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Abstract: Artificial intelligence (AI) is a modern technology that allows plenty of advantages in daily
life, such as predicting weather, finding directions, classifying images and videos, even automatically
generating code, text, and videos. Other essential technologies such as blockchain and cybersecurity
also benefit from AI. As a core component used in blockchain and cybersecurity, cryptography can
benefit from AI in order to enhance the confidentiality and integrity of cyberspace. In this paper,
we review the algorithms underlying four prominent cryptographic cryptosystems, namely the
Advanced Encryption Standard, the Rivest–Shamir–Adleman, Learning With Errors, and the Ascon
family of cryptographic algorithms for authenticated encryption. Where possible, we pinpoint areas
where AI can be used to help improve their security.
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1. Introduction

In 1991, Rivest [1] presented a talk about relationships between machine learning and
cryptography. Surprisingly, while artificial intelligence (AI) is being extensively developed
in a number of applications, a very limited number of research studies have been done in
the area of using AI in cryptography.

AI is the set of tools, methodologies, and implementations deployed to enable a
digital computer or a robot to perform tasks that are usually associated with human
intelligence [2,3]. In the last few decades, AI has exponentially developed in many sectors,
such as big data, Internet of Things, robotics, banking, finance, healthcare, e-commerce,
meteorology, education, facial recognition, information systems, autonomous driving, data
security, etc. Machine learning (ML) is a subset of AI that enables smart machines and
computers to learn without human intervention and gives them the ability to imitate human
behavior. The goal of ML is to design algorithms that extract information from data in
order to build models capable of deriving predictions and patterns. ML covers a range
of methodologies and applications, such as facial recognition, natural language, online
chatbots, medical imaging, diagnostics, self-driving of vehicles, etc.

On the other hand, cybersecurity is the set of various methods and tools deployed
to protect electronic devices, such as information systems, servers, computers, networks,
and data centers, from all kind of threats, vulnerabilities, and attacks. Often, an attack
on an electronic device has severe impacts on the regular operations, or even worse, can
completely destroy the stored data. Therefore, the goal of cybersecurity is to detect any
attack, handle it, and recover the system after the accident. Cybersecurity includes the use
of cryptography and cryptographic protocols for protecting data in transit and in storage.

The aim of this paper is to present an overview of the applications of AI and ML in
cryptography with a focus on four prominent cryptosystems, namely, AES, RSA, LWE,
and Ascon. For this, we start by providing an overview of AI and ML techniques before
embarking on presenting the above-referenced cryptosystems and explaining how AI and
ML can be applied to improve their security for the benefit of cybersecurity.
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Cryptography is concerned with protecting information and communications trans-
ferred over public communication channels in the presence of adversaries. It allows only
the recipient of a message to view its contents and is used in all domains where the security
is a concern. To transmit a message or electronic data, two families of cryptography can be
used: symmetric and asymmetric cryptography. In symmetric cryptography, also called secret
key cryptography, the same key is used for both encryption and decryption. Typically, a
message is encrypted using a secret key, and both the encrypted message and the secret key
are sent to the recipient for decryption. In asymmetric cryptography, invented by Diffie and
Hellman [4] in 1976, and mostly known as public key cryptography, two keys are involved:
one is public, and one is private. In general, the two keys are related by a mathematical
process with the idea that it is computationally infeasible to determine one key given the
other one. To encrypt and send a message, the sender uses the public key of the recipient.
To decrypt, the recipient uses his or her private key.

Cryptanalysis is the study of cryptographic schemes for vulnerabilities. Specifically,
there are mainly two methods of deploying cryptanalysis: mathematical and side-channel.
Mathematical cryptanalysis, or algebraic cryptanalysis, consists of breaking cryptographic
schemes by scrutinizing their mathematical properties, while side-channel cryptanalysis
consists of studying and manipulating the implementations in order to collect information
on the keys or on the plaintext itself.

In symmetric cryptography, the security of any scheme is based on the robustness of
its S-box, a nonlinear operator that is often related to a vectorial Boolean function with
very good cryptographic properties, such as resistance to differential cryptanalysis; linear
cryptanalysis; boomerang cryptanalysis; and a variety of other cryptographic criteria [5].
Artificial intelligence can be used to design S-boxes from vectorial Boolean functions and
to study their cryptographic properties in order to select the most efficient and the most
secure schemes.

In asymmetric cryptography, security is often based on a hard mathematical problem
such as the integer factorization problem, the discrete logarithm problem, the Shortest
Vector Problem (SVP), and the Closest Vector Problem (CVP) in a lattice.

Currently, the most widely used asymmetric cryptosystem is RSA, invented in 1978
by Rivest, Shamir, and Adleman [6]. RSA is used for encryption, signatures, and key
distribution, and is a powerful tool to provide privacy and to ensure authenticity of emails,
digital data, and payment systems. The mathematics behind RSA are based on the ring
Z/NZ, where N = pq is the product of two large prime numbers. In RSA, the public key
is an integer e satisfying gcd(e, (p− 1)(q− 1)) = 1, and the private key is the integer d
satisfying ed ≡ 1 (mod (p− 1)(q− 1)). To encrypt a message 1 < m < N, one computes
c ≡ me (mod N), and to decrypt it, one computes m ≡ cd (mod N). Since its invention,
RSA has been intensively analyzed for vulnerabilities [7–10].

A promising family of asymmetric cryptography has appeared with the Learning
With Error (LWE) problem and its variants. LWE was proposed by Regev [11] in 2005.
Several homomorphic encryption libraries, public key encryptions, and digital signature
systems are based on LWE or on one of its variants [12]. In 2016, NIST initiated a process to
select and standardize post-quantum cryptography standardization [13], and in 2022, it
selected CRYSTALS–Kyber [14] for public-key encryption and CRYSTALS–Dilithium [15],
Falcon [16], and SPHINCS+ [17] for digital signatures. Among the four selected algorithms
for standardization, three are based on hard problems in lattices, namely CRYSTALS–Kyber,
CRYSTALS–Dilithium, and Falcon. There are several variants of LWE, such as Polynomial-
LWE [18], Ring-LWE [19], Module-LWE [20], and Continuous LWE [21]. The goal in LWE
is to find a secret vector s ∈ Zn

q given m ≥ n samples of the form (ai, 〈ai, s〉+ ei), where
ai ∈ Zn

q is uniformly generated, ei ∈ Zm
q is a small vector chosen according to a probability

density, and 〈ai, s〉 is the inner product of ai and s. The security of LWE is based on several
hard problems in lattices, specifically the Gap Shortest Vector Problem (GapSVP) and the
Shortest Independent Vectors Problem (SIVP).
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The explosion of the Internet of Things (IoT), characterized by low-energy and low-
computation power devices, has prompted the need for efficient and strong lightweight
ciphers for protecting the privacy and authenticity of data transmitted by these devices.
The U.S. government’s National Institute of Standards and Technology (NIST) recently
selected the Ascon family of lightweight symmetric ciphers for authenticated encryp-
tion [22,23] to be used by IoT devices. The Ascon family ensures 128-bit security and uses a
320-bit permutation internally.

Common attacks on both symmetric and asymmetric cryptography are side-channel
attacks, introduced by Kocher [24] in 1996. Side-channel attacks are used to retrieve
private keys from electronic devices. There are various types of possible side-channel
attacks depending on the cryptosystem and the device. This includes timing execu-
tion [24], power consumption [25], electromagnetic radiation [26], fault injection [27], and
acoustic attack [28].

