whose square is congruent to γ2 modulo T, typically by means of the Tonelli–Shanks
algorithm [43,44]. Because in general any square root has two distinct values in GF(T),
there are two possible values γ1 and γ2 for q mod T, where γ1 ≡T T − γ2. In the following,
let γ be either γ1 or γ2; this phase has to be performed with both values by discarding the
value that yields inconsistent results.

Starting from q mod T, the value p mod T can be easily computed from Equation (2),
so several candidate values for q mod T and p mod T are now known.

Example 3 (Continuing Example 2). The 14 possible values for k, each of them with two possible
roots γ1 and γ2, yield the following 28 cases:

k, γ q mod T p mod T

3, γ1 1101001108223132047246029465205384188 3303003324669396141738088395616152564
3, γ2 5350116310387660482513493199767385809 3148114093941396388021434269356617433
4, γ1 383884601054424720447564657194317617 1535538404217698881790258628777270468
4, γ2 6067232817556367809311958007778452380 4915579014393093647969264036195499529
9, γ1 255923067369616480298376438129545078 2303307606326548322685387943165905702
9, γ2 6195194351241176049461146226843224919 4147809812284244207074134721806864295

10, γ1 674267825617802548964398838956350795 291560837567232959884465724590737953
10, γ2 5776849592992989980795123826016419202 6159556581043559569875056940382032044
12, γ1 550500554111566023623014732602692094 154889230727999753716654126259535131
12, γ2 5900616864499226506136507932370077903 6296228187882792776042868538713234866
13, γ1 872807543698631712198073475805281438 4895380649471419728815432520495888697
13, γ2 5578309874912160817561449189167488559 1555736769139372800944090144476881300
14, γ1 1772631623417650051858813089627283653 5463490472014723136744815259863661151
14, γ2 4678485795193142477900709575345486344 987626946596069393014707405109108846
16, γ1 3033616408778183904655979003889226190 3380040610175394766179005407418229061
16, γ2 3417501009832608625103543661083543807 3071076808435397763580517257554540936
19, γ1 1334962546318133547479911059450973176 6010936124212159812839742134650180353
19, γ2 5116154872292658982279611605521796821 440181294398632716919780530322589644
22, γ1 392162883320122101182846126731882268 2176466014431893696263092123128639899
22, γ2 6058954535290670428576676538240887729 4274651404178898833496430541844130098
23, γ1 2533078726893509165415881053303209543 200753951053578036729560241218889516
23, γ2 3918038691717283364343641611669560454 6250363467557214493029962423753880481
25, γ1 2426893127022547123724783203111380952 2612271408066545325283876093029593827
25, γ2 4024224291588245406034739461861389045 3838846010544247204475646571943176170
27, γ1 367000369407710682415343155068461396 3457892555397395895454742521875687695
27, γ2 6084117049203081847344179509904308601 2993224863213396634304780143097082302
30, γ1 2107797709484122639489264125803469073 5173874517026546416842219789349142217
30, γ2 4343319709126669890270258539169300924 1277242901584246112917302875623627780

The semi-prime N can be written as follows:

p q = (π T + (p mod T)) · (ν T + (q mod T)), (4)



Cryptography 2023, 7, 45 10 of 25

that is, if δ = (N − (p mod T) (q mod T))/T,

δ = π ν T + π (q mod T) + ν (p mod T). (5)

From the last equation, it is easy to obtain the following bounds:

π ν ≤
⌈

N/T2
⌉

(6)

(π + 1) (ν + 1) ≥
⌊

N/T2
⌋

(7)

Therefore, `(π) + `(ν) ' `(π ν) ' `(N/T2) ' 2α − 2(α − c) = 2c. Because by
construction c is a small constant, it is possible to adopt a brute force approach to discover
the missing “high-level” coefficients π and ν. The brute force search guesses the value of
the sum π + ν, starting from the lower bound

⌊√
2 (bN/T2c − 1)

⌋
(from Equation (7)) and

ending at the upper bound
⌈

N/T2⌉ ≈ 22c (from Equation (6)).
For any candidate value of the sum π + ν, Equation (5) can be transformed by intro-

ducing an unknown x = π, C = π + ν = x + ν, a = q mod T, b = p mod T:

x (C− x) T + a x + b (C− x) = δ,

that is,
T x2 + (b− a− C T) x + δ− b C = 0.

Because we are looking for integer solutions for x and C− x, the brute force attack just
tries all values for C, in increasing order, and immediately discards any value such that

∆ = (b− a− C T)2 − 4 T (δ− b C)

is not a square. If the value of C survives, the solutions(
C T + a− b±

√
∆
)

/(2 T)

are computed; if either one of the solutions is an integral number, the pair (x, C− x) = (π, ν)
is recorded as a candidate solution.

Example 4 (Continuing Example 3). By Equation (6), π ν ≤ 1312, and the search interval for
π + ν is [71, 1312]. Eventually, the brute force search phase yields the following:
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k, γ δ (π, ν)

3, γ1 8459626466054297349616399379260014164347
3, γ2 8457579353068579085275623974455862931102
4, γ1 8460098809150150504624722565825147543255
4, γ2 8455567114736811835697200866446146361343
9, γ1 8460098809150150504624722565825147543255
9, γ2 8456206922405235876897946807541470224038 (48, 26)

