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Abstract: In this paper, we present new variants of Newton–Raphson-based protocols for the secure
computation of the reciprocal and the (reciprocal) square root. The protocols rely on secure fixed-
point arithmetic with arbitrary precision parameterized by the total bit length of the fixed-point
numbers and the bit length of the fractional part. We perform a rigorous error analysis aiming for
tight accuracy claims while minimizing the overall cost of the protocols. Due to the nature of secure
fixed-point arithmetic, we perform the analysis in terms of absolute errors. Whenever possible, we
allow for stochastic (or probabilistic) rounding as an efficient alternative to deterministic rounding.
We also present a new protocol for secure integer division based on our protocol for secure fixed-point
reciprocals. The resulting protocol is parameterized by the bit length of the inputs and yields exact
results for the integral quotient and remainder. The protocol is very efficient, minimizing the number
of secure comparisons. Similarly, we present a new protocol for integer square roots based on our
protocol for secure fixed-point square roots. The quadratic convergence of the Newton–Raphson
method implies a logarithmic number of iterations as a function of the required precision (independent
of the input value). The standard error analysis of the Newton–Raphson method focuses on the
termination condition for attaining the required precision, assuming sufficiently precise floating-
point arithmetic. We perform an intricate error analysis assuming fixed-point arithmetic of minimal
precision throughout and minimizing the number of iterations in the worst case.

Keywords: multiparty computation; error analysis; fixed-point arithmetic; reciprocal; integer division;
reciprocal square root; (integer) square root

1. Introduction

In this paper, we design and analyze protocols for secure fixed-point arithmetic as a
practical alternative to secure floating-point arithmetic. From a numerical analysis perspec-
tive, floating-point arithmetic is very useful as floating-point numbers scale dynamically
and relative errors can be controlled appropriately. Performance-wise, however, secure
floating-point arithmetic is very demanding. Compared to secure integer arithmetic, for ex-
ample, full support for secure floating-point numbers is usually orders of magnitude more
costly. This holds across many frameworks for secure computation, ranging from all fla-
vors of multiparty computation to fully homomorphic encryption and indistinguishability
obfuscation.

Secure fixed-point arithmetic strikes a balance between performance and usability.
Addition/subtraction is as efficient as for integers, whereas multiplication is costlier but
relatively straightforward. Our focus in this paper is on more advanced operations such
as division (via the reciprocal) and taking square roots. We present new protocols based
on Newton–Raphson iteration, along with a detailed error analysis for strict accuracy
guarantees at minimal cost. Moreover, turning the tables around, we show how to obtain
efficient protocols for secure integer division and integer square roots from their secure
fixed-point counterparts.
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The Newton–Raphson method has been studied extensively in the literature on secure
fixed-point arithmetic, starting with the paper by Algesheimer et al. [1]. This important
paper contained the groundwork for the secure computation of the reciprocal, including
a thorough error analysis, in fact aimed at a direct application to secure integer division.
The works by Catrina et al. [2,3] presented the basic foundation for secure fixed-point arith-
metic, also introducing probabilistic rounding as an efficient alternative to deterministic
rounding. In this paper, we will closely follow the Newton–Raphson-based protocol for the
reciprocal from [2]. However, we will fine-tune the use of probabilistic vs. deterministic
rounding, limiting the number of truncated bits as much as possible, to guarantee an
absolute error below 2− f for any desired precision of f fractional bits.

In this paper, we will also use the Newton–Raphson method for the secure computation
of the reciprocal square root. Prior work by Liedel [4] and follow-up work by Aly and
Smart [5] used Goldschmidt’s method for the reciprocal square root. However, these papers
lacked a complete error analysis and did not guarantee an absolute error below 2− f for
any desired precision of f fractional bits. In this paper, we will present a fine-tuned secure
protocol for the reciprocal square root and a detailed error analysis, following the same
approach as for the reciprocal. We will also extend this protocol to compute the square root,
with the same guarantee for the absolute error.

We note that the error analysis of applications of the Newton–Raphson method com-
monly focuses on bounds for the relative error assuming floating-point arithmetic. Research
into the accuracy of fixed-point arithmetic is in general rather limited. Sources like [6–8]
(Section 4.2, in particular) have treated some basic aspects. For instance, Wilkinson [7]
already covered the basic idea that the inner product of two vectors x, y can be computed
accurately by accumulating the terms xiyi exactly and only rounding the final sum to the
desired precision; this idea carries over to the setting of secure computation, see Table 2
in [2]. A further aspect of the secure use of the Newton–Raphson method is that it should
always be run for the same (worst-case) number of iterations to avoid leaking information
about the input. In this paper, we present the first detailed analysis taking all these aspects
into account.

We present our solutions in a generic way, assuming secure integer and fixed-point
arithmetic with a small set of basic operations. Each basic operation needs to be im-
plemented by means of a secure protocol, operating on either secret-shared, encrypted,
or encoded values, depending on the underlying framework for secure computation.
Although the performance of these protocols varies across frameworks, the relative perfor-
mance behaves similarly between operations like secure addition, multiplication, or com-
parison, as well as the secure generation of random bits. For concreteness, we will focus
on secure multiparty computation (MPC) as the underlying framework. Specifically, we
consider the use of probabilistic rounding (versus deterministic rounding) to limit the cost
of secure fixed-point multiplications. Many results, however, carry over to related areas in
cryptography such as (fully) homomorphic encryption.

The paper is organized as follows. Above, we elaborated on the state of the art
for the secure fixed-point computation of the reciprocal and the reciprocal square root,
emphasizing the lack of detailed error analyses. Section 2 explains some basic aspects
of MPC and provides a brief introduction to secure fixed-point arithmetic; in particular,
some details about the use of probabilistic rounding are presented, and the basics of
the Newton–Raphson method are highlighted. Section 3 presents our solution for the
secure computation of the reciprocal, together with a tight error analysis achieving a
given fixed-point precision while minimizing the computational cost. In Section 4, we
demonstrate a direct application of the secure fixed-point reciprocal, namely for efficient
secure integer division (with the remainder). Section 5 then presents our solution for the
secure computation of the reciprocal square root, essentially following the same approach
as for the reciprocal, although the details are more intricate. In Section 6 we demonstrate a
direct application of the secure fixed-point reciprocal square root, namely for the efficient
secure computation of fixed-point square roots with precise error bounds, which we use in
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turn for efficient secure integer square roots. We conclude in Section 7 and mention some
applications and concurrent work on a related problem. Finally, Appendix A collects all
lemmas and proofs left out of the main text; all theorems and proofs are included in the
main text.

2. Preliminaries

Below, we provide the background on secure fixed-point arithmetic underlying all
protocols in this paper. We also discuss the concept of probabilistic rounding and briefly
review the Newton–Raphson method.

2.1. Secure Computation

We present our protocols for the secure computation of the reciprocal and the (recipro-
cal) square root in terms of an arithmetic black box (following, e.g., [9–11]). The protocols
are specified in pseudocode, using a limited set of operations commonly supported in many
MPC frameworks. The parties executing these operations are suppressed from the notation.

We use [[a]] to denote a secure representation of value a. That is, [[a]] can be thought
of as either a secret-shared value a or a public-key (homomorphic) encryption of a value
a. We let Open([[a]]) denote the pooling of (decryption) shares to reveal the value of a in
the clear. Secure arithmetic over a finite field (or finite ring) using +,−, ∗, / is assumed
to be available. The common representation of integral and fixed-point numbers as `-bit
integers in a bounded range [−2`−1, 2`−1) ⊂ ZN is assumed, where 2`+κ < N for security
parameter κ. This allows for efficient secure comparisons <,≤,>,≥,=, 6=. To denote a
uniform randomly generated secure bit b, we write [[b]] ∈R {0, 1}. Similarly, we write
[[r]] ∈R {0, 1, . . . , 2`+κ − 1} to denote a secure integer r distributed sufficiently randomly
such that the statistical distance ∆(r; 2` + r) < 2−κ is negligible as a function of κ.

As a more advanced primitive, we assume the availability of operation
[[v]] ← Scale([[a]]), for a 6= 0. Here, v = ±2k, for some k ∈ Z, is uniquely determined
by the constraint 1

2 ≤ av < 1. Similarly, we use [[v]], [[v
1
2 ]]← Scale([[a]]) to denote the same

operation with the additional constraint that k is even.
Efficient implementations for these operations are assumed. The round complexity

is typically either constant or logarithmic. To ensure logarithmic round complexity of
O(log `) for our protocols operating on `-bit fixed-point numbers, it suffices that basic
secure arithmetic +,−, ∗, / takes O(1) rounds and that secure comparison < and Scale([[a]])
take O(log `) rounds.

2.2. Secure Fixed-Point Arithmetic

We follow the model for secure fixed-point arithmetic put forth by Catrina et al. [2,3].
For ` > f ≥ 0, the set Q`, f of `-bit fixed-point numbers with f fractional bits is defined as

Q`, f = {x 2− f : x ∈ Z,−2`−1 ≤ x < 2`−1}.

The integer part of a fixed-point number thus consists of e = `− f bits, of which the
most significant bit represents the sign. Phrased differently, we use two’s complement for
the binary representation of fixed-point numbers x ∈ Q`, f :

x = (de−1 . . . d0.d−1 . . . d− f )2 = −de−12e−1 +
e−2

∑
i=− f

di2i, with di ∈ {0, 1}.

The value δ f = 2− f corresponding to the least significant bit of x is also loosely
referred to as the precision.

For the implementation of fixed-point arithmetic, a number x = x 2− f ∈ Q`, f is simply
represented by the integer x. This integer representation is particularly convenient for the
implementation of secure fixed-point arithmetic, e.g., when all computation is carried out
with secret-shared numbers over a prime field. The factor 2− f is publicly known and is
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only used when the results are output as fixed-point numbers. The actual calculations are
performed with integer values only.

The sum of two fixed-point numbers x and y is obtained by adding their integer
representations. That is, setting x + y = x + y gives the correct result:

x + y 2− f = (x + y) 2− f = x 2− f + y 2− f = x + y.

For the product of a fixed-point number x and an integer t, we set tx = t x to obtain
the desired result:

tx 2− f = (t x) 2− f = t(x 2− f ) = tx.

Computing the product of two fixed-point numbers, however, is slightly more in-
volved. Simply multiplying the integer representations x and y does not yield a useful
result for xy: ∣∣∣x y 2− f − xy

∣∣∣ = ∣∣∣(x2 f )(y2 f ) 2− f − xy
∣∣∣ = ∣∣∣xy2 f − xy

∣∣∣� 0.

We therefore divide x y by 2 f and apply some form of rounding to obtain an integral
result. For instance, we may use bx y 2− f e as a close approximation of xy, where b·e denotes
rounding to the nearest integer:∣∣∣bx y 2− f e 2− f − xy

∣∣∣ = ∣∣∣bxy 2 f e 2− f − xy
∣∣∣ = ∣∣∣bxy 2 f e − xy 2 f

∣∣∣2− f ≤ 1
2 2− f = 1

2 δ f .

By (deterministically) rounding to the nearest integer, the absolute error is limited
to 1

2 δ f in the worst case. For reasons of efficiency, however, we will often allow a slightly
larger error of δ f in the worst case by using probabilistic rounding.

