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Abstract: In this paper, we propose a new scheme based on ephemeral elliptic curves over a finite ring
with an RSA modulus. The new scheme is a variant of both the RSA and the KMOV cryptosystems
and can be used for both signature and encryption. We study the security of the new scheme and show
that it is immune to factorization attacks, discrete-logarithm-problem attacks, sum-of-two-squares
attacks, sum-of-four-squares attacks, isomorphism attacks, and homomorphism attacks. Moreover,
we show that the private exponents can be much smaller than the ordinary exponents in RSA and
KMOV, which makes the decryption phase in the new scheme more efficient.
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1. Introduction

The RSA system was proposed in 1977 by Rivest, Shamir, and Adleman [1] as a
public key cryptosystem. The algorithm is based on a trap-door function that utilizes
the Fermat–Euler theorem. The RSA algorithm’s strength depends on the difficulty of
factorizing a large integer n, which is the product of two large primes p and q. In
RSA, the public exponent is an integer e and the private exponent is an integer d such
that ed ≡ 1 (mod (p− 1)(q− 1)).

Since its publication, the RSA cryptosystem has been intensively studied for vulner-
abilities using various methods (see [2,3]). On the other hand, to improve the efficiency
of RSA, many variants have been proposed such as Batch RSA [4], Multi-Prime RSA [5],
Prime Power RSA [6], CRT-RSA [7], Rebalanced RSA [8], Dual RSA [9], and DRSA [10].

In 1985, Koblitz [11] and Miller [12] showed independently how to use elliptic curves
over finite fields for the design of cryptosystems. Such schemes contribute to elliptic
curve cryptography (ECC) and their security is based on the hardness of the elliptic
curve discrete logarithm (ECDLP). ECC offers high security with smaller keys and more
efficient implementations than traditional public key cryptosystems such as RSA. ECC is
increasingly used in industry for digital signatures such as ECDSA [13], key agreement
such as ECDH [14], and Bitcoin [15].

In 1991, Koyama et al. [16] proposed a new scheme called KMOV by adapting RSA
to the elliptic curve with an equation y2 ≡ x3 + b (mod n) over the ring Z/nZ, where
n = pq is an RSA modulus satisfying p ≡ q ≡ 2 (mod 3). In KMOV, b is computed during
the encryption process in terms of the plaintext (x, y) as b ≡ y2 − x3 (mod n). The main
property of KMOV is that (p + 1)(q + 1)P = O holds for any point P on the elliptic curve,
where O is the point at infinity. In 1993, Demytko [17] proposed a variant of RSA, where
the elliptic curve with the equation y2 ≡ x3 + ax + b (mod n) over Z/nZ is fixed. The
advantage of Demytko’s scheme over KMOV is that it uses only the x-coordinate of the
points on the elliptic curve. One of the common properties of both schemes is that their
security is based on the hardness of factoring large composite integers.
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This paper proposes a new RSA variant based on the elliptic curve with the equation
y2 = x3 + ax over the ring Z/nZ, where n = pq is an RSA modulus with p = u2

p + v2
p,

q = u2
q + v2

q, up ≡ 3 (mod 4) and uq ≡ 3 (mod 4). The number of points on the ellip-
tic curve y2 = x3 + ax over the finite field Fp is p + 1 − 2Up, with Up ∈ {±up,±vp}.
Similarly, the number of points on the same elliptic curve over Fp is q + 1− 2Vp, with
Uq ∈ {±uq,±vq}.

The new scheme is a variant of both RSA and KMOV and works as follows. The public
exponent is an integer e satisfying gcd(e, ψ(n)) = 1, where

ψ(n) = (p + 1− 2Up)(q + 1− 2Uq),

with Up ∈ {±up,±vp} and Uq ∈ {±uq,±vq}. To encrypt a message m, one generates a ran-

dom integer r with 1 ≤ r < n, computes a = m2−r3

r (mod n), and C = (xC, yC) = e(r, m)
on the elliptic curve with equation y2 = x3 + ax over the ring Z/nZ. The point C is then

the encrypted message. To decrypt C, one first computes a ≡ y2
C−x3

C
xC

(mod n) and the two
values Up and Uq such that

Up =



−up if a
p−1

4 ≡ 1 (mod p),

up if a
p−1

4 ≡ −1 (mod p),

vp if a
p−1

4 ≡ up
vp

(mod p),

−vp if a
p−1

4 ≡ − up
vp

(mod p),

(1)

and

Uq =



−uq if a
q−1

4 ≡ 1 (mod q),

uq if a
q−1

4 ≡ −1 (mod q),

vq if a
q−1

4 ≡ uq
vq

(mod q),

−vq if a
q−1

4 ≡ − uq
vq

(mod q).

(2)

Using Up and Uq, one computes ψ(n) = (p + 1− 2Up)(q + 1− 2Uq) and d ≡ e−1

(mod ψ(n)). Finally, one computes the initial message (r, m) = d(xC, yC) on the elliptic
curve with equation y2 = x3 + ax over the ring Z/nZ.