10, γ1 8460159710142991168177115744323858742548
10, γ2 8454674421387565411156205086222433061299
12, γ1 8460176966608408915640022393992616856441
12, γ2 8454431238974637688887602540186506313669
13, γ1 8459527860681315896302789741399585733765
13, γ2 8458844931455875155214043724730914133903
14, γ1 8458688931473612092596816415096292863204
14, γ2 8459473936150433673255660520780811038011
16, γ1 8458600731145590019601856845450035587533
16, γ2 8458563270745932805742932307196370272787
19, γ1 8458946310355913998823466442261921695379
19, γ2 8459841091607833499654026572791050078911
22, γ1 8460057876762344444478490757720182548647
22, γ2 8456175388241485667746177173305070300817
23, γ1 8460111356431450904636879475680056375399
23, γ2 8456394071690787199309265394309605704461
25, γ1 8459207454427345656382788041250813432771
25, γ2 8457795501543823956302037177881981637553
27, γ1 8459993466423705060298814722415082625743
27, γ2 8457367241929899374346925285427054004837
30, γ1 8458499704585927357292407303891989899950
30, γ2 8459330259393827233818979265142169741243

There is only one candidate: k = 9, p mod T = 4147809812284244207074134721806864295,
q mod T = 6195194351241176049461146226843224919, π = 48, ν = 26.

4.2.3. Recovering the Factors

This phase starts by knowing N, T, p mod T, q mod T, and a list of candidate solutions
(π, ν).

For any candidate solution (π, ν), the corresponding

p = π T + (p mod T) and q = ν T + (q mod T)

are computed, then the product p q is compared to N. One of the candidate solutions
certainly yields a factorization of the semi-prime.

Example 5 (Continuing Example 4). Finally, we obtain the following:

p = π T + (p mod T) = 313801445905602285635531222640499824151
q = ν T + (q mod T) = 173924247235121781823208735516135244841

and we verify that p · q = 5457768026042466571066314310612087465251911219452327782472
1618245793829954991 = N.

4.3. Analysis

The time complexity of the SSB’s recovering procedure can be easily obtained. As
explained in the previous subsection, the procedure starts by recovering the “low-level”
coefficients by means of an exhaustive search among O(K) possible values for k. For every
candidate value, the procedure must execute some operations in GF(T) whose cost is in
O((log T)2) = O(α2) and also use the Tonelli–Shanks algorithm to determine if a value < T
is a quadratic residue, which costs O((log T)3) = O(α3) [45]. The list of candidate values
for k has expected length K/2, because in a finite field with an odd number of elements
any quadratic residue has two square roots; thus, half of the elements of the field are not
the square of another element. Therefore, the “high-level” coefficients recovery phase is
executed on O(K) candidate values for k and includes an exhaustive search in an interval
of size O(22c); in every iteration the procedure executes a few integer operations on values
of bit length ≈ 2(α + c); hence, every execution of this phase has a cost in O(22c (α + c)2).
Finally, the cost of every execution of the third phase is dominated by two multiplications
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of values of bit length ≈ α− c; hence, it is in O(α2). Summing all up, the worst-case cost of
the whole recovering procedure is in O(K (α + c)3 22c).

The values of the parameters K and c are chosen by the backdoor designer. We would
expect that larger values of K and c yield smaller running times for Algorithm 1 and longer
running times for the recovery procedure; this intuition is confirmed by the experiments.
Anyway, the value of c cannot be made too large or it would be possible to discover the
backdoor by just guessing the design key T of bit length `(T) = α− c. By letting K ∈ O(α)
and c ∈ O(log α), for instance, K ≈ α and c = 7 as suggested in Section 4.1, one obtains
a running time for the recovery procedure in O(α4), that is, a polynomial in the size of
the semi-prime.

Experimental Results

In order to confirm that the backdoor works as expected and to assess the execution
times with respect to the designer’s parameters, the SSB has been implemented in Sage-
Math [46] and extensive tests have been performed (the code is open-source and available
at https://gitlab.com/cesati/ssb-and-tsb-backdoors.git, accessed on 17 September 2023).

In particular, three values for α have been considered: 512 (the size of factors for RSA-
1024), 1024 (RSA-2048), and 2048 (RSA-4096). All tests have been performed by choosing
c = 7. This means that the escrow keys have sizes 505, 1017, and 2041, respectively.
The value of c is so small that detecting the existence of the backdoor by simply guessing
the value of the escrow key does not appear to be significantly easier than guessing one of
the factors of the corresponding semi-primes. Every test trial involves choosing a value for
the parameter K, generating an escrow key T and a vulnerable semi-prime, then recovering
the factors of the semi-prime by just using the values of the semi-prime and the escrow
key. The tests have been executed by varying the parameter K so as to determine a value
yielding both fast generations of vulnerable semi-primes and a reasonably quick recovery
of the factors.

The tests have been executed on three computational nodes with 16 physical Intel
Xeon E5-2620 v4 cores running at 2.1 GHz with 64 GiB of RAM. The nodes are based on
the Slackware 14.2 software distribution with a Linux kernel version 5.4.78 and SageMath
version 9.1. All tests have properly recovered the factors of the vulnerable semi-primes.
Each value of K ∈ {100 · i | i = 1, . . . , 50} has been tested 20 times. The SageMath code is
sequential; that is, each test trial runs on a single computation core. Table 1 and Figure 1
report averages and standard deviations of the running times.

Table 1. SSB: running times (in seconds, average and standard deviations on 20 trials) for
α = 512, 1024, and 2048.

α = 512 Generation Recovering α = 1024 Generation Recovering α = 2048 Generation Recovering
K avg. st.dev. avg. st.dev. K avg. st.dev. avg. st.dev. K avg. st.dev. avg. st.dev.