Remark 1. In the remainder of this paper, we will use the integer representation of fixed-point
numbers in the pseudocode of the algorithms. For a better intuitive understanding, however, we
consider the actual fixed-point numbers in the error analyses. Concretely, if we write x, this means
x in the analyses but x in the algorithms.

2.3. Probabilistic Rounding

Apart from the primitives for secure computation introduced above, we will use
two specific methods for rounding secure fixed-point numbers. Algorithm 1 covers both
methods, referred to as deterministic and probabilistic rounding, respectively. Deterministic
rounding is the common method of rounding a to the nearest integer bae. Probabilistic
rounding [2,3] yields either bac or dae as a result, where the value closest to a tends to be
more likely.

Remark 2. Probabilistic (or stochastic) rounding is applied in various research fields, including
machine learning, ODEs and PDEs, quantum computing, and digital signal processing, usually in
combination with a severe limitation on numerical precision (see, for instance, [12–15]). The latter
condition makes probabilistic rounding desirable in these cases, because it ensures zero-mean
rounding errors and avoids the problem of stagnation, where small values are lost to rounding when
they are added to an increasingly large accumulator [16]. However, the use of a randomness source
may be expensive, as the number of random bits (entropy) varies with the probability distribution
required for the rounding errors.

To make the distinction between deterministic rounding and probabilistic rounding
more concrete, consider the following equation for the exact result of the product xy:

xy 2 f =
⌊

xy 2 f ⌋+ r.
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The first term on the right-hand side captures the integer part of xy together with the
first f fractional bits, while r contains the remaining f fractional bits; hence, r ∈ [0, 1).
The probabilistically rounded result bxye$ then yields

bxye$ =

{
xy− r δ f with probability 1− r,
xy + (1− r) δ f with probability r.

The maximum difference δ f between xy and bxye$ occurs when xy = bxyc and
bxye$ = bxyc+ δ f , hence only when r = 0. This happens with probability 0, so for the
probabilistic rounding error e after a single multiplication, we have |e| < δ f . As always,
for the deterministic rounding error e, we have |e| ≤ 1

2 δ f .
As can be seen from Algorithm 1, deterministic rounding in MPC is significantly more

expensive than probabilistic rounding due to the use of the secure comparison c′ < [[r]] in
line 10. Given the bits [[r0]], . . . , [[rν−1]] of [[r]] and the bits of c′, a common implementation
of c′ < [[r]] takes approximately ν secure multiplications in log2 ν rounds, whereas the other
parts of the algorithm commonly take O(1) rounds (the asymptotic round complexity for
secure comparison can be limited to O(1) rounds following [10], but the hidden constant
is too large for practical purposes). For the deterministic rounding of a/2ν to the nearest
integer, we first add 2ν−1 to a and then truncate the ν least significant bits. The comparison
c′ < [[r]] is needed to obtain the correct output. For probabilistic rounding, we omit the
corrections in lines 2 and 10, saving the work for a secure comparison.

Algorithm 1 Roundν([[a]], mode = probabilistic) −2`+ν−1 ≤ a < 2`+ν−1

1: if mode = deterministic then
2: [[a]]← [[a]] + 2ν−1

3: [[r0]], . . . , [[rν−1]] ∈R {0, 1} . ν random bits
4: [[r]]← ∑ν−1

i=0 [[ri]]2i

5: [[r′]] ∈R {0, 1, . . . , 2κ+` − 1} . security parameter κ
6: c← Open(2`−1+ν + [[a]] + [[r]] + 2ν[[r′]])
7: c′ ← c mod 2ν

8: [[b]]← ([[a]] + [[r]]− c′) / 2ν . b = ba/2νe$
9: if mode = deterministic then

10: [[b]]← [[b]]− (c′ < [[r]]) . b = ba/2νe
11: return [[b]] . −2`−1 ≤ b < 2`−1

2.4. Newton–Raphson Method

The Newton–Raphson method (also known as Newton’s method) is a numerical pro-
cedure to find roots of functions. The method has been known for centuries and extensively
studied and analyzed in the literature (see, e.g., ref. [17] for a general description of the
method and [18] for a historical overview of its convergence properties). Without providing
further details on the derivation, we simply state that, given an approximation ci to the
root of a function f ≡ f (c), better approximations may be found in an iterative fashion
using the update formula:

ci+1 = ci −
f (ci)

f ′(ci)
. (1)

There are a few conditions that must be satisfied for the Newton–Raphson method to
work. For the moment, it suffices to say that an important aspect of the method is that it
requires an initial approximation, which needs to be of sufficient accuracy.
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3. Reciprocal

In this section, we consider the secure computation of the reciprocal using the
Newton–Raphson method. This approximation of the reciprocal will also serve as a basis
for secure integer division in Section 4.

We perform a tight error analysis to guarantee an absolute error not exceeding
δ f = 2− f while minimizing the additional precision used during the computation.

3.1. Secure Computation

The reciprocal function evaluates [[1/a]] for a secret-shared value [[a]], a 6= 0, see
Algorithm 2. As a first step towards a good initial approximation, [[a]] is scaled to [[b]] = [[a]][[v]],
where v = ±2k for some k ∈ Z. The scaling factor v is chosen such that b ∈ [0.5, 1). In this
interval, the line 3− 2b is a good approximation for 1/b, with equality at the endpoints
b = 0.5 and b = 1, and the maximum error occurring at b = 1/

√
2. Shifting this line

a distance of half the maximum error downward halves the maximum (absolute) error
and results in the initial approximation (as in [3], which in turn relies on [19]):

[[c0]] = 3− α− 2[[b]], (2)

with α = 3/2−
√

2 ≈ 0.085786. Compared to 1/b, c0 has a maximum error of α (at b = 0.5,
b = 1/

√
2, b = 1). The constant term 3− α may be truncated to whatever precision is

used in the computations. The multiplication of [[b]] by 2 is essentially free, as it can be
performed locally by the parties without truncation.

Algorithm 2 Reciprocal([[a]], n = 0) −2`−1 ≤ a < 2`−1

1: [[v]]← Scale([[a]]) . v = ±2k, k ∈ Z
2: [[b]]← Round f−n([[a]][[v]]) . 2 f+n−1 ≤ b < 2 f+n

3: α← 3/2−
√

2
4: θ ← dlog2 logα 2−( f+n)e
5: [[c0]]← (3− α)2 f − 2[[b]]
6: for i = 1 to θ do
7: [[z]]← 2− Round f+n([[ci−1]][[b]])
8: [[ci]]← Round f+n([[ci−1]][[z]])

9: [[dθ ]]← Round f+n([[cθ ]][[v]], deterministic)
10: return [[dθ ]] . −2`−1 ≤ dθ < 2`−1

Given the initial approximation, successive approximations are then computed using

[[ci+1]] = [[ci]](2− [[ci]][[b]]), (3)

which is obtained by instantiating the Newton–Raphson method in (1) with f (c) = b− 1/c.
After θ iterations, with θ independent of the input value a, the final approximation for

1/a is obtained from cθ ≈ 1/(av) as follows:

[[dθ ]] = [[cθ ]][[v]].

The required number of iterations θ will be determined below such that the final
error for cθ does not exceed δ f = 2− f , assuming exact arithmetic. Subsequently, we will
determine the required number of additional bits n for Algorithm 2, taking into account
all (rounding) errors. For better readability, we will drop the secret-shared brackets in the
remainder of this section.
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Under the right circumstances, the Newton–Raphson method converges quadratically
to the (nearest) root of a given function, as we will show next. First, with c = 1/b, define
εi = c− ci as the iteration error. Then, applying (3) and assuming exact arithmetic, we find

εi+1 = c− ci(2− cib) = c− (c− εi)(2− (c− εi)b) = ε2
i b. (4)

Since b ∈ [0.5, 1) and |ε0| ≤ α < 1, we see that quadratic convergence is guaranteed
from the start:

|εi| = b2i−1|ε0|2
i ≤ α2i

. (5)

To achieve |εθ | ≤ δ f , we thus set

θ =
⌈

log2 logα δ f

⌉
. (6)

Remark 3. The behavior at b = 1 determines the number of iterations. This observation motivates
changing the slope and offset of the linear initial approximation such that the error is slightly smaller
at b = 1 than it is at b = 0.5. If the difference is not too large, the solution at b = 0.5 will “catch
up” with the solution at b = 1 within a certain number of iterations. In some cases, this may save
an iteration. For instance, the initial approximation

[[ς0]] = 2.8312530517578125− 1.890625[[b]]

saves an iteration for various values of f ≥ 29, including the most common choices for f in
this range, namely f = 2n with n ∈ [5, 10]. For these larger values of f , rounding is most
expensive, and thus saving iterations is most valuable. The approximation ς0 comes with two
disadvantages. Firstly, b is multiplied by a number with six fractional digits, instead of an integer;
still, the approximation is more efficient in those cases where an iteration is saved. Secondly,
the required number of iterations is not as straightforward to compute as it is for c0, because it is no
longer determined by the situation at a single point. With ς0, the largest error is generally attained
at a point close to the middle of [0.5, 1), which slowly shifts to the right for larger values of f .

We further note that quadratic polynomials are also an option. For instance, the following
approximation is quite accurate and behaves well during the Newton–Raphson process:

[[ω0]] = 3[[b]]2 − 6.5[[b]] + 4.51425.

Quadratic polynomials are more expensive due to the computation of [[b]]2, which cannot
be performed locally. This makes using quadratic polynomials only worthwhile when it saves
iterations—and thus multiplications—in the computations that follow. Unfortunately, this is only
true for relatively low values of f , in which cases we save exactly one multiplication in the entire
computation. For higher values of f , despite leading to more accurate intermediate approximations,
the same number of iterations is required, and hence there is no gain. Because of this, we will not
study quadratic polynomials any further and stick to the simpler linear functions. Moreover, to keep
things simple in our algorithms and analyses, we will stick to the approximation in (2).

3.2. Tight Error Analysis without Scaling

In this section, we analyze the error εθ = c− cθ in the computation of c = 1/b for
b ∈ [0.5, 1). We determine a tight bound for |εθ | taking into account all (rounding) errors,
assuming fixed-point arithmetic with f fractional bits in Algorithm 2 (i.e., with n = 0). In
Section 3.3, we will use this bound to determine the minimal number of additional bits n
needed to guarantee that the absolute error for 1/a is limited to δ f = 2− f , also taking into
account the errors due to scaling.

Because we use probabilistic rounding in Algorithm 2, each iteration adds a rounding
error of 3δ f in the worst case, see Lemma A2. Due to the quadratic convergence, however,
the influence of these rounding errors is limited for subsequent iterations. With the help of
Lemma A1, which bounds the error |εθ−1| for the penultimate iteration, we are able to give
a tight bound for the total error after θ iterations.
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Theorem 1. If the Newton–Raphson method is used to compute 1/b for b ∈ [0.5, 1), employing
initial approximation (2), and computing the number of iterations θ with (6), then |εθ | < ρδ f ,
where ρ = 3.05.

Proof. Clearly, if θ = 0, the initial error is already below δ f . Because no iterations are
performed, no further errors are introduced, and the final error remains below δ f .