In symmetric and asymmetric cryptography, a plaintext M is encrypted by a non-
linear trapdoor function F together with a secret or a private key K so that C = F(M, K).
An algebraic attack consists of finding the plaintext M or the key K using publicly accessible
Cs and, eventually, finding their known corresponding Ms. Moreover, for symmetric ci-
phers, an algebraic attack can be used to approximate the hole or a partial (reduced-round)
encryption process by a linear function, which makes the cipher vulnerable.

The rest of this paper is organized as follows. In Section 2, we review the main
facts of artificial intelligence (AI) and machine learning (ML). In Section 3, we discuss the
differences between AI and ML. In Section 4, we provide a list of possible applications of
AI in cryptography. In Sections 5–8, we review the four prominent cryptosystems, namely
AES, RSA, LWE, and Ascon, and present possible applications of AI to test and enhance
their security. We conclude the paper in Section 9.

2. Artificial Intelligence and Machine Learning

Artificial intelligence (AI) is a subarea of computer science that concerns itself with
building rational agents, i.e., agents that sense the world (i.e., read a percept), map the
percept to some internal representation, and identify the best action to take among a set of
possible actions given the percept. The selected action is the one that minimizes the agent’s
objective function, then enacts the action and updates the internal representation of the
world as a consequence of the action. There exist various types of agents: search agents,
adversarial search agents, planning agents, logical agents, probabilistic agents, and learning
agents. The latter are data-driven and use machine learning algorithms to predict the action
to take as a function of the input percept from a collection of tuples (percept, action) [29].

Machine learning (ML) is a subarea of AI that concerns itself with learning agents and
algorithms. There exist three (3) major classes of learning agents/algorithms:

1. Supervised learning algorithms. These use tuples (input vector; output vector, also
called Label) to learn/approximate the output vector for an unseen given input vector.

2. Unsupervised learning algorithms. These do not make use of the label and use the
input vector only to learn/infer/approximate the output vector for an unseen given
input vector.

3. Reinforcement learning algorithms. This class progressively learns/infers/approximates
the output vector for an unseen given input vector from the positive or negative
feedback returned from the external world.

Recently, two more subclasses have come to light. These are:

1. Self-supervised learning algorithms. These algorithms mask parts of the input and
try to learn it. In essence, these algorithms transform an unsupervised problem
(i.e., a problem for which no labels exist) into a supervised problem by auto-generating
the labels.

2. Imitation learning algorithms. These are very recent. In essence, imitation learning
algorithms reproduce others’ actions from observing the actions performed by other
agents/machine learning algorithms [30].
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A comprehensive review and taxonomy of artificial intelligence and machine learning
techniques together with their disadvantages and challenges can be found in [31].

Artificial neural networks (ANNs) in particular have proven to be more powerful than
others in many applications, including computer vision (CV), natural language processing
(NLP), and autonomous driving (AD).

Artificial Neural Networks (ANNs) as a Non-Linear Approximation Function

Artificial neural network models are mainly characterized by their architecture, the
number of densely connected hidden layers, the number of cells/perceptrons (see Figure 1)
per layer, activation functions used in the neurons for firing, and the cost function used to
train the network (or, similarly, to find the weights of the interconnections between layers)
using gradient descent and back propagation for computing the gradient of the cost function
in the weight space [32] (see Figure 2). ANNs can be divided into three major categories:
those that perform input classification, sequence learning, or function approximation.
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Figure 1. Basic unit of artificial neural networks: the perceptron.

Input
layer

Hidden layer 1

Hidden layer 2

Output
layer

Figure 2. A multi-layer perceptron forming a 4-layer neural net with 3 input units, 5 units in the
first hidden layer, 4 units in the second hidden layer, and 2 output units.

Thanks to nonlinear activation functions such as the Sigmoid, Tanh or RELU func-
tions, ANNs are great at approximating arbitrary nonlinear functions (often as piece-wise
linear approximations).

In fact, an ANN with at least one hidden layer is a universal approximator, i.e., it can
represent any function [33]. However, one hidden layer might need an exponential number
of neurons, so often an architecture with many fully connected hidden layers (deep neural
network) is preferred, as it is more compact. Arguably, the performance of the network
increases with more hidden units and more hidden layers (see Figure 3).
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Figure 3. Learning the nonlinear line that separates the green dots from the red dots using 2 hidden
layers with 20 neurons each. Figure generated using [34].

Although there is no universal method to approximate any arbitrary given function,
there are development procedures that consistently lead to successful approximations of
nonlinear functions within a specific field. There is wealth of literature for such applications
in all fields, including bioengineering, mechanics, agriculture, digital design, and, last but
not least, intrusion detection and cybersecurity.

As arbitrary function approximators, ANNs lend themselves naturally to cryptanalysis
techniques, such as known and chosen plaintext attacks, linear, nonlinear, and differential
attacks. Furthermore, the feed-forward of the data process through multiple layers of the
neural networks has functional resemblance to multiple-round operations in a symmetric
cipher, i.e., linear permutations, followed by nonlinear transformations. This also invites
the attempt to leverage ANNs for the design of ciphers.

3. ANN Types and Their Domains of Application

Due to numerous advantages over other ML techniques, such as the ability to learn
hierarchical features, the ability to handle multiple output, and the ability to deal with
nonlinear data, which is clearly highlighted by the rapid development of foundation models
(FMs) [35], ANN-based learning agents have overshadowed other types of intelligent
agents, including the ones that use other machine learning techniques. They have become a
synonym for AI. This said, and despite the aforementioned advantages, it is not guaranteed
that, because deep ANNs demonstrate excellent performance for domain problems dealing
with language, images, and videos, they will necessarily outperform other ML techniques
in cryptography [36,37]. Unless otherwise specified, we will use the term AI to designate
agents that use ANNs.

There are many types of neural networks, such as auto-encoders, convolutional neural
networks (CNNs), long short-term memory networks (LSTMs), recurrent neural networks
(RNNs), generative adversarial networks (GANs), and transformers. They stand apart from
one other through the type of processing attached to individual layers and the architecture
used to connect the hidden layers, among other things, as well as whether a cell uses its
own output from previous excitation or not.

3.1. Convolutional Neural Networks (CNNs)

In addition to hidden layers, a CNN contains multiple convolution layers, which are
responsible for the extraction of important features, such as images, from spatial data.
The earlier layers are responsible for low-level details, and the later layers are responsible
for more high-level features. As such, CNNs are well-suited for applications such as facial
recognition, medical analysis, and image classification.
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3.2. Recurrent Neural Networks (RNNs)

RNNs are used to predict the next item in sequential data, which can be videos
or text. In RNNs, a neuron in a layer also receives a time-delayed input from its own
previous instance prediction. This instance prediction is stored in the RNN cell, which is a
second input for every prediction. RNNs are typically used in tasks such as text or speech
generation, text translation, and sentiment analysis.

3.3. Autoencoders

An autoencoder is a type of artificial neural network used to learn efficient coding of
unlabeled data (unsupervised learning). An autoencoder learns two functions: an encoding
function that transforms the input data into a low-dimension latent space representation,
and a decoding function that recreates the input data from the latent space representation.
Autoencoders are used in dimensionality reduction, image compression, image denois-
ing, feature extraction, image generation using generative adversarial networks (GANs),
sequence-to-sequence predictions, and recommendation systems.

3.4. Long Short-Term Memory Networks (LSTMs)

LSTMs use gates to control which output should be used or forgotten, including:
input gate, output gate, and forget gate. LSTMs are best applied in speech recognition and
text prediction.

3.5. Generative Adversarial Networks (GANs)

GANs learn to create new data instances that resemble the training data. For example,
GANs can create images that look like photographs of human faces, even though the faces
do not belong to any real person [38].