100 4.9 4.8 2.6 1.8 100 51.0 60.3 5.4 1.9 100 466.4 375.1 27.1 6.9
500 1.7 0.6 7.8 6.9 500 17.9 7.4 18.3 13.5 500 214.0 134.7 47.4 18.6

1000 1.5 0.2 12.2 9.6 1000 11.6 3.2 34.9 30.7 1000 151.2 61.3 71.6 37.4
1500 1.5 0.1 18.0 17.1 1500 11.2 1.6 33.9 37.8 1500 122.3 35.0 101.2 70.0
2000 1.4 0.1 10.0 9.0 2000 11.5 1.8 28.6 23.0 2000 102.7 20.3 95.8 51.7
2500 1.6 0.1 15.3 11.2 2500 10.6 1.3 61.2 60.0 2500 112.7 25.4 113.2 84.8
3000 1.7 0.1 15.7 15.7 3000 11.4 1.7 45.4 63.7 3000 107.6 23.0 130.7 84.1
3500 1.7 0.1 26.1 30.3 3500 10.8 0.9 72.0 63.4 3500 99.5 22.6 95.5 54.8
4000 1.7 0.1 14.6 18.8 4000 10.7 1.5 56.0 49.0 4000 90.4 9.1 143.1 104.4
4500 1.6 0.2 19.0 16.6 4500 10.8 1.0 42.7 41.9 4500 91.5 13.5 152.8 136.6
5000 1.6 0.3 24.8 19.0 5000 11.1 1.2 44.4 38.4 5000 97.3 16.9 94.5 91.5

https://gitlab.com/cesati/ssb-and-tsb-backdoors.git
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Figure 1. SSB: average running times for α = 512, 1024, and 2048 (20 trials for each value of K).
Magnitudes of the standard deviations are shown as vertical bars.



Cryptography 2023, 7, 45 14 of 25

The experimental results confirm that the value of K is crucial in determining both
the time required to generate a vulnerable semi-prime and the time required to recover
the factors. Even if the code has not been optimized at all, the recovery time is reasonably
small for all tested values of K; hence, the SSB is a practically effective backdoor. However,
the generation time is also very important whenever the backdoor mechanism has to be
hidden in hardware devices or software programs that are supposed to yield robust, legit
semi-primes. While in general larger values of K are associated with smaller generation
times, there seems to be a threshold value for K above which the generation times are
essentially constants and near the minimum observed value. From the data shown in
Table 1 and Figure 1, K may be safely set to values near 500, 1000, and 2000 for α = 512,
1024, and 2048, respectively; that is, K ≈ α.

5. TSB: A Backdoor Embedded in a Pair of Semi-Primes

This section describes the TSB (Twin Semi-prime Backdoor), a new proposal for a
backdoor embedded in the values of a pair of semi-primes, N1 and N2. These semi-primes
are typically to be generated on the same device but can be used independently. For instance,
the two semi-primes might be used in two different RSA keys. It is not hard to justify the
generation of two different RSA keys. For instance, the user might be told that one RSA key
is for business or work usage and the other one is for personal usage. Alternatively, one
of the semi-primes can be used to build an RSA key while the other one can be separately
stored as an escrow key for the RSA key.

This section first reports how the two semi-primes are generated. Then, it describes the
procedure to efficiently factor both semi-primes, provided that the corresponding designer
key is known. Finally, the section reports an analysis of the theoretical and practical
efficiency of the backdoor.

5.1. Generation of the Vulnerable Pair of Semi-Primes

The first step of the generation of a vulnerable pair is choosing a “designer key”,
which is a secret value that must be known in order to detect and exploit the backdoor.
The designer key is a prime T of a size slightly smaller than the size of the primes in each
semi-prime. Thus, if α is the reference bit length of the primes (e.g., α = 512 for RSA-1024),
then `(T) ' α− c, where typically 4 ≤ c ≤ 10 for α ≤ 2048; a good value for α = 512, 1024,
and 2048 appears to be c = 7. The backdoor designer must also choose the values of two
constants K and B. The value of K is related to the value of α, as discussed later; typically,
K ≈ α/5, e.g., K = 100, 200, and 400 for α = 512, 1024, and 2048, respectively. The constant
B < T acts as a detection threshold, so any value for B such that `(B) ' α− 2c is valid.

In order to create a vulnerable pair, four distinct primes, p1, q1, p2, and q2, each of
them having a bit length of roughly α, must be generated. The backdoor exists whenever
the following conditions hold:

H1. There exists a positive integer h with 1 < h ≤ K such that q2 ≡T h2 q1.

H2. There exists a positive integer k1 with 1 < k1 ≤ K such that p1 ≡T h k1 q2.

H3. There exists a positive integer k2 with 1 < k2 ≤ K such that p2 ≡T k2 q1.

H4. The integers h, k1, and k2 are all coprimes; that is, gcd(h, k1) = gcd(h, k2) = gcd(k1, k2) = 1.

H5. k2 is not a divisor of h k1 modulo T; that is, h k1 6≡T k2.

H6. (h q1)
2 mod T > B.
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Algorithm 2 can be used to generate the four primes p1, q1, p2, and q2 satisfying
the conditions H1–H6 above. Once more, the algorithm is implicitly based on Dirichlet’s
theorem stating that there are infinitely many primes of the form a + b c when gcd(a, b) = 1.

Algorithm 2: Generation of a vulnerable pair of semi-primes

GeneratePair:
Input : α, c, K, T
Output : p1, q1, p2, q2

repeat
generate random primes q1, p of size α
for h← 2 to K do

q2 ← p + ((h2 q1 − p) mod T)
if q2 is prime then

break for loop
end

end
until q2 is not prime
repeat

p1, k1 ←GetCorrelPrime(α,q2,h,T,K,c)
until gcd(k1,h) 6= 1
repeat

p2, k2 ←GetCorrelPrime(α,q1,1,T,K,c)
until gcd(k1,k2) 6= 1 or gcd(k2,h) 6= 1
return p1, q1, p2, q2

GetCorrelPrime:
Input : α, q, j, T, K, c
Output : p, k

while true do
k← random value between 2 and K
t1 ← (k j q) mod T
for p← t1 + 2c−3 to t1 + 22 c−2 do

if p ≡T t1 and p is prime then
return p, k

end
end

end

Finally, the semi-primes are computed as N1 = p1 q1 and N2 = p2 q2. Observe that N1
and N2 are coprimes, because all factors are necessarily different by construction.