This paper studies the security of the new scheme regarding the modulus n, the
private multiplier d, and the elliptic curve with an equation y2 ≡ x3 + ax (mod n). For
the modulus n = pq, we study its resistance against factorization algorithms and its
decomposition as the sum of two or four squares. We show that knowing the order
ψ(n) = (p + 1− 2Up)(q + 1− 2Uq) with Up ∈ {±up,±vp} and Uq ∈ {±uq,±vq} is not
sufficient to factor n. For the private multiplier d, we show that the attacks based on the
continued fraction algorithm or Coppersmith’s method are applicable only if d < n0.133. For
comparison, the former techniques are applicable to RSA and KMOV when their private
exponent and multiplier d′ is such that d′ < n0.292. Finally, we study the discrete logarithm
problem for an elliptic curve with the equation y2 ≡ x3 + ax (mod n). We also study
isomorphism and homomorphism attacks and ways to overcome them.

To summarize, our scheme is a generalization of the KMOV and Demytko’s schemes,
which can be used for encryption and signatures. Moreover, it is a probabilistic algorithm
that is secure against known classical attacks.

It should be noted that our scheme is not secure under quantum cryptanalysis because
Shor’s [18] algorithm can factor any RSA modulus in polynomial time.

The rest of this paper is organized as follows. Section 2 presents the results that will
be used in this paper. Sections 3 and 4 present the theory of elliptic curves over a finite
field Fp and a finite ring Z/nZ, respectively. Section 5 presents the new scheme. Section 6
presents an analysis of the security of the new scheme. Section 7 concludes the paper.
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2. Useful Lemmas

This section presents some results that will be useful for the security analysis of our
new scheme.

Let n = pq be an RSA modulus with balanced prime factors p and q, typically,
q < p < 2q. The following result gives the upper and lower bounds for p and q in terms of
n [19].

Lemma 1. Let n = pq be the product of two unknown integers such that q < p < 2q. Then,
√

2
2
√

n < q <
√

n < p <
√

2
√

n.

In 1990, Wiener [8] showed that RSA with a public key (n = pq, e) is insecure if the
private exponents d satisfy ed− k(p− 1)(q− 1) = 1 with d < 1

3 n
1
4 . His method is based on

the continued fraction algorithm and makes use of Theorem 184 in [20].

Theorem 1. Let ξ be a real number. Let a and b be two positive integers satisfying gcd(a, b) = 1 and∣∣∣ξ − a
b

∣∣∣ < 1
2b2 .

Then, a
b is a convergent of the continued fraction expansion of ξ.

In 1996, Coppersmith [21] described a polynomial-time algorithm for finding small
solutions of univariate modular polynomial equations. The method is based on lattice
reduction. Since then, the Coppersmith method has been extended to solve modular
polynomial equations with more variables and has been used for cryptanalysis, especially
with regard to the RSA system. To illustrate this point, Boneh and Durfee [22] presented
an attack on RSA by transforming the RSA key equation ed− k(p− 1)(q− 1) = 1 into
the small inverse problem x(n + y) ≡ 1 (mod e). Using Coppersmith’s method, they
improved Wiener’s attack up to d < n0.292.

The following result is a generalization of the method of Boneh and Durfee for solving
the small inverse problem (see [22–24]).

Lemma 2. Let n and e be two distinct integers of the same size. Let x and y be two integers such
that |x| < nδ, |y| < nβ, and x(n + y) ≡ 1 (mod e). If 1

4 < β < 1 and δ < 1−
√

β, then one
can find x and y in polynomial time.

3. Elliptic Curves over the Finite Field Fp

This section presents the main definitions and properties of elliptic curves. For more
properties, see [25–28].

Let p be a prime number and Fp be the finite field with p elements. An elliptic curve E
over Fp is an algebraic curve with no singular points, which is given by the Weierstrass
equation

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6,

where ai ∈ Fp for i ∈ {1, 2, 3, 4, 6}. When p ≥ 5, the equation can be transformed
into the short Weierstrass equation y2 = x3 + ax + b, with the nonzero discriminant
∆ = −16

(
4a3 + 27b2) 6= 0. The set of points P = (x, y) satisfying the equation, along with

the infinity point O, is denoted as E(Fp). The total number of points on E(Fp) is called
the order of E and is denoted as #E(Fp). It is well known that #E(Fp) can be written as
#E(Fp) = p + 1− t, where t is bounded by the following result of Hasse 0 ≤ |t| ≤ 2

√
p.

An addition law is defined over E(Fp) using the chord-tangent method.
The following result is fundamental to finding the exact value of #E(Fp) for specific

elliptic curves (see Theorem 5, page 307, Section 4, Chapter 18 of [29]).
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Theorem 2. Let p = u2
p + v2

p be a prime number with p ≡ 1 (mod 4). Let a ∈ Fp with a 6= 0.
Consider the elliptic curve Ep with equation y2 = x3 + ax over Fp. Then,

#E(Fp) = p + 1−
(
−a
π

)
4
π −

(
−a
π

)
4
π,

where π = up + ivp ≡ 1 (mod (2 + 2i)), i2 = −1, and
(

α
π

)
4 = α

p−1
4 (mod π) is the

biquadratic (or quartic) residue character of α modulo π.

The following result provides an explicit solution for
( a

π

)
4 (mod π) (see page 122,

Proposition 9.8.2 of [29]).

Theorem 3. Let p = u2
p + v2

p be a prime number with p ≡ 1 (mod 4). Let a ∈ Fp with a 6= 0.
Then,

a
p−1

4 ≡ ±1,±i (mod π),

where π = up + ivp, i2 = −1.