3.6. Transformers

The transformer model architecture drops recurrence and convolutions and uses an
attention mechanism to connect an encoder network with a decoder network. Applications
of this model include machine translation [39].

All of these variants of ANNs are mainly characterized by their architecture, the
number of parameters/weights that make up the model and that have to be learned, and
the training corpora used (Common Crawl, The Pile, MassiveText, Wikipedia, GitHub,
books, articles, logs, etc.). As this paper is being written, the Megatron-Turing Natural
Language Generation (MT-NLG), a transformer-based language generation model, uses
530 billion parameters, more than 7 times the average number of neurons in the adult
human brain. These are also called foundation/base models since they can be adapted/fine-
tuned for different tasks/contexts. Head-to-head comparison of existing (commercial and
open source) large models (LMs) can be found in [40]. It is worth noting that the size of a
model depends largely on the nature of the problem at hand. In many engineering domains,
the models used are not as big as foundation models.

4. Possible Applications of AI in Cryptography

The combination of cryptography with artificial intelligence will be beneficial for the
security of several applications. One of the goals of applying AI is to identify potential
vulnerabilities of a cryptographic system.

4.1. Areas of Application

1. In cybersecurity: Cybersecurity can easily benefit from the applications of AI. By apply-
ing AI, it is possible to write and process software to detect and to defend a system
against cyberattacks. The advantages of applying AI instead of traditional security
systems is that AI provides fast solutions and better security.

2. In blockchain: Blockchain is a new technology with various industrial and economic
applications. It plays a prominent role in many sectors, such as banking, cryptocur-
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rencies, and data management. It achieves a complete independence from any central
authority and guarantees secure communications thanks to advanced cryptographic
techniques. AI can be used to analyze the security and the efficiency of blockchain
applications in order to improve their practicability, security, and profitability.

3. In symmetric cryptography: AI can be deployed to analyze the security of a symmetric
system defined by an S-box or a vectorial Boolean function by testing all possible
cryptographic criteria, including bijectivity, nonlinearity, linear analysis, differential
analysis, balancedness, correlation immunity, algebraic degree, side-channel analy-
sis, strict avalanche criterion (SAC), bit independence criterion (BIC), and the NIST
Statistical Test Suite [41], which is used to guarantee the quality of random number
generators for cryptographic applications. Especially, the security of AES and Ascon
can be much improved if tested with the help of AI.

4. In asymmetric cryptography based on RSA: AI can be used to generate safe primes for the
RSA modulus, and to generate safe public and private keys by running the known
attacks such as factorization, small private key attacks, partial key exposure attacks,
and side-channel attacks.

5. In asymmetric cryptography based on LWE: Attacks on LWE and its variants are very
limited because their security is based on the hardness of hard problems in lattices.
Nevertheless, AI can be used to test the hardness of lattice problems with different
parameters in order to guarantee the safety and the efficiency of the cryptosystem.

This said, AI itself can benefit from modern cryptographic techniques, such as homo-
morphic encryption, to resolve the privacy issue related to data used in learning without
disclosing it [42].

Without much surprise, vanilla ANNs were applied very early in all areas of cryp-
tology, including side-channel attacks [43], random number generation [44], recovery of
plaintext [45], generation of ciphertext without the key [46], cryptanalysis of symmetric
ciphers [47–49], and hash and message authentication functions [50]. Attempts have also
be made to implement ciphers as ANNs [51].

The application of advanced ANNs such as deep, convolutional, and generative
adversarial neural networks is also gaining in momentum. In this regard, Ref. [52] deployed
a deep network for side-channel attacks on masked and unprotected AES implementations.
Ref. [53] deployed a linear attack on round-reduced DES using deep learning with plain-
cipher pairs. Ref. [54] posed the cryptanalysis of a cipher as a language translation problem
to be solved using a GAN, which was adapted to handle discrete data. The GAN is trained
to learn the mapping between plain and cipher text distributions without supervision.
Ref. [55] used deep convolutional neural networks to exploit differential properties of
round-reduced Speck cipher to perform a differential distinguishing attack that did not
involve key search. Ref. [56] used a deep neural network to perform the known-plaintext
attack on AES and its modes of operation to restore different bit lengths with probabilities.
Ref. [57] used deep learning in side-channel attacks against a secure implementation of the
RSA algorithm. Surprisingly, the applications of advanced ANNs to asymmetric encryption
has yet to begin. Therefore, in this article, we attempt to pinpoint stages in prominent
encryption algorithms, namely AES, RSA, and LWE, where the applications of advanced
ANNs can help increase their security.

4.2. Datasets

Datasets are structured collections of data used to train a model for the nonlinear
trapdoor function C = F(K, M). They consist of pairs of collected (M, C) that are gen-
erated synthetically at the design phases of F. Typically, all combinations of Ms and
their differences are generated and fed to F to obtain Cs, leading to a balanced dataset of
pairs (M, C).
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5. The Advanced Encryption Standard (AES)

The Advanced Encryption Standard [58], also known as the Rijndael algorithm,
is a symmetric block cipher that was designed by Daemen and Rijmen [59] in 1999.
It was adopted by the U.S. National Institute of Standards and Technology (NIST) in
2001 to supersede the Data Encryption Standard (DES) [60]. AES allows key lengths of
size 128, 192, or 256 bits, with a block length of 128 bits. In AES, the encryption performs
10 rounds for a 128-bit key, 12 rounds for a 192-bit key, and 14 rounds for a 256-bit key.

The encryption and the decryption in the AES algorithm start with two parameters:
a block B of length 128 bits, and a key K of length 128, 192, or 256 bits (see Table 1). In all
steps of the encryption and decryption in AES, the blocks B = {B0, . . . , B15} are represented
by 4× 4 square matrices of bytes called state arrays.

Table 1. Representation of the block and the subkey with bytes.

B0 B1 B2 B3

B4 B5 B6 B7

B8 B9 B10 B11

B12 B13 B14 B15

,

K0 K1 K2 K3

K4 K5 K6 K7

K8 K9 K10 K11

K12 K13 K14 K15

.

Table 2. AddRoundKey operation Xors state with key. .

S0 S1 S2 S3

S4 S5 S6 S7

S8 S9 S10 S11

S12 S13 S14 S15

⊕

K0 K1 K2 K3

K4 K5 K6 K7

K8 K9 K10 K11

K12 K13 K14 K15

=

S′0 S′1 S′2 S′3
S′4 S′5 S′6 S′7
S′8 S′9 S′10 S′11

S′12 S′13 S′14 S′15

.

5.1. The Encryption Process of AES

At the beginning of the encryption, each key K is expanded into n + 1 subkeys by an
algorithm called key expansion, where n ∈ {10, 12, 14} is the number of rounds. The encryp-
tion phase starts with the initial round by XORing the plaintext with the first subkey. Then,
the rounds are composed of four algorithms, namely AddRoundKey, SubBytes, ShiftRows,
and MixColumns, so that a round Ri with 0 ≤ i ≤ n is in the form:

Ri =





AddRoundKey(plaintext, subkey0) if i = 0,
AddRoundKey ◦ MixColumns ◦ ShiftRows ◦ SubBytes if 0 < i < n,
AddRoundKey ◦ ShiftRows ◦ SubBytes if i = n.

The four algorithms can be summarized as follows:

• AddRoundKey: The subkey for the round is bitwise XORed with the state array com-
puted in the previous step. In the first round, the state array is the input block, and in
the last round, the resulting state array is the ciphertext (see Table 2).