5.2. Recovering Procedure

The key idea of the TSB, and also the proof that it works as expected, is its recovering
procedure. Formally, the factors of N1 and N2 can be efficiently recovered by knowing in
advance only the pair of semi-primes (N1, N2) and the designer key T. The values of the
parameters α, K, and c may affect the running time of the recovering procedure; however
there is no need to know them to recover the factors.

The recovering procedure can be split into four phases:

1. Recovering “medium-level” coefficients.
2. Recovering “low-level” coefficients.
3. Recovering “high-level” coefficients.
4. Recovering the factors.
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Generally speaking, in a practical implementation of the recovering procedure it might
be convenient to interleave the executions of these four phases. However, the phases are
here described independently to simplify the description of the whole procedure.

Example 6. This is the “running example” for the TSB’s recovering procedure. Let α = 64, c = 3,
K = 100, and B = 257. Pick as a random secret the 61-bit prime T = 1350856093440009833.
Then, pick as vulnerable semi-primes N1 = 199771249142689629600100193795300988277 and
N2 = 330849388672597230630022641974377014199 (both of bit length 128).

5.2.1. Recovering “Medium-Level” Coefficients

The recovering procedure starts by assuming to know the following data: N1, N2,
and the “secret” prime T.

Equations in conditions H1, H2, and H3 enforce the following congruences of N1 and
N2 modulo T:

N1 ≡T p1 q1 ≡T h k1 q2 q1 ≡T h3 k1 q2
1 (8)

N2 ≡T p2 q2 ≡T k2 q1 q2 ≡T h2 k2 q2
1 (9)

It turns out that N1 and N2 are congruent modulo T to two values that have a big
common factor, h2 q2

1. However, the Euclidean algorithm on N1 mod T and N2 mod T does
not really help here:

gcd(N1 mod T, N2 mod T) =

gcd((h3 k1 q2
1) mod T, (h2 k2 q2

1) mod T).

The point is that the greatest common divisor is relative to the lifted images of the
products in the Galois field GF(T), and it is not related to the greatest common divisor of
the products h3 k1 q2

1 and h2 k2 q2
1 in Z.

Example 7 (Continuing Example 6).

gcd(N1 mod T, N2 mod T) = gcd(337598081507736831, 75151731210637471) = 1.

To overcome this problem, observe that Equations (8) and (9) also imply the following
ones:

N1 mod T ≡T (h k1) ·
[
(h2 q2

1) mod T
]

(10)

N2 mod T ≡T k2 ·
[
(h2 q2

1) mod T
]

(11)

and therefore there exist two integers k̃1, k̃2 such that

(N1 mod T) + k̃1 · T = (h k1) ·
[
(h2 q2

1) mod T
]

(12)

(N2 mod T) + k̃2 · T = k2 ·
[
(h2 q2

1) mod T
]

(13)

From the last two equations,

gcd((N1 mod T) + k̃1 · T, (N2 mod T) + k̃2 · T) =
[
(h2 q2

1) mod T
]

(14)

Observe that dropping N1 mod T from Equation (12) yields

k̃1 ≤ (h k1) ·
(h2 q2

1) mod T
T

< K2.
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Similarly, from Equation (13),

k̃2 ≤ k2 ·
(h2 q2

1) mod T
T

< K.

Hence, the sizes of the “medium” coefficients k̃1 and k̃2 are so small that they can be
quickly recovered by a brute force approach as in Algorithm 3. It is possible to recognize
the proper values of k̃1 and k̃2 because the size of

[
(h2 q2

1) mod T
]

produced by the gcd
with the right values is usually much higher than the average value resulting from a
gcd with random wrong values. In fact, by condition H6, (h2 q2

1) mod T > B; hence, the
procedure selects any candidate pair of medium-level coefficients (k̃1, k̃2) for which the
greatest common divisor in Equation (14) is between B and T. Moreover, the value returned
by the Euclidean algorithm with the right values must be a square in the Galois field GF(T);
hence, the procedure may use this condition to filter some false positives. In all test cases,
the first value found by this brute force procedure yields a proper factorization result.

Algorithm 3: Brute force search of the medium-level coefficients

RecoveryMedCoeff :
Input : N1, N2, T
Output : a list of pairs (k̃1, k̃2)

for s← 0 to ∞ do
for k̃1 ← 0 to s do

k̃2 ← s− k̃1

g← gcd(k̃1 · T + N1 mod T, k̃2 · T + N2 mod T)
if B < g < T and g ≡T γ2 for some γ then

add (k̃1, k̃2) to the list of pairs
end

end
end

Example 8 (Continuing Example 7). There are only two possible pairs (k̃1, k̃2) ∈ [0, 1002]×
[0, 100] that yield a greatest common divisor higher than B = 257: (671, 10) and (5277, 79).
The gcd for the pair (671, 10) is 196865400950880229, which is the square of 10632559655363908
modulo T. The gcd for the pair (5277, 79) is 1547721494390890062: because it is above T, the pair
can be discarded.

5.2.2. Recovering “Low-Level” Coefficients

The previous phase might determine several candidate pairs of medium-level coeffi-
cients, and the current phase must be applied to each of them.