The following result is valid when the residue quartic character is computed for
modulo p.

Lemma 3. Let p = u2
p + v2

p be a prime number with p ≡ 1 (mod 4). Let a ∈ Fp with a 6= 0.
Then,

a
p−1

4 ≡ ±1,±upv−1
p (mod p).

Proof. Let p = u2
p + v2

p be a prime number. First, we have u2
p + v2

p ≡ 0 (mod p) and(
upv−1

p

)2
≡ −1 (mod p). Next, let a ∈ Fp with a 6= 0. According to Fermat’s Little

Theorem, we have ap−1 ≡ 1 (mod p). Then, a
p−1

2 ≡ 1 (mod p) or a
p−1

2 ≡ −1 (mod p). If

a
p−1

2 ≡ 1 (mod p), then a
p−1

4 ≡ ±1 (mod p), and if a
p−1

2 ≡ −1 (mod p), then

a
p−1

2 ≡
(

upv−1
p

)2
(mod p),

and a
p−1

4 ≡ ±upv−1
p (mod p). To summarize, we have a

p−1
4 ∈ {±1,±upv−1

p } for modulo
p. This concludes the proof.

The following result provides a simple proof for the estimation of #E(Fp) when p ≡ 1
(mod 4). Alternative proofs can be found in [28] (Section 4.4 p. 115) and [29] (Section 4 in
Chapter 18).

Lemma 4. Let p = u2
p + v2

p be a prime number with up = 4u + 3 and vp = 4v + 2. For a ∈ Fp

with a 6= 0, let Ea(p) be the elliptic curve with the equation y2 = x3 + ax over Fp. Then,

#E(Fp) =



p + 1 + 2up if a
p−1

4 ≡ 1 (mod p),

p + 1− 2up if a
p−1

4 ≡ −1 (mod p),

p + 1− 2vp if a
p−1

4 ≡ up
vp

(mod p),

p + 1 + 2vp if a
p−1

4 ≡ − up
vp

(mod p),

Proof. Let p = u2
p + v2

p with up = 4u + 3 and vp = 4v + 2. We set
p = ππ with π = up + ivp. Then,

p− 1
4

= 4u2 + 4v2 + 6u + 4v + 3,
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and (
−1
π

)
4
= (−1)

p−1
4 = (−1)3 = −1.

Also, we have

up + ivp = 1 + (2 + 2i)(1 + u− v + i(v− u)) ≡ 1 (mod 2 + 2i).

We apply Theorem 2 to the elliptic curve with equation y2 = x3 + ax over Fp.
We obtain

#E(Fp) = p + 1−
(
−a
π

)
4
π −

(
−a
π

)
4
π

= p + 1−
(
−1
π

)
4

( a
π

)
4
π −

(
−1
π

)
4

( a
π

)
4
π

= p + 1 +
( a

π

)
4
π +

( a
π

)
4
π.

Theorem 3 asserts that a
p−1

4 ≡ ±1,±upv−1
p (mod p). First, assume that a

p−1
4 ≡ 1

(mod p). Then, a
p−1

4 ≡ 1 (mod π) and

#E(Fp) = p + 1 + (up + ivp) + (up − ivp) = p + 1 + 2up.

Next, assume that a
p−1

4 ≡ −1 (mod p). Then, a
p−1

4 ≡ −1 (mod π) and

#E(Fp) = p + 1− (up + ivp)− (up − ivp) = p + 1− 2up.

Now, assume that a
p−1

4 ≡ − up
vp

(mod p). Since up + ivp ≡ 0 (mod π), then

−upv−1
p − i ≡ 0 (mod π) and −upv−1

p ≡ i (mod π). Hence, a
p−1

4 ≡ i (mod π) and

#E(Fp) = p + 1− i(up + ivp) + i(up − ivp) = p + 1 + 2vp.

Finally, assume that a
p−1

4 ≡ up
vp

(mod p). Then, upv−1
p ≡ −i (mod π) and a

p−1
4 ≡ −i

(mod π), which gives

#E(Fp) = p + 1 + i(up + ivp)− i(up − ivp) = p + 1− 2vp.

This concludes the proof.

4. Elliptic Curves over the Ring Z/nZ
This section briefly describes the theory of elliptic curves over the ring Z/nZ, where

n = pq is an RSA modulus (see [28], Section 2.11 and [30] for more details).
Let a, b ∈ Z/nZ with gcd(4a3 + 27b2, n) = 1. The elliptic curve En(a, b) is the set of

points P = (x, y) that satisfies the equation y2 = x3 + ax + b (mod n), together with the
point at infinity denoted as On. According to the Chinese remainder Theorem, the set
En(a, b) is isomorphic to the direct sum Ep(a, b)⊕ Eq(a, b), where Ep(a, b) is the elliptic
curve with equation y2 = x3 + ax + b (mod p) over Fp with the point at infinity Op, and
Eq(a, b) is the elliptic curve with equation y2 = x3 + ax + b (mod q) over Fq with the point
at infinity Oq. Hence, the point at infinity of En(a, b) is On = (Op,Oq). The points of the
form (Op, Pq) with Pq 6= Oq and the points of the form (Pp,Oq) with Pp 6= Op are semi-zero
points, whereas the ordinary points are of the form P = (Pp, Pq) with Pp 6= Op and Pq 6= Oq.
A group law can be given for En(a, b) using the chord and tangent addition law. However,
the addition law is not always well-defined when using analytical expressions since there
are elements in Z/nZ that are not invertible modulo n. To overcome this, the projective
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coordinates (x : y : z) ∈ P2(Zn) are used with the equation y2z = x3 + axz2 + bz3 (mod n).
Hence, for any point P of the elliptic curve En(a, b), we have

lcm(#Ep(a, b), #Eq(a, b)) · P = On.

