
Citation: Alupotha, J.; Boyen, X.;

McKague, M. LACT+: Practical

Post-Quantum Scalable Confidential

Transactions. Cryptography 2023, 7, 24.

https://doi.org/10.3390/

cryptography7020024

Academic Editor: Licheng Wang

Received: 17 February 2023

Revised: 12 April 2023

Accepted: 24 April 2023

Published: 8 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Article

LACT+: Practical Post-Quantum Scalable
Confidential Transactions
Jayamine Alupotha *, Xavier Boyen and Matthew McKague

School of Computer Science, Queensland University of Technology, Brisbane 4000, Australia
* Correspondence: alupotha@qut.edu.au

Abstract: A “confidential monetary value” carries information about the real monetary value but
does not disclose it. Post-quantum private blockchains with confidential monetary values—large-
sized blockchains with large verification times—have the least scalability because they need to
save and verify more information than those with “plain-text monetary values”. High scalability is
an essential security requirement for decentralized blockchain payment systems because the more
honest peers who can afford to verify the blockchain copies are, the higher the security. We propose
a quantum-safe transaction protocol for confidential monetary blockchains, LACT+ (Lattice-based
Aggregable Confidential Transactions), which is more scalable than previous post-quantum confidential
blockchains, i.e., many input/output transactions with logarithmic sized complexity.

Keywords: blockchains; confidential transactions; post-quantum cryptography; scalability;
lattice-based cryptography

1. Introduction

Blockchain-based cryptocurrencies have become popular due to the security of de-
centralization, i.e., there is no single point of failure and no single authority in control.
However, decentralization has a downside because it requires many honest peers to keep a
copy of the blockchain and constantly verify it. Otherwise, malicious peers can alter the
cash system for their gain. The number of honest peers mainly depends on the system’s
scalability (size and verification time) because peers have to spend their resources like
space and computational power to save and verify blockchains. Despite the security and
privacy, “quantum-safe” and “confidential” cryptocurrencies have the least scalability
because they need special computations and algorithms that require more space and more
computational power. This paper introduces a more scalable quantum-safe confidential
blockchain transaction method, LACT+, where we only need 5.7 KB to store a confidential
monetary value, whereas refs. [1,2] need >30 KB and 9.6 KB, respectively.

Confidential Transactions. Cryptocurrencies are public records accessible by anyone.
Even though pseudonyms are commonly used, refs. [3–9] show that these identities can
be linked to real identities. Therefore, maintaining monetary amounts in “plain text” is
a major privacy concern. Confidential transactions (CT) solve this problem by keeping
monetary values confidential yet providing tools to verify that hidden coin amounts are
not negative, stolen, or double spent. However, this enhanced privacy comes at the cost
of scalability because these tools generate proofs that should be stored in the blockchain,
and verification of these proofs takes more computational power than simply checking
plain-text numbers.

Aggregable Transactions. A transaction takes a set of current coins, changes their owner-
ship, and updates the blockchain with that information. Hence, blockchain verifiers need
to know “who has coins? Furthermore, are they only spending what they have?”. Hence,
they mainly need to know about current coins and who has them, not who had them. As
the name implies, aggregable transactions aggregate multiple transactions into a smaller

Cryptography 2023, 7, 24. https://doi.org/10.3390/cryptography7020024 https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography7020024
https://doi.org/10.3390/cryptography7020024
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://doi.org/10.3390/cryptography7020024
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography7020024?type=check_update&version=1

Cryptography 2023, 7, 24 2 of 24

transaction, and this aggregated transaction shows “who has coins after those transactions”.
For example, if P1 sends coins to P2 and P3, and P2 sends their coins to P4, the aggregated
transaction shows that P3 and P4 have coins, and forgets that P1 and P2 had coins. Hence,
an aggregable blockchain is a single aggregated transaction of all previous transactions.
This forgotten information reduces the size and verification time and improves scalability
significantly. However, previous aggregable blockchains refs. [1,2,10–14] cannot prove
that the aggregated blockchain is the aggregated version of the “right” or the consensus
accepted blockchain (more theoretically, previous aggregated blockchains are not “im-
mutable”). Hence, despite the high scalability, “peers” have to download and verify the
complete blockchain.

Quantum Safety. Recent developments in quantum computing, e.g., IBM’s roadmap ref. [15],
show that quantum adversaries can be a real threat even to the current standardized security
level in the near future. Post-quantum (we use “post-quantum”, “quantum-safe”, or “quantum-
resistant” to describe plausibly quantum-secure protocols) payments started receiving attention
because many established decentralized payments are based on the discrete-logarithmic prob-
lem (DLP), which is vulnerable to quantum adversaries. Not only transparent payments, but
many aggregable confidential transactions refs. [10–14] are also based on DLP and equally vul-
nerable to quantum adversaries. Ref. [1,2] introduced two quantum-safe aggregable confidential
transactions that are based on the short integer solution problem (SIS) and the modular SIS.
However, ref. [1] has an inefficient proof system and the transactions of ref. [2] are limited to a
maximum two inputs and two outputs.

This paper proposes an immutable aggregable confidential transaction protocol,
LACT+ (Lattice-based Aggregable Confidential Transactions), based on approximate mod-
ular SIS (approximate SIS), to provide post-quantum security with practical scalability.

1.1. Related Work

Let us explain the key components of decentralized aggregable payments that lead
to LACT+. Note that here, we sketch a common protocol that describes refs. [1,2,10–14]
generally regardless of their “hardness assumption”, e.g., they can be based on DLP or SIS.

Digital Coins from Cryptographic View. Decentralized payment systems store monetary
values as digital coins where each coin represents some amount of the smallest unit (e.g.,
the number of cents). These digital coins are stored in the public domain, where anyone has
access. Therefore, coins need a security mechanism to prevent theft. Let there be a digital
signature scheme that signs messages when its key card (secret signing key) is presented
and the public key of the key card tells anyone whether it produced the signed message or
not. Users attach these public keys to their digital coin(s) and securely keep the key card(s)
with them. Wherever they want to spend the coins, they create a signed receipt, and they
send the signed receipt to the network. Because the public key verifies the signed receipts
without key cards, the whole network can verify that the legitimate owner is spending the
coin. However, once the coins are sent, the new owner attaches a new public key to the
coins where only he/she has a key card to it. In that way, after sending the coins, previous
owners cannot take coins back because they do not have new key cards. The signed receipts
are known as digital signatures.

Transparent Digital Coin Transactions. Users create transactions when they want to send
digital coins or receive them. A transaction turns a set of current unspent coins (inputs)
into spent coins and produces new unspent coins (outputs). However, a transaction should
not illegally generate coins—the input coins should be equal to the output coins—or
allow coins to be stolen. Therefore, each transaction has a header that proves the total coin
amount summation (1. summation proof) and the digital signatures of coins (2. ownership
proofs). In transparent coin transactions, the summation proof is simple and only contains
the number of supplied coins (e.g., mining reward) and transaction fee because the verifiers
can add the numbers and can check that input coins and the supplied coins are equal to the
output coins and the transaction fee. However, the ownership proof is linear in the number

Cryptography 2023, 7, 24 3 of 24

of unique public keys of inputs, i.e., the ownership proof of the transaction is the set of
signatures of all unique input public keys refs. [16,17].

Confidential Digital Coins. Instead of plain-text coins, confidential payment systems
keep coins’ value hidden. We call them “confidential coins”. A confidential coin is a
commitment for the coin amount and a range proof to prove that the hidden coin amount
is in the accepted range, e.g., [0, 264). A commitment can be viewed as a safe box that hides
coins and is locked with a secret key (a.k.a., blinding key or the masking key). Yet, anyone
can verify that the hidden coin amount is in the accepted range using the cryptographic
range proof (even though proving the range of physical coins is impossible without opening
the safe-box, it is actually possible with digital coin commitments!). These range proofs
are called “zero-knowledge proofs” because they do not reveal anything other than the
designated knowledge statement. In this case, the proofs only show that values are in the
accepted range.

Confidential Transactions (CT). There are two categories of CTs; (1) Ring CTs which
obfuscate the senders and receivers with shadow participants refs. [18–22] and (2) Aggre-
gable CTs which allow aggregating multiple transactions into one transaction by removing
spent coin records refs. [1,2,10–14]. In general, confidential transactions are similar to the
transparent transactions but with the following main differences,

• they transact confidential coins, and
• their headers contain zero-knowledge summation proofs to show that hidden input

coins are equal to hidden output coins, along with plain-text supplied coins and fees.

However, Ring CTs and aggregable CTs have different ownership proofs. Ring CTs’
ownership proofs are threshold signatures or one/many-out-of-many proofs that are either
linear or logarithmic in the number of unique participants, whereas, aggregable CTs’ reuse
their summation proofs as ownership proofs ref. [10]. Due to this reuse and removing spent
coin records, aggregable CTs provide better scalability than Ring CTs. From now on, we
use CT for aggregable CTs.

Ownership + Summation Proofs. Let there be an additively homomorphic commit-
ment u = com(v, k) that hides and binds (v, k) when v is the coin amount and k is the
secret masking key. Here, “binding” means that it is computationally impossible to
find another (v′, k′) pair for the same u, and “additively homomorphic” denotes that
∑∗i=0 com(vi, ki) = com(∑∗i=0 vi, ∑∗i=0 ki). A confidential coin is a commitment and a range
proof of that commitment. For example, C = (u, π = range2L(u)), and π verifies that u’s
hidden coin amount is in [0, 2L).

Assume that a set of participants want to spend confidential coins [ui = com(vi, ki)]
∗
i=0

and create new confidential coins [u′i = com(v′i, k′i)]
∗
i=0 for the supplied coins s and the

transaction fee f . Then they compute a public key out of commitments such that

pk =
∗
∑
i=0

u′i −
∗
∑
i=0

ui + com(f−s, 0) = com(0,
∗
∑
i=0

k′i −
∗
∑
i=0

ki)

because ∑∗i=0 v′i −∑∗i=0 vi + f − s = 0 if the owners do not illegally generate coins.
Aggregable CTs’ digital signature schemes use commitments as their public keys. How-

ever, a valid signature can be created if and only if the commitments’ value is
zero refs. [1,10–14]. In the previous equation, if participants do not generate coins illegally,
they can create digital signatures for pk using the aggregated secret key ∑∗i=0 k′i −∑∗i=0 ki.
Hence a signature of pk can prove (1) the summation and (2) the ownership because a
digital signature can only be created if all the secret keys are known.

Lattice-based Ownership+Summation Proofs. Ref. [1] introduced the first quantum-safe
aggregable CT protocol. However, ref. [1] is inefficient leading to >30 KB commitments.
Ref. [2] proposed the first practical aggregable post-quantum CT protocol, LACT, based on
the Module-Ring Short Integer Problem (MSIS). LACT significantly improves efficiency
by storing coins in their binary forms such that u = com([b0, .., b63], k) instead of the full
integer, when v = ∑63

i=0 2ibi. LACT’s confidential integers are binary commitments and

Cryptography 2023, 7, 24 4 of 24

a range proof for all bits, i.e., C = (u, π = range2(u)) when π verifies that the bits of u’s
hidden coin amount are in [0, 1]. More concretely, LACT’s commitments are only 9.6 KB
long for coins in [0, 264).

However, summation does not work anymore because adding two binary commit-
ments does not output a binary commitment due to carries. Therefore, LACT use carry
proofs to fix the summation. Each carry proof has a commitment of carries and a range
proof to show that each carry is either 0 or 1. Therefore, a LACT header contains supplied
coins, transaction fee, a digital signature and a carry proof to prove the ownership and the
summation of hidden coins.