This phase starts by assuming to know the following data: N1, N2, T, k̃1, k̃2, and the
value γ2 =

[
(h2 q2

1) mod T
]

derived from Equation (14). The value of the “low-level”
coefficient k2 can be immediately computed using Equation (13):

k2 =
(
(N2 mod T) + k̃2 · T

)
/γ2, (15)

or, assuming K < T, k2 = (N2 · (γ2)−1) mod T where γ2 · (γ2)−1 ≡T 1.
However, by inverting Equation (12) one obtains the value of the product h k1:

(h k1) =
(
(N1 mod T) + k̃1 · T

)
/γ2, (16)

or, assuming K < T, (h k1) = (N1 · (γ2)−1) mod T.
Since both h and k1 are not greater than K, their product is below K2. Moreover,

by condition H4, gcd(h, k1) = 1. Because the number of multiplicative partitions of
this product does not exceed K2 [47,48], the procedure may exhaustively generate all
possible candidate pairs (h, k1) and apply the forthcoming phases to each of them. When
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these phases are performed on the true pair (h, k1), a proper factorization of N1 and N2
is computed.

Example 9 (Continuing Example 8). Two exact integer divisions yield k2 = 69 and (h k1) =
4606 = 2 · 72 · 47. Therefore, there are six possible pairs (h, k1), corresponding to the non-
trivial subsets of the three values 2, 72, and 47: (2, 2303), (47, 98), (49, 94), (94, 49), (98, 47),
and (2303, 2).

5.2.3. Recovering “High-Level” Coefficients

This phase starts by knowing the following data: N1, N2, T, h, k1, k2, and γ2.
The procedure starts by computing the square root of γ2 = (h2 q2

1) mod T in GF(T);
that is, it finds the values whose square is congruent to γ2 modulo T, typically by means
of the Tonelli–Shanks algorithm [43,44]. Because in general any square root has two
distinct values in GF(T), one obtains two possible values γ1 and γ2 for (h q1) mod T, where
γ1 ≡T T − γ2. In the following, let γ be either γ1 or γ2; the procedure has to perform this
phase with both values and discard the one that yields inconsistent results.

It is now possible to compute the value q1 mod T, because γ = (h q1) mod T means
the following:

q1 mod T = (γ h−1) mod T (17)

where obviously h−1 is computed in GF(T); that is, h h−1 ≡T 1.
The value q2 mod T can now be inferred from the equation in condition H1, because

q2 mod T =
(
(q1 mod T) · h2

)
mod T (18)

Also, p1 mod T and p2 mod T can be computed from conditions H2 and H3:

p1 mod T = (h k1 (q2 mod T)) mod T,

p2 mod T = (k2 (q1 mod T)) mod T.
(19)

Example 10 (Continuing Example 9). The square roots of γ2 = 196865400950880229 in GF(T)
are γ1 = 10632559655363908 and γ2 = 1340223533784645925. The six possible pairs (h, k1)
and the two possible roots γ1 and γ2 yield the following 12 cases:

h, k1, γ q1 mod T q2 mod T p1 mod T p2 mod T

2, 2303, γ1 5316279827681954 21265119310727816 685500817531612520 366823308110054826
2, 2303, γ2 1345539813612327879 1329590974129282017 665355275908397313 984032785329955007
47, 98, γ1 1264857461085442480 499730303802103676 1249852184152786057 820374834734901808
47, 98, γ2 85998632354567353 851125789637906157 101003909287223776 530481258705108025
49, 94, γ1 331038891447662896 520995423112831492 584496908244388744 1227986014848582496
49, 94, γ2 1019817201992346937 829860670327178341 766359185195621089 122870078591427337
94, 49, γ1 632428730542721240 999460607604207352 1148848274865562281 410187417367450904
94, 49, γ2 718427362897288593 351395485835802481 202007818574447552 940668676072558929
98, 47, γ1 165519445723831448 1041990846225662984 1168993816488777488 613993007424291248
98, 47, γ2 1185336647716178385 308865247214346849 181862276951232345 736863086015718585

2303, 2, γ1 466909284818889792 171375204382903130 454232818686074308 1147050503383169489
2303, 2, γ2 883946808621120041 1179480889057106703 896623274753935525 203805590056840344

At this point the procedure knows the values N1, N2, T, q1 mod T, q2 mod T, p1 mod
T, and p2 mod T.

The semi-prime Ni (i ∈ {1, 2}) can be written as follows:

Ni = pi qi = (πi T + (pi mod T)) · (νi T + (qi mod T)), (20)

that is, if δi = (Ni − (pi mod T) (qi mod T))/T,

δi = πi νi T + πi (qi mod T) + νi (pi mod T). (21)
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The following bounds can be easily obtained from the last equation:

πi νi ≤
⌈

Ni/T2
⌉

(22)

(πi + 1) (νi + 1) ≥
⌊

Ni/T2
⌋

(23)

Therefore, `(πi) + `(νi) ' 2α− 2(α− c) = 2c. Because by construction c is a small
constant, the procedure can adopt a brute force approach to discover the missing “high-
level” coefficients πi and νi. The brute force search guesses the value of the sum πi + νi,
starting from the lower bound

⌊√
2(bNi/T2c − 1)

⌋
(from Equation (23)) and ending at the

upper bound
⌈

Ni/T2⌉ ≈ 22c (from Equation (22)).
For any candidate value of the sum πi + νi, Equation (21) can be transformed by

introducing an unknown x = πi, C = πi + νi = x + νi, ai = qi mod T, bi = pi mod T:

x (C− x) T + ai x + bi (C− x) = δi,

that is,
T x2 + (bi − ai − C T) x + δi − bi C = 0.

Because we are looking for integer solutions for x and C− x, the brute force attack
tries all values for C, in increasing order, and immediately discards any value such that

∆ = (bi − ai − C T)2 − 4 T (δi − bi C)

is not a square. If the value of C survives, the solutions(
C T + ai − bi ±

√
∆
)

/(2 T)

are computed; if either one of the solutions is an integral number, the pair (x, C− x) = (πi, νi)
is recorded as a candidate solution.