• SubBytes: The SubBytes transformation is a byte substitution that operates on each
byte of the state using a substitution table called S-box (see Table 3). Algebraically,
each byte x is transformed into a list of 8 bits,

x = (x1, x2, x3, x4, x5, x6, x7, x8),

and is transformed via the rule T,

T(x) =

{
c if x = 0

M
(

x−1
)
+ c if x 6= 0,
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where

c =




0
1
1
0
0
0
1
1




, M =




1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1




,

and x−1 is the inverse of x in the finite field F28 modulo the polynomial x8 + x4 + x3 +
x + 1.

Table 3. SubBytes operation yielding a new state vector.

Transformation T on

S0 S1 S2 S3

S4 S5 S6 S7

S8 S9 S10 S11

S12 S13 S14 S15

=

S′0 S′1 S′2 S′3
S′4 S′5 S′6 S′7
S′8 S′9 S′10 S′11

S′12 S′13 S′14 S′15

.

• ShiftRows: In this transformation, the bytes of the first row in the state array remain
unchanged, and the bytes of rows 2, 3, and 4 are cyclically shifted left by 1, 2, and
3 cases, respectively (see Table 4).

Table 4. ShiftRows operation yielding a new state.

S0 S1 S2 S3

S4 S5 S6 S7

S8 S9 S10 S11

S12 S13 S14 S15

−→

S0 S1 S2 S3

S5 S6 S7 S4

S10 S11 S8 S9

S15 S12 S13 S14

.

• MixColumns: In this transformation, each column is multiplied by a fixed
matrix,as in Table 5.

Table 5. MixColumns operation yielding a new state.

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

×

S0 S1 S2 S3

S4 S5 S6 S7

S8 S9 S10 S11

S12 S13 S14 S15

=

S′0 S′1 S′2 S′3
S′4 S′5 S′6 S′7
S′8 S′9 S′10 S′11

S′12 S′13 S′14 S′15

.

In MixColumns, the operations are performed in F28 modulo the polynomial x8 + x4 +
x3 + x + 1.

5.2. The Decryption Process in AES

The decryption process in AES is performed by applying the inverse of the algorithms
used in the encryption process. If n is the number of rounds in the encryption process, then
there are m = n rounds in the decryption process. The decryption starts by XORing the
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ciphertext with the last subkey of the key expansion. For 0 ≤ i ≤ m, the the inverse round
InvRi is composed of four algorithms as follows:

InvRi =



InvAddRoundKey(ciphertext, subkeym) if i = 0,
InvMixColumns ◦ InvAddRoundKey ◦ InvSubBytes
◦InvShiftRows if 0 < i < m,

InvAddRoundKey ◦ InvSubBytes ◦ InvShiftRows if i = m.

The algorithms can be summarized as follows.

• InvAddRoundKey: As in the AddRoundKey algorithm, the subkey for the round is
bitwise XORed, with the state array computed in the previous step. In the first round,
the state array is the ciphertext block, and in the last round, the resultant state array is
the plaintext.

• InvSubBytes: In this operation, the inverse S-box replaces each byte of the state with
another byte by a substitution method. Specifically, each byte y is transformed into a
list of 8 bits,

y = (y1, y2, y3, y4, y5, y6, y7, y8),

and is transformed via the rule T′,

T′(y) =

{
0 if y = c

1
M−1(y+c) if y 6= c,

where

c =




0
1
1
0
0
0
1
1




, M−1 =




0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0
0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0




.

The inverses are computed in the finite field F28 modulo the polynomial x8 + x4 +
x3 + x + 1.

• InvShiftRows: In this transformation, the bytes of the first row in the state array remain
unchanged, and the bytes of rows 2, 3, and 4 are cyclically shifted right by 1, 2, and
3 cases, respectively (see Table 6).

Table 6. InvShiftRows transforms the state on the left to the state on the right.

S0 S1 S2 S3

S4 S5 S6 S7

S8 S9 S10 S11

S12 S13 S14 S15

−→

S0 S1 S2 S3

S7 S4 S5 S6

S10 S11 S8 S9

S13 S14 S15 S12

.

• InvMixColumns: In this transformation, each column is multiplied by a fixed matrix,
as in Table 7.
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Table 7. InvMixColumns multiplies the state with the given matrix.

0e 0b 0d 09

09 0e 0b 0d

0d 09 0e 0b

0b 0d 09 0e

×

S0 S1 S2 S3

S4 S5 S6 S7

S8 S9 S10 S11

S12 S13 S14 S15

=

S′0 S′1 S′2 S′3
S′4 S′5 S′6 S′7
S′8 S′9 S′10 S′11

S′12 S′13 S′14 S′15

.

In InvMixColumns, the operations are performed in F28 modulo the polynomial
x8 + x4 + x3 + x + 1.

5.3. Main Attacks on AES

The goal of the attacks on an asymmetric cryptosystem is to find good properties
inside the cipher that allow for retrieval of partial or total information on the secret key.
In addition to the exhaustive attack, the two prominent attacks are the linear cryptanalysis
and the differential cryptanalysis.

• Exhaustive search attack. Brute force attacks, or exhaustive attacks, consist of trying
all possible keys to a ciphertext and checking whether the plaintext is recognizable.
It is easy to prevent such attacks by using large keys. In AES, the key lengths are
128, 192, and 256 bits. This makes the total key combination of each key length 2128,
2192, and 2256, respectively, which is infeasible even for the fastest supercomputers
today. On the other hand, with a computer with quantum technology, due to Grover’s
algorithm [61], it is possible to perform an exhaustive search in the square root of the
classical time, and the key lengths should be 2256.

• Linear attack. In 1993, Matsui [62] invented one of the most practical attacks on DES,
known as linear cryptanalysis. It can be applicable to AES by approximating the
nonlinear parts in the rounds by linear expressions. This makes the round a linear
function where the input or the output is easy to compute.
In the situation where the S-box of the system is constructed following a vectorial
boolean function F : F2n → F2n , the linear cryptanalysis is constructed on the value of
its nonlinearity, which is defined by:

NLF = 2n−1 − 1
2

max
a 6=0,b∈F2n

∣∣∣∣∣∣ ∑
x∈Fn

2

(−1)b·F(x)⊕a·x

∣∣∣∣∣∣
,

where a · x is the inner product in F2, defined as a · x = ⊕n
i=0aixi. The nonlinearity of

the function F represents the minimum Hamming distance between F and all possible
affine functions. It is well-known that NLF is upper bounded by 2n − 2

n
2−1. Vectorial

Boolean functions that achieve NLF = 2n − 2
n
2−1 are called bent. Bent functions exist

only when n is even and are important for building balanced S-boxes.
In practice, the nonlinearity of the vectorial Boolean function F is studied via the linear
probability table (LPT) defined for the entry (a, b) ∈ F2

2n by:

LPTF(a, b) =

(
#
{

x ∈ Fn
2 : a · x + b · F(x) = 0

}

2n−1 − 1

)2

.

For AES, except for the first row and first column, all rows and columns of the LPT
have the same distribution of values as given in Table 8.

Table 8. Distribution of the linear probability values of AES.

Value 0
(

1
64

)2 ( 2
64
)2 ( 3

64
)2 (

4
64

)2 ( 5
64
)2 ( 6

64
)2 ( 7

64
)2 ( 8

64
)2

Frequency 17 48 36 40 34 24 36 16 5
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• Differential attack. In 1991, Biham and Shamir [63] proposed differential cryptanalysis
and applied it to DES. Differential cryptanalysis is a chosen-plaintext attack and works
with two pairs of plaintext (P1, P2) with a fixed difference a = P1 + P2 and their
corresponding ciphertext (C1, C2). The goal of the differential cryptanalysis is to study
the behavior of the difference b = P1 + P2.
For a vectorial Boolean function F : F2n → F2n , the differential cryptanalysis is studied
via the difference distribution table (DDT), which is defined for (a, b) ∈ F2

2n by:

DDTF(a, b) = #{x ∈ F2n : F(x) + F(x + a) = b}.