Unprovable Immutability. In blockchains refs. [16,17], transaction headers are securely
stored with consensus proofs to show that the community has accepted the that version of
the blockchain, which is the “right blockchain”. If somebody changes the right blockchain,
the consensus proofs will indicate that there was an altercation, i.e., immutability. How-
ever, current aggregable CT protocols refs. [2,10–14] do not provide proper immutability
proofs for aggregated blockchains, only for complete blockchains. Therefore, despite the
aggregation, peers have to keep all coin records for the verification, e.g., Grin ref. [23] and
Beam ref. [24]—which use Mimblewimble aggregable transactions refs. [10–13] keep all
transactions to provide immutability. Therefore, aggregable CTs do not reduce the overall
blockchain size nor provide trustless verification for aggregable CTs in current settings.

1.2. Our Contribution

We introduce LACT+, a more efficient Lattice-based Aggregable Confidential Transac-
tion protocol with provable immutability. Furthermore, we implement a public LACT+ C
library ref. [25] and provide formal security proofs.

Approx-SIS. LACT+ uses the Approximate Module Short Integer Problem (Approx-
SIS) ref. [26] which can be tightly reduced to LWE (Learning with Errors ref. [27]) or
SIS ref. [28]. Approx-SIS creates shorter proofs by dropping low bits of each polynomial
coefficient without affecting security when the dropped bits are smaller than some norm,
e.g., each LACT+ commitment drops 14 bits from 256× 6 coefficients and reduces the size
from 8.4 KB to 5.7 KB.

More than 2 inputs/outputs. LACT’s main constraint was that a maximum of two inputs
or outputs could be included in a transaction because the carries must be in [0, 1]. If there
are more than two inputs/outputs, they had to be separated into multiple transactions, and
each transaction includes an additional carry proof. LACT+ transactions allow having more
than two inputs or outputs at a logarithmic cost, i.e., O(log(x)) for x number of in/outputs.
Hence, LACT+ does not unnecessarily increase the size of the header.

Trustless Immutability. Previous aggregable CTs’ headers are malleable, or the owners
of the transactions can use the same header set for different unspent coins. This allows the
owners to forge many chains for the same header with different unspent coins or spent
coins refs. [10,13]. Hence, preserving headers is not sufficient to provide immutability,
and block creators hash the whole transaction and save the transaction hash through the
consensus mechanism. Therefore, the peers must download the complete chain (note that
we do not consider users who depend on “trusted” peers without verifying the blockchain
as peers because they are replicas of the those “trusted” peers). Hence, except for the
efficient ownership + summation proofs, the aggregation has no use to the peers who do
not blindly trust other peers.

As a solution, LACT+ headers contain aggregable activity proofs ref. [29] to prevent
the forging of different blockchains for the consensus accepted headers, i.e., each transaction
header contains an activity proof for that transaction, and by giving the same input and
output coin records, the activity proof verifies that they existed. More importantly, an
aggregated activity proof can verify the activities of an aggregated CT; hence, chains’
unspent coin records cannot be forged. Not only that, activity proofs are constant sizes for
any number of inputs and outputs, e.g., 49 bytes in LACT+. Hence, activity proofs do not

Cryptography 2023, 7, 24 5 of 24

break transaction aggregation, but at a tiny cost, peers can download a small aggregated
chain and verify the existence of coins without blindly trusting other peers.

Table 1 compares LACT+ with other CT protocols.

Table 1. Comparison of Confidential Transactions

Implementation Post
Quantum

Security Aggregable Immutable
Headers

Ring CT ref. [30] 7 DLP 7 -
Maxwell’s CT ref. [31] 7 DLP 7 -

Mimblewimble ref. [10] 7 DLP 3 7

Ring CT v2 ref. [19] 7 DLP 7 -
Fuchsbauer et al. ref. [13] 7 DLP 3 7

Lattice Ring CT ref. [21] 3 SIS 7 -
MATRiCT ref. [20] 3 MSIS 7 -
Zhang et al. ref. [1] 3 SIS 3 7

MATRiCT+ ref. [22] 3 MSIS/LWE 7 -
LACT ref. [2] 3 SIS/MSIS 3 7

Ours (LACT+) 3 Approx-SIS 3 3

2. Preliminary

An integer ring is Z/qZ = Zq which has integers in [− q−1
2 , q−1

2] for an odd prime q.
A polynomial ring is Z[X]/(XN + 1) = R with N = 2k for some integer k > 0. A fully
splitting ring is Zq[X]/(XN + 1) = Rq where each polynomial coefficient is in Zq for a
prime q = 1 (mod 2N). A polynomial is denoted with an upper arrow, e.g.,~a that is inR or
Rq. We denote vectors of n elements in bold letters (a = [ai]

n
i=0) and matrices of m vectors

in capital bold letters (A = [ai]
m
i=0). Similarly, polynomial vectors are denoted as~a = [~ai]

n
i=0,

and matrices are denoted as ~A = [~ai]
m
i=0. ~a~b denotes the polynomial multiplication of~a and

~b. x~a is a scalar multiplication where each coefficient is multiplied by scalar x.

Uniform sampling of some set S is denoted as s $←− S. A negligible function of
security parameter λ is denoted as ε(λ) = 1/o(λc) for some natural number c. The security
parameter and public parameters are commonly referred as λ and pp(λ). We only use
the following norms: the infinity norm ‖~a‖ = max([|ai|]N−1

i=0) and the level 1 norm ‖~a‖1 =

∑N−1
i=0 |ai|. 0 and~0 are a vector of all zero values and a zero polynomial of all zero coefficients,

respectively. binary(v) either outputs b of L elements or~b ∈ Rq such that v = ∑L
i=0 2ibi

according to the context. rot(vi, i) outputs polynomial~a such that the ith coefficient of~a
is vi, and other coefficients are zeros s.t. [~aj = 0]Nj=0,j 6=i. highbitsp(v) and lowbitsp(v)
denote high bits and low bits of v ∈ Zq such that highbitsp(v) · 2p + lowbitsp(v) = v.
Furthermore, upp(v) = vs. · 2p. We use these functions for polynomial vectors in an element-
wise manner, e.g., highbitsp(~a) to denote high-bit polynomial vectors. Note that we use
polynomial rotations to change the locations of bits. For example,

(j, i) ≥ 0; j+i < N : rot(v, j)rot(1, i)=rot(v, j+i) ∈ R

(j, i)≥0; j−i>0; i<N : rot(v, j)rot(−1, N−i) = rot(v, j−i)

2.1. Common Security Properties

First, we start with the common security definitions of confidential coins, carry proofs,
and transactions, i.e., the hiding property, zero-knowledge, and knowledge soundness.

Confidential coins and carry proofs should be hiding, i.e. they should not reveal the
committed coin value or the carry vector. We define hiding or indistinguishability of a
generic protocol P’s outputs below.

Cryptography 2023, 7, 24 6 of 24

Definition 1 (Statistical Hiding). Let D1 be the output distribution of protocol P(ppλ), and
D0 be the simulated distribution created by a simulator S(ppλ, T) with a trapdoor T of public
parameter ppλ. For any A, P’s outputs are hiding if

2
∣∣∣ 1

2−Pr
[
b ?
= b′|b $←− [0, 1]; θ

$←−Db; b′←A(ppλ, θ)
]∣∣∣ ≤ ε(λ).

Coin and carry proofs contain range proofs. A range proof should not reveal anything
about the committed value other than the range. Similarly, summation proofs of transac-
tions should not disclose anything about the coin values other than that input coins are
equal to output coins. We define these requirements for a generic protocol P and state-
ment(s) L. For example, in range proofs, range(L, b) outputs 1 if all bi ∈ [0, 1] of i ∈ [0, L).
The statement L of a range proof is “range(L, b) is 1 for hidden b”. Assume the generic
protocol P reveals a statement L about the outputs but nothing else. Then, P’s outputs are
zero-knowledge except for L. We state the zero-knowledge of P below.

Definition 2 (Zero-Knowledge Argument). Let D0 be the simulated distribution of a simulator
S(ppλ,L, T) with a trapdoor T of public parameter ppλ for L, and D1 be the real output distribu-
tion of protocol P(ppλ) for statements L. For any p.p.t. A, P’s outputs are zero-knowledge if

2
∣∣∣ 1

2−Pr
[
b ?
= b′|b $←− [0, 1]; θ

$←−Db; b′←A(ppλ, θ,L)
]∣∣∣ ≤ ε(λ).

Even though coins, carry proofs, and transactions are hiding and zero-knowledge,
they should be knowledge sound such that no adversary can create valid proofs for invalid
hidden coin amounts or invalid carry vectors. We capture this property by using a simulator
K with a trapdoor T who extracts hidden values from the proofs. This is a stronger version
of knowledge soundness, called simulated witness extractability. If a generic protocol is
simulated witness extractable, the simulator K can always extract valid hidden amounts
and carries that satisfy the required statement(s). We state the simulated witness extraction
of a generic protocol P for statement(s) L below.

Definition 3 (Simulated Witness Extractability). Let P be a generic zero-knowledge protocol
for statement L such that P(ppλ,L, Π) verifies whether hidden values of Π satisfies L or not. P is
simulated witness extractable if

Pr

[
P(ppλ,L, Π) ?

=1∧
L(ppλ, w) ?

=1

∣∣∣
Π← A(ppλ)

w← K(ppλ, T ,L, Π)

]
≤ ε(λ).

Technically, these extractors do not exist outside the simulated world because public
parameters are securely generated to avoid unintentional trapdoors.

2.2. Hardness Assumption

LACT+ depends on the approximate SIS problem ref. [26].

Definition 4 (Approximate Inhomogeneous Module Short Integer Solution Problem (Ap-
prox-SIS)). The advantage of an algorithm A solving Approx-SIS of (n, m, q, γ, γ′, N) after one
execution is given by,

Pr

 ‖~s‖ ≤ γ∧
‖~H~s− ~y‖ ≤ γ′

∣∣∣
~H $←− Rn×m

q ;~y $←− Rn
q

~s← A(ppλ,~y, ~H)

2.3. Activity Proofs

Let H be a multiplicative group of prime order q2 > 23λ and H : {0, 1}∗ → H be a
secure collision-resistant hash function family. Casually, we use H for one randomly chosen
but commonly known member of a collision-resistant hash function family for a given λ
where the key of H is random, fixed, and publicly known.

Cryptography 2023, 7, 24 7 of 24

Let there be a non-empty set of data entries s that will be updated into a new set s′.
The proof δ of this activity is,

δ = activity(s, s′) : ∏∗i=0 H(s
′
i) · (∏∗i=0 H(si))

−1 ∈ H.

Definition 5 (Immutability). An activity proof of (H, q′) is immutable if the following is less than
or equal to ε(λ).

Pr

 (s1, s′1)

?
6=(s2, s′2)∧

activity(s1, s′1)
?
=activity(s2, s′2)

∣∣∣∣∣

(
s1, s′1
s2, s′2

)
←A(H, q2)

2.4. Hints

We frequently multiply high-bit polynomials with short challenge polynomials and
check equality. Because the multiplication creates large errors that may propagate into
higher bits, we use “hints”, a {−1, 0, 1} polynomial vector that holds at most χ recovery
bits. The way of creating and using hints is stated below.

hints(χ,~a ∈ Rn
q ,~b ∈ Rn

q):
~h = ~a−~b ∈ Rn

q

if ‖~h‖>1∧ ‖~h‖1>χ: return ⊥
return~h

use_hints(χ,~a∈Rn
q ,~h∈Rn

q):

if ‖~h‖ > 1∧ ‖~h‖1 > χ:
return ⊥

return~b = ~a−~h ∈ Rn
q

2.5. Public Parameters

We use the following public parameters (Algorithm 1) throughout the remainder of
the paper. .