Example 11 (Continuing Example 10). By Equation (22), π1 ν1 ≤ 110 and π2 ν2 ≤ 182.
The search interval for π1 + ν1 is [20, 110]. The search interval for π2 + ν2 is [26, 182]. Eventually,
the brute force search phase yields the following candidates:

h, k1, γ c1 c2 (π1, ν1) (π2, ν2)

2, 2303, γ1 147882225056116242909 244912533420701231951
2, 2303, γ2 147222186060035527550 243949765754682004760
47, 98, γ1 146714639142360634749 244614821750351042527
47, 98, γ2 147878492694158853453 244584070795448038178 (9, 12) (12, 14)
49, 94, γ1 147741686848298522541 244444700795865219999
49, 94, γ2 147306366554550564348 244842826140386624154
94, 49, γ1 147347067872903355989 244614821750351042527
94, 49, γ2 147777488784871629677 244673613681882690950
98, 47, γ1 147741686848298522541 244444700795865219999
98, 47, γ2 147725344017071121644 244749828556075164398

2303, 2, γ1 147727922012766098477 244772788355361842613
2303, 2, γ2 147298208022831052744 244740357969687905399

Therefore, there is only one surviving parameter set: h = 47, k1 = 98, k2 = 69, π1 = 9,
ν1 = 12, π2 = 12, ν2 = 14, p1 mod T = 101003909287223776, q1 mod T = 85998632354567353,
p2 mod T = 530481258705108025, and q2 mod T = 851125789637906157.

5.2.4. Recovering the Factors

This phase starts by knowing Ni, T, pi mod T, qi mod T, and a list of candidate
solutions (πi, νi), for i = 1, 2. The procedure now works on every semi-prime separately.

For any candidate solution (πi, νi), it computes the corresponding pi = πi T +(pi mod
T) and qi = νi T + (qi mod T) and then it simply verifies whether pi · qi = Ni. One of the
candidate solutions certainly yields a factorization of the semi-prime.
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Example 12 (Continuing Example 11). Finally, we obtain the following:

p1 = π1 T + (p1 mod T) = 12258708750247312273
q1 = ν1 T + (q1 mod T) = 16296271753634685349
p2 = π2 T + (p2 mod T) = 16740754379985226021
q2 = ν2 T + (q2 mod T) = 19763111097798043819

and we verify that

p1 · q1 = 199771249142689629600100193795300988277 = N1
p2 · q2 = 330849388672597230630022641974377014199 = N2

5.3. Analysis

The time complexity of the TSB’s recovering procedure can be easily obtained. As
already explained, the procedure starts by recovering the “medium-level” coefficients by
means of an exhaustive search among K3 possible values for the pair (k̃1, k̃2). For every
candidate pair, the procedure must execute the Euclidean algorithm on values of bit lengths
up to ≈ `(k̃1 T), which costs O(log(k̃1 T)) = O(`(k̃1) + `(T)) = O(log K + α− c). It may
also use the Tonelli–Shanks algorithm to determine if a value < T is a quadratic residue,
which costs O((log T)3) = O(α3) [45]. The “low-level” coefficients recovery phase involves
a couple of integer divisions on values ≈ k̃1 T, a factorization of a value < K2, and the
generation of up to K2 candidate pairs (h, k1); hence, the cost of each execution of this
recovery phase is O(α2 + K2). The “high-level” coefficients recovery phase includes an
exhaustive search in an interval of size O(22c); in every iteration the procedure executes
a few integer operations on values of bit length ≈ 2(α + c); hence, the cost of every
execution of this phase is O(22c (α + c)2). Finally, the cost of every execution of the fourth
phase is dominated by four multiplications of values of bit length ≈ α − c; hence, it is
in O(α2). Summing all up, the worst-case cost of the whole recovering procedure is in
O(K5 (α + c)2 22c).

The values of the parameters K and c are chosen by the backdoor designer. It is easy
to observe that larger values of K and c yield shorter running times for Algorithm 2 and
longer running times for the recovery procedure. Anyway, the value of c cannot be made
too large, or it would be possible to discover the vulnerability by just guessing the designer
key T of bit length `(T) = α− c. However, experimental results show that larger values of
c do not necessarily yield shorter times for the generation phase. By letting K ≈ α/5 and
c = 7, as suggested in Section 5.1, one obtains a running time for the recovery procedure in
O(α7), that is, a polynomial in the size of the semi-primes.

Experimental Results

In order to confirm that the backdoor works as expected and to assess the execution
times with respect to the designer’s parameters, the TSB has been implemented in Sage-
Math [46] and extensive tests have been performed (the code is open-source and available
at https://gitlab.com/cesati/ssb-and-tsb-backdoors.git, accessed on 17 September 2023).

In particular, three values for α have been considered: 512 (the size of factors for RSA-
1024), 1024 (RSA-2048), and 2048 (RSA-4096). All tests have been performed by choosing
c = 7. This means that the designer keys have sizes 505, 1017, and 2041, respectively.
The value of c is so small that detecting the existence of the backdoor by simply guessing
the value of the designer key does not appear to be significantly easier than guessing one of
the factors of the corresponding semi-primes. Every test trial involves choosing a value for
the parameter K, generating a designer key T and a pair of vulnerable semi-primes, then
recovering the factors of the semi-primes by just using the values of the semi-primes and the
designer key. The tests have been executed by varying the parameter K so as to determine
a value yielding both fast generations of vulnerable semi-primes and a reasonably quick
recovery of the factors.

https://gitlab.com/cesati/ssb-and-tsb-backdoors.git
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The tests have been executed on the same computational nodes described in Section 4.
All tests have properly recovered the factors of the vulnerable semi-primes. Each value of
K ∈ {10 · i | i = 1, . . . , 40} has been tested 20 times. The SageMath code is sequential; that
is, each test trial runs on a single computation core. Table 2 and Figure 2 report averages
and standard deviations of the running times.