The differential uniformity of F is defined by:

δF = max
a∈F∗2n

DDTF(a, b).

The differential cryptanalysis exploits the differential probability DPF, specifically:

DPF(a, b) =
#{x ∈ F2n : F(x) + F(a + x) = b}

2n .

For a randomly chosen permutation and for any a ∈ F2n\{0}, the value F(x) + F(a + x)
is expected to be uniformly distributed with equiprobability. This makes DDTF(a, b) a
reliable and practical distinguisher if DPF(a, b) is sufficiently small.
For the AES S-box, Table 9 shows the distribution of the DPF values and
their frequencies.

Table 9. Distribution of the differential probability values of AES.

Value 0 2
256

4
256 1

Frequency 33,150 32,130 255 1

If x0 is a solution to the equation F(x) + F(a + x) = b, then x0 + a is also a solution.
This implies that DDTF(a, b) ≥ 2 for all a 6= 0 and, consequently, δF ≥ 2. Vectorial
Boolean functions satisfying δF = 2 are called almost perfect nonlinear (APN) func-
tions. As shown in Table 9, the differential uniformity of the AES S-box is 4. Hence,
AES does not belong to the APN family; nevertheless, its differential uniformity is too
small. This makes AES resistant to differential cryptanalysis.

5.4. Applications of AI to Block Ciphers

There are plenty of attacks on AES that can be performed by AI. The goal of using AI
with AES is to test the resistance of its secret keys and its S-boxes to such attacks. AI can be
used for the following tasks.

1. Resistance to side-channel attacks [64]: Side-channel attacks exploit the operations per-
formed by a cryptographic system during encryption or decryption to gain informa-
tion about the private key. The most used channel attacks are timing attacks, simple
power attacks, differential power attacks, electromagnetic radiation attacks, correla-
tion power attacks, etc. These attacks rely on collecting and interpreting observations
in order to infer information about key size and bits. These inferences lend themselves
naturally to ML and ANNs in general and to advanced ANNs/models in particular.
As described earlier, some work has already been initiated in this direction [52].

2. Resistance to fault attacks [65]: Fault attacks are deployed to disturb the normal func-
tioning of a cryptosystem. They are injected by various techniques such as laser, light
pulses, electromagnetic perturbations, tampering with the clock, etc. This enables
the attacker to collect the erroneous result and to gain information about the private
key. As with side-channel attacks, fault attacks can be overcome by testing imple-
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mentations against an advanced ANN that tries to leverage the erroneous results
to infer information about the key. AES cipher implementations need to be tested
against an advanced ANN model that tries to leverage collected output to infer the
key before deployment.

3. Resistance to linear attacks [62]: This task can be processed by computing the linear
probability table of the S-box. ANNs as excellent function approximators can be used
to model nonlinearity of S-boxes, similarly to the work of [53] on DES.

4. Resistance to differential attacks [63]: This task can be performed by computing the
difference distribution table of the S-box. As with linear attacks, ANNs as excellent
function approximators can be used to model the differential properties of S-boxes,
similarly to what has been done by [55] on the round-reduced Speck cipher and
by [47] on the round function of GIFT.

5. Resistance to truncated differentials [66]: This variant of the differential attack was pre-
sented by Knudson in 1994. This task can be processed by adapting the difference
distribution table of the S-box under the truncated differentials criteria. As with
differential attacks, ANNs as excellent function approximators can be used to model
the truncated differential properties of S-boxes.

6. Resistance to boomerang attacks [67]: The task of testing the boomerang cryptanalysis
can be accomplished by studying the boomerang connectivity table (BCT) as defined
by Cid et al. in 2018 [68]. The BCT of an invertible vectorial function F : F2n → F2n is
defined at the entry (a, b) ∈ F2n by:

BCTF(a, b) = #
{

x ∈ F2n : F−1(F(x) + b) + F−1(F(x + a) + b) = a
}

.

7. Algebraic immunity [69,70]: The algebraic immunity of a vectorial Boolean function F
defined on F2n is the lowest degree of all functions G 6= 0 satisfying F(x) · G(x) = 0
or (1 + F(x)) · G(x) = 0, where a · b is the inner product of the vectors a and b.
The underlying vectorial Boolean function of AES can be modeled and tested using
advanced ANNs.

8. Balancedness [71]: A vectorial Boolean function F : F2n → F2m is balanced if every
value of F2m is the image of exactly 2n−m values from F2n . The task of verifying
balancedness can be processed by studying the vectorial Boolean function that defines
the S-box of AES.

9. Resistance to other attacks: There are plenty of attacks and criteria that can be imple-
mented with AI to test the security of block ciphers. This includes correlation im-
munity [72], strict avalanche criterion (SAC) [73], fixed points and opposite fixed
points [59], algebraic degree [72], impossible differential [74], etc. A complete list of
such attacks can be found in [5,75].

In sum, AI can be used to test AES SubBytes() and MixColumns() functions, and the
AES cipher with its modes of operations and their implementations can be used to test
against all former attacks and to propose useful and efficient solutions, such as the choice of
the key space, MixColumns() matrix polynomials, etc., that nullify/undermine the attacks.

6. The RSA Cryptosystem

In 1978, Rivest, Shamir, and Adleman [6] introduced RSA, a public key and digital
signature scheme. RSA is used in various industrial applications, such as privacy, VPNs,
communication channels, email services, cybersecurity, and web browsers.

6.1. The RSA Encryption Scheme

The RSA encryption scheme is composed of three algorithms.

1. Key Generation: Given a parameter n,

• Select a random prime number p of bit size n.
• Select a random prime number q of bit size n with p 6= q.
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• Compute N = pq and φ(N) = (p− 1)(q− 1).
• Select a number e such that gcd(e, φ(N)) = 1.
• Compute a number d such that ed ≡ 1 (mod φ(N)).
• Publish the public key (N, e).

2. Encryption: Given a public key (N, e) and a message M ∈ Z/NZ,

• Compute the ciphertext C ≡ Me (mod N).

3. Decryption: Given the private key (N, d) and a ciphertext C,

• Compute M ≡ Cd (mod N).

The correctness of the decryption works following Euler’s Theorem,

Cd ≡ Med ≡ Mkφ(N)M ≡ M (mod N),

where k is the integer such that ed = 1 + kφ(N).

6.2. Attacks on RSA

In RSA, there are originally three parameters: a modulus N = pq with two large prime
numbers p and q, a public exponent e satisfying gcd(e, (p− 1)(q− 1)) = 1, and a private
exponent d such that ed ≡ 1 (mod (p− 1)(q− 1)). This modular equation can be rewritten
as ed− kφ(N) = 1 and is called the key equation. Since its invention in 1978, RSA has been
intensively cryptanalyzed by various methods [7,8,10]. We describe below some of these
attacks. The prominent attacks on RSA can be categorized into three groups:

• Factorization attacks. The most obvious attack on RSA is to factor its modulus N.
Nevertheless, since N is the product of two balanced large prime numbers, no known
method is efficient to factor RSA moduli of size 1024 bits or more. There are several
algorithms devoted to factoring integers, such as the Number Field Sieve method [76],
Pollard’s Rho method [77], the Elliptic Curve Method [78], and others, with different
running times as presented in Table 10.

Table 10. Algorithms to factor an integer n with running times.