Algorithm 1 Public Parameter Generation

Assign CN
β , L′, p1, p2, χ, α, τ, τ1, τ2, τ3 ∈ N such that

L′L ≤ N B Maximum number of inputs/outputs is 2L′ because we only used one
polynomial for carry commitments. When using l number of polynomials, this constraint
should be L′L ≤ Nl.
B for negligible soundness error
log2 (

N
β) + β ≥ 2λ,

B for smaller errors targeting different summations
p1 · 216 < 2γ′ and p2 · 28 < 2γ′

B Norm 1 limit for hint polynomials is heuristically chosen according to p1 and p2
aiming to create hints within a reasonable time

χ← heuristic(p1, p2) s.t. ‖hint(·) ∈ Rn
q‖1 ≤ χ

B for rejection sampling in range proofs
0 < 2� α, 0 < β2τ + βτ1 � τ2 ≤ γ,
B for rejection sampling in aggregate signatures
0 < (2L′ + 1)βτ � τ3 and 2L′τ3 ≤ γ,
B for computational hiding of coin amounts
(m− 3)N log2(2τ) ≥ 6λ,
Lα� γ

Get ~H $←− Rn×m
q s.t. Approx− SISn,m,q,N,γ,γ′ is hard.

CN
β = [x ∈ Rq s.t. ‖x‖ = 1, ‖x‖1 = β]

return pp(λ,L) = (n, m, q, N, CN
β , L′, p1, p2, χ, α, τ, τ1,

τ2, τ3, γ, γ′, ~H)

2.6. Fiat–Shamir Signatures

We define a digital signature scheme based on Fiat–Shamir challenges similar
to refs. [32–36] in Algorithm 2. This signature scheme is the Approx-SIS version of ref. [36]

Cryptography 2023, 7, 24 8 of 24

with (1) a varying key space to allow aggregate keys and (2) beginning zero polynomials to
align with commitments.

SIG provides completeness and strong EUF-CMA (Existential Unforgeability under
Chosen Message Attack) due to the security of ref. [36] and the hardness of Approx-SIS.

We define the security properties below.

Definition 6. SIG is complete and strong EUF-CMA if

Pr

[
SIG.ver(ppλ, pk, m, sig, c) ?

= 1
∣∣∣
(k, pk) = SIG.kgen(ppλ, c)

sig = SIG.sign(ppλ, k, m, c)

]
≥ 1− ε(λ)

AdvEUF,A
SIG,ppλ

:= Pr
[
GameEUF,A

SIG,ppλ
()
]
≤ ε(λ).

GameEUF,A
SIG,ppλ

:

c← Astep1(ppλ); if c > 2L′ : return ⊥
(k, pk) = SIG.kgen(ppλ, c); (m′, sig′)← Asignk

step2 (ppλ, pk)
return (m′, sig′) 6∈ Q∧ SIG.ver(ppλ, pk, m′, sig′, c)

Oracle signk(m, c) : sig = SIG.sign(ppλ, k, m, c)
Q = Q∪ {(m, sig)}; return sig

Theorem 1. SIG is complete and EUF-CMA when ref. [36] is complete and EUF-CMA, and
solving Approx-SIS of (n, m− 3, q, γ, γ′, N) is hard.

Algorithm 2 Digital Signatures

1: B Here, the key spaces change according to c ≤ 2L′

2: B Recall that τ2 � (2L′ + 1)τβ and γ ≤ 2L′τ3

3: SIG.kgen(ppλ, c) : B~k is the secret signing key

4: ~k $←− [−cτ, cτ](m−3)×N ; ~pk = highbitsp1
(~H[03,~r]) ∈ Rn

q

5: return (~k, ~pk)

6: SIG.sign(ppλ,~k, m, c) : if c > 2L′ : return ⊥
7: ~pk = highbitsp1

(~H[03,~r]) ∈ Rn
q

8: ~r0
$←− [−cτ3, cτ3]

(m−3)×N

9: ~y = highbitsγ′(~pk) ∈ Rn
q

10: ~x = hash(~pk,~y, m) ∈ CN
β

11: ~σ =~r0 +~x~k ∈ Rm−3

12: if ‖~σ‖ > (cτ3 − cβτ): go to Step 8
13: ~y′ = highbitsγ′(~H[03,~σ]−~xupp1

(~pk)) ∈ Rn
q

14: ~h = hints(χ,~y′,~y); if~h =⊥: go to Step 8
15: return (~σ,~h,~x)

16: SIG.ver(ppλ, ~pk, m,~σ,~x, c) :

17: if c > 2L′ : return 0
18: ~y′ = highbitsγ′(~H[03,~σ]−~xupp1

(~pk)) ∈ Rn
q

19: ~y = hints(χ,~y′,~h); if ~y =⊥: return 0

20: return ‖~σ‖ < γ ∧~x ?
= hash(~pk,~y, m)

Cryptography 2023, 7, 24 9 of 24

3. LACT+ Protocol

A LACT+ transaction has input confidential coins, output confidential coins, and
a header (signature, carry proof, and activity proof), as shown in Figure 1. The input
confidential coins are in the blockchain’s set of unspent coins. During the aggregation,
they will be removed from the unspent coin set, and output confidential coins will be
added to the unspent coin set (see Figure 2) where coin(s) was removed). Therefore, an
aggregated blockchain can be seen as a big transaction that contains all unspent coins.
In this section, we explain confidential coins, carry proofs of the headers, and finally the
complete aggregable transactions.

Input Confidential Coins Output Confidential Coins

Header

LACT+ Transaction

Ownership+Summation

(Signature, Carry Proofs)

Immutability

(Activity Proof)

Header

Figure 1. LACT+ transaction structure

Coinbase
(v

base
) Coin(s)

Coinbase(v
base

-s)

Coin(v
1
)

Coin(v
0
)

H
e
a
d
e
r

1

H
e
a
d
e
r

2

Coinbase(v
base

-s)

Coin(v
1
)

Coin(v
0
)

H
e
a
d
e
r

1

H
e
a
d
e
r

2

Coinbase
(v

base
)

Unaggregated Blockchain

Aggregated Blockchain

Figure 2. Transaction aggregation.

3.1. Confidential Coins

We begin by building confidential coin records where we can hide coin values but can
also verify that the hidden coin amounts are in some range [0, 2L).

Let there be a confidential coin scheme COIN that supports the following functionalities.

• COIN.gen(pp(λ,L), v) : returns (k, coin) if v is in [0, 2L − 1]; otherwise returns ⊥. Here,
k is a secret key, a.k.a., blinding key, and L is defined in pp(λ,L).

• COIN.open(pp(λ,L), v, k, coin) : returns 1 if coin is generated for (v ∈ [0, 2L), k); other-
wise, returns 0.

• COIN.ver(pp(λ,L), coin) : returns 1 if the hidden coin amount is in [0, 2L) otherwise,
returns 0.

Protocol Sketch

First, we sketch an interactive version of a 1-bit range proof. Let there be a value
b which should be either 0 or 1. For some mask a ∈ [−α, α] and random challenge
x ∈ [−1, 0, 1], take z = bx + a if z ∈ [−α + 1, α− 1]. Otherwise, the process is repeated until
a valid z is found. Then z(z− x) = xa(2b− 1) + a2 because x2b(b− 1) should be zero. We
use this method to prove the range of a bit.

Let P be a prover and V be a verifier. V has a commitment u = com(b, 0, k), and P
who knows k ∈ [−τ, τ] wants to show that the bit b is either 1 or 0 without revealing
it. The prover uses commitments to prove the range of b. First, P creates commitment
t1 = com(b, a(2b − 1), r1) and sends it to V . After receiving a challenge x1 from V , P
replies with t2 = com(xa, a2, r2). Then, V sends the second challenge x2. After that, P
computes z = (bx + a) and r = x2(x1k + r1) + r2. If z is in [−α+1, α−1] and r is in

Cryptography 2023, 7, 24 10 of 24

[−τ+τ1+τ2, τ−τ1−τ2], they statistically hide b, a, k, r1, and r2. Hence, P sends z and r to V .
If z and r are not in the secure ranges, P rejects them and restarts the protocol. Finally, the
verifier V checks that com(x1z, z(z−x2), r) ?

=x2x1u + x2t1 + t2. V accepts that b is either 0 or
1 if they are equal.

We use this technique to prove the range of the coin by repeating it for all bits. Further-
more, we increase the range of challenges into 22λ so that P cannot cheat. The complete
non-interactive protocol COIN is given in Algorithm 3, and a graphical overview is pro-
vided in Figure 3. Note that all LACT+ commitments have the form of com(∗, ∗, ∗, ∗), not
com(∗, ∗, ∗). Hence, the verifier will check com(x1z, z(z−x2), 0, r) ?

=x2x1u + x2t1 + t2 with a
fixed 0 value. This extra value space is used for carry proofs which will be explained in the
next section.

One-bit Range Proof Sketch (Interactive)

P V2
a $←−[−α, α]; r1

$←−[−τ1, τ1]

t1 = com(b, a(2b− 1), r1)
t1

r2
$←−[−τ2, τ2]

x1 x1
$←−[−1, 1]

t2 = com(xa, a2, r2)
t2

z = (bx + a) ∈ [−α+1, α−1] x2 x2
$←−[−1, 1]

r = x2(x1k + r1) + r2 s.t.
r ∈ [−τ+τ1+τ2, τ−τ1−τ2]

z, r com(x1z, z(z−x2), r) ?
=

x2x1u + x2t1 + t2

Cryptography 2023, 1, 0 10 of 24

[−τ+τ1+τ2, τ−τ1−τ2], they statistically hide b, a, k, r1, and r2. Hence, P sends z and r to V .
If z and r are not in the secure ranges, P rejects them and restarts the protocol. Finally, the
verifier V checks that com(x1z, z(z−x2), r) ?

=x2x1u + x2t1 + t2. V accepts that b is either 0 or
1 if they are equal.

We use this technique to prove the range of the coin by repeating it for all bits. Further-
more, we increase the range of challenges into 22λ so that P cannot cheat. The complete
non-interactive protocol COIN is given in Algorithm 3, and a graphical overview is pro-
vided in Figure 3. Note that all LACT+ commitments have the form of com(∗, ∗, ∗, ∗), not
com(∗, ∗, ∗). Hence, the verifier will check com(x1z, z(z−x2), 0, r) ?

=x2x1u + x2t1 + t2 with a
fixed 0 value. This extra value space is used for carry proofs which will be explained in the
next section.

One-bit Range Proof Sketch (Interactive)

P V2
a $←−[−α, α]; r1

$←−[−τ1, τ1]

t1 = com(b, a(2b− 1), r1)
t1

r2
$←−[−τ2, τ2]

x1 x1
$←−[−1, 1]

t2 = com(xa, a2, r2)
t2

z = (bx + a) ∈ [−α+1, α−1] x2 x2
$←−[−1, 1]

r = x2(x1k + r1) + r2 s.t.
r ∈ [−τ+τ1+τ2, τ−τ1−τ2]

z, r com(x1z, z(z−x2), r) ?
=

x2x1u + x2t1 + t2

~H

~x1

L

∑
i=0

~zi

~̂z

~0

~r

︸ ︷︷ ︸
set_c(~s)

= ~x2~x1 ~H

~̂b

~0

~0

~k

︸ ︷︷ ︸
~u

+~x2 ~H

~0
L

∑
i=0

~ai×

rot(2bi

−1, i)

~0

~r1

︸ ︷︷ ︸
~t1

+ ~H

~x1

L

∑
i=0

~ai

L−1

∑
j=0

~a2
j

~0

~r2

︸ ︷︷ ︸
~t2

Figure 3. A graphical overview of confidential coins (Algorithm 3).
Figure 3. A graphical overview of confidential coins (Algorithm 3).