Figure 2. TSB: average running times for α = 512, 1024, and 2048 (20 trials for each value of K).
Magnitudes of the standard deviations are shown as vertical bars.



Cryptography 2023, 7, 45 22 of 25

Table 2. TSB: running times (in seconds, average and standard deviations on 20 trials) for α = 512,
1024, and 2048.

α = 512 Generation Recovering α = 1024 Generation Recovering α = 2048 Generation Recovering
K avg. st.dev. avg. st.dev. K avg. st.dev. avg. st.dev. K avg. st.dev. avg. st.dev.

10 26.6 31.8 2.7 2.7 10 454.7 402.5 9.8 8.0 10 6353.2 3759.4 31.1 9.3
50 7.8 4.7 6.4 6.6 50 95.3 69.7 23.2 20.1 50 1785.4 1429.4 43.1 12.5
100 6.9 2.7 23.5 24.0 100 59.3 34.4 75.1 81.3 100 1086.0 887.3 104.4 108.7
150 5 1.5 151.9 237.0 150 57.8 35.2 133.2 286.4 150 647.1 376.5 236.3 290.4
200 5.6 2.6 270.8 612.9 200 43.5 23.9 315.6 641.3 200 544.3 277.6 619.9 729.6
250 3.9 1.3 811.9 1277.7 250 45.8 21.8 981.4 2810.1 250 456.8 305.3 1976.0 3493.5
300 3.9 1.3 1309.1 2681.1 300 38.2 16.3 1905.0 3161.7 300 395.4 236.6 1910.5 4716.5
350 4.2 1.2 1598.7 3494.7 350 38.1 26.1 2388.7 5378.7 350 407.6 155.3 2537.8 5460.6
400 4.5 2.3 2946.3 5371.8 400 35.9 12.7 5695.4 11,449.7 400 321.1 140.0 4541.4 6038.2

The value of K is crucial in determining both the time required to generate a pair of
semi-primes and the time required to recover the factors. The experimental results show
that, even if the SageMath code is not optimzed, the recovery time is reasonably small
for all tested values of K; hence, the TSB is a practically effective backdoor. However,
generation time is also very important whenever the backdoor mechanism has to be hidden
in hardware devices or software programs that are supposed to yield robust, legit semi-
primes. While in general larger values of K are associated with smaller generation times,
there seems to be a threshold value for K above which the generation times are essentially
constants and near the minimum observed value. From the data shown in Table 2 and
Figure 2, K can be safely set to values near 100, 200, and 400 for α = 512, 1024, and 2048,
respectively; that is, K ≈ α/5.

6. Conclusions

I presented a new idea for designing backdoors in cryptographic systems based on the
integer factorization problem. The idea consists of introducing some mathematical relations
among the factors of the semi-primes based on a large prime chosen by the designer. A first
algorithm, the SSB, can be used to implement a symmetric backdoor; hence, the designer
key acts as a pure escrow key that must be kept hidden from the owner of the generated
keys (in order to hide the vulnerability) and from third-party attackers. Another proposed
algorithm, the TSB, injects a vulnerability in a pair of distinct semi-primes and may be used
to implement either a symmetric backdoor or an asymmetric backdoor. Implementations
of both the SSB and TSB in SageMath allowed me to conduct extensive experiments to
determine optimal values for the trade-off between the generation time of the vulnerable
semi-primes and the recovery time when exploiting the backdoors. The SageMath code has
not been optimized; however, even for large RSA-4096 keys the recovery time is reasonably
small (a few hours, at worst, on a single computation core).

Future Works

It does not seem to be hard to plug an asymmetric cipher into both the SSB and
TSB, as performed for the Anderson’s backdoor by Markelova [19]; this may be a future
evolution of the present work. Moreover, a crucial point is minimizing the generation
time of the vulnerable semi-primes. The generation algorithms presented here are not
very sophisticated or optimized, because basically they generate random values in the
hope to find the proper primes satisfying the mathematical conditions of the backdoors. It
would be desirable to obtain generation times similar to those of legit public key generators.
However, an analysis of the performances of semi-prime generators likely depends on
the characteristics of the underlining pseudo-random number generators, which also may
depend on external factors, such as the amount of entropy collected by the system (see,
for example, Linux’s PRNG). Such analysis is not simple; hence, it has to be deferred to a
future work.
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3. Barker, E.; Kelsey, J. Recommendation for Random Number Generation Using Deterministic Random Bit Generators; Technical Report

NIST Special Publication 800-90; National Institute for Standards and Technologies: Gaithersburg, MD, USA, 2006.
4. Bernstein, D.J.; Lange, T.; Niederhagen, R. Dual EC: A standardized back door. In The New Codebreakers: Essays Dedicated to David

Kahn on the Occasion of His 85th Birthday; Lecture Notes in Computer Science; Ryan, P.Y.A., Naccache, D., Quisquater, J.J., Eds.;
Springer: Berlin/Heidelberg, Germany, 2016; Volume 9100, pp. 256–281. [CrossRef]

5. Leyden, J. FBI ‘Planted Backdoor’ in OpenBSD. 2010. Available online: https://www.theregister.com/2010/12/15/openbsd
backdoor claim (accessed on 17 August 2021).

6. Paul, R. FBI Accused of Planting Backdoor in OpenBSD IPSEC Stack. 2010. Available online: https://arstechnica.com/
information-technology/2010/12/fbi-accused-of-planting-backdoor-in-openbsd-ipsec-stack/ (accessed on 17 August 2021).

