
Citation: Nagarajan, K.; Roy, R.;

Topaloglu, R.O.; Kannan, S.; Ghosh, S.

SCANN: Side Channel Analysis of

Spiking Neural Networks.

Cryptography 2023, 7, 17. https://

doi.org/10.3390/cryptography7020017

Academic Editor: Jim Plusquellic

Received: 19 January 2023

Revised: 19 March 2023

Accepted: 21 March 2023

Published: 27 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Article

SCANN: Side Channel Analysis of Spiking Neural Networks
Karthikeyan Nagarajan 1,* , Rupshali Roy 1, Rasit Onur Topaloglu 2 , Sachhidh Kannan 3

and Swaroop Ghosh 1

1 School of Electrical Engineering and Computer Science, The Pennsylvania State University,
State College, PA 16801, USA

2 IBM Corporation, Hopewell Junction, NY 12533, USA
3 Ampere Computing, Portland, OR 97209, USA
* Correspondence: kxn287@psu.edu

Abstract: Spiking neural networks (SNNs) are quickly gaining traction as a viable alternative to deep
neural networks (DNNs). Compared to DNNs, SNNs are computationally more powerful and energy
efficient. The design metrics (synaptic weights, membrane threshold, etc.) chosen for such SNN
architectures are often proprietary and constitute confidential intellectual property (IP). Our study
indicates that SNN architectures implemented using conventional analog neurons are susceptible to
side channel attack (SCA). Unlike the conventional SCAs that are aimed to leak private keys from
cryptographic implementations, SCANN (SCA of spiking neural networks) can reveal the sensitive
IP implemented within the SNN through the power side channel. We demonstrate eight unique
SCANN attacks by taking a common analog neuron (axon hillock neuron) as the test case. We chose
this particular model since it is biologically plausible and is hence a good fit for SNNs. Simulation
results indicate that different synaptic weights, neurons/layer, neuron membrane thresholds, and
neuron capacitor sizes (which are the building blocks of SNN) yield distinct power and spike timing
signatures, making them vulnerable to SCA. We show that an adversary can use templates (using
foundry-calibrated simulations or fabricating known design parameters in test chips) and analysis to
identify the specifications of the implemented SNN.

Keywords: spiking neural networks; side channel analysis; reverse engineering

1. Introduction

Artificial neural networks (ANNs or NNs), which are inspired by brain functionality,
are composed of layers of neurons interlinked by synapses and can be used to approximate
any computable function. The use of neural networks in safety-critical domains, such as
autonomous driving [1], healthcare [2], internet of things [3] and security [4], necessitates
an examination of their security vulnerabilities and risks. In real-world applications,
attacking a neural network can result in undesirable inferences that can compromise
safety (e.g., reduced accuracy or confidence in road sign identification during autonomous
driving). These attacks can be launched during the training, manufacturing, or final
application stages.

Spiking neural networks (SNNs) [5], the third generation of neural networks, are
emerging as an alternative to deep neural networks (DNNs) since they are biologically
plausible, computationally powerful [6], and energy efficient [7–9]. The majority of past
work in SNN security focuses on evaluating the robustness of SNNs when exposed to
adversarial input noise. The vulnerabilities/attacks of SNNs under a white-box scenario,
e.g., sensitivity to adversarial examples and a robust training mechanism for defense is
proposed in [10]. A white-box fault injection attack is proposed [11] for SNNs by employing
adversarial input noise. In [12], a black-box approach is presented to generate adversarial
input instances to induce misprediction in SNNs. In [13,14], power-based voltage fault
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injection (VFI) attacks are demonstrated against analog neurons to cause degradation in
SNN accuracy.

The primary motivation behind SCANN (SCA of spiking neural networks) is due to
the vulnerability of SNN to side channel attacks (SCAs). An SCA can extract sensitive
information through a variety of methods, such as power [15,16], timing [17,18], and elec-
tromagnetic emanations [19,20]. Power and timing side channel attacks are the most
predominant. Reverse engineering (RE) attacks using SCA have already been demon-
strated for ANNs [21] via the extraction of sensitive metrics, such as activation functions,
synaptic weights, neurons/layer and number of output classes. However, very limited
research exists on the security of SNNs against SCA-based RE. In [22], the authors iden-
tified timing/power side-channel vulnerabilities in an SNN system. However, the work
is restricted to only identifying the spiking activity and number of neurons implemented.
Furthermore, the authors analyzed only a FPGA-based digital implementation of an SNN
while not considering analog implementations for simplicity. Sensitive SNN metrics, such
as the neuron’s synaptic weights or neuron’s membrane threshold, require significant train-
ing, design effort, time, and financial resources. This provides strong motivation to analyze
the power/timing side-channel leakage of SNNs and identify the multiple confidential
design parameters that an adversary can extract from the leakage.