Cryptography 2023, 7, 24 11 of 24

Algorithm 3 New Confidential Coins

1: B Creates coin records for v coins
2: COIN.gen(pp(λ,L), v):
3: B Short vector for the commitment
4: ~b = binary(L, v) s.t. v = ∑L−1

i=0 2ibi

5: ~k $←− [−τ, τ](m−3)×N

6: ~s = [~b,~0,~0,~k] ∈ Rm
q

7: ~u = highbitsp1
(~H~s) ∈ Rn

q B Commitment
8: B Get masking values for bits from Lazy Sampling

9: [~ai
$←− [−(α− (1− bi)), (α− (1− bi))]

N]Li=0
10: B Short key vectors for range proof commitments

11: ~r1
$←− [−τ1, τ1]

(m−3)×N ;~r2
$←− [−τ2, τ2]

(m−3)×N

12: ~s1 = [~0, ∑L
i=0~airot(2bi − 1, i),~0,~r1] ∈ Rm

13: ~t1 = highbitsp2
(~H~s1) ∈ Rn

q

14: ~x1 = hash(~u,~t1) ∈ CN
β

15: ~s2 = [~x1 ∑L
i=0~ai, ∑L

i=0~ai~ai,~0,~r2] ∈ Rm

16: ~t2 = highbitsγ′(~H~s2) ∈ Rn
q

17: ~x2 = hash(~u,~t1,~t2) ∈ CN
β

18: [~zi = ~x2rot(bi, i) +~ai]
L
i=0 ∈ RL

19: ~r = ~x2(~x1~k +~r1) +~r2 ∈ Rm−3

20: if ‖~z‖ > (α− 1) ∨ ‖~r‖ > (τ2 − β2τ − βτ1):
21: go to Step 5
22: B Check norms
23: ~̂z = ∑L

i=0~zi(~zi −~x2rot(1, i)) ∈ R
24: if ‖~̂z‖ > γ: go to Step 5
25: B Create hints for~t2
26: ~s = [~x1 ∑L

i=0~zi, ~̂z, ~0, ~r] ∈ Rm

27: ~t′2 = highbitsγ′ (~H~s−~x2(~x1upp1
(~u) + upp2

(~t1))) ∈ Rn
q

28: ~h = hints(χ,~t′2,~t2)

29: if~h = ⊥: go to Step 5
30: return~k and coin = (~z,~r,~u,~t1,~h,~x2)

31: B Open coin records of v coins and key~k
32: COIN.open(pp(λ,L), v,~k, coin) :

33: (~z,~r,~u,~t1,~h,~x2) = coin

34: ~s = [binary(v),~0,~0,~k] ∈ Rm

35: return ‖~s‖
?
≤ α ∧ ~u ?

= highbitsp1
(~H~s) ∈ Rn

q

36: B Verify coin records
37: COIN.ver(pp(λ,L), coin) :

38: (~z,~r,~u,~t1,~h,~x2) = coin

39: ~x1 = hash(~u,~t1)

40: ~̂z = ∑L
i=0~zi(~zi −~x2rot(1, i)) ∈ R

41: ~s = [~x1 ∑L
i=0~zi , ~̂z, ~0, ~r] ∈ Rm

42: B Use hints to recompute~t2
43: ~t′2 = highbitsγ′ (~H~s−~x2(~x1upp1

(~u) + upp2
(~t1))) ∈ Rn

q

44: ~t2 = use_hints(χ,~t′2,~h)
45: if~t2 =⊥: return 0
46: return ~x2

?
= hash(~u,~t1,~t2) ∧ ‖~s‖ ≤ γ

Cryptography 2023, 7, 24 12 of 24

We want COIN to be complete, hiding, binding, zero-knowledge, and knowledge
sound. Here, we state the undefined security properties of COIN; completeness and binding.
Other properties, namely, hiding, zero-knowledge, and knowledge soundness, defined in
Section 2.1 are valid for COIN as well when the statement L is

“all L bits of b = binary(L, v) are either 0 or 1”.

Definition 7 (Completeness). COIN is complete if honestly generated proofs can be verified for
the correct range, or the following is greater than or equal to 1− ε(λ).

Pr

[
COIN.ver(pp(λ,L), coin)

∣∣∣
vs. ∈ [0, 2L − 1]

(k, coin)=COIN.gen(pp(λ,L), v)

]

Once a coin record has been published, no one, including the creator who knows the
secret key, should be able to claim another coin value for the same coin record. Otherwise,
after sending a transaction, owners can illegally generate coins. We capture this security
property below.

Definition 8 (Binding). COIN is binding if

Pr

(v, k)
?
6= (v′, k′)∧

COIN.open(pp(λ,L), v, k, coin)∧
COIN.open(pp(λ,L), v′, k′, coin)

∣∣∣

coin

v, k

v′, k′

←A(pp(λ,L))

≤ε(λ)

Theorem 2. COIN is complete, computationally binding, and computational knowledge sound, and
zero-knowledge if approx-SIS of (n, m, q, γ, γ′, N) is hard (see the security proof in Appendix A).

3.2. Logarithmic-Sized Carry Proofs

Binary commitments are smaller than full integer commitments. However, we cannot
directly check summations of transactions’ in/outputs and chains’ total unspent coin
amount when they are in binary forms. Therefore, LACT ref. [2] uses static carries with
maximum two inputs and two outputs and a static supply.

Unlike traditional blockchains, LACT maintains an unspent coin record (with a zero
key) for the coinbase (coin supplier) where the coinbase holds future supply, and those
coins do not belong to anyone until they are awarded. The idea is to maintain a constant
coin amount on the blockchain all the time. For instance, the coinbase holds the maximum
vbase = S at the beginning and keeps reducing the amount vbase = vbase − s(t) with each
rewarded coin s(t) of transaction t. Therefore, the blockchain always has S coins. When the
coin amount is constant, the following equations can be used to check the summation of
individual transactions and the blockchain.

Let the maximum coin amount be in [0, 2L). For transaction t, let the inputs be c with
coins [vi]

∗
i=0 such that binary(vi) = [bi,j]

L
j=0 and outputs be c′ with coins [v′i]

∗
i=0 such that

binary(v′i) = [b′i,j]
L
j=0. Then, the input carries [cj]

L+1
j=0 are computed as

[
0,
(

∑
|c|
i=1 bi,0 + c0

)
÷ 2, ..,

(
∑
|c|
i=1 bi,L−2 + cL−2

)
÷ 2, 0

]L+1

j=0

where c0 and cL are zeros, and other cjs are either 0 or 1. Similarly, the output carries
[c′j]

L+1
j=0 are

[
0,
(

∑
|c′ |
i=1 b′i,0 + c′0

)
÷ 2, ..,

(
∑
|c′ |
i=1 b′i,L−2 + c′L−2

)
÷ 2, 0

]L+1

j=0

such that c′0 and c′L are zeros, and c′js are 0 or 1. Note that ÷ is the integer division and | · |
is the size of a set/vector.

Cryptography 2023, 7, 24 13 of 24

Then, these binary vectors satisfy Equation (1) if inputs coins are equal to output coins.

[|c′ |
∑
i=1

b′i,j−
|c|
∑
i=1

bi,j+(c′(t)j −2c′(t)j+1−c(t)j +2c(t)j+1)
?
= 0

]L

j=0

(1)

Furthermore, due to the constant coin amount, Equation (2) can be used to verify that
unspent coins (ucoins) are equal to the total supply S of headers (headers) binary(S) =
[Sj]

L
j=0.

[|ucoins|
∑
i=1

bi,j+
|headers|

∑
t=1

(
c′(t)j −2c′(t)j+1−c(t)j + 2c(t)j+1

)
?
= Sj

]L

j=0

(2)

Therefore, LACT headers contain carry

com([c′(t)j −2c′(t)j+1−c(t)j +2c(t)j+1]
L−1
j=0 , ∗)

and range proofs of in/output carries (we call them carry proofs) when in/output size is 2.
Note that when there is only one in/output, the carries are always zero, in which case no
carry proofs are needed. These carries’ range proofs are similar to coins’ carry proofs even
though a functional output of the carries is committed. However, a normal transaction
has to be separated into multiple LACT transactions if there are more than two inputs or
outputs. For example, a transaction of (2 ⇒ 3) can be separated into two transactions;
(2⇒ 2) and (1⇒ 2) with two carry proofs.

We generalize this concept of static carry proofs for more than two input and output
transactions at a logarithmic cost to reduce the size impact of carry proofs in LACT+.

Let there be a carry proof protocol, CARRY that commits and provides range proofs for
maximum 2L′ number of inputs or outputs.

• CARRY.gen(pp(λ,L), [vi]
|in|
i=0 , [vi]

|out|
i=0) : returns (k, carry) if all v and v are in [0, 2L − 1];

otherwise returns ⊥. Here, k is the secret key of carry commitment, |in| ≤ 2L′ and
|out| ≤ 2L′ . At this point, we do not check ∑ v = ∑ v′, which will be performed in
transaction creation. Here, |in| and |out| are the input and output sizes.

• CARRY.ver(pp(λ,L), carry) : returns one if the hidden carries are in [0, 2L′) and the
carries are committed according to Equation (1); otherwise, it returns zero.

Protocol Sketch

Carry proofs contain a commitment and a range proof to show that each carry is
in a proper range, which is [0, 2L′) for maximum 2L′ ≥ 2 inputs and outputs. Let there
be 2Lin number of inputs and 2Lout number of outputs. A LACT+ carry commitment
is com(c′(t)j −2c′(t)j+1−c(t)j + 2c(t)j+1, 0, 0, k) when c and c′ are input and output carries. Here,

except for the 0th and (L − 1)th carries, the output carries [c′j]
L−2
j=1 are in [0, 2Lout), and

other input carries [cj]
L−2
j=1 are in [0, 2Lin). Hence, LACT+ creates range proofs for the

following vectors
[binary(Lin, c1), .., binary(Lin, cL−2)] ∈ R and
[binary(Lout, c′1), .., binary(Lout, c′L−2)] ∈ R.

We define the new carry proof protocol in Algorithm 4. Furthermore, we provide a
graphical view of the carry proofs in Figure 4 using the same notation as Algorithm 4.

Cryptography 2023, 7, 24 14 of 24

Algorithm 4 New Confidential Carry Proofs

1: B |in|, |out| (≤ 2L′) are the number of in/outputs,
including supplied coins and transaction fee.