7. Rosenstein, R.J. Deputy Attorney General Rod J. Rosenstein Delivers Remarks on Encryption at the United States Naval Academy.
2017. Available online: https://www.justice.gov/opa/speech/deputy-attorney-general-rod-j-rosenstein-delivers-remarks-
encryption-united-states-naval (accessed on 17 August 2021).

8. Levy, I.; Robinson, C. Principles for a More Informed Exceptional Access Debate. 2018. Available online: https://www.lawfareblog.com/
principles-more-informed-exceptional-access-debate (accessed on 17 August 2021).

9. Bannier, A.; Filiol, E. Partition-Based Trapdoor Ciphers; IntechOpen: London, UK, 2017. [CrossRef]
10. Heninger, N.; Durumeric, Z.; Wustrow, E.; Halderman, J.A. Mining your Ps and Qs: Detection of widespread weak keys in

network devices. In Proceedings of the 21st USENIX Security Symposium (USENIX Security 11), Bellevue, WA, USA, 8–10
August 2012; pp. 205–220.

11. Bernstein, D.J.; Chang, Y.A.; Cheng, C.M.; Chou, L.P.; Heninger, N.; Lange, T.; van Someren, N. Factoring RSA Keys from Certified
Smart Cards: Coppersmith in the Wild. In Proceedings of the Advances in Cryptology—ASIACRYPT 2013, Bengaluru, India, 1–5
December 2013; Sako, K., Sarkar, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 341–360.

12. Rivest, R.L.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM
1978, 21, 120–126. [CrossRef]

13. Mumtaz, M.; Ping, L. Forty years of attacks on the RSA cryptosystem: A brief survey. J. Discret. Math. Sci. Cryptogr. 2019, 22, 9–29.
[CrossRef]

14. Arboit, G. Two Mathematical Security Aspects of the RSA Cryptosystem: Signature Padding Schemes and Key Generation with a
Backdoor. Ph.D. Thesis, School of Computer Science, McGill University, Montreal, QC, Canada, 2008.

15. May, A.; Ritzenhofen, M. Implicit Factoring: On Polynomial Time Factoring Given Only an Implicit Hint. In Proceedings of the
Public Key Cryptography—PKC 2009, Irvine, CA, USA, 18–20 March 2009; Lecture Notes in Computer Science; Jarecki, S., Tsudik,
G., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5443, pp. 1–14. [CrossRef]

16. Cesati, M. A new idea for RSA backdoors. arXiv 2022, arXiv:2201.13153.
17. Coppersmith, D. Finding a Small Root of a Univariate Modular Equation. In Proceedings of the Advances in Cryptology—EUROCRYPT’96,

Zaragoza, Spain, 12–16 May 1996; Lecture Notes in Computer Science; Maurer, U., Ed.; Springer: Berlin/Heidelberg, Germany,
1996; Volume 1070, pp. 155–165.

18. Coppersmith, D. Finding a Small Root of a Bivariate Integer Equation; Factoring with High Bits Known. In Proceedings of the
Advances in Cryptology—EUROCRYPT’96, Zaragoza, Spain, 12–16 May 1996; Lecture Notes in Computer Science; Maurer, U.,
Ed.; Springer: Berlin/Heidelberg, Germany, 1996; Volume 1070, pp. 178–189.

19. Markelova, A.V. Embedding asymmetric backdoors into the RSA key generator. J. Comput. Virol. Hacking Tech. 2021, 17, 37–46.
[CrossRef]

20. Young, A.; Yung, M. The Dark Side of “Black-Box” Cryptography or: Should We Trust Capstone? In Proceedings of the Advances
in Cryptology—CRYPTO’96, Santa Barbara, CA, USA, 18–22 August 1996; Lecture Notes in Computer Science; Koblitz, N., Ed.;
Springer: Berlin/Heidelberg, Germany, 1996; Volume 1109, pp. 89–103.

21. Young, A.; Yung, M. Kleptography: Using Cryptography against Cryptography. In Proceedings of the Advances in
Cryptology—EUROCRYPT’97, Konstanz, Germany, 11–15 May 1997; Lecture Notes in Computer Science; Fumy, W., Ed.;
Springer: Berlin/Heidelberg, Germany, 1997; Volume 1233, pp. 62–74.

https://gitlab.com/cesati/ssb-and-tsb-backdoors.git
http://doi.org/10.1007/978-3-662-49301-4_17
https://www.theregister.com/2010/12/15/openbsd_backdoor_claim
https://www.theregister.com/2010/12/15/openbsd_backdoor_claim
https://arstechnica.com/information-technology/2010/12/fbi-accused-of-planting-backdoor-in-openbsd-ipsec-stack/
https://arstechnica.com/information-technology/2010/12/fbi-accused-of-planting-backdoor-in-openbsd-ipsec-stack/
https://www.justice.gov/opa/speech/deputy-attorney-general-rod-j-rosenstein-delivers-remarks-encryption-united-states-naval
https://www.justice.gov/opa/speech/deputy-attorney-general-rod-j-rosenstein-delivers-remarks-encryption-united-states-naval
https://www.lawfareblog.com/principles-more-informed-exceptional-access-debate
https://www.lawfareblog.com/principles-more-informed-exceptional-access-debate
http://dx.doi.org/10.5772/intechopen.69485
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1080/09720529.2018.1564201
http://dx.doi.org/10.1007/978-3-642-00468-1_1
http://dx.doi.org/10.1007/s11416-020-00363-x


Cryptography 2023, 7, 45 24 of 25

22. Howgrave-Graham, N. Approximate Integer Common Divisors. In Proceedings of the CaLC 2001, Providence, RI, USA, 29–30
March 2001; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2001; Volume 2146, pp. 51–66. [CrossRef]
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