In this paper, the arithmetic of the new scheme is based on the elliptic curve En(a, b)
with a ∈ Z/nZ and b = 0, where n = pq with large prime numbers. Consequently, the sum
of two points of En(a, 0) is defined with overwhelming probability.

The following result gives an explicit value for the order #En(a, 0).

Theorem 4. Let n = pq be an RSA modulus with p = u2
p + v2

p, q = u2
q + v2

q, up ≡ uq ≡ 3
(mod 4) and vp ≡ vq ≡ 2 (mod 4). For a ∈ Z/nZ with gcd(a, n) = 1, let En(a) be the elliptic
curve with the equation y2 = x3 + ax over Z/nZ. Then, for any point P on En(a), we have

(p + 1− 2Up)(q + 1− 2Uq) · P = On,

where Up satisfies (1) and Uq satisfies (2).

5. The New Scheme

This section presents the new scheme and a small numerical example.

5.1. The New Encryption Scheme

Key generation.

1. Choose a size l ≥ 4096 for the modulus to guarantee at least 128 security levels.
2. Choose two large integers u1 and v1 of size l/4.
3. Compute up = 4u1 + 3 and vp = 4v1 + 2.
4. Compute p = u2

p + v2
p.

5. If p is not prime, return to Step 2.
6. Choose two large integers u2 and v2 of size l/4.
7. Compute uq = 4u2 + 3 and vq = 4v2 + 2.
8. Compute q = u2

q + v2
q.

9. If q is not prime, return to Step 6.
10. Compute n = pq.
11. Choose an integer e such that

gcd
(

e,
(
(p + 1)2 − 4u2

p

)(
(q + 1)2 − 4u2

q

))
= 1.

The pair (n, e) represents the public key, and (up, vp, uq, vq) represents the private key.

Encryption.

1. Generate a random integer r ∈ Z/nZ.
2. Use the message yM as M = (r, yM) ∈ Z/nZ×Z/nZ.
3. Compute a ≡

(
y2

M − r3)r−1 (mod n). The elliptic curve En(a) is defined by the
equation y2 ≡ x3 + ax (mod n).

4. Compute (xC, yC) = e(r, yM) on Ea(n). The point (xC, yC) is the encrypted message.

Decryption.

1. Compute a ≡
(
y2

C − x3
C
)

x−1
C (mod n). The elliptic curve Ea(n) is defined by the

equation y2 ≡ x3 + ax (mod n).
2. Compute Up using Formula (1) and Uq using Formula (2).
3. Compute φ(a, n) = (p + 1− 2Up)(q + 1− 2Uq).
4. Compute d ≡ e−1 (mod φ(a, n)).
5. Compute M = (r, yM) = d(xC, yC) on En(a). The point (r, yM) is the original message.
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The role of the random integer r is to serve as the x-coordinate of M on the elliptic curve
with the equation y2 ≡ x3 + ax (mod n). If the same message yM is encrypted twice, this
yields two different couples, (r, yM) and (r′, ym); two values, a ≡

(
y2

M − r3)r−1 (mod n)
and a′ ≡

(
y2

M − r′3
)
r′−1 (mod n); and two elliptic curves with different equations.

5.2. A Numerical Example

The following is a numerical example with small integers demonstrating the system
parameters and a plaintext–ciphertext pair.

u1 = 3253473156, v1 = 3239617290,

up = 4u1 + 3 = 13013892627, vp = 4v1 + 2 = 12958469162,

p = u2
p + v2

p = 337283324329589943373,

u2 = 4133795239, v2 = 4069844016,

uq = 4u2 + 3 = 16535180959, vq = 4v2 + 2 = 16279376066,

q = u2
q + v2

q = 538430294445129796037,

n = pq = 181603559630213323475279432919469869812801,

e = 233,

r = 276576193905959805653341,

yM = 24123988022450690140866.

Then, one can compute the following parameters

a ≡
y2

M − r3

r
(mod n)

= 124892799480186717332460335305220886752546,

C = e(r, yM) = (xC, yC),

xC = 9895932661554916108079613524266560686478,

yC = 174838551993023162117462165695082973280827,

a
p−1

4 ≡ 1 (mod p), hence Up = −up,

a
q−1

4 ≡ −1 (mod q), hence Uq = uq,

φ(a, n) = (p + 1− 2Up)(q + 1− 2Uq)

= 181603559633073389948874511533493403987360,

d ≡ e−1 (mod φ(a, n)) = 35073648856172972307722545145953661714297,

m = d(xC, yC) = (r, yM),

which shows that the decryption is correct.
In addition to the former example, we performed extensive experiments to test the

validity of our scheme, as described in Section 5, using random parameters u1, v1, u2, v2, e,
r, and yM. In all cases, the scheme was successful without failure.