2: CARRY.gen(pp(λ,L), [vi]
|in|
i=0 , [vi]

|out|
i=0) :

3: if |in| > 2L′ ∧ |out| > 2L′ :
4: return ⊥
5: Lin = dlog2(b(2|in| − 1)c)e
6: Lout = dlog2(b(2|out| − 1)c)e
7: [bi = binary(v(i))]|in|i=1 , [b′i = binary(v′(i))]|out|i=1
8: B Carries when ÷ is the integer division

9: c0 =
[
0, [c0,j+1 =

(
∑|in|i=1 bi,j + c0,j

)
÷ 2]L−1

j=0 , 0
]

10: c1 =
[
0, [c1,j+1 =

(
∑|out|i=1 b′i,j + c1,j

)
÷ 2]L−1

j=0 , 0
]

11: B Bits of input carries
12: c′0 = [binaryLin (c0,j)]

L+1
j=0 ∈ R(L+1)×L′

13: B Bits of output carries
14: c′1 = [binaryLout (c1,j)]

L+1
j=0 ∈ R(L+1)×L′

15: B Compute random masks for carries
16: B Lazy Sampling

17: [[~d0,i,l
$←− [−(α − (1 − c′0,i,l)), (α − (1 −

c′0,i,l))]
N]Li=1]

Lin

l=0
18: Set ~d0,0 =~0 and ~d0,L =~0

19: [[~d1,i,l
$←− [−(α − (1 − c′1,i,l)), (α − (1 −

c′1,i,l))
N]Li=1]

Lout

l=0
20: Set ~d1,0 =~0 and ~d1,L =~0
21: ~̂c0 = ∑Lin

l=0 ∑L
j=0

~d0,j,lrot(2c′0,j,l − 1, jLin +

l) ∈ R
22: ~̂c1 = ∑Lout

l=0 ∑L
j=0

~d1,jrot(2c′1,j,l − 1, jLout + l) ∈ R
23: ~̂c′ = [(c1,j − c0,j) − 2(c1,j+1 −

c0,j+1)]
L
j=0, 0N−L] ∈ R

24: tin = N − j · (Lin − 1)− l
25: t′in = N − (j + 1) · (Lin − 1)− l − 1

26: ~̂d′0 = ∑Lin
l=0 ∑L

j=0(
~d0,j,lrot(−2l , tin) −

2~d0,j+1,lrot(−2l , t′in))
27: tout = N − j · (Lout − 1)− l
28: t′out = N − (j + 1) · (Lout − 1)− l − 1

29: ~̂d′1 = ∑Lout
l=0 ∑L

j=0(
~d1,j,lrot(−2l , tout) −

2~d1,j+1,lrot(−2l , t′out))
30: B Pick random masks
31: ~k $←− [−τ, τ](m−3)×N

32: ~r1
$←− [−τ1, τ1]

(m−3)×N ;~r2
$←− [−τ2, τ2]

(m−3)×N

33: B Carry commitment
34: ~u = highbitsp1

(~H[~̂c′,~0,~0,~k]) ∈ Rn
q

35: ~t1 = highbitsp2
(~H[~0,~̂c1,~̂c0,~r1]) ∈ Rn

q

36: ~x1 = hash(~u,~t1) ∈ CN
β

37: ~s2 = [~x1(~̂d′1− ~̂d′0), ∑Lout
l=0 ∑L

j=0
~d2

1,j,l , ∑Lin
l=0 ∑L

j=0
~d2

0,j,l ,~r2]

38: ~t2 = highbitsγ′ (~H~s2) ∈ Rn
q

39: ~x2 = hash(~u,~t1,~t2) ∈ CN
β

40: ~z0 = [[~x2rot(c0,j,l , jLin + l) + ~d0,j,l]
L
j=1]

Lin

l=0 ∈
RLin×L

41: ~z1 = [[~x2rot(c1,j,l , jLout + l) + ~d1,j,l]
L
j=1]

Lin

l=0 ∈
RLout×L

42: if ‖~z0‖ > (α− 1) ∨ ‖~z1‖ > (α− 1):
43: go to Step 15
44: ~r = ~x2(~x1~k +~r1) +~r2 ∈ Rm−3

45: if ‖~r‖ > (τ2 − β2τ − βτ1) :
46: go to Step 15
47: ~̂z′0 = ~x1 ∑Lin

l=0 ∑L
j=0(~z0,j,lrot(−2l , tin)

48: −2~z0,j+1,lrot(−2l , t′in)) ∈ R
49: ~̂z′1 = ~x1 ∑Lout

l=0 ∑L
j=0(~z1,j,lrot(−2l , tout)

50: −2~z1,j+1,lrot(−2l , t′out)) ∈ R
51: ~̂z0 = ∑Lin

l=0 ∑L
i=0~z0,i(~z0,i −~x2rot(1, iLin + l)) ∈ R

52: ~̂z1 = ∑Lout
l=0 ∑L

i=0~z1,i(~z1,i −~x2rot(1, iLout + l)) ∈ R

53: ~s = [~̂z′1 −~̂z′0,~̂z1,~̂z0,~r] ∈ Rm

54: if ‖~s‖ > γ: go to Step 15
55: B Compute hints for~t2

56: ~t′2 = highbitsγ′ (~H~s − ~x2(~x1upp1
(~u) +

upp2
(~t1))) ∈ Rn

q

57: ~h = hints(χ,~t′2,~t2)

58: if~h =⊥: go to Step 15
59: return carry = (~z0,~z1,~r,~u,~t1,~h,~x2)

60: CARRY.ver(pp(λ,L), |in|, |out|, carry) :

61: B (∗) denotes variables that can be empty

62: (~z(∗)0 ,~z(∗)1 ,~r(∗),~u(∗),~t(∗)1 ,~h(∗),~x(∗)2) := carry

63: if |in| > 2L′ ∧ |out| > 2L′ :
64: return ⊥
65: Lin = dlog2(b(2|in| − 1)c)e
66: Lout = dlog2(b(2|out| − 1)c)e
67: tin = N − j · (Lin − 1)− l
68: t′in = N − (j + 1) · (Lin − 1)− l − 1
69: tout = N − j · (Lout − 1)− l
70: t′out = N − (j + 1) · (Lout − 1)− l − 1
71: if ‖~z0‖ > α ∨ ‖~z1‖ > α:
72: return 0
73: ~̂z′0 = ~x1 ∑Lin

l=0 ∑L
j=0(~z0,j,lrot(−2l , tin)

74: −2~z0,j+1,lrot(−2l , t′in)) ∈ R
75: ~̂z′1 = ~x1 ∑Lout

l=0 ∑L
j=0(~z1,j,lrot(−2l , tout)

76: −2~z1,j+1,lrot(−2l , t′out)) ∈ R
77: ~̂z0 = ∑Lin

l=0 ∑L
i=0~z0,i(~z0,i −~x2rot(1, iLin + l)) ∈ R

78: ~̂z1 = ∑Lout
l=0 ∑L

i=0~z1,i(~z1,i −~x2rot(1, iLout + l)) ∈ R

79: ~s = [~̂z′1 −~̂z′0,~̂z1,~̂z0,~r] ∈ Rm

80: if ‖~s‖ > γ: return 0
81: B Recompute~t2 from hints
82: ~t′2 = highbitsγ′ (~H~s − ~x2(~x1upp1

(~u) +

upp2
(~t1))) ∈ Rn

q

83: ~t2 = use_hints(χ,~t′2,~h)
84: if~t2 =⊥: return 0
85: return ~x2

?
= hash(~u,~t1,~t2)

Cryptography 2023, 7, 24 15 of 24

~H

~x1(~̂z′1 −~̂z′0)

~̂z1

~̂z0

~r

︸ ︷︷ ︸
set_c(~s)

= ~x2~x1 ~H

[(c1,j − c0,j)− 2(c1,j+1

−c0,j+1)]
L
j=0, 0N−L]

~0

~0

~k

︸ ︷︷ ︸
~u

+~x2 ~H

~0
Lout

∑
l=0

L

∑
j=0

~d1,jrot(2c′1,j,l − 1, jLout + l)

Lin

∑
l=0

L

∑
j=0

~d0,j,lrot(2c′0,j,l − 1, jLin + l)

~r1

︸ ︷︷ ︸
~t1

+ ~H

~x1(~̂d′1 − ~̂d′0)
Lout

∑
l=0

L

∑
j=0

~d2
1,j,l

Lin

∑
l=0

L

∑
j=0

~d2
0,j,l

~r2

︸ ︷︷ ︸
~t2

Figure 4. Graphical overview of carry proofs (Algorithm 4).

New carry proofs provide the following properties; completeness, knowledge soundness,
and zero-knowledge argument. Zero-knowledge and knowledge soundness are defined for a
statement L,

“all input and output carries are in [0, 2Lin) and [0, 2Lout)”
according to Definitions 2 and 3.

Definition 9 (Completeness). CARRY is complete if honestly generated proofs are always valid
such that the following is greater than or equal to 1− ε(λ).

Pr

[
CARRY.ver(pp(λ,L),

|in|, |out|, c)
∣∣∣

v, v′ ∈ [0, 2L−1] s.t. |v|, |v′|‖≤2L′

(k, c) = CARRY.gen(pp(λ,L), v, v′)

]

Theorem 3. CARRY is complete, zero-knowledge, and witness extractable if Approx-SIS of (n, m, q, γ,
γ′, N) is hard (see the security proof in Appendix B).

3.3. Aggregable Confidential Transactions with Activity Proofs

In this section, we describe LACT+ transactions, TX, with new confidential coins, carry
proofs, and activity proofs.

A transaction converts a set of existing coin records (inputs) into new coins (outputs).
First, users agree on the inputs and outputs. Then they create a carry proof to show the
summation. Finally, they create the transaction by computing a signature to prove the
ownership. Let [b]∗i=0, [b′]∗i=0, c0, and c1 be the binary inputs, binary outputs, input carries,
and output carries accordingly. If the input coins are equal to output coins, they satisfy
Equation (1) and a zero-coefficient vector is output. Therefore, the summed commitment
pk is,

com

∗
∑
i=0

b′ −
∗
∑
i=0

b

+(c′(t)j −2c′(t)j+1

−c(t)j +2c(t)j+1)

, 0, 0,

∗
∑
i=0

k′i

−
∗
∑
i=0

ki+k

︸ ︷︷ ︸
r

=com(0, 0, 0, r)=pk

when k, [k]∗i=0, and [k′]∗i=0 are the keys of the carry commitment, input coin commitments,
and output coin commitments. Therefore, TX asks the users to use (r, pk) as the secret–public
key pair and create a signature. First, the users picks a random r′ and computes y =
com(0, 0, 0, r′). Then, users’ computers receive the challenge x = hash(u, y) by hashing pk
and y, and compute σ = r′ − xr. The signature is (σ, x). If the input coins are equals to
output coins, verifiers can recompute y′ := com(0, 0, 0, σ)− x× pk and check x ?

=hash(pk, y′).
When the challenge is large enough, users cannot cheat and create valid signatures if they
illegally generate coins or steal coins.

LACT+ transactions contain activity proofs to enable complete aggregation. Activity
proofs are immutable, or it is computationally impossible to find two different input and

Cryptography 2023, 7, 24 16 of 24

output sets for the same activity proof. Hence, preserving activity proofs is sufficient to
provide immutability to the whole blockchain, including the removed spent coins.

The transaction generation is a multi-party protocol where each sender or receiver
keeps their secret keys without sharing and computes a secure partial signature. At the
end, those partial signatures are aggregated into a single signature used as the transaction’s
signature. Therefore, the senders do not learn the secret keys of other inputs and outputs,
and cannot take back the sent coins. We use “green color” to denote the secret computations
of each individual.

Before aggregating a transaction into the chain, verifiers check whether the inputs are
in the chain or not. If they are in the chain, verifiers check the summation, ownership, and
activity of the transaction. When the transaction has valid proofs, the verifiers remove the
inputs from the chain, add outputs into the unspent coin set, and preserve the header. The
complete protocol of TX is stated in Algorithm 5 and an example of transaction aggregation
is stated in Figure 2.