Figure 1 depicts the proposed threat model. Our studies indicate that the power profile
of SNN has distinct markers that can be utilized to extract sensitive design parameters.
The SNN power profile can be accessible to the adversary (especially for edge devices,
where physical possession of the device by the adversary is possible) since the SNN draws
its current from an external power source (i.e., VDD pin). The threat model in this paper
is adversarial monitoring of the power drawn by using simple probes at the VDD input
to steal design/training metrics of the SNN system. This can be achieved by analyzing
the extracted power profiles to infer critical features, such as the timing of spike markers,
average current, peak current, or min current during SNN operation (as shown in Figure 1).
These features are found to be unique for different training metrics and design choices.
Note that the considered power SCA on SNN is different than conventional power SCA on
cryptographic primitives, where the objective is to break the key and subsequently steal
the plaintext data sent over the network.

Figure 1. Threat model showing progression of power-based SCA on SNN.

Multiple attack scenarios are presented in this work: (i) Insider adversary (e.g., ad-
versary in cloud computing farm who can place a probe in the power port and collect the
traces). (ii) Physical possession/attack by the user—malicious insertion of power logger
and transmitter to devices, such as PCs, gaming consoles, power adapters during use by an
adversary who has physical access to the device (e.g., public computer). (iii) Academic re-
searchers/white hat adversaries who aim to investigate security vulnerabilities of systems
to develop countermeasures can also conduct this experiment.

In summary, the following contributions are made in this work. We (a) present
detailed analysis of the power side channel of an analog neuron model, axon hillock
neuron, (b) identify unique markers in the SNN power profile to extract spiking activity
and average power, (c) present eight attack models to analyze metrics in the power profile
to reverse engineer and derive confidential design parameters of SNN, and (d) present
discussions on process variation analysis and defenses.
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The rest of the paper is organized as follows: Section 2 presents the background on
SNNs and neuron design and simulation setup, Sections 3 and 4 present an analysis of the
timing and power side-channel attacks on SNN, Section 5 presents the discussion, process
variation analysis and defenses, and finally, Section 6 draws the conclusion.

2. Background

In this section, we present the overview of SNN and neuron design [23] that are used
in this paper.

2.1. Overview of Spiking Neural Network

SNNs are composed of layers of spiking neurons that are interconnected together by
synaptic weights (Figure 1). The neurons between adjacent layers exchange information
in the form of spike trains. The timing of the spikes and the strength of the synaptic
weights between neurons are critical parameters in SNN operation. Each neuron includes a
membrane, whose potential increases when the neuron receives an input spike. The neuron
fires an output spike when this membrane potential crosses a pre-determined threshold.
Various neuron models, such as, I&F, Hodgkin–Huxley, and spike response, exist with
different membrane and spike-generation operations. In this work, we implemented a
flavor of the I&F neuron to showcase the power-based attacks. Leaky integrate and fire
(LIF) neuron models are simple, computationally effective, and are the most widely used
spiking neuron models. The axon hillock (AH) neuron model described in the paper is used
as a representative LIF neuron in our SNN to depict the effectiveness of the proposed SCA.
The AH is an early implementation of an artificial LIF neuron circuit. It has extensively been
used to generate spikes in SNN implementations [23–27] forming a basis for contemporary
LIF designs. In this work, we implement, simulate, and analyze all neuron models on
HSPICE using PTM 65nm technology.

2.2. Axon Hillock Spiking Neuron Design and Implementation

The axon hillock circuit [28] (Figure 2a) consists of an amplifier block implemented
using two inverters in series (shown in dotted gray box). The neuron receives its input
spikes through a synapse (1 MΩ resistor). The input voltage (Vin) is integrated at the neuron
membrane capacitance (Cmem), and the analog membrane voltage (Vmem) rises linearly until
it crosses the amplifier’s threshold. Once it reaches this point, the output (Vout) switches
from ‘0’ to VDD. This Vout is fed back into a reset transistor (MN1) and activates a positive
feedback through the capacitor divider (C f b). Another transistor (MN2), controlled by Vpw
determines the reset current. If reset voltage > Vin, Cmem is discharged until it falls to the
amplifier’s threshold. This causes Vout to switch from VDD to ‘0’. The output remains ‘0’
until the entire cycle repeats. Figure 2b depicts the expected results of Vmem and Vout.