5.3. The New Signature Scheme

The encryption scheme can be transformed easily into a signature scheme using a
hash function as follows. There is no particular specification for the hash function, so any of
the most popular hash functions can be used such SHA-2, MD6, RIPEMD, HAVAL-128, etc.

• Key generation. The key generation scheme is similar to that of the encryption in
Section 5.1.

• Encryption.

1. Generate a random integer r ∈ Z/nZ.
2. Represent the message as M = (r, yM) ∈ Z/nZ×Z/nZ.
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3. Compute a ≡
(
y2

M − r3)r−1 (mod n). The elliptic curve En(a) is defined by the
equation y2 ≡ x3 + ax (mod n).

4. Compute (xC, yC) = e(r, yM) on Ea(n). The point (xC, yC) is the encrypted
message.

5. Compute the signature s = Hash(r‖yM).

• Decryption.

1. Compute a ≡
(
y2

C − x3
C
)
x−1

C (mod n). The elliptic curve Ea(n) is defined by the
equation y2 ≡ x3 + ax (mod n).

2. Compute Up using Formula (1) and Uq using Formula (2).
3. Compute φ(a, n) = (p + 1− 2Up)(q + 1− 2Uq).
4. Compute d ≡ e−1 (mod φ(a, n)).
5. Compute M = (r, yM) = d(xC, yC) on En(a).
6. Compute s′ = Hash(r‖yM)
7. Accept the message if s′ = s.

As in the encryption scheme, the random number r serves as the x-coordinate of the
point M = (r, yM) on the elliptic curve with the equation y2 ≡ x3 + ax (mod n). Note that
r is random, which implies that the signature scheme is probabilistic.

6. Security Analysis

This section presents an analysis of the resistance of our scheme to the most well-
known attacks that can be applied to it.

6.1. Resistance against Factorization Methods

When p and q are sufficiently large, factoring the RSA modulus n = pq is believed to
be hard for all currently known factorization algorithms (see [31,32]). Indeed, Pollard’s
rho method is ineffective since its run time is O

(√
p(log(n))2) and depends on the size

of the prime number p found. This is similar to Lenstra’s Elliptic Curve Method (ECM)
for which the run time is O

(
exp

(√
2
√

ln p ln ln p
))

. The Number Field Sieve [33] is also

ineffective for large primes p and q. Its run time is O
(

exp
(

c 3
√

ln n 3
√
(ln ln n)2

))
, where c

is a constant.

6.2. Resistance against Decomposition as Sum of Two Squares

It is well known that if n = pq with p ≡ q ≡ 1 (mod 4), then n can be expressed as
the sum of two squares as n = x2 + y2. In the new scheme, the modulus is in the form
n = pq =

(
u2

p + v2
p

)(
u2

q + v2
q

)
. Then, the Brahmagupta–Fibonacci identity expresses n as

a sum of two squares in two different ways, namely

n = (upuq − vpvq)
2 + (upvq + vpuq)

2 = (upuq + vpvq)
2 + (upvq − vpuq)

2.

Euler observed that if n = x2
1 + y2

1 = x2
2 + y2

2 with x1 ≡ x2 ≡ 0 (mod 2) and x1 6= ±x2
(mod n), then

n =

(
r2

4
+

u2

4

)(
s2 + t2

)
,

where

r = gcd(x1 − x2, y2 − y1), u = gcd(x1 + x2, y2 + y1), s =
x1 − x2

r
, t =

y2 − y1

r
.

On the other hand, we have
(

x1y−1
1

)2
≡
(

x2y−1
2

)2
≡ −1 (mod n). It follows that

decomposing n as the sum of two squares in two different ways will provide a solution to
the equation t2

1 ≡ t2
2 (mod n) with t1 6= ±t2 (mod n), and two solutions of the congruence
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t2 = −1 (mod n). This is known to be equivalent to factoring n, as in the quadratic sieve
factoring algorithm [34] and in Rabin’s cryptosystem [35].

It is also known that by applying the continued fraction algorithm to
√

n, it is possible
to find one representation of n (see [36]) as n = x2 + y2. This leads to one of the systems{

upuq − vpvq = x,
upvq + vpuq = y,

{
upuq + vpvq = x,
upvq − vpuq = y.

This is insufficient for solving either of the two systems. Consequently, the represen-
tation of n as a sum of two squares by the continued fraction method is inadequate to
factorize it.

6.3. Resistance against Decomposition as Sum of Four Squares

Lagrange’s four-square theorem states that every positive integer n is the sum of
four squares (Theorem 369 in [20]), that is, n = x2

1 + x2
2 + x2

3 + x2
4. The number of de-

composing n is such that a sum is denoted as r4(n), and for odd n, Jacobi’s four-square
theorem formula givesr4(n) = 8 ∑m|n m (Proposition 17.7.2 of [20]). For the modulus

n = pq =
(

u2
p + v2

p

)(
u2

q + v2
q

)
, a specific decomposition as a sum of four squares is

n = (upuq)
2 + (upvq)

2 + (vpuq)
2 + (vpvq)

2.

Conversely, let n = x2
1 + x2

2 + x2
3 + x2

4 be a decomposition of n leading to the factoriza-

tion n = pq =
(

u2
p + v2

p

)(
u2

q + v2
q

)
. Then,

upuq = |x1|, upvq = |x2|, vpuq = |x3|, vpvq = |x4|,

from which we obtain

gcd(|x1|, |x2|) = gcd(upuq, upvq) = up gcd(uq, vq) = up.