For the cases in which θ = 1 or θ = 2, we exhaustively compute the error for all
possible inputs b, considering all rounding possibilities. This covers the values 4 ≤ f ≤ 14
and yields a maximum value for |εθ | of approximately 2.88δ f .

For larger values of f , we follow a different approach: firstly, we derive an expression
that bounds the absolute error as a function of f and θ. Secondly, we compute the value
of the error bound for f = 15 (θ = 3), which will be below 3.05δ f . Thirdly, we show that
for larger values of f , the value of the error bound will always be smaller than in the case
f = 15.

From Lemma A1, we know that in the case of exact arithmetic, the error at the start of
the final iteration is bounded by b2θ−1−1

√
δ f . Lemma A2 tells us that in the first iteration,

the rounding error is bounded by (c0 + 1)δ f , while in every subsequent iteration it is
bounded by (1/b + 1)δ f . Thus, for θ ≥ 3, we obtain the following bound for the total error
at the start of the final iteration:

|εθ−1| < b2θ−1−1
√

δ f + (c0 + 1)δ f + (θ − 2)
(

1
b
+ 1
)

δ f .

Let Tθ = Tθ(b) = (c0 + 1) + (θ − 2)(1/b + 1). Applying (A2) with i = θ − 1 gives

|εθ | < ε2
θ−1b +

(
1
b
+ 1
)

δ f . (7)

Hence, as an upper bound for |εθ | we get

Eθ, f (b) δ f
def
=

(
b2θ−1 + 2b2θ−1

Tθ

√
δ f + bT2

θ δ f +
1
b
+ 1
)

δ f .

For the case f = 15, where θ = 3, this yields

E3,15(b) δ f =

(
b7 + 2b4T3

√
δ15 + bT2

3 δ15 +
1
b
+ 1
)

δ f ,

for which a simple numerical analysis shows that the maximum value is slightly below
3.05δ f .

We complete the proof by showing that Eθ, f (b) < E3,15(b) for f > 15, with θ defined
by (6). Since θ is increasing as a function of f , let fθ be the lowest value of f such that
θ =

⌈
log2 logα δ f

⌉
. Then, fθ is also increasing as a function of θ.

Since it is clear that Eθ, fθ
> Eθ, f for all f > fθ , it suffices to bound Eθ, fθ

. To that end,
we will consider the three terms in the definition of Eθ, f that depend on θ and f separately.

The first term b2θ−1 needs no complicated assessment. Clearly, with 0.5 ≤ b < 1, this term
decreases rapidly with θ.

The second term is 2b2θ−1
Tθ

√
δ f . Using the definition of θ, we can rewrite

√
δ f as

log2 logα δ f + γ = θ ⇒
√

δ f = α2θ−γ−1
,
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where the value of γ depends on f and is determined by the ceiling operation. In any case,
0 ≤ γ < 1, taking the derivative

d
(

2b2θ−1
Tθα2θ−γ−1

)
dθ

= 2b2θ−1
α2θ−γ−1

(
1
b + 1 + Tθ2θ−1 ln 2(ln b + 2−γ ln α)

)
< 6b2θ−1

α2θ−γ−1
(

1 + (θ − 1)2θ−2 ln 2 ln α
)

,

where we used c0(b) < 2 and dTθ/dθ < 3, so that Tθ < 3(θ − 1). The factor before
the outer parentheses is positive for any valid b and θ ≥ 3. With initial approximation
(2), α = 3/2−

√
2 ≈ 0.085786, and it is easy to verify that the factor between the outer

parentheses is negative for θ = 3. Moreover, the negative part will only increase in
(absolute) size with θ. Therefore, the derivative is, and will remain, negative. This shows
that the original term is decreasing as a function of θ.

The third term is bT2
θ δ f . Similarly, writing δ f as a function of θ and taking the deriva-

tive, we find

d
(

bT2
θ α2θ−γ

)
dθ

= bTθα2θ−γ
(

2( 1
b + 1) + Tθ2θ−γ ln 2 ln α

)
< 6bTθα2θ−γ

(
1 + (θ − 1)2θ−2 ln 2 ln α

)
.

This resembles the bound for the second term. Indeed, the term before the outer
parentheses is again positive for any valid b and θ ≥ 3, and with the known value for α it is
easy to verify that the factor between the outer parentheses is negative for θ = 3. Moreover,
the negative part will only increase in (absolute) size with θ. Therefore, the derivative is
always negative, which shows that the original term is decreasing as a function of θ.

Combining these results shows that Eθ, f (b) < E3,15(b) < 3.05, for all b ∈ [0.5, 1) and
f > 15, which proves the statement. Note that we could tighten the bound even more by
computing Eθ, fθ

for an arbitrary θ > 3.

To limit the absolute error for the computation of 1/a to δ f = 2− f , we apply Algorithm 2
using n additional bits of precision. That is, we use fixed-point arithmetic with f + n
fractional bits in the core of Algorithm 2. The downside of using extra bits is that more
bits need to be truncated after every multiplication, and secure truncation is a relatively
expensive procedure. Notice that we may still directly apply Theorem 1 to find that
|εθ,n| < ρδ f+n. After finishing the Newton–Raphson iterations, the result should be
rounded to the original precision, which may introduce more errors. We will evaluate these
errors in the next section, together with the errors introduced in the scaling steps.

3.3. Tight Error Analysis

In this section, we analyze the errors due to the scaling steps in Algorithm 2. The input
a is scaled to b = av ∈ [0.5, 1], and the output is obtained by scaling cθ ≈ 1/b to dθ = cθv ≈
1/a. The scaling steps introduce additional errors or magnify existing errors. Up until this
point, we silently assumed that the scaling b = av was exact. This, however, may not be
true if |a| > 1. In this case, the radix point shifts to the left, and because we are working
with fixed-point numbers, the least significant bits are lost. So, instead of b = av, we obtain

b∗ = bave$ = av + η1,

where η1 is the error induced by the scaling from a to b. An important observation is that
|η1| is smaller than the precision used in the computation. Moreover, b∗ can be computed
with the same number of fractional bits as the intermediate results in the Newton–Raphson
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iterations (it would be a waste to scale down to f fractional bits if the computation is
performed with f + n fractional bits). Consequently, we know that

|η1| < δ f+n =
δ f

2n .

After scaling, the reciprocal of b∗ is computed. As explained at the end of Section 3.2,
these computations are performed with extra bits. However, at this point we do not yet
reduce the precision back to δ f , but instead use

c∗θ =
1
b∗
− εθ,n,

where |εθ,n| < ρδ f+n. Recall that ρ = 3.05, according to Theorem 1. This result is scaled
back through another multiplication by v and subsequently rounded deterministically to
the original precision:

d∗θ = c∗θ v + η2,

where |η2| ≤ 1
2 δ f . The absolute error then reads as:

|d∗θ − d| =

∣∣∣∣( 1
av + η1

− εθ,n

)
v + η2 −

1
a

∣∣∣∣
=

∣∣∣∣∣1a 1
1 + η1

av
− εθ,nv + η2 −

1
a

∣∣∣∣∣ (8)

=

∣∣∣∣1a
(

1− η1

av
+
( η1

av

)2
− . . .

)
− εθ,nv + η2 −

1
a

∣∣∣∣
=

∣∣∣∣1a
(
−η1

b + η1

)
− εθ,nv + η2

∣∣∣∣.
A careful analysis, partly covered by Lemmas A3 and A4, leads to the following result:

Theorem 2. If the Newton–Raphson method is used to compute 1/a for a ∈ Q2 f , f , employing the
approach in Algorithm 2, with n ≤ f , then the absolute error (8) is bounded by 2−n.

Proof. We distinguish three cases: (i) a < 2−n, (ii) 2−n ≤ a < 2n, and (iii) a ≥ 2n. In case
(i), v ≥ 2n and, consequently, both scaling steps introduce no rounding errors: η1 = η2 = 0.
In case (ii), 2−n ≤ v ≤ 2n−1. Due to the extra precision that is used, there is still no rounding
error in the initial scaling step (η1 = 0), but there might be an error when the result is
truncated to the original precision. In case (iii), v ≤ 2−(n+1), and both scaling steps may
introduce errors.

In case (i), the absolute error simplifies to | − εθ,nv|. For such small values of a,
the scaling factor v is large, and the absolute error is bounded by 2 f−1ρδ f+n. However, it
can be shown to be tighter by noting that v = 2 f−1 occurs only when a = δ f . For this value
of a, according to Lemma A3, ρ may be replaced by 2. For the remaining values of a in
case (i), εθ,n may be approximately 1.5 times as large (it is still bounded by ρδ f+n), but the
value for v is at most 2 f−2, making the product | − εθ,nv| strictly smaller. Thus, the exact
bound for case (i) is 2 f−12δ f+n = 2−n.

In case (ii), the error simplifies to | − εθ,nv + η2|, which is bounded by 2n−1ρδ f+n +
1
2 δ f =

1
2 (ρ + 1)δ f . Using the value for ρ given in Theorem 1, it is straightforward to deduce

that the bound for case (i) exceeds that of case (ii) if n ≤ f − 2:

2−n ≥ 2−( f−2) = 4δ f >
ρ + 1

2
δ f .

The cases n = f − 1 and n = f are less straightforward and will be considered sepa-
rately.
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If n = f − 1, case (i) contains only a = δ f . As already derived, the error in this case
is bounded by 2−n = 2δ f . The first value in case (ii) is 2δ f , for which we may replace
ρδ f+n by 2δ f+n, according to Lemma A3. The maximal error before applying η2 then reads
2n−12δ f+n = δ f . With a = 2δ f , 1/a = 2 f−1, which is a multiple of δ f . Consequently,
the error cannot become larger than δ f < 2−n. The next value in case (ii) is 3δ f , for which
we may replace ρδ f+n by 7

3 δ f+n, according to Lemma A4. The maximal error before
applying η2 then reads 2n−1 7

3 δ f+n = 7
6 δ f . With a = 3δ f , 1/a = 1

3 2 f , which is a multiple
of 1

3 δ f (but not an integer multiple of δ f ). Combining these results shows that the total
error is bounded by 5

3 δ f < 2−n. For larger values of a, the error is simply bounded by
2n−2ρδ f+n +

1
2 δ f = 1.2625δ f < 2−n.

If n = f , case (i) ceases to exist. The first value in case (ii) is δ f . Similar to the
case a = 2δ f when n = f − 1, we know that in this case the maximal error is δ f = 2−n.
The next value in case (ii) is 2δ f , for which a similar derivation shows that the error is
bounded by 1

2 δ f < 2−n. The third value in case (ii) is 3δ f . Analogous to the situation
with n = f − 1, we may replace ρ by 7

3 δ f+n and find that the error before applying η2

is bounded by 2n−2 7
3 δ f+n = 7

12 δ f . Knowing that the exact solution is a multiple of 1
3 δ f

(but not an integer multiple of δ f ), we conclude that the total error, after applying η2

(deterministically), is maximally 2
3 δ f < δ f = 2−n. Again, for larger values of a, the error is

bounded by 2n−3ρδ f+n +
1
2 δ f = 0.88125δ f < 2−n.

Thus, for all n ≤ f , the errors in cases (i) and (ii) are bounded by 2−n. For even larger
values of a, the error bound decreases rapidly, despite η1 coming into play. In case (iii),
the error is approximately bounded by 1

2 (2
−2n+2 + 2−2nρ + 1)δ f (ignoring the η1 term in

the denominator that is small compared to b), which is significantly smaller than 2−n.