(a) (b)
Figure 2. (a) Axon hillock circuit; and (b) simulation result of axon hillock spike generation showing
input current (Iin) (top plot), the membrane voltage (Vmem) and the output voltage (Vout) (bottom plot).

In this paper, the value of membrane capacitance (Cmem) and the feedback capacitance
(C f b) of 0.1 pF are used. For experimental purposes, the input voltage spikes with an
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amplitude of 1 V, a spike width of 50 ns, and a spike rate of 5 MHz are generated through
the voltage source (Vin). The VDD of the design is set to 1 V. Figure 2b shows the simulation
results of the input current spikes (Iin) and the corresponding membrane and the output
voltage (Vout).

2.3. Simulation Setup

The axon hillock neuron model described in Section 2.2 is used as a representative
neuron for our SNN to depict the effectiveness of the proposed SCA. While SNN archi-
tectures may widely vary on the number of neurons per layer, we chose a 2-layer 3 × 3
architecture (Figure 3) as our baseline representative example since this is simpler to simu-
late and to conduct further analysis. For our experimental purposes, we considered the
SNN implementation as an isolated system and not as a part of an SoC.

Figure 3. Baseline 2-layer 3 × 3 SNN implemented for power SCA.

2.4. SNN Side-Channel Analysis

To design the reverse engineering attack against the presented neurons, we first
investigate their power signature. The SNN system’s operation indicates that the consumed
power depends on its spiking activity. Here, we present the characteristics of the power
profile observed for the SNNs under attack presented in Section 2.3.

We simulate the 2-layer 3 × 3 SNN architecture to observe its power profile. There
are three different types of spikes that occur during SNN operation. They are (i) input
spikes, (ii) Layer-1 spikes, and (iii) Layer-2 spikes. Figure 4a shows the three types of
spiking activity and the observed power profile. The simulation period marked by the
red box, where all three types of spikes occur, is zoomed in and shown in Figure 4b. Each
voltage spike causes a pair of current spikes in the power profile: one each during the rising
edge and falling edge of the voltage spike. In Figure 4b, each kind of voltage spike and its
corresponding pair of current profile spikes are marked in colored boxes: grey (input spike),
blue (Layer-1 spike), and green (Layer-2 spike). The results indicate that the occurrence of
voltage spikes causes a unique marker in the SNN power profile depending on its origin.
Figure 5 depicts three unique power profile markers that indicate three spiking activity
conditions of the SNN: (i) Input spike only: when only the input voltage spikes occur,
we observe a pair of short power spikes; (ii) input + Layer-1 spikes: when an input spike
causes a neuron in Layer 1 to spike, we observe a short pair of power spikes, caused by the
input, followed by a tall pair of power spikes, caused by Layer-1 output spike; (iii) input
+ Layer-1 + Layer-2 spikes: when an input spike causes a Layer-1 spike, which in turn
causes a Layer-2 spike, we observe one short, and two tall pair of power spikes.
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Figure 4. (a) SNN current profile for a 3 × 3 SNN depicting input spikes, and output spikes of layer-1
and layer-2 neurons; and (b) zoomed-in SNN power profile depicting power characteristics caused
by corresponding input and output spikes.

Figure 5. Markers in the power profile revealing the layer and type of voltage spikes in a 3 × 3
SNN architecture.

3. SCANN Attacks Using Timing Side Channel

In Section 2.4, the effect of various design parameters on SNN power profile is ana-
lyzed. Here, we describe techniques to leverage the power profile to extract the time-to-
spike (timing side channel) and reverse engineer the SNN design parameters.

3.1. SCANN 1: Effect of Synaptic Weights

A 3 × 3 2-layer SNN (shown in Figure 3) is used to analyze the effect of synaptic
weights on the SNN power profile. In this example, we analyze the spiking activity of
neuron N4 in Layer-2. The synaptic weights of all synapses from Layer-1 connecting to
neuron N4 are changed. Figure 6a shows the N4 spiking activity for two cases of input
synaptic weights, where all synapses to N4 are (i) 1 MΩ, and (ii) 2 MΩ. Figure 6a also
depicts the power profiles of these two cases that accurately reveal the unique markers
that indicate when N4 (a layer-2 neuron) spikes. It is noted that a neuron’s time-to-spike
increases as the synaptic weights to it increases. This is due to the decrease in the amount
of current that is integrated over the neuron’s membrane for each spike as the synaptic
weight increases. As a result, it takes longer to charge the neuron to its threshold.