Similarly, we have

vp = gcd(|x3|, |x4|), uq = gcd(|x1|, |x3|), vq = gcd(|x2|, |x4|).

As the decomposition of p = u2
p + v2

p, with the positive integers up and vp that satisfy
up ≡ 3 (mod 4), is unique, p can be decomposed as p = r2 + s2 with the integers r and s
in eight ways, namely

p = (±up)
2 + (±vp)

2 = (±vp)
2 + (±up)

2.

This is also true for q. Consequently, among the representations of n as a sum of four
squares n = x2

1 + x2
2 + x2

3 + x2
4, only 64 decompositions can lead to the factorization of n

by using
upuq = |x1|, upvq = |x2|, vpuq = |x3|, vpvq = |x4|.

This is negligible compared to r4(n) = 8(1 + p + q + n), which represents the number
of decompositions of a large modulus n = pq as the sum of four squares.

6.4. Resistance against Solving the Order

In RSA, it is well known that solving Euler’s totient function φ(n) = (p− 1)(q− 1) is
equivalent to factoring n = pq. This is also true for solving the order Nn = (p + 1)(q + 1) in
the KMOV system. For an elliptic curve E over a finite ring Z/nZ with an RSA modulus n,
Martin et al. [37] proved that computing the order #E is as difficult as factoring n. Moreover,
for our scheme, we have the following facts.
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Let a ∈ Z/nZ be fixed. In our scheme, the order of the elliptic curves En(a) is of
the form

#En(a) = (p + 1− 2Up)(q + 1− 2Uq),

with Up ∈ {±up,±vp} and Uq ∈ {±uq,±vq}. Assume that the factorization of n is known.
Then, one can compute #Ep(a) = p + 1− 2Up and #Eq(a) = q + 1− 2Uq using a specific
algorithm to determine the order of an elliptic curve over a finite field such as the Schoof–
Elkies–Atkin algorithm [38]. This implies that #En(a) = (p + 1− 2Up)(q + 1− 2Uq) can be
computed. Conversely, assume that #En(a) = (p + 1− 2Up)(q + 1− 2Uq) is known, where
Up ∈ {±up,±vp} and Uq ∈ {±uq,±vq}. Let Vp ∈ {vp, up} and Vq ∈ {vq, uq} such that

V2
p = p−U2

p, V2
q = q−U2

q .

Assume that up and vp are of the same size so that up < 2vp and vp < 2up. Then, if
Up = ±up, we obtain Vp = vp, and

p = U2
p + V2

p = u2
p + v2

p < 5v2
p = 5V2

p .

Also, if Up = ±vp, we obtain Vp = up, and

p = U2
p + V2

p = v2
p + u2

p < 5v2
p = 5U2

p.

Hence, using Lemma 1, we obtain

min
(

U2
p, V2

p

)
>

p
5
>

√
n

5
.

Similarly, assuming that uq and vq are of the same size with uq < 2vq and vq < 2up,
we obtain

min
(

U2
q , V2

q

)
>

q
5
>

√
2
√

n
10

.

As a consequence, we have

p + 1− 2Up = (Up − 1)2 + V2
p > V2

p >

√
n

5
,

and

q + 1− 2Uq = (Uq − 1)2 + V2
q > V2

q >

√
2
√

n
10

.

By combining the former inequalities, we obtain

(p + 1− 2Up)(q + 1− 2Uq) >

√
n

5
·
√

2
√

n
10

=

√
2

50
n. (3)

This implies that the order #En(a) = (p + 1− 2Up)(q + 1− 2Uq) is sufficiently large.
Moreover, with a high probability, it can take any shape, and consequently, there is no
efficient method to factor it with a classical computer. Hence, finding p and q is not feasible
in general.

It is important to note that the work of Kunihiro and Koyama [39] on the equivalence
between factoring n and counting the number of points on elliptic curves over Z/nZ does
not apply when the order #En(a) = (p + 1− 2Up)(q + 1− 2Uq) is known for a fixed a. The
reason is that in [39], an oracle is needed that can count the number of points on every ellip-
tic curve over Z/nZ, whereas in our situation, only #En(a) = (p + 1− 2Up)(q + 1− 2Uq)
is known.
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6.5. Resistance against Small Private Exponent Attacks

The main small private exponent attacks on RSA are based on the key equation
ed′ − k′(p− 1)(q− 1) = 1. Wiener’s attack is based on the continued fraction algorithm,
which exploits the approximation (p − 1)(q − 1) = n + 1− p − q ≈ n. It leads to the
factorization of n under the condition d′ < 1

3 n
1
4 . The attack of Boneh and Durfee is based

on Coppersmith’s method and exploits the existence of a small solution (x, k′) to the
modular equation k′(n + 1− x) ≡ 1 (mod e). It works for d′ < n0.292.

In the following, we show that the private exponent d in our scheme can be small
enough without undermining its security. Typically, it should be larger than n0.133, whereas
in RSA, it should be larger than n0.292.