Remark 4. Concerning the relative error, given by the expression∣∣∣∣d∗θ − d
d

∣∣∣∣ = ∣∣∣∣ −η1

b + η1
− εθ,nb + aη2

∣∣∣∣,
we see that the tables have turned. For small values of a, the relative error is also small, while
for larger values of a the error increases. If a < 2−n, the error is bounded by 2−nρδ f , while the
bound increases to (2−nρ + 2n−1)δ f for 2−n ≤ a < 2n. For larger values of a, the last term
on the right-hand side starts to dominate. In this domain, the error is bounded by (1/(2nb −
δ f ) + 2−nρ + 1

2 (2
f − 1))δ f < (2−n+1 + 2−nρ + 2 f−1)δ f ≈ 0.5. Based on the results from

numerical experiments, we suspect that the actual bound for the relative error lies at approximately
1/3, due to the relation between a and η2 (they do not attain their maximal values at the same
time). Though this error may seem large, it is not an effect of the specific computational algorithms,
but merely a behavior inherent to the use of fixed-point numbers.

Corollary 1. If the Newton–Raphson method is used to compute 1/a for a ∈ Q2 f , f , using the
approach in Algorithm 2, then computing with n = f additional bits guarantees that the absolute
error (8) is bounded by δ f , while using n = f + 1 bits guarantees that the absolute error is strictly
smaller than δ f .

Proof. According to Theorem 2, if n ≤ f , the absolute error is bounded by 2−n. It follows
directly that if n = f , the bound equals 2− f = δ f . Note that from the proof of Theorem 2, it
follows that this bound can only be attained when a = δ f .

If n = f + 1, then a proof similar to that of Theorem 2 shows that the error is strictly
smaller than δ f . Recall that for small values of a, the error reads as | − εθ,nv + η2|, and
therefore the absolute error before applying η2 is bounded by 2n−2ρδ f+n. For a = δ f ,
however, we may replace ρ by −δ f+n or 2δ f+n, according to Lemma A3. This leads to
errors −2n−2δ f+n = − 1

4 δ f and 2n−22δ f+n = 1
2 δ f , respectively. Because η2 is applied

deterministically, both will be rounded to the analytical solution, and hence εθ = 0.
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For larger values of a, the error is bounded by 2n−3ρδ f+n + 1
2 δ f = 0.88125δ f < δ f ,

which completes the proof. By considering the cases a = 2δ f and a = 3δ f separately from
even larger values of a, it is possible to show that the error is actually strictly smaller than
0.7δ f , but we will omit the proof here.

4. Integer Division

Secure integer division is an important primitive and appears in many applications.
For integer inputs [[g]], [[a]], performing integer division yields integers [[q]], [[r]] such that
g = qa + r and 0 ≤ r < a. Formulated differently, we have q = bg/ac and r = g− qa.

One possible way of computing [[q]] is by applying the Newton–Raphson algorithm
described in the previous section. To that end, [[a]] needs to be converted from an integer
to a fixed-point number. Subsequently, the reciprocal of [[a]] is computed and multiplied
by [[g]]. It turns out, however, that it is advantageous to perform the multiplication by [[g]]
before finalizing the computation of 1/[[a]]. The resulting value [[q̃]] is a good approximation
to [[q]] and can be used to compute the final, correct value of [[q]]. In the remainder of this
section, we will omit the secret-shared brackets for better readability.

4.1. Error for Integer Division

In the case of integer division, the error analysis from Section 3.3 can be simplified.
With a being an integer, there can only be nonzero bits to the left of the radix point. This
means—assuming that there are an equal number of bits before and after the radix point,
i.e., ` = 2 f —that no information is lost in the initial scaling step: η1 = 0. In other words,
in the case of integer division, we have b∗ = b. The error after computing the reciprocal of
b (before rescaling and truncating to the original precision) is still bounded by εθ,n, such
that we now have cθ = 1/(av)− εθ,n.

At this point, we first multiply g and v. Since we have assumed that ` = 2 f , there is
no rounding error for this multiplication. The result is multiplied by cθ , after which we
truncate to the original precision. This results in a generally nonintegral estimate to g/a,
which we call q̃:

q̃ =

(
1
av
− εθ,n

)
gv + η2

=
g
a
− εθ,ngv + η2.

The resulting approach is summarized in Algorithm 3. In what follows, we will denote
the error of q̃ (with respect to g/a) by Eq̃.

Algorithm 3 IntDivFxp([[g]], [[a]], n = 1) −2`−1 ≤ g, a < 2`−1, with g, a ∈ 2 fZ
Lines 1–8 of Algorithm 2
Line 2 simplifies to [[b]]← 2− f+n[[a]][[v]]

9: [[w]]← 2− f [[g]][[v]]
10: [[q̃]]← Round f+n([[cθ ]][[w]])

11: return [[q̃]] . −2`−1 ≤ q̃ < 2`−1

Theorem 3. If the Newton–Raphson method is used to compute g/a, with g and a being integers,
using the approach in Algorithm 3 and n < f , then |Eq̃| ≤ 2−n.

Proof. To derive the error bound, we consider the error before the final truncation η2 is
applied: −εθ,ngv. Because a is an integer, we have v ≤ 0.5, with equality only when a = 1.
In the latter case, b = 0.5, and according to Lemma A3 we have | − εθ,n(0.5)| ≤ 2δ f+n. It
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follows that | − εθ,nv| ≤ δ f+n. Furthermore, we know that g ≤ 2 f − 1. Combining all this
gives

| − εθ,ngv| ≤ δ f+n(2
f − 1)

= (1− 2− f )2−n

< 2−n.

Obviously, when a = 1, g/a is an integer, and therefore a multiple of δ f . Since n < f ,
2−n is also a multiple of δ f . From these observations, it follows that the final rounding η2
cannot bring the error any further than 2−n.

The case v = 0.25 occurs only for a = 2 and a = 3, leading to b = 0.5 and b = 0.75,
respectively. Clearly, for a = 2, we have again that |εθ,n(0.5)| ≤ 2δ f+n, leading to
| − εθ,ngv| < 1

2 2−n. Because |η2| < δ f ≤ 1
2 2−n, we know that | − εθ,ngv + η2| < 2−n.

For the case a = 3, let us write n = f − γ, so that 2−n = 2γδ f (γ = 1, 2, 3, . . .). According to
Lemma A4, we have |εθ,n(0.75)| ≤ 7

3 δ f+n when n + f = 6, leading to | − εθ,ngv| < 7
12 2−n.

The final error can only be larger than 2−n when |η2| > 5
12 2−n = 5

12 2γδ f , and because
|η2| < δ f , this is only possible if γ = 1. However, the system n + f = 6 and n = f − 1 has
no integer solutions, and therefore this scenario will never occur. Lemma A4 tells us that in
all other cases | − εθ,n(0.75)| ≤ 5

3 δ f+n, leading to |εθ,ngv| < 5
12 2−n. Now, the final error can

only be larger than 2−n when |η2| > 7
12 2−n = 7

12 2γδ f . Because |η2| < δ f and γ ≥ 1, this
is impossible.

For even larger values of a, v ≤ 0.125, and we have |εθ,n| ≤ ρδ f+n, leading to
| − εθ,ngv| < 1

8 ρ2−n. The final error can only be larger than 2−n if |η2| > 7
8 ρ2−n = 7

8 ρ2γδ f .
Again, because |η2| < δ f , there are no solutions with γ ≥ 1.

We emphasize that the above result holds even when η2 is determined probabilistically,
whereas throughout Section 3 it was assumed that the final rounding—to the original
precision—was performed deterministically (which was especially relevant for the cases
n = f and n = f + 1).

4.2. From Fixed-Point Approximation to Integer Solution

The fixed-point value q̃ now needs to be rounded to an integer value q̄. This can be
achieved either deterministically or probabilistically.

Corollary 2. Suppose q̃ is computed with Algorithm 3 using n = 1. If q̃ is rounded to an integer
q̄ deterministically, then q̄ ∈ {q, q + 1}. If q̃ is rounded to an integer q̄ probabilistically, then
q̄ ∈ {q− 1, q, q + 1}.

Proof. We apply Theorem 3 to find that the error on q̃ is bounded by 2−1. Since q ≤ g/a <
q + 1, this gives q − 0.5 ≤ q̃ < (q + 1) + 0.5. It follows directly that for deterministic
rounding, q̄ ∈ {q, q + 1}. It also follows that for probabilistic rounding, q̄ ∈ {q− 1, q, q +
1, q + 2}. It remains to be shown that q̄ = q + 2 is not possible. To that end, first note that
from q ≤ g/a < q + 1, it follows that q ≤ g/a ≤ q + 1− 1/a. Therefore, for q̄ = q + 2 to
occur, it should be possible that Eq̃ > 1/a.

Suppose that 2m−1 ≤ a < 2m for some integer m. Then, v = 2−m and 1/a = v/b.
At this point, we are only interested in solutions q̃ > g/a with negative errors, hence we
have |εθ,n| < (1/b + 1)δ f+n. Maximizing the error | − εθ,ngv| with n = 1 then gives

| − εθ,1gv| ≤ (1/b + 1)δ f+1(2
f − 1)v

= 1
2 (1/b + 1)(1− 2− f )v

< 1
2 (1/b + 1)v

≤ v/b

= 1/a.
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Thus, the approximation before applying η2 is still below q+ 1. Since q+ 1 is an integer
and therefore a multiple of δ f , it follows that |Eq̃| ≤ 1/a. In other words, the rounding η2
cannot push the error beyond q + 1. Consequently, q̃ will never be rounded to q + 2.

Remark 5. If we were to calculate q̃ with Algorithm 2 instead of Algorithm 3 and multiply the
result by g, we would find that

q̃ =

((
1
av
− εθ,n

)
v + η2

)
g

=
g
a
− εθ,ngv + η2g.

Numerical simulations suggest that we would then find the same values for q̄. That is,
q̄ ∈ {q, q + 1} in the case of deterministic rounding and q̄ ∈ {q − 1, q, q + 1} in the case of
probabilistic rounding. However, this approach would require an extra secure comparison in the
deterministic rounding step in line 9 of Algorithm 2.

If we were to replace this deterministic rounding with probabilistic rounding, then |η2| < δ f

(instead of |η2| ≤ 1
2 δ f with deterministic rounding). Numerical simulations show that in this

case, q̄ ∈ {q − 1, q, q + 1, q + 2}, independent of whether rounding to an integer is performed
deterministically or probabilistically. Hence, in this approach, at least one extra secure comparison
is also required to find the correct value q. This proves that it is indeed advantageous to incorporate
multiplication by g into the computation of 1/a, as we did in Algorithm 3.

So far, we have computed q̃ using only probabilistic rounding. We found that
q̄ ∈ {q, q + 1} if the rounding (to the nearest) is performed deterministically and
q̄ ∈ {q − 1, q, q + 1} if q̃ is rounded to q̄ probabilistically. The final step is to recover
the correct solution q.