(a) (b) (c)
Figure 6. SCANN 1: (a) SNN Layer-2 neuron’s spiking activity (boxed in red and green) and overall
current profile in a 3 × 3 network under different input synaptic weights; (b) effect of synaptic
weights on neuron’s time-to-spike; and (c) effect of synaptic weights on number of Layer-2 output
spikes in a 50 µs window.
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The SNN power profile and unique markers can be leveraged to determine the time-
to-spike value of a neuron and ultimately the synaptic weights to it. Figure 6b depicts the
change in the N4 time-to-spike for different synaptic weights and for different numbers of
N4 input synapses modified. Figure 6c depicts the spiking rate under different synaptic
weights in a 50 µs sampling window. It is seen that the spiking rate decreases as the
synaptic strengths increase.

3.2. SCANN 2: Effect of Neuron Membrane Threshold

The membrane threshold of the axon hillock neuron, described in Section 2.2, is deter-
mined by the first inverter in its amplifier block. The sizing of the inverter’s PMOS (MP1)
and NMOS (MN3) transistors determines the neuron’s threshold voltage (Vth). In order to
vary Vth, the PMOS (MP1) width is varied from 1× to 20×. Figure 7 shows the effect of the
MP1 width on the neuron’s membrane threshold. This PMOS width variation is leveraged
to vary the membrane threshold of all the neurons in the SNN from 0.57 V to 0.75 V. Note
that the NMOS width of transistor MN3 may also be varied to achieve a similar variation in
neuron Vth as shown in Figure 7. Figure 8a shows the power profile for three specific Vth
cases. The unique Layer-2 spiking markers (boxed in red) depict that the time-to-spike for
a neuron in Layer-2 increases as Vth increases. This is due to the fact that the number of
spikes required to trigger the neuron increases with a higher threshold. Therefore, for the
same input, the SNN spiking rate decreases for a fixed sampling window. Figure 8b shows
the increase in time to spike as the Vth is increased. Figure 8c shows the change in Layer-2’s
output spike as Vth is increased.

Figure 7. Effect of NMOS (MN3) and PMOS (MP1) transistor widths on neuron membrane threshold.

(a) (b) (c)
Figure 8. SCANN 2: (a) Power profiles with markers revealing output neuron’s spike time (boxed in
red) under different neuron thresholds; (b) effect of output neuron’s membrane threshold on neuron’s
time-to-spike; and (c) effect of membrane output neuron’s membrane threshold on number of Layer-2
output spikes in a 50 µs window.

3.3. SCANN 3: Effect of Number of Neurons

The baseline SNN (shown in Figure 9a) is a 3 × 3 network with 3 neurons per layer.
The number of neurons per layer is varied from 1 to 10 and the corresponding power
profiles are analyzed. Figure 9b shows the unique markers (boxed in red) that reveal
Layer-2’s spiking activity. It is seen that the spike rate of Layer-2 increases as the number
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of neurons/layer increases. Figure 9c depicts the time to spike of Layer-2 neurons as the
number of neurons per layer is varied from 1 to 10. Figure 9c depicts the increase in spike
rate in a 50 µs window as the neurons per layer is varied from 1 to 10. Increasing the
number of neurons per layer increases the number of input connections to each neuron in
the following layer. Assuming that the same input is fed to each input neuron, increasing
neurons/layer causes each neuron in the following layer to receive a larger number of
spikes. Therefore, the neuron fires faster and the spike rate increases.

(a) (b) (c)
Figure 9. SCANN 3: (a) Power profiles with markers revealing output neuron’s spike time (boxed in
red) under different number of neurons/layer; (b) effect of neurons per layer on neuron’s time-to-
spike; and (c) effect of neurons per layer on number of Layer-2 output spikes in a 50 µs window.