Algorithm Running Time
Complexity Nature of the Factor p

Pollard’s Rho [77] O
(√

p
)

largest prime factor

Elliptic Curve Method [78] O
(

e(1+o(1))
√

2 log(p) log(log(p))
)

smallest prime factor

Number Field Sieve [76] O
(

e1.923 log(n)
1
3 log log(n)

2
3

)
any factor

Quadratic Sieve [79] O
(

e(1+o(1))
√

log(n) log(log(n))
)

any factor

Despite the existence of such factorization algorithms, there is no known non-quantum-
based method that can efficiently factor an RSA modulus of more than 1024 bits.
The latest record for integer factorization was obtained in 2020 by Boudot et al. [80],
who factored RSA-250, an RSA modulus with 829 bits.

• Algebraic attacks. Such attacks are based on the mathematical structure of the cryp-
tosystem. Typically, for RSA, the algebraic attacks are related to the key equation
ed− kφ(N) = 1. In 1996, Coppersmith [81] proposed a method to solve certain poly-
nomial equations and applied it to factor an RSA modulus if half of the bits of one of
the prime factors were known. Since then, various generalizations of Coppersmith’s
method have been proposed [7–10,82].
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In 1990, Wiener [83] showed that using RSA with a small private exponent is insecure.
Using the key equation ed− kφ(N) = 1 with φ(N) = (p− 1)(q− 1) = N + 1− (p + q)
≈ N, he showed that if p and q have the same bit size, and if d < 1

3 N
1
4 , then:

∣∣∣∣
e
N
− k

d

∣∣∣∣ <
1

2d2 ,

which implies that k
d is one of the convergents of the continued fraction expansion of e

N .
The convergents of e

N can efficiently be computed by applying the continued fraction
algorithm. In 1996, Boneh and Durfee [84] improved the bound up to d < N0.292 by
applying Coppersmith’s method and lattice reduction techniques.

• Side-channel attacks. The modular exponentiation is a crucial operation in RSA and
must be implemented securely to prevent side-channel attacks. The application of
side-channel attacks against RSA started in 1996 with the work of Kocher [24]. Since
then, numerous studies have been conducted to make side-channel attacks infeasible
against RSA [85–88].
For the RSA cryptosystem, the running time during the decryption process can leak
information about the private key. This method is known as a timing attack and is one of
the most popular side-channel attacks. In RSA, the timing attack concerns the modular
exponentiation if the square-and-multiply method is used. To compute md (mod N),
the square-and-multiply method consists of expanding d = (dr−1dr−2 · · · d0)2 in
base 2, taking a = 1, and then, for i from r− 1 down to 0, computing a ≡ a2 (mod N);
additionally, if di = 1, a ≡ am (mod N). The drawback of this method is that the
computation time is not the same when di = 1 and di = 0. This can be exploited
to guess the binary decomposition of d and then to compute d. To ovoid timing
attacks, there are various implementations of the modular exponentiation, such as
square-always exponentiation [89].

6.3. Applications of AI to RSA

1. Resistance to side-channel attacks [24]: RSA is vulnerable to side-channel attacks depend-
ing on its arithmetic operations, especially during the decryption process. Numerous
studies have been proposed to protect it from side-channel attacks [87,88,90]. As with
side-channel attacks on AES, advanced ANNs can be used to test the RSA cryptosys-
tem and its implementations against the side-channel attacks before deployment.
Some work has already been done in this direction. Ref. [57] used deep learning in
side-channel attacks against a secure implementation of the RSA algorithm.

2. Resistance to fault attacks [91]: In addition to side-channel attacks, RSA is vulnerable to
fault attacks [92,93]. There are many techniques to force faults, such as variations in
the clock, laser, X-rays, voltage, etc. These attacks also lend themselves to the use of
advanced ANNs to infer key bits or plaintext from the collected output resulting from
the faults.

3. Resistance to factorization attacks: The security of RSA is partly based on the difficulty of
factoring its modulus N. Obviously, the bit size of N is crucial against factoring algo-
rithms, such as the Number Field Sieve and the Elliptic Curve method. The current
recommendation for the size of the RSA modulus is at least 3000 bits [94]. Some initial
work has been conducted in this direction by [95,96], but more is needed in order to
strengthen the choice of primes p and q.

4. Resistance to Fermat’s factoring method [97]: This method is based on solving the equation
N = x2 − y2 = (x − y)(x + y), which leads to p = x+y

2 , q = x−y
2 . If the difference

|p− q| is too small relative to N, then y is too small, and
√

N is an approximation of x.
This can be exploited to retrieve x, y, and the prime factors from p and q. The method
works efficiently when |p− q| < N

1
4 . AI can be used to learn x and y for different

Ns and to eliminate the RSA prime factors p and q that are vulnerable to Fermat’s
factoring method during the generation phase. Furthermore, biases in the distribution
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of consecutive primes [98] can be learned using an advanced ANN to help reduce the
search space in factorization and Fermat’s factoring attacks.

5. RSA with existing modulus: If N1 = p1q1 is the RSA modulus of two independent
entities, then both entities know the prime factors and can decrypt the encrypted
messages of each other. Unfortunately, AI cannot help guard against this scenario.
Luckily, the likelihood that two organizations generate the same primes p and q is
extremely slim, knowing that p and q are on the order of 21024.

6. RSA moduli with common factors: If N1 = pq1 and N2 = pq2 are two RSA moduli, then
an attacker can compute p = gcd(N1, N2), q1 = N1

p , and q2 = N2
p . This factors the

two moduli. To generate a safe RSA modulus N, testing whether N is coprime to
every modulus in the list of collected moduli can be efficiently performed by using
the method of Bernstein [99,100] without the need for AI.

7. RSA moduli with primes sharing most, middle, or least significant bits: If N1 = p1q1 and
N2 = p2q2 are two RSA moduli, where p1 ≈ p2 share an amount of their least, middle,
or most significant bits, then one can apply the method of May and Ritzenhofen [101]
or the method of Faugère et al. [102] to factor N1 and N2. Here too, the factorization
problem can be posed as an approximation function implemented using ANNs,
leading to the elimination of the prime factors that share a significant number of their
least significant bits.

8. Resistance to small private exponents: The private exponent in RSA with a modulus
N = pq and a public exponent e is the integer d satisfying ed− k(p− 1)(q− 1) = 1.
Because of the attack of Wiener [83], and the attack of Boneh–Durfee [84], it is required
that d be larger than

√
N. Nevertheless, in many instances, one can find the value

d even if d is arbitrarily large [103,104]. AI can be used to build an approximation
function using advanced ANNs for solving the equation above and using it to test the
resistance of a generated RSA modulus to such attacks.

9. Resistance to partial key exposure attacks: When a fraction of the most significant or
the least significant bits of the private exponent d is guessed by an attacker, then
Coppersmith’s method can be used to retrieve d entirely [105–107]. An ANN ap-
proximator for learning d from its fractions and known ciphertext plaintext pairs can
be used to test any generated private key d against such attacks before using it for
practical applications.

7. Learning with Errors

In 2005, Regev [11] introduced the Learning With Errors problem (LWE). It has
become an important computational problem in lattice-based cryptography.

7.1. Description of Learning with Errors

An instance of LWE is parameterized by a positive integer m, a prime number q, and a
probability distribution χ over Zq, the ring of integers modulo q. A typical example of a
probability distribution is the continuous Gaussian distribution centered in c ∈ Rn with a
parameter σ > 0. It is defined for a vector x ∈ Rn by:

χc,σ(x) =
1

σn e−π‖ x−c
σ ‖2

.