This is achieved by one or two comparisons, depending on how q̃ is rounded to q̄.
According to Corollary 2, if q̃ is rounded deterministically, then q̄ ∈ {q, q + 1}. Hence, we
can compute q̄a− g and check the sign. If q̄a− g > 0, then q = q̄− 1; otherwise, q = q̄.
If q̃ is rounded probabilistically, then q̄ ∈ {q− 1, q, q + 1}. This time, we not only check
the sign of q̄a− g, but also that of (q̄ + 1)a− g. If q̄a− g > 0, then q = q̄− 1. Otherwise,
if (q̄ + 1)a− g > 0, then q = q̄, or q = q̄ + 1.

At first sight, it might not seem relevant if q̃ is rounded to q̄ deterministically or
probabilistically, because even though deterministic rounding requires an extra secure com-
parison, it saves a secure comparison in the computation of q. Rounding probabilistically
to q̄ does not require any secure comparisons, but two secure comparisons are needed to
find the correct value for q. Hence, in both cases, we need exactly two secure comparisons.
However, the secure comparison in Algorithm 1 is cheaper than a regular secure compari-
son, because the bits of the numbers that are compared are already available. Therefore, it
is computationally advantageous to choose the option with deterministic rounding to q̄
and only one comparison to find q. The complete procedure is summarized in Algorithm 4.

Algorithm 4 IntDiv([[g]], [[a]]) −2 f−1 ≤ g, a < 2 f−1, with g, a ∈ Z

1: [[q̃]]← IntDivFxp([[g2 f ]], [[a2 f ]]) . −2`−1 ≤ q̃ < 2`−1

2: [[q̄]]← Round f ([[q̃]], deterministic)
3: [[q]] = [[q̄]]− ([[q̄]][[a]] > [[g]])
4: return [[q]] . −2 f−1 ≤ q < 2 f−1

5. Reciprocal Square Root

To compute the reciprocal (or, inverse) square root securely, we follow the same
approach as in Section 3 for the reciprocal. The overall goal is to guarantee an absolute
error not exceeding δ f = 2− f while minimizing the additional precision used during the



Cryptography 2023, 7, 43 15 of 28

computation. In Section 6, we will use this result for the secure computation of the square
root with the same accuracy.

5.1. Secure Computation

The reciprocal square root function evaluates 1/
√
[[a]] for a secret-shared value [[a]],

a > 0, see Algorithm 5. Upon initialization, [[a]] is scaled to [[b]] = [[a]][[v]] such that
b ∈ [0.5, 2). The interval for b is taken twice as large as that for the reciprocal, so that the
scaling factor v = 2k, k ∈ Z, can be chosen with k even. This ensures that scaling back by
[[v1/2]] at the end introduces no additional rounding errors.

Algorithm 5 RecSqrt([[a]], n = 0) −2`−1 ≤ a < 2`−1

1: [[v]], [[v
1
2 ]]← Scale([[a]]) . v = ±2k, k ∈ Z, k even

2: [[b]]← Round f−n([[a]][[v]]) . 2 f+n−1 ≤ b < 2 f+n+1

3: β← (
√

2− 1)/4
4: τ ← 3/

√
2

5: θ ← dlog2 logτβ (τ2−( f+n))e
6: [[c0]]← 3/2 + β− Round1([[b]]/2, deterministic)
7: for i = 1 to θ do
8: [[z1]]← Round f+n([[ci−1]][[b]]))
9: [[z2]]← 3− Round f+n([[ci−1]][[z1]])

10: [[ci]]← Round f+n+1(
1
2 [[ci−1]][[z2]])

11: [[dθ ]]← Round f+n([[cθ ]][[v
1
2 ]], deterministic)

12: return [[dθ ]] . −2`−1 ≤ dθ < 2`−1

To find an initial approximation, following the same approach that led to (2) would
give

[[c0]] =
√

2
6 (7− 2[[b]])− α∗,

where α∗ = (7− 3 3
√

9)/(6
√

2). This initial approximation has a maximal absolute error
of α∗ ≈ 0.089537 (at b = 0.5, b = 3

√
9/2, and b = 2). An integer factor in front of b—like

in (2)—would be more efficient, but this is not really an option here. A factor 1
2 is possible,

essentially reducing the cost of truncation by a factor of f . Therefore, another good initial
approximation is

[[c0]] =
1
4 (5 +

√
2)− 1

2 [[b]], (9)

which has a maximal absolute error of β = 1
4 (
√

2− 1) ≈ 0.103553 at b = 1 and b = 2
and only 1

4 (3
√

2− 4) ≈ 0.060660 at b = 0.5. Obviously, this slightly higher initial error
may lead to an extra iteration in some cases, but it turns out this is not the case for
the most common values of f , namely f = 2n with n ∈ {2, . . . , 10}. Compared to the
initial approximation by Liedel [4], our approximation is slightly less accurate. This may
be attributed to the fact that the approximation by Liedel was derived for the interval
[0.5, 1), while ours is defined for [0.5, 2). Due to the quadratic convergence behavior of
the Newton–Raphson method, however, the effect of the lower initial accuracy is rather
small. On the other hand, our approximation is more efficient in terms of truncation,
because (a) we only need to truncate a single bit to compute c0, whereas Liedel needed
many more, and (b) Liedel assumed that the input is scaled to [0.5, 1), so it is possible that
the square root of the scaling factor is not an integral power of two. In these cases, another
multiplication by

√
2 needs to be performed, leading to another expensive truncation.

Because our approximation and method rely on the assumption that the input is scaled
to [0.5, 2) in such a way that the scaling factor is always an even power of two, no such
correcting multiplication is necessary. Aly and Smart [5] used an even more crude initial
approximation. It required the position of the most significant bit, say t, which was
then used to compute 2t/2, a rough approximation for the square root. Finding the most
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significant bit, however, is equivalent to our scaling step to find b, and once b is known,
computing the more accurate approximation in (9) is basically free.

Given the initial approximation [[c0]], successive approximations are computed using

[[ci+1]] =
1
2 [[ci]]

(
3− [[ci]]

2[[b]]
)

, (10)

which corresponds to the Newton–Raphson method in (1) applied to f (c) = b − 1/c2.
After θ iterations, with θ independent of the input value, the scaling is inverted. The final
approximation for 1/

√
a then reads

[[dθ ]] = [[cθ ]][[v
1
2 ]].

Now, we clearly see why the scaling factor v was chosen to be an even power of two:
it also makes the inverse scaling an integral power of two.

The required number of iterations θ will be determined below such that the final
error for cθ does not exceed δ f = 2− f , assuming exact arithmetic. Subsequently, we will
determine the required number of additional bits n for Algorithm 5, taking into account
all (rounding) errors. For better readability, we will drop the secret-shared brackets in the
remainder of this section.

Using c = 1/
√

b to denote the analytical solution and εi = c− ci to denote the iteration
error, applying (10) gives

εi+1 = c− 1
2 ci(3− c2

i b) = c− 1
2 (c− εi)(3− (c− εi)

2)b) = 3
2

√
bε2

i − 1
2 bε3

i . (11)

Since b ∈ [0.5, 2) and |ε0| ≤ β < 1, we see that quadratic convergence is guaranteed
right from the start. From (11), it follows directly that for those values of b where ε0 ≥ 0, it
holds that

|εi| ≤ ( 3
2

√
b)2i−1ε2i

0 ≤ (τβ)2i
/τ,

where τ = 3/
√

2 and the convergence is slowest for b = 2. To achieve |εθ | ≤ δ f , we thus
set

θ =
⌈

log2 logτβ

(
τδ f
)⌉

. (12)

For those values of b where ε0 < 0, the third-order term in (11) cannot simply be
ignored. However, we will not update (12) accordingly. Instead, we will handle these cases
in the appropriate places in the proofs that follow.

5.2. Tight Error Analysis without Scaling

In this section, we analyze the error εθ = c− cθ in the computation of c = 1/
√

b for
b ∈ [0.5, 2). Analogous to the analysis for the reciprocal, we determine a tight bound
for |εθ | taking into account all (rounding) errors, assuming fixed-point arithmetic with f
fractional bits in Algorithm 5 (thus with n = 0). In Section 5.3, we will use this bound to
determine the minimal number of additional bits n needed to guarantee that the absolute
error for 1/

√
a is limited to δ f = 2− f , also taking into account the errors due to scaling.

With the help of Lemmas A5 and A6, we are able to give a bound on the total error for
the reciprocal square root after θ iterations.

Theorem 4. If the Newton–Raphson method is used to compute 1/
√

b for some b ∈ [0.5, 2),
employing initial approximation (9) and with the number of iterations θ computed via (12), then
|εθ | < σδ f , where σ = 2.71.

Proof. Clearly, if θ = 0, the initial error is already below δ f . Because no iterations are
performed, no further errors are introduced, and the final error remains below δ f .
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For the cases in which θ ∈ {1, 2, 3}, we exhaustively compute the error for all possible
inputs b, taking into account all rounding possibilities. This covers the values 4 ≤ f ≤ 18
and yields a maximum value for |εθ | of approximately 2.60δ f .

For larger values of f , we follow an analogous approach to that for the reciprocal:
firstly, we derived an expression that bounds the absolute error as a function of f and θ.
Secondly, we compute the value of the error bound for f = 19 (θ = 4), which will be below
2.71δ f . Thirdly, we show that for larger values of f , the value of the error bound will always
be smaller than in the case f = 19.

Following Lemma A5, we know that in the case of exact arithmetic, the error at the

start of the final iteration is bounded by ξ2θ−2√
b/2

2θ−1−1√
δ f /τ. Lemma A6 tells us that

in the first iteration, the rounding error is bounded by (c2
0/2 + c0/2 + 1)δ f , while in every

subsequent iteration it is bounded by (1/(2b) + 1/(2
√

b) + 1)δ f . Thus, for θ ≥ 4, we obtain
the following bound for the total error at the start of the final iteration:

|εθ−1| < ξ2θ−2√
b/2

2θ−1−1√
δ f /τ +

(
c2

0
2
+

c0

2
+ 1

)
δ f + (θ − 2)

(
1
2b

+
1

2
√

b
+ 1
)

δ f .

Let Tθ = Tθ(b) = (c2
0/2 + c0/2 + 1) + (θ − 2)(1/(2b) + 1/(2

√
b) + 1). Applying (A4)

with i = θ − 1, and without the third-order term (since εθ−1 > 0), gives

|εθ | < 3
2

√
bε2

θ−1 +

(
1
2b

+
1

2
√

b
+ 1
)

δ f

< 3
2

√
b
(

ξ2θ−2√
b/2

2θ−1−1√
δ f /τ + Tθδ f

)2
+

(
1
2b

+
1

2
√

b
+ 1
)

δ f

=

(√
ξ
√

bξ/2
2θ−1

+ 2
√

bξ/2
2θ−1

Tθ

√
τδ f +

3
2

√
bT2

θ δ f +
1
2b

+
1

2
√

b
+ 1
)

δ f

def
= Eθ, f (b) δ f .

For the case f = 19, where θ = 4, this yields

E4,19(b) δ f =

(√
ξ
√

bξ/2
15
+ 2
√

bξ/2
8
T4
√

τδ19 +
3
2

√
bT2

4 δ19 +
1
2b

+
1

2
√

b
+ 1
)

δ f ,

for which a simple numerical analysis shows that the maximum value is slightly below
2.71δ f .