3.4. SCANN 4: Effect of Neuron Capacitance

The axon hillock neuron (Figure 2a employed in this analysis) uses a 0.1 pF capacitor
(Cmem) to model the neuron membrane. The input spikes are integrated over this membrane,
and once the membrane voltage (Vmem) reaches the threshold of the neuron’s amplifier
block, the neuron fires an output spike (Vout). The size of the capacitor determines the
rate of membrane charging and discharging. Figure 10a shows the unique markers (boxed
in red) that reveal Layer-2’s spiking activity in a 10 µs sampling window for different
membrane capacitance. It is observed that Layer-2’s spiking activity is delayed as the Cmem
increases. Figure 10b depicts the time-to-spike value of the N4 (Layer-2) neuron as the
membrane capacitance is varied from 0.05 pF to 0.15 pF. Figure 10c depicts the spiking rate
under different Cmem in a 50 µs sampling window. It is seen that the spike rate decreases
as Cmem increases. This is attributed to the neurons requiring a longer time to charge and
discharge the capacitor. Longer charging/discharging phases increase the inactivity time,
which in turn decreases the neuron spike rate.

(a) (b) (c)
Figure 10. SCANN 4: (a) Power profiles with markers revealing output neuron’s spike time (boxed
in red) under different membrane capacitances; (b) effect of membrane capacitance on neuron’s
time-to-spike; and (c) effect of membrane capacitance on number of Layer-2 output spikes in a 50 µs
window.

4. SCANN Attacks Using Power Side Channel

In Section 2.4, the effect of various design parameters on SNN power profile is ana-
lyzed. Here, we describe techniques to leverage the power profile (power side channel)
and derive the SNN design parameters.
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4.1. SCANN 5: Synaptic Weights

We employ a 3 × 3 SNN to demonstrate the reverse engineering of power profile
to obtain the synaptic weights using SCA. In Figure 6b, it can be noted that the time to
spike increases as various percentages of synaptic weights are increased (e.g., 33% refers
to 3 out of 9 synaptic weights being swept, while the other 6 synapses are set to default
low resistance). Furthermore, in Figure 6a, it is seen that the power profile exhibits a
gradual positive DC shift between two pairs of layer-1/2 high-amplitude power spikes.
In the duration between these high-amplitude spikes, as the membrane capacitor (Cmem)
in the neuron gets charged, the node voltage (Vmem) gradually increases. This leads to an
intermediate gate voltage for transistors MP1 and MN3 allowing the flow of short circuit
current from VDD to GND explaining the positive DC shift in the power profile during the
membrane’s charging phase. Once the neuron fires, the DC shift is seen to reset to 0 V.

As the synaptic weights within the SNN change, the frequency and the DC levels of
their power profiles also change. The average power derived from the power profile over a
sampling window can be utilized by an adversary to determine the synaptic configuration
of the SNN. Figure 11 depicts the change in average power of the SNN as different percent-
ages of synaptic weights are varied from 1 MΩ to 10 MΩ in multiple sampling windows,
ranging from 25 µs to 100 µs. It is noted that the average powers for different synaptic
configurations diverges more and is higher as the sampling window increases. As the sam-
pling window increases, the share of static power consumption in the SNN becomes greater.
In SNNs with larger synaptic weights, the charging phase of the neuron is longer, and
therefore the positive DC shift of the power during charging increases the overall power
consumption. Therefore, a higher measurement window may be useful for the adversary
to enhance the distinct power signature. We present our experimental data points using
quadratic fitting to depict the trend of the average power. Here, we assume that the default
values of all non-changing synapses are set to 1 MΩ. Although the results do not indicate
power signature at the synapse level, they do demonstrate that the adversary can identify
the percentage of synapses at a high or low resistance state. This, in turn, can help the
adversary to narrow down his search space and reverse engineer the SNN model. Another
important outcome of the analysis is that higher synaptic weights/resistances are unsafe
from a security standpoint since they leak distinct power signature. Therefore, it may be
safer to confine the synaptic weights to lower ranges, e.g., 1–2 MΩ.

(a) (b) (c)
Figure 11. SCANN 5: Average SNN power as different percentages of synapses and varied from
1 MΩ to 10 MΩ in a sampling window of (a) 25 µs; (b) 50 µs; and (c) 100 µs (with 1 MΩ as baseline
synaptic weight).