Lemma 5. Let n = pq be an RSA modulus with p = u2
p + v2

p, q = u2
q + v2

q, up ≡ uq ≡ 3
(mod 4), up ≈ vp, and uq ≈ vq. If d satisfies the key equation
ed− k(p + 1− 2Up)(q + 1− 2Uq) = 1, where Up ∈ {±up,±vp} and Uq ∈ {±uq,±vq}, then

|ed− kn| < 7k(2n)
3
4 .

Proof. Rewrite the key equation in the form

ed− k(p + 1− 2Up)(q + 1− 2Uq) = 1,

with Up ∈ {±up,±vp}, Uq ∈ {±uq,±vq}. We have

(p + 1− 2Up)(q + 1− 2Uq) = n + p(1− 2Uq) + q(1− 2Up) + (1− 2Up)(1− 2Uq).

Then,

|ed− kn| = |k(p + 1− 2Up)(p + 1− 2Uq) + 1− kn|
= |k((p + 1− 2Up)(p + 1− 2Uq)− n) + 1|
= |k(p(1− 2Uq) + q(1− 2Up) + (1− 2Up)(1− 2Uq)) + 1|
≤ kp|1− 2Uq|+ kq|1− 2Up|+ k|1− 2Up||1− 2Uq|+ 1.

Suppose that up and vp are of the same bit-size so that up < 2vp and vp < 2up. Then,

max(up, vp)
2 < 2upvp < u2

p + v2
p = p.

Hence,
max(up, vp) <

√
p,

from which we deduce that

|1− 2Up| ≤ 2|Up|+ 1 < 2
√

p + 1 < 3
√

p. (4)

Similarly, we obtain
|1− 2Uq| < 3

√
q. (5)

This leads to

|ed− kn| ≤ kp|1− 2Uq|+ kq|1− 2Up|+ k|1− 2Up||1− 2Uq|+ 1

< 3kp
√

q + 3kq
√

p + 9k
√

p
√

q + 1

< 3kp
√

p + 3kp
√

p + 9k
√

p
√

q + 1

< 6kp
√

p + 10k
√

p
√

q

< 7kp
√

p,
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where we use 10k
√

p
√

q + 1 < kp
√

p, which is valid since 10
√

q < p. Using Lemma 1,
we obtain

|ed− kn| < 7kp
√

p < 7k(2n)
3
4 .

This concludes the proof.

The following result shows that with regard to Wiener’s attack, the private exponent d
can be very small in our scheme compared to the private exponent in RSA.

Theorem 5. Let n = pq be an RSA modulus with p = u2
p + v2

p, q = u2
q + v2

q and
up ≡ uq ≡ 3 (mod 4). Let e be a public exponent such that e < (p+ 1− 2Up)(q+ 1− 2Uq) with
Up ∈ {±up,±vp} and Uq ∈ {±uq,±vq}. If d satisfies the equation

ed− k(p + 1− 2Up)(q + 1− 2Uq) = 1 with d <
√

2
4 n

1
8 , one can find d and k in polynomial time.

Proof. The key equation is in the form

ed− k(p + 1− 2Up)(q + 1− 2Uq) = 1,

with Up ∈ {±up,±vp}, and Uq ∈ {±uq,±vq}. Then, Lemma 5 gives

|ed− kn| < 7k(2n)
3
4 .

Dividing by nd, we obtain ∣∣∣∣ e
n
− k

d

∣∣∣∣ < 7k(2n)
3
4

nd
. (6)

Using the key equation ed− k(p + 1− 2Up)(q + 1− 2Uq) = 1, we obtain

k(p + 1− 2Up)(q + 1− 2Uq) = ed− 1 < ed.

Then,
k
d
<

e
(p + 1− 2Up)(q + 1− 2Uq)

.

By assuming that e < (p + 1− 2Up)(q + 1− 2Uq), this implies that k < d. Then,
(6) implies that ∣∣∣∣ e

n
− k

d

∣∣∣∣ < 7(2n)
3
4

n
.

The solutions in d of the inequality 7(2n)
3
4

n < 1
2d2 satisfy

d <
1√

14 · 2 3
4

n
1
8 .

For such solutions, we have ∣∣∣∣ e
n
− k

d

∣∣∣∣ < 1
2d2 .

This implies that k
d can be found among the convergents of the continued expansion of

e
n . Since the continued fraction algorithm computes the convergents of e

n with complexity
O(log(n)), one finds k and d in polynomial time.

Theorem 5 shows that when d <
√

2
4 n

1
8 , it is possible to retrieve the private exponent

d. If d >
√

2
4 n

1
8 , the continued fraction attack does not apply and d may not be found using

this technique.
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The following result makes use of lattice reduction techniques.

Theorem 6. Let n = pq be an RSA modulus with p = u2
p + v2

p, q = u2
q + v2

q and
up ≡ uq ≡ 3 (mod 4). Let e be a public exponent such that e < (p + 1− 2Up)(q + 1− 2Uq)
with Up ∈ {±up,±vp} and Uq ∈ {±uq,±vq}. If d satisfies the equation
ed − k(p + 1 − 2Up)(q + 1 − 2Uq) = 1 with d < n0.133, one can find d and k in polyno-
mial time.