There are two main equivalent sub-problems in LWE, Search LWE and Decision LWE,
which are known to be equivalent.

• Search LWE can be summarized as follows. Let χ be a probability distribution over Zq.
Given a matrix A ∈ Zm×n

q and a vector b ∈ Zm
q whose entries are chosen uniformly,

find a vector s ∈ Zn
q such that As + e = b, where e ∈ Zm

q is a vector generated by χ.
• Decision LWE can be summarized as follows. Given a matrix A ∈ Zm×n

q and a vector
b ∈ Zm

q , determine whether (A, b) ∈ L1 or (A, b) ∈ L2, where L1 is the set of all tuples
(A, b) ∈ Zm×n

q ×Zm
q generated by uniformly random distribution and L2 is the set of
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all tuples (A, b) ∈ Zm×n
q × Zm

q , such that b = As + e for a vector s ∈ Zn
q , uniformly

distributed, and e ∈ Zm
q , generated by χ.

The first cryptosystem based on LWE was presented by Regev in 2005. It is parameter-
ized by the four parameters m, n, q, and χ, with q prime, m ≥ 4(n + 1) log(q), and χ as a
probability distribution, such that a vector e ∈ Zm

q generated by χ satisfies ‖e‖ < B < 1
4mq

with overwhelming probability. The system is composed of four algorithms, which can be
summarized as follows.

1. Key Generation: Given the parameters m, n, q, and χ,

• Select a matrix A ∈ Zm×n
q at random.

• Select a secret vector s ∈ Zn
q .

• Select a private vector e ∈ Zm
q according to a probability distribution χ over Zq.

• Compute b ∈ Zm
q , such that b = As + e, and publish the public key (A, b).

2. Encryption: Given the parameters m, n, q, χ, a public key (A, b), and a message
M ∈ {0, 1},
• Select a vector r ∈ Zm

q at random.
• Compute the ciphertext (C1, C2), where C1 = rt A ∈ Zn

q and
C2 = rtb +

⌊ q
2
⌋

M ∈ Zq. Here, xt represents the transpose of x.

3. Decryption: Given the parameters m, n, q, χ, a ciphertext (C1, C2), and a secret key s,

• Compute u = C2 − C1s ∈ Zq.
• If |u| ≤ q

4 , then the decryption is 0, else the decryption is 1.

The correctness of the decryption depends on the size of u. Indeed,

u = C2 − C1s = rte +
⌊ q

2

⌋
M,

and if e satisfies ‖e‖ < B with high probability, then ‖rte‖ < mB < q
4 , and the

decryption occurs.

7.2. Hardness of LWE

The security of LWE is based on the hardness of various open problems in lattice
reduction theory. A lattice L ⊂ Rn is a discrete subgroup of Rn that is generated by m
vectors u1, . . . , um ∈ Rn using integer coefficients; that is,

L =

{
m

∑
i=1

aiui
∣∣ ai ∈ Z

}
.

The set B = {u1, . . . , um} is called a basis of L, m is its rank, and n is its dimension.
When n = m, the lattice is called a full-rank lattice.

Lattices have plenty of properties and hard unsolved problems that are used to build
cryptosystems that are still resistant, even to quantum computers. The most known and
used hard problems in lattice theory are the Shortest Vector Problem (SVP) and the Closest
Vector Problem (CVP). Both problems use the minimum distance λ1(L) of L, which is
defined by:

λ1(L) = min
v∈L\{0}

‖v‖,

where ‖v‖ is the Euclidean norm defined for v = (v1, . . . , vn) ∈ Rn by ‖v‖ =
(
∑n

i=1 v2
i
) 1

2 .

• Shortest Vector Problem (SVP): Let L be a lattice with a basis B. Find the shortest nonzero
lattice vector u ∈ L with ‖u‖ = λ1(L).

• Closest Vector Problem (CVP): Let L be a lattice with a basis B and v 6∈ L be a vector.
Find a lattice vector u ∈ L such that ‖u− v‖ ≤ λ1(L).



Cryptography 2023, 7, 39 18 of 26

The security of LWE is based on two sub-problems in lattices: the Decisional Approxi-
mate SVP (GapSVPγ) and the Approximate Shortest Independent Vectors Problem (SIVPγ),
where γ ≥ 1 is a positive real parameter.

• Decisional Approximate SVP (GapSVPγ): Let L be a lattice with a basis B and r > 0 be a
real number. Decide whether λ1(L) ≤ r or λ1(L) > γr.

• Approximate Shortest Independent Vectors Problem (SIVPγ): Let L be a full-rank lattice
with dimension n and a basis B. Find n linearly independent vectors vi ∈ L such that
‖vi‖ ≤ γλn(L), where λn(L) is the n-th successive minimum of the lattice.

In 2005, Regev [11] showed that, when the LWE error e is generated by a Gaussian
distribution with a parameter σ = αq, where

√
n

q < α < 1, then solving LWE implies
a quantum solution of GapSVPγ and SIVPγ over n-dimensional lattices in the worst case
for γ = Õ(n/α), where Õ(·) is a function with various poly-logarithmic factors. In 2009,
Peikert [108] showed that classical reductions are possible from the worst-case hardness
of the GapSVP problem to the search version of LWE when the modulus q is exponential
in the dimension n, especially when q ≥ 2

n
2 . In 2013, Brakerski et al. [109] showed

that LWE is classically at least as hard as standard worst-case lattice problems with any
subexponential modulus.

7.3. Applications of AI to LWE

The security of LWE comes from its reduction to worst-case lattice problems. Such prob-
lems are believed to be hard for both classical and quantum computers. As a consequence,
there is a very limited number of attacks that can be launched against LWE. While the
theoretical security of LWE depends on hard problem in lattices, its practical security
depends on the parameters used in a specific instantiation. Intuitively, both GapSVPγ and
SIVPγ problems can benefit from the power of advanced ANNs as approximators. The set
of parameters that are vulnerable to solutions of GapSVPγ and SIVPγ by an advanced ANN
should be discarded. To date, no such attempts can be found in the literature.

8. The Ascon Family of Ciphers

In this section, we describe Ascon [22], the family of authenticated encryption and
hashing algorithms selected by NIST for future standardization of lightweight cryptography.

8.1. Description of Ascon

Ascon is a family of several algorithms devoted to different tasks. The family includes
Ascon-128 and Ascon-128a authenticated ciphers, the Ascon-Hash hash function, and the
Ascon-Xof extendable output function. They ensure 128-bit security and use a common
320-bit permutation. All of the algorithms operate at 320-bit states. Each state S is divided
into an inner part Sr of size r bits and an outer part Sc of size c = 320− r bits, where r
depends on the Ascon variant. Moreover, each state is divided into five 64-bit registers
x0, · · · , x4, such that:

S = Sr‖Sc = x0‖x1‖x2‖x3‖x4.

The authenticated encryption design of Ascon is parameterized by a key bit length
of k ≤ 160, a rate r, and two integers a and b. The integers a and b serve to count the
compositions of a permutation p of the set {0, 1}320. The permutation p is the composition
of three permutations, specifically:

p = pL ◦ pS ◦ pC,

where pC is a constant addition, pS is a substitution layer, and pL is a linear diffusion layer
(see [22] for more details).

8.2. Ascon Encryption

The encryption process of Ascon starts with four initial parameters:
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• A key K ∈ {0, 1}k with k ≤ 160;
• A nonce N ∈ {0, 1}128;
• Associated data A ∈ {0, 1}∗;
• A plaintext P ∈ {0, 1}∗.