We complete the proof by showing that Eθ, f (b) < E4,19(b) for f > 19, with θ defined
by (12). Since θ is increasing as a function of f , let fθ be the lowest value of f such that
θ =

⌈
log2 logτβ

(
τδ f
)⌉

. Then, fθ is also increasing as a function of θ.
Since it is clear that Eθ, fθ

> Eθ, f for all f > fθ , it suffices to bound Eθ, fθ
. To that end,

we will consider the three terms in the definition of Eθ, f that depend on θ and f separately.

To evaluate the first term
√

ξ
√

bξ/2
2θ−1

, we note that ξ is defined to have the value
1.045 for b1 < b < b2, with b2 ≈ 1.65, while ξ = 1 for b > b2. It thus follows that bξ/2 < 1,
and as a result the entire term decreases rapidly with θ.

For convenience, we use b̃ = bξ/2 and α̃ = τβ in the analysis below. The second term
may then be written as 2b̃2θ−2

Tθ

√
τδ f . Using the definition of θ, we get

√
τδ f = α̃2θ−γ−1

,

where γ satisfies log2 logα̃(τδ f ) + γ = θ and 0 ≤ γ < 1. Taking the derivative thus yields
for the second term

d
(

2b̃2θ−2
Tθ α̃2θ−γ−1

)
dθ

= 2b̃2θ−2
α̃2θ−γ−1

(
1
2b +

1
2
√

b
+ 1 + Tθ2θ−1 ln 2( 1

2 ln b̃ + 2−γ ln α̃)
)

< 6b̃2θ−2
α̃2θ−γ−1

(
1 + (θ − 1)2θ−2 ln 2 ln α̃

)
,
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where c0(b) < 3/2 and dTθ/dθ < 3, so that Tθ < 3(θ − 1). This bound is almost identical
to the bound we found in the analysis for the reciprocal. The factor before the outer
parentheses is now positive for any valid b and θ ≥ 4. Additionally, it is easy to verify that
the factor within the outer parentheses is negative for θ = 4. Because the negative part will
only increase in (absolute) size with θ, the derivative is, and will remain, negative. This
shows that the original term is decreasing as a function of θ.

The third term is 3
2

√
bT2

θ δ f . Writing τδ f as a function of θ, we may rewrite this term to
√

b/2T2
θ α̃2θ−γ

. Taking the derivative, we find:

d
(√

b/2T2
θ α̃2θ−γ

)
dθ

= 2
√

b/2Tθ α̃2θ−γ
(

1
2b +

1
2
√

b
+ 1 + Tθ2θ−γ−1 ln 2 ln α̃

)
< 6

√
b/2Tθα2θ−γ

(
1 + (θ − 1)2θ−2 ln 2 ln α̃

)
.

Again, this bound is very similar to the bound in the analysis for the reciprocal.
The term before the outer parentheses is positive for any valid b and θ ≥ 4, and with
the known value for α̃ it is easy to verify that the term between the outer parentheses is
negative for θ = 4. Additionally, the negative part will only increase in (absolute) size
with θ. Therefore, the derivative is always negative, which shows that the original term is
decreasing as a function of θ.

Combining these results shows that Eθ, f (b) < E4,19(b) < 2.71 for all b ∈ [0.5, 2) and
f > 19, which proves the statement. Note that we could tighten the bound even more by
computing Eθ, fθ

for an arbitrary θ > 4.

Similar to the reciprocal, we will perform our computations with extra precision to
control the effect of rounding. Therefore, in the following, we assume a total of f + n
fractional bits. Then, we apply Theorem 4 to find that εθ,n < σδ f+n.

5.3. Tight Error Analysis

The analysis of scaling errors for the reciprocal square root is like that for the reciprocal.
Again, we have that b∗ = av + η1, with |η1| < δ f+n. And this time, we have

c∗θ =
1√
b∗

+ εθ,n,

where |εθ,n| < σδ f+n with σ = 2.71, according to Theorem 4. Finally, c∗ is scaled back
through the multiplication by

√
v rounded (deterministically) to the original precision:

d∗θ = c∗θ
√

v + η2,

where |η2| ≤ 1
2 δ f . The absolute error for d = 1/

√
a then reads as

|d∗θ − d| =

∣∣∣∣( 1√
av + η1

+ εθ,n

)√
v + η2 −

1√
a

∣∣∣∣
=

∣∣∣∣∣∣ 1√
a

1√
1 + η1

av

+ εθ,n
√

v + η2 −
1√
a

∣∣∣∣∣∣
=

∣∣∣∣ 1√
a

(
1− 1

2
η1

av
+

3
8

( η1

av

)2
− . . .

)
+ εθ,n

√
v + η2 −

1√
a

∣∣∣∣
.
=

∣∣∣∣− η1

2
√

ab
+ εθ,n

√
v + η2

∣∣∣∣. (13)

We are able to bound the overall error for 1/
√

a as follows, using Lemma A7 to bound
the error for cases in which a is a specific power of 2.
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Theorem 5. If the Newton–Raphson method is used to compute 1/
√

a for a ∈ Q2 f , f , employing
the approach in Algorithm 5, with 1

2 f ≤ n ≤ f − 2, then the absolute error (13) is bounded by
(2( f−1)/2−nσ + 1

2 )δ f .

Proof. Similar to Theorem 2, we can make a distinction between three cases: (i) a < 2−2n,
in which η1 = η2 = 0; (ii) 2−2n ≤ a < 2n+1, in which generally only η1 = 0; and (iii)
a ≥ 2n+1. However, since 1

2 f ≤ n, which is equivalent to 2n ≥ f , there exists no a ∈ Q2 f , f

such that a < 2−2n. Therefore, we will only consider the cases (ii) and (iii).
In case (ii), the error simplifies to |εθ,n

√
v + η2|. For the smallest value a = δ f , we

find that the error is bounded by (2 f /2σδ f+n + 1
2 δ f ) in the case that f is even, and by

(2( f−1)/2σδ f+n +
1
2 δ f ) if f is odd. However, if f is even and a = δ f , we may replace σδ f+n by

δ f+n, according to Lemma A7. Therefore, a tighter bound for even f is found by considering
the next value, a = 2δ f , for which the absolute error is bounded by (2 f /2−1σδ f+n +

1
2 δ f ).

However, the largest bound is found for an odd f and reads as (2( f−1)/2−nσ + 1
2 )δ f .

In case (iii), we need to take into account all error terms in (13). Without going into
further detail, we state that the error is maximized by taking the lowest value of a in
this range (a = 2n+1), which also has the largest value for v, with n + 1 even, because it
maximizes the combined value of the first and second error terms. The absolute error then
reads as (2−(n+1)/2( 1

2 + σ) + 1
2 )δ f .

It can be easily verified that with n ≤ f − 2, the bound in case (iii) is always below the
(lowest) bound in case (ii). Therefore, for the given range of n, (2( f−1)/2−nσ + 1

2 )δ f bounds
the absolute error for all values of a.

Remark 6. The relative error is found by dividing the absolute error by d = 1/
√

a:∣∣∣∣d∗θ − d
d

∣∣∣∣ .
=
∣∣∣−η1

2b
+ εθ,n

√
b +
√

aη2

∣∣∣.
Here, .

= means equality up to higher-order terms. Note that this only applies to the term
involving η1, for which quadratic and higher-order terms are ignored. However, these terms do not
have a significant effect in the cases with the largest absolute errors.

The relative error is small for small values of a, while for larger values of a the error in-
creases. If a < 2−2n, the error is bounded by 21/2−nσδ f , increasing to (21/2−nσ + 2(n−1)/2)δ f for
2−2n ≤ a < 2n+1. For a ≥ 2n+1, the error is (approximately) bounded by (1 + 21/2−nσ +
2 f /2−1)δ f .

Corollary 3. If the Newton–Raphson method is used to compute 1/
√

a for a ∈ Q2 f , f , employing
the approach in Algorithm 5, then computing with n = b( f + 5)/2c additional bits guarantees
that the absolute error (13) is strictly smaller than δ f .

Proof. According to Theorem 5, if f /2 ≤ n ≤ f − 2, the absolute error is bounded by
(2( f−1)/2−nσ + 1/2)δ f . Thus, for the final absolute error to be smaller than δ f , we need

(2( f−1)/2−nσ + 1
2 )δ f < δ f ,

which gives that (approximately) n > 1
2 f + 1.94. From this, it follows that n = 1

2 f + 2 for
even f , and n = 1

2 f + 5
2 for odd f , which guarantees that the absolute error will be smaller

than δ f . Bearing in mind the range of n for which Theorem 5 is valid, this results holds for
f ≥ 8.

What remains to be shown is that: (i) smaller values for n will not suffice to guarantee
an error smaller than δ f , and (ii) the result also holds for f < 8. Both are achieved by
exhaustively checking all rounding combinations for increasing values of f . For (ii), this
shows that the results hold for f ≥ 4 (all f that require at least one iteration). To prove (i),
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we use n = 1
2 f + 1 for even f and n = 1

2 f + 3
2 for odd f , until a final absolute error larger

than δ f is found. All f ≤ 300 are checked, and several cases where the final error exceeds δ f
are identified, the first of which are f = 20 and f = 223. This proves that n = b( f + 5)/2c
is not only a sufficient condition, but (in general) also a necessary one.

6. Square Root

Besides being a result in itself, the reciprocal square root can be used to compute
the square root by multiplying it with the original input [[a]]. In fact, this seems the most
efficient way to achieve this, as it provides a means to compute the square root with
multiplications and additions only, whereas applying the Newton–Raphson method to
the square root directly would lead to an algorithm that requires the computation of a
reciprocal (and hence a full Newton–Raphson computation) in every iteration.

6.1. Error for Square Root

Looking back at the computation of the reciprocal square root, after computing c∗θ , we
have several options. We could finish the computation of the reciprocal square root as we
did before, multiplying c∗θ by

√
v, and subsequently perform a rounding step. Because the

multiplication by a will follow, it makes sense not to round to the original precision at
this stage and keep the extra n bits to maintain a higher accuracy. Still, rounding to f + n
fractional bits induces an error that would be multiplied by a, which for large values of a
would lead to a large error.

Instead, it is significantly better to multiply c∗θ by a first, subsequently perform a
rounding step, and only then multiply by

√
v. Even though the largest error is still attained

for large values of a, at least we avoid multiplying the intermediate rounding error by this
large a.

A third option, with an accuracy practically equal to the previous accuracy, is multi-
plying a and

√
v separately (similar to multiplying g and v in Algorithm 3):

w = a
√

v + ηw.

Here, |ηw| < δ f+n. We then multiply c∗θ with w and (deterministically) round the result
to the original precision:

d∗θ = c∗θ w + η2.

Again, |η2| < 1
2 δ f . Subtracting the exact solution gives the absolute error:

∣∣d∗θ −√a
∣∣ =

∣∣∣∣( 1√
av + η1

+ εθ,n

)(
a
√

v + η̃1
)
+ η2 −

√
a
∣∣∣∣ (14)

=

∣∣∣∣−√aη1

2av

(
1− 3

4
η1

av
+

5
8

( η1

av

)2
− . . .