Proof. Since d satisfies an equation of the form ed− k(p + 1− 2Up)(q + 1− 2Uq) = 1, with
Up ∈ {±up,±vp}, Uq ∈ {±uq,±vq}, we rewrite

(p + 1− 2Up)(q + 1− 2Uq) = n + p(1− 2Uq) + q(1− 2Up) + (1− 2Up)(1− 2Uq)

= n− s,

where s = −p(1− 2Uq)− q(1− 2Up)− (1− 2Up)(1− 2Uq). Then, the key equation can
be transformed into the modular equation

(−k)(n− s) ≡ 1 (mod e). (7)

We set the bound k < X = eδ for some δ > 0. On the other hand, we have

|s| = |p(1− 2Uq) + q(1− 2Up) + (1− 2Up)(1− 2Uq)|
≤ p|1− 2Uq|+ q|1− 2Up|+ |1− 2Up||1− 2Uq|.

By combining (4) and (5) with Lemma 1, we obtain

|s| < 3p
√

q + 3q
√

p + 9
√

pq < 7p
√

p < 7(2n)
3
4 .

Then, we set the bound |s| < Y = 7(2n)
3
4 = nβ with β ≈ 3

4 . Now, we can apply
Lemma 2 to Equation (7). This allows us to find k and s in polynomial time under the condi-

tion δ < 1−
√

β = 1−
√

3
4 ≈ 0.133. Using k and s, one can find d since d = k(n−s)+1

e .

Remark 1. The bound on d in Theorem 6 is slightly better than the bound in Theorem 5. In both
cases, one can find d and k, which gives

(p + 1− 2Up)(q + 1− 2Uq) =
ed− 1

k
,

with Up ∈ {±up,±vp}, Uq ∈ {±uq,±vq}. According to (3), we know that

(p + 1− 2Up)(q + 1− 2Uq) >
√

2
50 n. This is large enough, and in general, is hard to fac-

tor when n is large. Consequently, the method described in [40] for extracting p and q cannot
be applied. As a consequence, finding p and q using the continued fraction method or the lattice
reduction techniques when the multiplier d is small is infeasible.

6.6. Resistance against Discrete Logarithm Problem

The elliptic curve discrete logarithm problem (ECDLP) over a finite field Fp is the fol-
lowing computational problem: Given an elliptic curve E over Fp and two points P, Q ∈ E(Fp),
find an integer x, if any, such that Q = aP in E. The ECDLP is still resistant to several non-
quantum algorithms and is the foundation of the security of elliptic curve cryptography
(see [41] for more details).

For an elliptic curve defined over a finite ring such as Z/nZ, where n = pq is an RSA
modulus, the elliptic curve discrete logarithm problem can be solved if one knows p and
q and if one can solve the ECDLP in both E(Fp) and E(Fp). Hence, solving the ECDLP
on E(Z/nZ) is more difficult. This problem is used to build several elliptic curve-based
cryptosystems [16,17,42–44].
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One more crucial fact of our scheme is that a new elliptic curve is generated each time
a message is encrypted. This ensures that any generic or global discrete-logarithm attacks
on our scheme are infeasible.

6.7. Resistance against Isomorphism and Homomorphism Attacks

Let En(a) and En(a′) be two elliptic curves with equations y2 ≡ x3 + ax (mod n) and
y2 ≡ x3 + a′x (mod n), arising from our scheme. Then, En(a) and En(a′) are isomorphic
if and only if a′ = u4a for some u ∈ Z/nZ. As in KMOV [16], it is possible to launch
an isomorphism attack on our scheme. Moreover, the encryption and decryption are
homomorphic, that is,

enc(m1 + m2) = enc(m1) + enc(m2), and dec(c1 + c2) = dec(c1) + dec(c2),

when using the same elliptic curve. Also, it is possible to launch a homomorphism attack
on our scheme, similar to that on KMOV. To overcome isomorphism and homomorphism
attacks, a hash function should be applied, as shown in the signature in Section 5.3. This is
sufficient to ensure that the new scheme is immune to the two types of attacks.

6.8. Other Attacks

There are more attacks in the literature that are related to some elliptic variants of RSA.
In [45], Bleichenbacher proposed four attacks on KMOV when one of the following

situations is satisfied.

1. The ciphertext and half of the plaintext are known.
2. Three encryptions of the same message are encrypted with distinct public keys.
3. Six encryptions of linearly related messages are encrypted with distinct public keys.
4. Two encryptions of linearly related messages are encrypted with the same public key.

Similarly, in [46], Kurosawa et al. showed that both the KMOV and Demytko’s
schemes are not secure when the same message is encrypted with a suitably large number
of distinct keys.

Note that the former attacks are not applicable to our scheme since the encryption
process is probabilistic. This implies that, in contrast to the KMOV and Demytko’s schemes,
if we encrypt the same message twice, even with the same key in the new scheme, the
cyphertexts are different with a high probability because they depend on a randomly
generated number in the encryption phase.

7. Conclusions

In this paper, we proposed a new variant of RSA with a modulus of the form n = pq,
where p and q are large prime numbers satisfying p = u2

p + v2
p, q = u2

q + v2
q, up ≡ 3

(mod 4) and uq ≡ 3 (mod 4). The arithmetic of the new scheme uses elliptic curves with
the equation y2 = x3 + ax over the finite ring Z/nZ. The encryption is probabilistic, such
that each encryption generates a new curve that results in a new ciphertext with each call.
We analyzed the security of the scheme and showed that it is resistant to known attacks on
the topic.
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