It is split into four phases:

1. Initialization: The 320-bit initial state in Ascon is built by the concatenation of an initial
vector IV, a secret k-bit key K, and a 128-bit nonce N; that is:

S = IV‖K‖N.

The initial vector IV has the form:

IV = k‖r‖a‖b‖0160−k,

where a is the initialization and finalization round number, and b is the intermediate
round number. After initializing the state, a permutation p is applied to it a times,
followed by XORing the key K so that the output has the form:

S← pa(S)⊕
(

0320−k‖K
)

.

2. Processing Associated Data: If associated data A ∈ {0, 1}∗ is provided and not null, they
are appended with a single 1 and r− 1− (|A| (mod r)) 0s, then split into s blocks of
size r so that:

A← A‖1‖0r−1−(|A| (mod r)) = A1‖A2‖ · · · ‖As.

If A is empty, then s = 0. For each i = 1, · · · , s, the following calculation is performed:

S← pb((Sr ⊕ Ai)‖Sc).

After all calculations, the state is transformed as:

S← S⊕
(

0319‖1
)

.

3. Plaintext Processing: The plaintext P ∈ {0, 1}∗ is also appended with a single 1 and
r− 1− (|P| (mod r)) 0s, and then is split into t blocks of size r, so that:

P← P‖1‖0r−1−(|P| (mod r)) = P1‖P2‖ · · · ‖Pt.

Then, for i = 1, · · · , t, the following calculations are performed:

Ci ← Sr ⊕ Pi,

S←
{

pb(Ci‖Sc) if 1 ≤ i < t,
Ci‖Sc if i = t.

After processing Ct, the value C̃t = bSr ⊕ Ptc|P| (mod r) is calculated, where bxck is the
bitstring x truncated to the most significant k bits.

4. Finalization: In this phase, the following values are calculated:

S← pa
(

S⊕
(

0r‖K‖0320−r−k
))

,

T ← dSe128 ⊕ dKe128,

where dxek is the bitstring x truncated to the least significant k bits. The ciphertext is
finally composed as:

C = C1‖ · · · ‖Ct−1‖C̃t,
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which is transmitted together with the tag T.

8.3. Ascon Decryption

In Ascon, the decryption algorithm starts with the following parameters, already fixed
in the encryption algorithm:

• The key K ∈ {0, 1}k with k ≤ 160;
• The nonce N ∈ {0, 1}128;
• The associated data A ∈ {0, 1}∗;
• The ciphertext C ∈ {0, 1}∗;
• The tag T ∈ {0, 1}128.

The decryption is nearly identical to encryption. More precisely, the initialization
and the processing associated data are identical, while plaintext processing is replaced by
ciphertext processing as follows.

First, the ciphertext C ∈ {0, 1}∗ is split into t blocks of size r so that:

C = C1‖C2‖ · · · ‖Ct−1‖C̃t,

with 0 ≤ |C̃t| < r.
Second, for i = 1, · · · , t− 1, the following calculations are performed:

Pi ← Sr ⊕ Ci,

S← pb(Ci‖Sc).

Then, two values P̃t and Sr are computed as:

P̃t ← bSrc|C̃t | ⊕ C̃t,

Sr ← Sr ⊕
(

P̃t‖1‖0r−|C̃t |−1
)

.

Next, the following values are computed:

S← pa
(

S⊕
(

0r‖K‖0320−r−k
))

,

T∗ ← dSe128 ⊕ dKe128.

Finally, if T = T∗, then return P1‖ · · · ‖Pt−1‖P̃t, else return ⊥.

8.4. Security of Ascon

The hardness of Ascon is tightly linked to the choice of the parameters a, b, and r and
to the key size k used to perform the encryption and the decryption. To guarantee 128-bit
security, the recommended parameters are listed in Table 11.

Table 11. Parameters for Ascon-128 and Ascon-128a.

Algorithm Key Nonce Tag Data a b Rate r

Ascon-128 128 128 128 64 12 6 64

Ascon-128a 128 128 128 128 12 8 128

Since its selection as the winner of the CAESAR competition, the Ascon family has
been intensively analyzed for vulnerabilities. Section 6 of [22] presents an overview of the
security analysis and resiatance to attacks. All published results so far support its security
and efficiency.
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8.5. Applications of AI to Ascon

The Ascon family uses a 5-bit S-box [22] that needs to be immune against known
attacks for substitution layers pS, such as the linear and differential attacks. Section 5.4
presents an exhaustive list of these attacks that are also applicable to the Ascon
lightweight cipher.

To this end, AI can be used to test the Ascon S-box, as well as the full or partial
transformation process reflected by small a and b values against all these attacks, in order
to propose the set of parameters that nullify/undermine these attacks.

9. Conclusions

Artificial intelligence (AI) and, in particular, deep learning using sophisticated artificial
neural network (ANN) architecture, is exponentially developing and gaining practical use
in all sectors of daily life. In this paper, we presented areas where the use of AI can help
enhance the security of cryptographic systems. We particularly focused on four prominent
systems in modern cryptography, namely, the Advanced Encryption Standard (AES), the
Rivest–Shamir–Adleman (RSA) scheme, the Learning With Errors (LWE) scheme, and
the lightweight Ascon cipher family. We reviewed their security and pinpointed layers,
functions, and areas that could potentially benefit from cryptanalysis that uses advanced
ANN architectures. This said, depending on the function to approximate S-box and vectorial
Boolean functions for AES, S-box and permutations for Ascon, Diophantine equations and
factorization for RSA, lattice problems for LWE), ANNs may not necessarily outperform
other machine learning (ML) techniques. For instance, LWE introduces vectors of errors
similar to noise in the encryption process, which may hinder the performance of ANNs,
since it is a well-known fact that ANNs suffer from noisy training data. Experimentation is
needed to confirm this hypothesis. Furthermore, sophisticated ANN architectures can have
the tendency to overfit the presented training data, which may lead to errors for unseen
encrypted data or plaintext.

Finally, beyond prediction, ANNs do not provide any insights into the structure of
the function being approximated, which may not help in fine-tuning the function/layer
being approximated (see [110] for Explainable AI). For further research, we envisage
experimenting with different ANN architectures and building an ANN generator that
automatically generates an adversary ANN from the specification of the S-box or the
vectorial Boolean function to help cryptosystem designers quickly test the strength of the
cryptographic functions and substitution layers.
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Abbreviations
The following abbreviations are used in this manuscript:

AES Advanced Encryption Standard

AI Artificial Intelligence

ANN Artificial Neural Network

CNN Convolutional Neural Networks

LWE Learning With Errors

ML Machine Learning

NIST National Institute of Standards and Technology

RNN Recurrent Neural Network

RSA Rivest, Shamir, and Adleman

References
1. Rivest, R.L. Cryptography and machine learning. In Advances in Cryptology—ASIACRYPT’91, Proceedings of the ASIACRYPT 1991,

Fujiyoshida, Japan, 11–14 November 1991; Lecture Notes in Computer Science; Imai, H., Rivest, R.L., Matsumoto, T., Eds.; Springer:
Berlin/Heidelberg, Germany, 1991; Volume 739.

2. Ertel, W. Introduction to Artificial Intelligence, 2nd ed.; Undergraduate Topics in Computer Science; Springer:
Cham, Switzerland , 2017.

3. Tencent Research Institute; CAICT; Tencent AI Lab; Tencent Open Platform (Eds.) Artificial Intelligence, A National Strategy;
Palgrave Macmillan: Singapore, 2021. [CrossRef]

4. Diffie, W.; Hellman, M. New directions in cryptography. IEEE Trans. Inf. Theory 1976, 22, 644–654. [CrossRef]
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