)
+ εθ,na

√
v + c∗η̃1 + η2

∣∣∣∣
<

∣∣∣∣−√aη1

2b

(
1 +
|η1|

b

)
+

εθ,nb√
v

+ c∗η̃1 + η2

∣∣∣∣. (15)

The algorithm is summarized in Algorithm 6.

Algorithm 6 Sqrt([[a]], n = 0) −2`−1 ≤ a < 2`−1

Lines 1–10 of Algorithm 5
11: [[w]]← Round f−n([[a]][[v

1
2 ]])

12: [[dθ ]]← Round f+2n([[cθ ]][[w]], deterministic)
13: return [[dθ ]] . −2`−1 ≤ dθ < 2`−1

Theorem 6. If Algorithm 6 is used to compute
√

a for a ∈ Q2 f , f , with n ≥ 1
2 f , then the absolute

error (14) is bounded by (2 f /2−n( 1
2 (1 + δ f+n) + σ) + 1

2 )δ f for even f and by (2 f /2−n( 1
4 (1 +

1
2 δ f+n) +

√
2σ) + 1

2 )δ f for odd f , where σ = 2.71.
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Proof. For a < 2n, we have η1 = η̃1 = 0, and the error simplifies to |εθ,nb/
√

v + η2|.
This is bounded by (2(2−n)/2σ + 1

2 )δ f for even n, and by (2(1−n)/2σ + 1
2 )δ f for odd n.

However, the error increases for a larger a. For a ≥ 2n, the first term in (15) comes into
play and increases with a. At the same time, a larger a generally leads to a smaller v, which
increases the second term as well. Since n ≥ 1

2 f , we still have that η̃1 = 0. Thus, the error
bound simplifies to Ed∗θ

, where

Ed∗θ
=

∣∣∣∣−√aη1

2b

(
1 +
|η1|

b

)
+

εθ,nb√
v

+ η2

∣∣∣∣.
For a ≥ 2 f−1 and even f , we have v = 2− f , and we can write a = 2 f b, with 0.5 ≤ b < 1.

Substituting this into the above equation gives

Ed∗θ
<

(√
2 f b
2b

(
1 +

δ f+n

b

)
+

σb
2− f /2

)
δ f+n +

1
2 δ f

= 2 f /2−n
(

1

2
√

b

(
1 +

δ f+n

b

)
+ σb

)
δ f +

1
2 δ f .

The factor within the outer parentheses increases with b and can be bounded by
choosing b = 1, which leads to the bound for even f . Notice that if 2 f−2 ≤ a < 2 f−1, then
indeed 1 ≤ b < 2. In this case, however, the 2 f /2−n factor would become 2 f /2−n−1, making
it twice as small, while the factor between parentheses would become less than twice as
large. Thus, this would decrease the overall error.

For a ≥ 2 f−1 and odd f , we have v = 2−( f−1), and we can write a = 2 f−1b,
with 1 ≤ b < 2. Substituting this into the same equation gives

Ed∗θ
< 2( f−1)/2−n

(
1

2
√

b

(
1 +

δ f+n

b

)
+ σb

)
δ f +

1
2 δ f .

Substituting b = 2 then yields the bound stated for odd f . Note that in this case choos-
ing a smaller a would lead to a lower value for the factor in front of the parentheses, as well
as a lower value for the factor in parentheses, and therefore it need not be considered.

Corollary 4. If Algorithm 6 is used to compute
√

a for a ∈ Q2 f , f , then computing with
n = b( f + 7)/2c additional bits guarantees that the absolute error (14) is strictly smaller than δ f .

Proof. Using the result of Theorem 6 for the case that f is even, the absolute error is
certainly smaller than δ f if the following holds:

2 f /2−n
(

1
2 (1 + δ f+n) + σ

)
+ 1

2 < 1.

To get rid of the δ f+n term, we assign it a fairly large value, which, as we will see, does
not matter much for the outcome. We choose δ f+n = 1

16 , which would be the correct value
if f + n = 4. It then follows that (approximately) n > 1

2 f + 2.69, from which we conclude
that n = 1

2 f + 3 is sufficient to guarantee an error smaller than δ f . Based on simulation
results, we suspect that n = 1

2 f + 2 would already be sufficient, as we were unable to find a
case in which the error exceeded δ f . However, since the largest error does not always occur
for the same a value (as, for example, in the case of the reciprocal square root), simulations
are very costly and could not be performed for large values of f . There are cases for which
n = 1

2 f + 1 leads to errors larger than δ f , so using this value for n clearly does not guarantee
an error smaller than δ f .

For odd values of f , an analogous derivation shows that using n = 1
2 f + 7

2 is guaran-
teed to keep the final absolute error below δ f . Also in this case, using one bit less seems
already sufficient, since no counterexample could be found. Cases in which the error
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exceeded δ f were found for n = 1
2 f + 3

2 , which shows that this value for n is certainly not
sufficient.

6.2. Integer Square Root

A related primitive is the integer square root. For a given integer [[a]], this function
computes integer [[q]] such that q ≤

√
a < q + 1; hence, q =

⌊√
a
⌋
. For this purpose, we

may exploit the algorithm derived in the previous section.

Corollary 5. Suppose Algorithm 6 is used to compute
√

a for an integer a ∈ Q2 f , f , with f ≥ 3.
If q̃ is rounded to an integer q̄ deterministically, then no additional bits are required to guarantee
that q̄ ∈ {q, q + 1}.

Proof. With the input a now an integer, we have that η1 = 0. Also, ηw = 0. Thus, the error
bound (15) simplifies to |εθ,nb/

√
v + η2|. For even f , this is bounded by

|εθ,nb/
√

v + η2| <
σδ f+n√

v
+ 1

2 δ f

= 2− f /2−nσ + 1
2 δ f .

Even without any extra bits (n = 0), this bound remains below 0.5 for f ≥ 3, so that
q− 0.5 < q̃ < q + 1.5. Therefore, if q̃ is rounded deterministically to an integer q̄, then
q̄ ∈ {q, q + 1}. Analogously, the same result can be shown to hold for odd f .

Remark 7. The result of Corollary 5 holds even if the rounding in line 12 of Algorithm 6 is
performed probabilistically.

After computing the square root of a and rounding to an integer, the correct solution
q is recovered by a single secure comparison. The complete procedure is summarized in
Algorithm 7.

Algorithm 7 IntSqrt([[a]]) −2 f−1 ≤ a < 2 f−1, with a ∈ Z

Line 2 in Algorithm 6 simplifies to [[b]]← 2− f+n[[a]][[v]]
1: [[q̃]]← Sqrt([[a2 f ]], n = 0) . −2`−1 ≤ q̃ < 2`−1

2: [[q̄]]← Round f ([[q̃]], deterministic)
3: [[q]]← [[q̄]]− ([[q̄]]2 > [[a]])
4: return [[q]] . −2 f−1 ≤ q < 2 f−1

7. Conclusions

Basic secure fixed-point arithmetic allows for efficient +,−, ∗,< operations and often
easily extends to efficient dot products and matrix multiplications. The availability of
efficient solutions for secure reciprocals and square roots opens up a much broader scope of
applications, such as efficient solutions for secure Gaussian elimination, secure linear pro-
gramming, and secure Cholesky decomposition with appropriately scaled input matrices.

As announced at the end of Section 2.1, our protocols achieve logarithmic round
complexity: the round complexity is dominated by the θ = O(log f ) rounds for the
for loops in Algorithms 2 and 5, as each iteration takes O(1) rounds due to the use of
probabilistic rounding. In concurrent work, we achieved similar results for the secure
computation of sine and cosine in secure fixed-point arithmetic, relying on an iterative
method very different from Newton-Raphson iteration, but also supporting any desired
precision [20].

The use of secure fixed-point arithmetic is essential in many secure computation
frameworks. As part of ongoing work, we are integrating all these solutions in the Python
package MPyC [21], where the overall goal is to support all fixed-point arithmetic and
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functions with arbitrary (parameterized) precision expressed as the number of fractional
bits f . Our solutions for secure integer division (see Section 4) and secure integer square
roots (see Section 6.2) therefore apply to secure integer arithmetic over arbitrarily large
ranges. In fact, we use this form of secure integer division as a building block for the
implementation of secure class groups in MPyC, see [22].
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Appendix A. Lemmas

This appendix collects all lemmas and proofs left out of the main text.

Appendix A.1. Lemmas for the Reciprocal

Lemma A1. If the Newton–Raphson method is used to compute 1/b for some b ∈ [0.5, 1) with ex-
act arithmetic employing initial approximation (2), and the number of iterations θ ≥ 1 is computed
with (6), then |εθ−1(b)| < b2θ−1−1

√
δ f .

Proof. The value for θ given by (6) is set such that |εθ | < δ f holds for all b, and specifically

for b = 1. From (5), it then follows that ε0(1) < δ2−θ

f . With initial approximation (2), we

have |ε0(b)| ≤ ε0(1), and therefore |ε0(b)| < δ2−θ

f , for all b. Then, applying (5) to ε0(b) with
i = θ − 1 gives the result.

Lemma A2. If the Newton–Raphson method is used to compute 1/b for some b ∈ [0.5, 1),
employing initial approximation (2), then the rounding error in the first iteration is bounded by
(c0(b) + 1)δ f , while in any subsequent iteration it is bounded by (1/b + 1)δ f .

Proof. Recall that for the reciprocal the iterative rule reads as

ci+1 = ci(2− cib),

in which the subtraction is carried out without rounding.
The first multiplication cib = (c− εi)b = 1− εib yields after rounding:

bcibe$ = 1− εib + ei+1,1, (A1)

where ei+1,1 is a probabilistic rounding term, with |ei+1,1| < δ f (see Section 2.3). The second
multiplication gives

ci(2− bcibe$) = (c− εi)(1 + εib− ei+1,1)

= c− cei+1,1 − ε2
i b + εiei+1,1

= c− ε2
i b− ciei+1,1,

which is rounded to

ci+1 =
⌊
ci(2− bcibe$)

⌉
$ = c− ε2

i b− ciei+1,1 + ei+1,2,

where |ei+1,2| < δ f . Thus, instead of the “exact” result in (4), we now find

εi+1 = ε2
i b + ei+1, (A2)
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where ei+1 is the total rounding error resulting from iteration i + 1:

ei+1 = ciei+1,1 − ei+1,2.

Because |ei+1,1| and |ei+1,2| are strictly smaller than δ f , it follows that |e1| < (c0 + 1)δ f .
Moreover, using initial approximation (2), it holds that 0 < ci ≤ c for i ≥ 1, and thus
|ei+1| < (1/b + 1)δ f for these values of i.

Lemma A3. If the Newton–Raphson method is used to compute 1/a for some a = ±2λδ f ,
λ ∈ {0, 1, 2, . . . , 2 f − 2}, employing initial approximation (2), and the number of iterations θ is
computed with (6), then |εθ,n| ≤ 2δ f+n. In fact, εθ,n ∈ {−δ f+n, 0, δ f+n, 2δ f+n}.