Algorithm 5 LACT+ Transactions and Chains

1: B |in|, |out| (≤ 2L′) are the number of in/outputs.
2: B owners do not share secret keys of inputs or outputs.
3: TX.gen(pp(λ,L) , k, carry, [ki , vi , coini]

|in|
i=1 , [k′i , v′i , coin

′
i]
|out|
i=1):

4: if ∑ v 6= ∑ v′ : return ⊥
5: B Commitments cannot be repeated
6: if

⋃
coin.~u 6= coin.~u ∨⋃ coin′ .~u 6= coin′ .~u

7: ∨coin⋂ coin′ 6= φ: return 0
8: ∆ 6= activity([coin′i .~u]

|out|
i=1 , [coini .~u]

|in|
i=1) ∈ H

9: Each sender i ∈ [1, |in|] secretly computes:

10: .~r3,i
$←− [−τ3, τ3](m−3)×N

11: . ~yi = ~H[~0,~0,~0,~r3,i] ∈ Rn
q and share ~yi

12: Each receiver i ∈ [1, |out|] secretly computes:

13: .~r′3,i
$←− [−τ3, τ3](m−3)×N

14: . ~y′i = ~H[~0,~0,~0,~r′3,i] ∈ Rn
q and share ~y′i

15: B All receivers compute public key ~pk ∈ Rn
q .

16: ~pk = highbitsp1
(carry.~u+∑|out|i=1 coin′i .~u−∑|in|i=1 coini .~u)

17: ~y = highbitsγ′ (∑
|out|
i=1 ~y′i −∑|in|i=1 ~yi) ∈ Rn

q

18: ~x0 = hash(~pk,~y, ∆) ∈ CN
β B Signature challenge

19: Each sender i ∈ [1, |in|] secretly computes:
20: . ~σi =~r3,i +~x0~ki ∈ R(m−3)

21: . if ‖~σi‖ > (τ3 − βτ): go to Step 9
22: Each receiver i ∈ [1, |out|] secretly computes:
23: . ~σ ′i =~r′3,i +~x0~k′i ∈ R(m−3)

24: . if ‖~σ ′i ‖ > (τ3 − βτ): go to Step 9
25: B All receivers compute the signature
26: ~σ = ~x0(~k + ∑|out|i=1 ~σ ′i −∑|in|i=1 ~σi) ∈ R(m−3)

27: if ‖~σ‖ > ((|out|+ |in|)τ3 − (|out|+ |in|+ 1)βτ):
28: go to Step 9
29: ~y′ = highbitsγ′ (~H~σ −~x0upp1

(~pk)) ∈ Rn
q

30: ~h = hints(χ,~y′ ,~y) B Hints for ~y
31: if~h =⊥: go to Step 9
32: header = (~pk,~h,~σ,~x0, carry, ∆)
33: return tx = (header, [coini]

|in|
i=1 , [coin′i]

|out|
i=1)

34: B A chain is an aggregated CT with multiple headers
35: TX.aggregate(pp(λ,L) , chain, tx) :

36: (header, in, out)) := tx
37: (headers, S, ucoins) := chain
38: if ¬TX.ver(pp(λ,L) , tx) : return ⊥
39: B Spending coins should be in the chain
40: if tx.in 6∈ ucoins : return ⊥
41: B Remove spending coins from the chain
42: ucoins = (ucoins \ tx.in)] tx.out
43: B Add proofs to the transaction table

44: headers = headers] (|tx.in|, |tx.out|, tx.header)
45: B Commitments cannot be repeated
46: if

⋃
ucoins.~u 6= ucoins.~u: return ⊥

47: return chain = (headers, S, ucoins))

48: TX.header_ver (pp(λ,L) , |in|, |out|, header):
49: (~pk,~h,~σ,~x0, carry, ∆) := header
50: B Recompute ~y from hints
51: ~y′ = highbitsγ′ (~H~σ −~x0upp1

(~pk)) ∈ Rn
q

52: ~y = use_hints(χ,~y′ ,~h)
53: if ~y =⊥: return 0

54: return ~x0
?
= hash(~pk,~y, ∆)∧

55: CARRY.ver(pp(λ,L) , |in|, |out|, carry)

56: TX.ver(pp(λ,L) , tx) :

57: (header, [coini]
|in|
i=1 , [coin′i]

|out|
i=1)) := tx

58: (~pk,~h,~σ,~x0, carry, ∆) := header
59: B Commitments cannot be repeated
60: if

⋃
coin.~u 6= coin.~u ∨⋃ coin′ .~u 6= coin′ .~u:

61: ∨coin⋂ coin′ 6= φ: return 0
62: B Check activity
63: if ∆ = activity([coin′i .~u]

|out|
i=1 , [coini .~u]

|in|
i=1) ∈ H: return 0

64: if [¬COIN.ver(pp(λ,L) , coini)]
|in|
i=1 : return 0

65: if [¬COIN.ver(pp(λ,L) , coin′i)]
|out|
i=1 : return 0

66: if ¬TX.header_ver(pp(λ,L) , |in|, |out|, header):
67: return 0
68: return highbitsγ′−p1(~pk) = highbitsγ′ (carry.~u

69: +∑|out|i=1 coin′i .~u−∑|in|i=1 coini .~u) ∈ Rn
q

70: TX.chain_ver(pp(λ,L) , chain) :

71: (headers, S, ucoins) := chain

72: ~pk = ~u =~0n ∈ Rn
q ;~s = [bin(S),~0(m−1)] ∈ Rm

q

73: B Commitments cannot be repeated
74: if

⋃
ucoins.~u 6= ucoins.~u: return 0

75: for all (coini) ∈ ucoins:
76: if ¬COIN.ver(pp(λ,L) , coini): return 0
77: ~u = ~u + coini .~u ∈ Rn

q

78: for all (|in|, |out|, hi) ∈ headers:
79: if ¬TX.header_ver(pp(λ,L) , |in|, |out|, h): d return 0
80: ~pk = ~pk + h.carryi . ~pk ∈ Rn

q

81: ~u = ~u + h.carryi .~u ∈ Rn
q

82: return highbitsγ′−p1(~pk) ?
= highbitsγ′−p1(~u− ~H~s)

83: ∧∏∆∈headers ∆ ?
= ∏c∈ucoins hash0(c.~u) ∈ H

Cryptography 2023, 7, 24 17 of 24

TX is expected to have the following security properties: completeness, zero-knowledge,
knowledge soundness, theft resistance, and immutability. We reuse zero-knowledge and knowl-
edge soundness from Definitions 2 and 3 when the statements of L are:

“all coins are in [0, 2L)” and
“total unspent coins are equal to total supplied coins”.

Definition 10 (Completeness). TX is complete if the honestly generated transactions are always
valid, and aggregating a valid transaction into a valid chain always produces a correct chain with
the unspent coins of that transaction. Let G be an arbitrary chain generator.

Pr[arbitrary_tx() ∧ arbitrary_chain()] ≥ 1− ε(λ).

arbitrary_tx() :

For any [vi]
|in|
i=1 ∈ [0, 2L − 1] and [v′i]

|out|
i=1 ∈ [0, 2L − 1]

such that ∑
|in|
i=1 [vi] = ∑

|out|
i=1 [v′i] ∈ [0, 2L − 1]:

[(ki, coini) = COIN.gen(pp(λ,L), vi)]
|in|
i=1

[(k′i, coin
′
i) = COIN.gen(pp(λ,L), v′i)]

|out|
i=1

tx = TX.gen(pp(λ,L), [ki, coini]
|in|
i=1 , [k′i, coin

′
i]
|out|
i=1)

return tx.in ?
= [coin]

|in|
i=1 ∧ tx.out ?

= [coin′]|out|i=1 ∧
TX.ver(pp(λ,L), tx)

arbitrary_chain() :
Get any chain such that
TX.chain_ver(pp(λ,L).chain) = 1 and T = |headers|

for i ∈ [0, t]:

txi
$←− G(pp(λ,L)) s.t. CTx.ver(pp(λ,L), txi) = 1

chain = TX.aggregate(pp(λ,L), chain, tx)
if chain =⊥: continue
if headersT+i 6= tx.carry
∨txi.out 6⊂ chain′.ucoins : return 0

return TX.chain_ver(pp(λ,L), chain) ∧ |headers|
?
= T+ t

Even after aggregation, TX ensures that unspent coins cannot be spent without their
secret keys. We consider strong theft resistance where the adversary has control over
everything except an honest user’s secret key. Here, the adversarial algorithm generates a
chain (an aggregated CT). In the first step, the algorithm sends some coins to the honest
user, where the user locks those coins with a new key. Then, the algorithm tries to spend
those coins without obtaining the new secret key. In other words, the network is set to have
only one honest user, simulating a real-world decentralized network where everyone can
be malicious except the honest user.

Definition 11 (Theft Resistance). TX is theft resistant if

AdvTR,A
TX,pp(λ,L)

= Pr
[
GameTR,A

TX,pp(λ,L)

?
= 1

]
≤ ε(λ).

GameTR,A
TX,pp(λ,L)

: chain← Astep1(pp(λ,L))

if TX.chain_ver(pp(λ,L), chain): return ⊥
T = |chain.headers|
B Receive coin′ ∈ tx from A s.t. A does not know the key of coin′.
chain = TX.aggregate(pp(λ,L), chain, tx)
chain′ ← Astep2(pp(λ,L), chain)
B Check whether the coin has been spent or not
return TX.chain_ver(pp(λ,L), chain′)
∧coin′ 6⊂ chain′.ucoins
∧[chain.headersi]T+1

i=0
?
= [chain′.headers]T+1

i=0

Cryptography 2023, 7, 24 18 of 24

Informally, blockchains’ immutability states that generating two different input and
output sets for the same consensus data should be computationally infeasible. Because we
build TX for a generic consensus mechanism, we capture the immutability such that finding
two different input and output sets for the same header(s) is computationally difficult.
Therefore, preserving headers is sufficient to provide immutability to the whole blockchain,
including removed spent coin records.

Definition 12 (Immutability). TX ensures immutability if

AdvIM,A
TX,pp(λ,L)

= Pr
[
GameIM,A

TX,pp(λ,L)

?
= 1

]
≤ ε(λ).

GameIM,A
TX,pp(λ,L)

: (tx, tx′)← A(pp(λ,L))

return TX.ver(pp(λ,L), tx) ∧ TX.ver(pp(λ,L), tx
′)

(tx.in.com, tx.out.com)
?
6=(tx′.in.com, tx′.out.com)

∧tx.header.∆ ?
= tx′.header.∆

Theorem 4. TX is complete, computationally theft-resistant, zero-knowledge, and immutable if
Approx-SISs of (n, m, q, γ, γ′, N) and (n, m−3, q, γ, γ′, N) are hard (see the security proofs in
Appendix C).

4. Implementation

We implement a C library ref. [25] for LACT+ aiming to achieve 128-bit security. There-
fore, a root-Hermite factor δ = 1.004 was used for lattices implementations allowing a gap
for future attacks ref. [37]. A prime-order multiplicative group H with at least multiplicative
2384 elements was used for membership proofs. The prime order of H is q2 such that (q2 −
1)/2 > 23λ is also prime (q2 = 3a2c6ad1f4ef4084fbf76e7c6201b32850c57c408a6e0c4a6cda
6c290c61e6dadd4e6b7312dd3aa6bd610a917c1d42f03). The concrete parameters used for
tests are defined in Table 2. According to the parameters, a coin record is 29.9 KB (a
commitment and a range proof), and a public key is 5760 Bytes.