4.2. SCANN 6: Neuron Threshold

In Figure 8b, it is shown that the time to spike increases as a neuron’s threshold is
increased. This is achieved due to a higher switching voltage of the first inverter (MP1 and
MN3) in the neuron’s amplifier block (Figure 2a). It was previously noted that a short circuit
current from VDD to GND during the membrane charging phase leads to a positive DC shift.
If the neuron’s threshold is increased, the charging phase takes longer, and correspondingly,
the average power of the SNN increases. Figure 12a depicts the change in average power
of the SNN as the neurons threshold is varied from 0.57 V to 0.75 V in multiple sampling
windows, ranging from 25 µs to 100 µs. It is seen that the average power increases mostly
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monotonically and can be partially leveraged to identify the SNN neuron threshold. It can
be used in conjunction with the spike rate calculation (shown in SCANN 2) to determine
the neuron threshold more accurately.

(a) (b) (c)
Figure 12. Average SNN power in sampling windows ranging from 25 µs to 500 µs while varying
(a) neuron threshold (SCANN 6) (b) number of neurons per layer (SCANN 7); and (c) neuron’s
membrane capacitance (SCANN 8).

4.3. SCANN 7: Number of Neurons/Layer

In Figure 9c, it can be noted that the output spike rate increases as the number of
neurons per layer is increased from 1 to 10. As the neurons/layer increases, the higher
spike rate and the higher number of neurons consume more power. This behavior can be
used as a marker by an adversary to determine the number of neurons in the implemented
SNN. Figure 12b depicts the change in average power of the SNN as the neurons/layer is
varied from 1 to 10 in multiple sampling windows, ranging from 25 µs to 100 µs. It is seen
that the average power rises monotonically for all sampling windows and can be leveraged
as a strong sole indicator of the neurons/layer.

4.4. SCANN 8: Neuron Membrane Capacitance

In Figure 10b, it can be noted that the time to spike increases as the membrane
capacitance is increased from 0.05 pF to 1.15 pF. Correspondingly, Figure 10c shows that
the output spike rate decreases as the membrane capacitance increases. This change in
spike rate could impact the power profile observed by an adversary. Figure 12c depicts the
change in average power of the SNN as the membrane capacitance is varied from 0.05 pF to
1.15 pF in multiple sampling windows, ranging from 25 µs to 100 µs. However, the average
power does not increase or decrease monotonically. Therefore, the average power cannot
be effectively leveraged by the adversary to determine the membrane capacitance.

5. Discussion
5.1. Summary of Reverse Engineering Attacks

From our analysis, we conclude the following:

• SNN contains parameters: These include (a) synaptic weights, (b) neuron membrane
threshold, (c) number of neurons per layer, and (d) membrane capacitance. Other
assets (not studied in this paper) are the types of interconnections between layers and
the SNN learning rate.

• SNN has vulnerabilities: Side channel power leakage reveals various design pa-
rameters due to (a) variation of power profile’s spike rate, and (b) SNN’s average
power. Table 1 shows a summary of SCANN attacks to identify different SNN design
parameters.

• SNN can face attack models: This includes adversarial side channel analysis (SCA)
of the power supply to reverse engineer and derive SNN design parameters. These
attacks are initiated during the application phase when the design parameters are
fixed. Attacks not covered in this paper are (a) the generation of adversarial input
samples to cause misclassification, (b) fault injection into synaptic weights, and (c)
noise injection in input samples to attack specific neurons.
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Table 1. Summary of SCANN attacks.

SNN Design Parameter Spike Rate
(SCANN 1–4)

Average Power
(SCANN 5–8)

Synapse Weight X X
Neuron Threshold X X

Neurons/Layer X X
Neuron Capacitance X 7

5.2. Process Variation Analysis

Note that process variations (PVs) in synapses and neurons can lead to a faster or
slower spiking and can affect the power profiles observed by the adversary. Therefore, we
perform a 1000 point Monte Carlo analysis with 3σ of 100 mV of each transistor’s switching
threshold over a 100 µs sampling window for two of the design parameters. Figure 13
depicts the average power results when the neuron membrane threshold (Vth) is varied
from 0.57 V to 0.75 V. The results show a positive trend in the median average power as Vth
is increased. Similarly, Figure 14 depicts the average power results when the number of
neurons per layer is varied from 1 to 10. A similar positive trend in the median power is
observed. Therefore, average power can still leak information. A sophisticated adversary
who has access to ample resources can analyze 1000 copies of an SNN chip and generate a
range of average powers to match with the generated PV templates.

Figure 13. Effect of neuron membrane threshold on average power under PV.

Figure 14. Effect of neurons per layer on average power under PV.