Proof. When a = ±2λδ f , with λ ∈ {0, 1, 2, . . . , 2 f − 2}, a has exactly one nonzero bit.
Consequently, a will be scaled to b = 0.5, for which c = 2 is an exact multiple of δ f+n. Since
the intermediate approximations ci are also multiples of δ f+n, the error terms εi = c− ci

will also be multiples of δ f+n. As a result, the εib-term in (A1) is a multiple of 1
2 δ f+n, and it

follows that the first rounding term in every iteration, |ei+1,1|, is either zero or 1
2 δ f+n. If,

for the moment, we omit the second rounding of the final iteration, then combining this
knowledge with the analysis in the proof of Theorem 1 gives the maximal error:

E�3,15(0.5) δ f+n =
(
(0.5)7 + 2(0.5)4T3

√
δ15 + 0.5T2

3 δ15 + 1
)

δ f+n,

where T3(0.5) = (2
√

2+ 13)/4. The diamond superscript indicates that another (probabilis-
tic) rounding step is still to be performed. Computing the above value shows that it is only
slightly above δ f+n. Because the correct solution is an exact multiple of δ f+n, the second
rounding in the final iteration can only take the error as far as the next multiple of δ f+n,
which is 2δ f+n.

By exhaustively checking all rounding combinations, this bound was found to also
hold for the cases f + n ≤ 14 with at least one iteration. Clearly, when θ = 0, the error is
already below δ f+n to begin with and, since no iterations are performed, does not change.

So far, we have assumed that all errors point towards the positive direction. The sit-
uation is different if all rounding errors go in the negative direction. In this situation,
the worst-case scenario would be that the iteration error after θ − 1 iterations is zero, while
all rounding errors in the final iteration are maximally negative. Again assuming that
|ei+1,1| is either zero or 1

2 δ f+n, it then follows from (7) that

min ε�θ (0.5) = −δ f+n.

As before, the diamond superscript indicates that a final (probabilistic) rounding is still
to be performed. Since the exact solution is still a multiple of δ f+n, the second rounding in
the final iteration cannot take the error any further than −δ f+n. This result is independent
of the values of f and θ.

Combining −δ f+n ≤ εθ ≤ 2δ f+n with the knowledge that the error is a multiple of
δ f+n, we find that εθ,n ∈ {−δ f+n, 0, δ f+n, 2δ f+n}.

Lemma A4. If the Newton–Raphson method is used to compute 1/a for a = ±3δ f , employing
initial approximation (2), and the number of iterations θ is computed with (6), then |εθ,n| ≤ 7

3 δ f+n

for f + n = 6 and |εθ,n| ≤ 5
3 δ f+n for all other values of f and n.

Proof. When a = ±3δ f , a will be scaled to b = 0.75. With b = 0.75, c = 4/3, which is a
multiple of 1

3 δ f+n. Since the intermediate approximations ci are multiples of δ f+n, the error
terms εi = c − ci will also be multiples of 1

3 δ f+n. As a result, the εib term in (A1) is a
multiple of 1

4 δ f+n, and it follows that the first rounding term in every iteration, |ei+1,1|, can
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be at most 3
4 δ f+n. If, for the moment, we omit the second rounding of the final iteration,

then combining this knowledge with the analysis in the proof of Theorem 1 gives

E�3,15(0.75) δ f+n =
(
(0.75)7 + 2(0.75)4T3

√
δ15 + 0.75T2

3 δ15 + 1
)

δ f+n,

where T3 = (c0(0.75) + 1) + (3− 2)(0.75/0.75+ 1) =
√

2+ 3, and the diamond superscript
indicates that a final rounding is still to be performed. Computing the above value shows
that it is slightly below 1.15δ f+n. Because the correct solution c is a multiple of 1

3 δ f+n,
the second rounding in the final iteration can only take the error as far as 5

3 δ f+n.
By exhaustively checking all rounding combinations, this bound is found to also hold

for the cases f + n ≤ 14 with at least one iteration, except for f + n = 6, in which case
|εθ,n| = 7

3 δ f+n is the largest possible error. Also, here, when θ = 0, the error is already
below δ f+n to begin with and does not change, since no iterations are performed.

Appendix A.2. Lemmas for the Reciprocal Square Root

In the following lemma, we make use of the two points where c0(b) = c(b), which we
hereby define as b1 ≈ 0.58 and b2 ≈ 1.65. Between these points, ε0(b) < 0, while outside
the interval ε0(b) > 0.

Lemma A5. If the Newton–Raphson method is used to compute 1/
√

b for some b ∈ [0.5, 2)
with exact arithmetic, employing initial approximation (9), and the number of iterations θ ≥ 1 is

computed with (12), then |εθ−1(b)| < ξ2θ−2√
b/2

2θ−1−1√
δ f /τ, were τ = 3/

√
2. The factor ξ

may be taken as equal to 1.045 for b1 < b < b2 and unity elsewhere.

Proof. The formula for θ in (12) is constructed in such a way that εθ < δ f for b = 2. This

is based on the assumption that εi = ( 3
2

√
b)2i−1ε2i

0 , which for b = 2 is a safe assumption.
From this, it follows that |ε0(2)| < τ2−θ−1δ2−θ

f . With the initial approximation (9), we have

|ε0(b)| ≤ ε0(2), and therefore |ε0(b)| < τ2−θ−1δ2−θ

f , for all b.
Next, consider the first iteration. Since there are inputs for which ε0 < 0, we cannot

simply ignore the third-order term in (11). Instead, we have

|ε1| =
∣∣∣ 3

2

√
bε2

0 − 1
2 bε3

0

∣∣∣
≤ 3

2

√
bε2

0
(
1 + 1

3

√
b|ε0|

)
.

The third-order term in the first line only has negative values for b1 < b < b2. For other
values it is positive, meaning that it will only decrease the error, and can thus be safely
ignored. Consequently, the largest value that the b term between parentheses in the second
line might have is b2. Combining this value with the largest initial error β (which actually
do not coincide), we find that the term between parentheses is bounded by 1.045, and
we obtain

|ε1| ≤ 3
2 ξ
√

b
(
τ2−θ−1δ2−θ

f
)2,

where ξ = 1.045 for b1 < b < b2 and unity elsewhere.
We know that after the first iteration, εi > 0. Therefore, the third-order term in (11)

will be larger than zero, and we have εi+1 < 3
2

√
bε2

i . Applying this for the remaining θ − 2
iterations gives

|εθ−1| < ( 3
2

√
b)2θ−2−1ε2θ−2

1

≤ ( 3
2

√
b)2θ−2−1

(
3
2 ξ
√

b
(
τ2−θ−1δ2−θ

f
)2
)2θ−2

= ξ2θ−2√
b/2

2θ−1−1√
δ f /τ,
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which proves the statement.

Next, we consider the case in which the result of every multiplication is rounded.
For the reciprocal square root, there are three multiplications per iteration.

Lemma A6. If the Newton–Raphson method is used to compute 1/
√

b for some b ∈ [0.5, 2),
employing initial approximation (9), then the rounding error in the first iteration is bounded by
(c2

0/2+ c0/2+ 1)δ f , while in any subsequent iteration it is bounded by (1/(2b) + 1/(2
√

b) + 1)δ f .

Proof. Recall that for the reciprocal square root, the iterative rule reads as

ci+1 = 1
2 ci

(
3− c2

i b
)

.

The first multiplication gives

cib = (c− εi)b

=
√

b− εib,

which is subsequently rounded to

bcibe$ =
√

b− εib + ei+1,1, (A3)

with probabilistic rounding error |ei+1,1| < δ f . Next, we perform the second multiplication:

ci bcibe$ = (c− εi)
(√

b− εib + ei+1,1

)
= 1− 2

√
bεi + ε2

i b + ciei+1,1,

which is then rounded to⌊
ci bcibe$

⌉
$ = 1− 2

√
bεi + ε2

i b + ciei+1,1 + ei+1,2,

where |ei+1,2| < δ f . The subtraction that follows is without rounding. The third and final
multiplication gives

1
2 ci

(
3−

⌊
ci bcibe$

⌉
$

)
= 1

2 (c− εi)
(

2 + 2
√

bεi − ε2
i b− ciei+1,1 − ei+1,2

)
= c− 3

2

√
bε2

i +
1
2 bε3

i − 1
2 c2

i ei+1,1 − 1
2 ciei+1,2,

which is rounded to

ci+1 =
⌊

1
2 ci

(
3−

⌊
ci bcibe$

⌉
$

)⌉
$
= c− 3

2

√
bε2

i +
1
2 bε3

i − 1
2 c2

i ei+1,1 − 1
2 ciei+1,2 + ei+1,3.

Again, |ei+1,3| < δ f . Thus, instead of the “exact” result in (11), we now find

εi+1 = 3
2

√
bε2

i − 1
2 bε3

i + ei+1, (A4)

with
ei+1 = 1

2 c2
i ei+1,1 +

1
2 ciei+1,2 − ei+1,3.

Because all rounding terms are strictly smaller than δ f (see Section 2.3), it directly
follows that e1 < (c2

0/2 + c0/2 + 1)δ f . Moreover, with the approximation (9), we have
0 < ci ≤ c, and therefore |ei+1| < (1/(2b) + 1/(2

√
b) + 1)δ f , for i ≥ 1.

Lemma A7. If the Newton–Raphson method is used to compute 1/
√

a for some a = ±2λδ f ,
with λ ∈ {0, 2, 4, . . . , 2 f − 2} and even f , or with λ ∈ {1, 3, 5, . . . , 2 f − 3} and odd f , employing
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initial approximation (9), and the number of iterations θ is computed with (12), then |εθ,n| ≤ δ f+n.
In particular, εθ,n ∈ {−δ f+n, 0, δ f+n}.

Proof. When a = ±2λδ f , with λ ∈ {0, 2, . . . , 2 f − 2} and even f , or with λ ∈ {1, 3, . . . , 2 f −
3} and odd f , a will be scaled to b = 1. Then, c = 1, which is an exact multiple of δ f+n. Since
the intermediate approximations ci are also multiples of δ f+n, the error terms εi = c− ci
will also be multiples of δ f+n. As a result, the εib term in (A3) is a multiple of δ f+n, and it
follows that the first rounding term in every iteration, |ei+1,1|, is zero. If, for the moment,
we omit the third rounding term of the final iteration, then combining this knowledge with
the analysis in the proof of Theorem 4 gives the maximal error:

E�4,19(1) δ f+n =

(√
ξ
√

ξ/2
15
+ 2
√

ξ/2
8
T4
√

τδ19 +
3
2 T2

4 δ19 +
1
2

)
δ f+n,

where ξ = 1.045, T4 = (c0(1)/2 + 1) + (4− 2)(1/2 + 1) = 1
8 (35 +

√
2), and the diamond

superscript indicates that another rounding step is still to be performed. A simple nu-
merical evaluation of the above expression shows that its value is slightly below 0.51δ f+n.
Because the correct solution c is an exact multiple of δ f+n, the second rounding in the
final iteration can only take the error as far as the next multiple of δ f+n, which is δ f+n.
By exhaustively checking all rounding combinations, this bound is found to also hold for
the cases f + n ≤ 18 with at least one iteration. Clearly, when θ = 0, the error is already
below δ f+n to begin with and, since no iterations are performed, does not change.

Combining −δ f+n ≤ εθ ≤ δ f+n with the knowledge that the error is a multiple of
δ f+n, we find that εθ,n ∈ {−δ f+n, 0, δ f+n}. Numerical experiments further suggest that
actually εθ,n ∈ {0, δ f+n}, but we will not prove this here.
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