Table 2. Concrete Parameters and Variables

Parameter Value Description

(n, m) (6, 4) Approx-SIS hard
N 256 Polynomial Size
q 244 − 214 + 1 q = 1 (mod 2N)

L, 2L′ 64, 15 Ranges
γ 236 Short-Vector Norm
γ′ 236 Error Norm
β 60 log2 (

N
β) + β ≥ 256

log(p1), log(p2) 17, 29 < log(γ′), < log(γ′)
α(+dlog2(|L′|/2)e) 29 to 211 maximum 16 in/outputs

τ, τ1, τ2 24 − 1, 27 − 1, 228 − 1 < γ

τ3 216 < 2L′γ
χ 60 ‖ · ‖1 Norm of Hints
|~x| 48 bytes SHAKE256 ref. [38]
|∆| 49 bytes Activity Proofs

highbitsp1
(·) 5.7 KB Packed High-bits

highbitsp2
(·) 3.1 KB Packed High-bits

We use two multiplications: number theoretic transform (NTT) for regular polynomi-
als and an easy multiplication when one of the polynomials is a rot(∗, ∗) (see below). The
C library uses 64-bit integers except for the NTT, which uses 128-bit integers. In NTT multi-
plication, we convert polynomials to NTT space using Cooley–Tukey butterflies ref. [39],

Cryptography 2023, 7, 24 19 of 24

point-wise multiply them using Montgomery point-wise multiplications ref. [40], and then
convert them back using inverse-transform from Gentleman–Sande butterflies ref. [41].

Recall that rot(vi, i) is a polynomial where coefficient i is vi, and all other coefficients
are zero. Therefore, a multiplication of~arot(vi, i) is computed as follows: convert coef-
ficients in [N − i, N) into their negative values, rotate all coefficients by i, and multiply
all coefficients by vi. Because this is faster than NTT multiplication, we use this easy
multiplication whenever possible, e.g., most of the short-norm vectors in CARRY.

We chose bits’ masking keys from [−α, α] such that some functional polynomials
like Step 29 in COIN and Step 53 in CARRY can be larger than γ. However, there is a high
probability that they will be in the accepted range due to centrally reduced numbers.
Therefore, we perform norm checks during the generation of COIN and CARRY to ensure
completeness.

All the benchmarks were configured as follows: The maximum coin amount and the
initial coinbase value are 264 − 1. Here, we use “aggregated size” to denote the database
size, which is slightly larger than theoretical sizes due to indexing and identifiers. “Deleted
size” means the exact size of deleted coin records as explained in Section 3.1. Therefore,
“unaggregated size” is computed as the summation of the aggregated and deleted sizes.
The verification times are measured on an i7-1065G7 CPU at 1.30GHz. Furthermore, [x : y]
denotes that the number of inputs and outputs are randomly chosen from [1, x] and [1, y].

Efficiency of New Carry Proofs. First, we run benchmarks to get the sizes of new carry
proofs and LACT carry proofs. Recall that LACT creates multiple LACT transactions if the
numbers of input coins and out coins are larger than two. Therefore, the size impact of
carry proofs to the total blockchain is proportional to the number of transactions, whereas
in LACT+, this impact is now logarithmic. We simulate carry proof benchmarks to see this
size and verification time impact for normal transactions where the input size can be larger
than two. Figures 5 and 6 show the accumulated sizes and total verification times for carry
proof(s) of LACT and LACT+. From the graphs, we conclude that new LACT+ carry proofs
are more efficient than LACT carry proofs. Therefore, the whole system is more efficient
than prior post-quantum CT schemes, from unaggregated ones to aggregated ones like
LACT, in spite of its other added benefits such as fully trustless verifiable immutability.

Outputs and Inputs

C
ar

ry
 P

ro
of

 S
iz

e
(K

B
)

0

200

400

600

2 4 6 8 10 12 14

LACT LACT+

Figure 5. Carry proof sizes.

Cryptography 2023, 7, 24 20 of 24

Outputs and Inputs

C
ar

ry
 P

ro
of

 V
er

ifi
ca

tio
n

Ti
m

e
(S

ec
)

0.0

0.1

0.2

0.3

2 4 6 8 10 12 14

LACT LACT+

Figure 6. Carry proof verification times.

Impact of Aggregation. The main efficiency mechanism of LACT+ is transaction aggre-
gation. The impact of the transaction aggregation changes according to input/output rates
because more unspent outputs lead to larger blockchains. We ran benchmarks for different
input/output rates, and we show the results in Figure 7. From the graph, we see that even
if the output rate is higher than the input rate, aggregation achieves significant reductions
in size. Verification times for these benchmarks are shown in Figure 8.

Transactions

S
iz

e
(G

B
)

0

1

2

3

2,000 4,000 6,000 8,000 10,000

Aggregated [2:4]

Unaggregated [2:4]

Aggregated [4:6]

Unaggregated [4:6]

Aggregated [6:8]

Unaggregated [6:8]

Aggregated [8:10]

Unaggregated [8:10]

Figure 7. Aggregated sizes and unaggregated sizes vs. transactions.

Transactions

Ti
m

e
(S

ec
on

ds
)

0

50

100

150

2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

[2:4] [4:6] [6:8] [8:10]

Figure 8. Verification times vs. transactions for different input and output rates.

Cryptography 2023, 7, 24 21 of 24

A Theoretical Comparison with MatRiCT+ Esgin et al. proposed ref. [22], an efficient
lattice-based Ring CT protocol that uses the Chinese Remainder Theorem (CRT) packing,
e.g., packing all L number of~z into a single polynomial. Even without CRT packing, LACT+
is more efficient than MatRiCT+ as illustrated in Figure 9.

Transactions

S
iz

e
(G

B
)

0.00

0.50

1.00

1.50

2.00

2.50

2,000 4,000 6,000 8,000 10,000

MatRiCT+ 4 -> 5

LACT+ 4 -> 5

MatRiCT+ 2 -> 3

LACT+ 2 -> 3

MatRiCT+ 3 -> 4

LACT+ 3 -> 4

MatRiCT+ 1 -> 2

LACT+ 1 -> 2

Figure 9. LACT+ and MatRiCT+: For MatRiCT, Coins (cn) are 4.48 KB, public keys are 3.4 KB, and
(2→ 2) proofs are 47 KB at 1/11 anonymity.

5. Conclusions

Aggregable confidential transactions are more private and scalable than typical trans-
actions. However, the scalability of previous aggregable transactions does not provide
trustless verification at the consensus level because real-world transactions should be
immutable. LACT+ post-quantum aggregable confidential transactions solve this prob-
lem by adding aggregable activity proofs. Equally importantly, LACT+ is more efficient
and faster than existing post-quantum aggregable transactions due to our use of approxi-
mate SIS and logarithmic carry proofs. LACT+ is the first practical post-quantum aggre-
gable confidential transaction protocol that provides consensus-level aggregation and fully
trustless verification.

Author Contributions: Conceptualization, J.A.; Writing-original draft, J.A.; Writing—review, editing,
X.B. and M.M.; Supervision, X.B. and M.M. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding

Data Availability Statement: Not applicable

Conflicts of Interest: The authors declare no conflict of interest

Appendix A. Security Proofs of Confidential Coins

Binding. We claim COIN is binding because finding two openings (v,~k) 6= (v′,~k′) for the
same coin record means the adversary finds a solution to the Approx-SIS problem such that

~s = [binary(v),~k,~0m−2]− [binary(v′),~k′,~0m−2] 6=~0m

‖~s‖ ≤ γ and highbitsγ′(~H~s) =~0n ∈ Rn
q .

Knowledge Soundness. Let there be a p.p.t. algorithm that breaks the knowledge soundness
such that the extractor E outputs~b of number not in [0, 2L) for a valid proof. According to
the verification in Step 44, the algorithm finds~s for [~zi = ~x2rot(bi, i) +~ai]

L′−1
i=0 ∈ RL such

that bi is not 0 or 1, but

highbitsγ′(~H~s)
?≈ highbitsγ′(~x2(~x1~u +~t1) +~t2) ∈ Rn

q .

Because bi is not 0 or 1, the following is true,

Cryptography 2023, 7, 24 22 of 24

highbitsγ′ (~x2
2

[
~H [~0,

L

∑
i=0

(rot(bi(b1 − 1), i)),~0m−2

︸ ︷︷ ︸
~h 6=~0m

]
) =~0n ∈ Rn

q .

Here,~h is a solution to the Approx-SIS problem. Therefore, we claim range proofs are
knowledge sound.
Zero-Knowledge Argument of Range Proofs. ~zi statistically hides bi because~zi = bi~x2 +~ai ∈
[−(α− 1), (α− 1)] when the range of~ai is [−α, α]. We claim the computational hiding for
commitments (~u,~t1,~t2) of COIN due to dropped bits of Approx-SIS and sufficient random-
ness of~k,~r1,~r2 (see ref. [26]). If there is a p.p.t. algorithm that breaks the zero-knowledge
argument by successfully distinguishing the generated proofs over the simulated proofs,
then the algorithm can be used to break the hiding property of the commitments; in other
words, solving the Approx-SIS problem. Therefore, we claim that the range proofs satisfy
the zero-knowledge argument.

Finally, we prove that Theorem 2 is true because COIN is complete (Figure 3), binding,
knowledge-sound, and zero-knowledge.

Appendix B. Security Proofs of Carry Proofs

Knowledge Soundness If there is an algorithm that breaks the knowledge soundness of CARRY
then it creates

highbitsγ′

~x2
2
~H

~0,
L|out|

∑
l=0

L

∑
i=0

(rot(c′1,i(c
′
1,i,l − 1), iL|out| + l))

L|in|

∑
l=0

L

∑
i=0

(rot(c′0,i,l(c
′
0,i − 1), iL|in| + l)),~0m−3

︸ ︷︷ ︸
~h 6=~0m

=~0n (A1)

for invalid binary vectors of carries; c′0 and c′1 which are not 0 nor 1 (see Step 22).
Here, ~h is a solution to Approx-SIS problem. Therefore, we conclude that CARRY is

knowledge sound.
Zero-Knowledge Argument. Due to the rejection sampling, ~z0 and ~z1 statistically hide bits
of both input carries and output carries. Furthermore, commitments ~u, ~t1 and ~t2 hide
their short vectors due to the Approx-SIS problem. Therefore, we claim CARRY holds the
zero-knowledge argument property.

Finally, we conclude Theorem 3 is accurate due to the above proofs. or CARRY is
complete (Figure 4), computationally knowledge sound, and holds the zero-knowledge
argument property.

Appendix C. Security Proofs of Aggregable CT

Theft Resistance. If a p.p.t. algorithm wins the game of theft resistance, then the algorithm
creates a transaction with a valid signature unknowing the secret key. In other words, the
algorithm breaks EUF-CMA of SIG defined in Section 2.6, knowledge soundness of COIN,
or knowledge soundness of CARRY. Therefore, if COIN, CARRY, and SIG are secure, then TX is
theft resistant.
Zero-Knowledge and Knowledge Soundness. Suppose a p.p.t. algorithm creates a chain with
more or less unspent coins than the supplied coins. In that case, the algorithm either
breaks COIN’s knowledge soundness, CARRY’s knowledge soundness, or forges a signature
for a public key with non-zero beginning polynomials. Therefore, we conclude that TX
is knowledge soundness when COIN, CARRY, and SIG are secure. We directly claim the
zero-knowledge of TX because COIN, CARRY, and SIG are zero-knowledge.
Immutability. TX’ immutability states that no p.p.t algorithm can find two different valid
transactions with the same membership proof but with different in/out commitment sets.