5.3. Feasibility of SCANN

Scalability: This work analyzes a 3 × 3 SNN constructed with a flavor of leaky integrate
and fire (LIF) analog neuron using all-to-all interconnections. The model is scaled up to
10 × 10 to analyze the effectiveness of SCANN. In real-world applications, SNNs may
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employ 100 s of neurons per layer. While an increased number of neurons increases the
average power consumed, it does not eliminate the unique markers in the power profile
caused by the SNN spiking activity. The adversary can still identify these unique markers
in the power profile to extract the spiking rate of neuron layers. Furthermore, the templates
used for SCANN attacks can also be extended to include unique markers for more than
3 layers.

Extension to emerging technologies: Integrate-and-fire neurons using emerging tech-
nology, such as memristors, were recently proposed in [29,30], where short voltage pulses
(input spikes) are employed to increase the conductance of the memristor device. When
the conductance reaches a critical value (threshold), the neuron fires a spike, and the
conductance is reset. While the power markers found in the power profile of memristor
neuron-based SNNs may look different, SCANN attacks can still be applied to extract
design parameters by generating power marker and average power templates.

5.4. Impact of Inputs and Connectivity

This paper assumes that (a) each neuron is fed by the same input and (b) the neurons
are fully connected for the side channel analysis. These assumptions hold true if the
adversary has physical possession of the chip and/or control over the inputs and the SNN
architecture is fully connected. However, it should be noted that the spiking activity of
the neurons of an SNN depends on the user input and the number of connections each
neuron receives. The spiking rate and the average power may differ depending upon the
user input and the connection type. An adversarial template is therefore valid only for
a specific input pattern and interconnection architecture. The adversary has to generate
multiple templates for different commonly implemented interconnection techniques.

5.5. Defenses against SCANN

Following approaches can be used to defend SNN’s against SCA:
Exploiting Transistor Variability: It was noted in Section 4 that the DC current

through the neuron amplifier inverter is the primary source of side channel leakage. There-
fore, decorrelating the spike rate with the DC current can obfuscate the side channel
effectively. Since process variations are more prominent on the threshold voltages of
smaller-sized transistors, one can design the amplifier’s inverter with smaller transistors
to make it more sensitive to process variation. As a result, the switching threshold of
the neuron will vary within-chip and chip-to-chip. If the switching threshold is higher,
the DC current will be lower, even though the spike rate is slower at the neuron input.
Therefore, the correlation with pre-calculated templates will be lost. Figure 15a depicts
the change in average power as all the synaptic weights are varied from 1 MΩ to 10 MΩ
in an SNN with large variation in the threshold voltage neuron amplifier transistors. It
is seen that the median power in all cases remain mostly identical. Although effective,
the variation in switching threshold due to PV may affect the accuracy and performance of
the implemented SNN. Therefore, trade-offs among security, accuracy and performance
should be considered carefully.

(a) (b) (c)
Figure 15. (a) Effect of synaptic weight on average power under defensive transistor sizing and PV;
(b) power camouflaging using dummy neurons; and (c) comparison of change in average power
between original SNN and camouflaged SNN with dummy neurons.
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Power Camouflaging: Another technique to camouflage the SNN power profile with-
out affecting its accuracy or performance is by introducing a few dummy neurons within
each neuron layer (Figure 15b). The input of the dummy neurons is connected to a current
driver that drives randomized spike inputs of 1 V amplitude and 50 ns spike width. These
dummy neurons are not connected to any of the functioning neurons in the SNN and do
not affect SNN accuracy or performance. However, they draw power from the supply in a
randomized manner and generate rogue spike markers in the SNN power profile. Addi-
tionally, they also increase the average power consumption of the SNN and camouflage
the original power features. Figure 15c depicts the difference in average power between
the original SNN and a camouflaged SNN with 10% additional dummy neurons. It is seen
that the amplitude and trendline of the average power are attenuated for the camouflaged
SNN. Note that this defense increases the overall power consumption of the SNN design
by ∼10%.

6. Conclusions

We present a detailed analysis of power and timing side channel leakage in spiking
neural networks using a common analog neuron model and uncover several markers in
the power profile. We also present eight unique reverse engineering techniques to identify
four different critical design parameters, namely (a) synaptic weights, (b) neuron threshold,
(c) neurons per layer, and (d) membrane capacitance. Finally, we proposed defenses against
the proposed SCA attacks.
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