Cryptography 2023, 7, 24 23 of 24

If an algorithm wins the game of immutability, then the algorithm solves the group collision
resistance problem (GCR). Therefore, if GCR is computationally hard, TX is computationally
immutable.

Therefore, we claim Theorem 4 is true or TX is complete, computationally theft-
resistant, zero-coin generating, and immutable.

References
1. Zhang, H.; Zhang, F.; Wei, B.; Du, Y. Implementing confidential transactions with lattice techniques. IET Inf. Secur. 2019, 14, 30–38.
2. Alupotha, J.; Boyen, X.; Mckague, M. Aggregable Confidential Transactions for Efficient Quantum-Safe Cryptocurrencies. IEEE

Access 2022, 10, 17722–17747.
3. Androulaki, E.; Karame, G.O.; Roeschlin, M.; Scherer, T.; Capkun, S. Evaluating User Privacy in Bitcoin. In Proceedings of the

Financial Cryptography and Data Security, Okinawa, Japan, 1–5 April 2013; Sadeghi, A.R., Ed.; Springer: Berlin/Heidelberg,
Germany, 2013; pp. 34–51.

4. Spagnuolo, M.; Maggi, F.; Zanero, S. BitIodine: Extracting Intelligence from the Bitcoin Network. In Proceedings of the Financial
Cryptography and Data Security, Okinawa, Japan, 1–5 April 2013; Christin, N., Safavi-Naini, R., Eds.; Springer: Berlin/Heidelberg,
Germany, 2014; pp. 457–468.

5. Fleder, M.; Kester, M.S.; Pillai, S. Bitcoin transaction graph analysis. arXiv 2015, arXiv:1502.01657.
6. Reid, F.; Harrigan, M. An Analysis of Anonymity in the Bitcoin System. In Proceedings of the 2011 IEEE Third International

Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social Computing, Boston, MA,
USA, 9–11 October 2011; pp. 1318–1326. https://doi.org/10.1109/PASSAT/SocialCom.2011.79.

7. Herrera-Joancomartí, J. Research and Challenges on Bitcoin Anonymity. In Data Privacy Management, Autonomous Spontaneous
Security, and Security Assurance; Garcia-Alfaro, J., Herrera-Joancomartí, J., Lupu, E., Posegga, J., Aldini, A., Martinelli, F., Suri, N.,
Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 3–16.

8. Khalilov, M.C.K.; Levi, A. A survey on anonymity and privacy in bitcoin-like digital cash systems. IEEE Commun. Surv. Tutor.
2018, 20, 2543–2585.

9. Morris, L. Anonymity Analysis of Cryptocurrencies. Master’s Thesis, Rochester Institute of Technology, Rochester, NY, USA,
2015. Available online: https://scholarworks.rit.edu/theses/8616/ (accessed on 10 January 2023).

10. Jedusor, T.E. Mimblewimble. 2016. Available online: https://docs.beam.mw/Mimblewimble.pdf (accessed on 10 January 2023).
11. Poelstra, A. Mimblewimble. 2016. Available online: https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf

(accessed on 10 January 2023).
12. Poelstra, A.; Back, A.; Friedenbach, M.; Maxwell, G.; Wuille, P. Confidential assets. In Proceedings of the International Conference

on Financial Cryptography and Data Security, Nieuwpoort, Curaçao, 26 February–2 March 2018; Springer: Berlin/Heidelberg,
Germany, 2018; pp. 43–63.

13. Fuchsbauer, G.; Orrù, M.; Seurin, Y. Aggregate Cash Systems: A Cryptographic Investigation of Mimblewimble. In Proceedings
of the Advances in Cryptology—EUROCRYPT 2019, Darmstadt, Germany, 19–23 May 2019; Ishai, Y., Rijmen, V., Eds.; Springer:
Cham, Switzerland, 2019; pp. 657–689.

14. Alupotha, J.; Boyen, X.; Foo, E. Compact Multi-Party Confidential Transactions. In Proceedings of the Cryptology and Network
Security, Vienna, Austria, 14–16 December 2020; Krenn, S., Shulman, H., Vaudenay, S., Eds.; Springer: Cham, Switzerland, 2020;
pp. 430–452.

15. IBM-Research. IBM’s Roadmap for Scaling Quantum Technology. Available online: https://research.ibm.com/blog/ibm-
quantum-roadmap (accessed on 21 March 2022).

16. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available online: https://bitcoin.org/bitcoin.pdf (accessed
on 10 January 2023).

17. Wood, G. Ethereum: A Secure Decentralised Generalised Transaction Ledger; Ethereum project yellow paper; Ethereum: Zug,
Switzerland, 2014; Volume 151, pp. 1–32.

18. Noether, S.; Mackenzie, A.; the Monero Research Lab. Ring confidential transactions. Ledger 2016, 1, 1–18.
19. Sun, S.F.; Au, M.H.; Liu, J.K.; Yuen, T.H. RingCT 2.0: A Compact Accumulator-Based (Linkable Ring Signature) Protocol for

Blockchain Cryptocurrency Monero. In Proceedings of the Computer Security—ESORICS 2017, Oslo, Norway, 11–15 September
2017; Foley, S.N., Gollmann, D., Snekkenes, E., Eds.; Springer: Cham, Switzerland, 2017; pp. 456–474.

20. Esgin, M.F.; Zhao, R.K.; Steinfeld, R.; Liu, J.K.; Liu, D. MatRiCT: Efficient, scalable and post-quantum blockchain confidential
transactions protocol. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, London,
UK, 11–15 November 2019; pp. 567–584.

21. Alberto Torres, W.; Kuchta, V.; Steinfeld, R.; Sakzad, A.; Liu, J.K.; Cheng, J. Lattice RingCT V2.0 with Multiple Input and
Multiple Output Wallets. In Proceedings of the Information Security and Privacy, Prague, Czech Republic, 23–25 February 2019;
Jang-Jaccard, J., Guo, F., Eds.; Springer: Cham, Switzerland, 2019; pp. 156–175.

22. Esgin, M.F.; Steinfeld, R.; Zhao, R.K. MatRiCT+: More Efficient Post-Quantum Private Blockchain Payments. Cryptol. ePrint Arch.
2021, 545, 1–21.

https://doi.org/10.1109/PASSAT/SocialCom.2011.79
https://scholarworks.rit.edu/theses/8616/
https://docs.beam.mw/Mimblewimble.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://research.ibm.com/blog/ibm-quantum-roadmap
https://research.ibm.com/blog/ibm-quantum-roadmap
https://bitcoin.org/bitcoin.pdf

Cryptography 2023, 7, 24 24 of 24

23. Grin tech.org. Minimal Implementation of the MimbleWimble Protocol. Available online: https://github.com/mimblewimble/
grin (accessed on 27 January 2021).

24. Scalable Confidential Cryptocurrency—MimbleWimble Implementation. Available online: https://www.beam.mw/ (accessed
on 27 January 2021).

25. Alupotha, J. LACT+: Post-Quantum Aggregable Confidential Transactions. 2022. Available online: https://github.com/jaymine/
LACTv2 (accessed on 11 January 2023).

26. Chen, Y.; Genise, N.; Mukherjee, P. Approximate trapdoors for lattices and smaller hash-and-sign signatures. In Proceedings of
the International Conference on the Theory and Application of Cryptology and Information Security, Kobe, Japan, 8–12 December
2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 3–32.

27. Regev, O. On lattices, learning with errors, random linear codes, and cryptography. J. ACM 2009, 56, 34.
28. Ajtai, M. Generating hard instances of lattice problems. In Proceedings of the Twenty-Eighth Annual ACM Symposium on

Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996; ACM: New York, NY, USA, 1996; pp. 99–108.
29. Alupotha, J.; Boyen, X. Origami Store: UC-Secure Foldable Datachains for The Quantum Era. IEEE Access 2021, 9, 81454–81484.
30. Noether, S.; Noether, S. Monero Is Not That Mysterious. Technical Report. 2014. Available online: https://web.getmonero.org/

ru/resources/research-lab/pubs/MRL-0003.pdf (accessed on 11 January 2023).
31. Maxwell, G. Confidential Transactions. 2015. Available online: https://people.xiph.org/greg/confidential_values.txt (accessed

on 11 January 2023).
32. Fiat, A.; Shamir, A. How To Prove Yourself: Practical Solutions to Identification and Signature Problems. In Proceedings of the

Advances in Cryptology—CRYPTO’ 86, Santa Barbara, CA, USA, 1 January 1987; Odlyzko, A.M., Ed.; Springer: Berlin/Heidelberg,
Germany, 1987; pp. 186–194.

33. Pointcheval, D.; Stern, J. Security arguments for digital signatures and blind signatures. J. Cryptol. 2000, 13, 361–396.
34. Abdalla, M.; An, J.H.; Bellare, M.; Namprempre, C. From Identification to Signatures via the Fiat-Shamir Transform: Minimizing

Assumptions for Security and Forward-Security. In Proceedings of the Advances in Cryptology—EUROCRYPT 2002, Amsterdam,
The Netherlands, 28 April–2 May 2002; Knudsen, L.R., Ed.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 418–433.

35. Lyubashevsky, V. Lattice-Based Identification Schemes Secure Under Active Attacks. In Proceedings of the Public Key
Cryptography—PKC 2008, Barcelona, Spain, 9–12 March 2008; Cramer, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2008;
pp. 162–179.

36. Lyubashevsky, V. Fiat-Shamir with Aborts: Applications to Lattice and Factoring-Based Signatures. In Proceedings of the
Advances in Cryptology—ASIACRYPT 2009, Tokyo, Japan, 6–10 December 2009; Matsui, M., Ed.; Springer: Berlin/Heidelberg,
Germany, 2009; pp. 598–616.

37. Albrecht, M.R. LWE Estimator. Available online: https://lwe-estimator.readthedocs.io/en/latest/readme_link.html (accessed
on 22 October 2021).

38. Gleen, M.L. Device for and Method of One-Way Cryptographic Hashing. U.S. Patent 6829355, 12 July 2004.
39. Gauss, C.F. Nachlass: Theoria interpolationis methodo nova tractata. Carl Friedrich Gauss Werke 1866, 3, 265–327.
40. Montgomery, P.L. Modular multiplication without trial division. Math. Comput. 1985, 44, 519–521.
41. Gentleman, W.M.; Sande, G. Fast Fourier transforms: For fun and profit. In Proceedings of the Fall Joint Computer Conference,

San Francisco, CA, USA, 7–10 November 1966; pp. 563–578.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/mimblewimble/grin
https://github.com/mimblewimble/grin
https://www.beam.mw/
https://github.com/jaymine/LACTv2
https://github.com/jaymine/LACTv2
https://web.getmonero.org/ru/resources/research-lab/pubs/MRL-0003.pdf
https://web.getmonero.org/ru/resources/research-lab/pubs/MRL-0003.pdf
https://people.xiph.org/greg/confidential_values.txt
https://lwe-estimator.readthedocs.io/en/latest/readme_link.html

	Introduction
	Related Work
	Our Contribution

	Preliminary
	Common Security Properties
	Hardness Assumption
	Activity Proofs
	Hints
	Public Parameters
	Fiat–Shamir Signatures

	LACT+ Protocol
	Confidential Coins
	Logarithmic-Sized Carry Proofs
	Aggregable Confidential Transactions with Activity Proofs

	Implementation
	Conclusions
	Security Proofs of Confidential Coins
	Security Proofs of Carry Proofs
	Security Proofs of Aggregable CT
	References

