
Citation: DeCusatis, C.; Gormanly, B.;

Iacino, J.; Percelay, R.; Pingue, A.;

Valdez, J. Cybersecurity Test Bed for

Smart Contracts. Cryptography 2023,

7, 15. https://doi.org/10.3390/

cryptography7010015

Academic Editor: Kentaroh Toyoda

Received: 14 February 2023

Revised: 2 March 2023

Accepted: 3 March 2023

Published: 10 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Article

Cybersecurity Test Bed for Smart Contracts
Casimer DeCusatis *, Brian Gormanly , John Iacino, Reed Percelay, Alex Pingue and Justin Valdez

School of Computer Science and Mathematics, Marist College, Poughkeepsie, NY 12601, USA
* Correspondence: casimer.decusatis@marist.edu; Tel.: +1-845-575-3883

Abstract: Blockchain, smart contracts, and related concepts have emerged in recent years as a
promising technology for cryptocurrency, NFTs, and other areas. However, there are still many
security issues that must be addressed as these technologies evolve. This paper reviews some of
the leading social engineering attacks on smart contracts, as well as several vulnerabilities which
result from insecure code development. A smart contract test bed is constructed using Solidity and
a Metamask wallet to evaluate vulnerabilities such as insecure arithmetic, denial of service, and
re-entrancy attacks. Cross-chain vulnerabilities and potential vulnerabilities resulting from layer
2 side-chain processing were also investigated. Mitigation best practices are proposed based on the
experimental results.

Keywords: blockchain; smart contract; cybersecurity

1. Introduction

Blockchain provides an immutable database that operates as a distributed transaction
ledger. It has been used for cryptocurrencies and so-called Web3 technologies [1,2]. Some
blockchain frameworks, such as Etherium and the Etherium Virtual Machine, are also well
suited for the development of smart contracts, which automate transactions in accordance
with pre-defined specifications and use digital signatures to approve each step of the
contract. Smart contracts have been proposed to supplement or replace existing contractual
methods in a wide range of applications [2]. This includes trading of digital currencies and
non-fungible tokens (NFTs), which have received a great deal of attention recently and in
some cases may have significant issues [3]. While smart contracts can be quite complex, the
following brief overview will contextualize this research.

Smart contracts are commonly coded in the language Solidity (other alternatives in-
clude Vyper, Rust, and Javascript). Solidity is a statistically typed, object-oriented language
which sets itself apart through special state variables that allow for access control to be writ-
ten into the program. This unique addition enhances the security potential of any contract,
if used properly. Solidity uses a syntax similar to ECMAScript which makes it easier for
existing web developers to deploy smart contracts. ECMAScript is a JavaScript standard
intended originally to ensure web pages interoperate correctly when different browsers are
used. It is commonly used for client-side scripting, and it is increasingly being used for
writing server-side applications and services using runtime environments such as Node.js.
ECMAScript has been formalized through the use of operational semantics, a category of
formal programming language semantics in which certain desirable properties of a smart
contract are verified by constructing proofs from logical statements about the contract’s
execution and procedures. This stands in contrast to denotational semantics, which attaches
mathematical meaning to the terms of a smart contract to validate its desired properties.
Operational semantics can be used to validate a contract’s security, safety, or correctness,
for example. Solidity benefits from these techniques, which both make it accessible to web
developers and provide the means to validate security of the resulting contract. However,
unlike ECMAScript, Solidity employs static variable typing and variadic return types.
Solidity also differs from other Ethereum virtual machine supported languages in several

Cryptography 2023, 7, 15. https://doi.org/10.3390/cryptography7010015 https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography7010015
https://doi.org/10.3390/cryptography7010015
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0000-0001-6719-4311
https://doi.org/10.3390/cryptography7010015
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography7010015?type=check_update&version=1

Cryptography 2023, 7, 15 2 of 13

important respects. Solidity supports complex member variables for contracts, including
arbitrary hierarchical mappings and constructs. Smart contracts developed in Solidity
support inheritance, including multiple inheritance with superclass linearization (i.e., a
mechanism used in object-oriented languages to resolve conflicts when inheriting different
definitions of the same property from multiple superclasses). Further, Solidity introduces
an application binary interface that facilitates many different type-safe functions within
a single contract; this property includes natural language specification (a documentation
system for specifying user-centric descriptions of the ramifications of method calls). When
properly deployed, these features can help mitigate security vulnerabilities in a smart
contract; however, they do not guarantee that such a contract is immune from the attacks
discussed later in this paper.

To increase the scalability of blockchains such as Ethereum, layer-2 smart contract
solutions were developed. These solutions enable off-chain processing and grouping of
transactions into similar batches, thereby reducing the overall cost of adding information to
the blockchain as well as increasing the overall number of transactions that can be handled
by the blockchain. This approach can potentially lower the Etherium transaction cost
(measured in gas). Examples include platforms such as Polygon, Arbitrum, and Optimism,
which approach this problem in different ways. Polygon employs zero-knowledge rollups,
which combine a large number of transactions that were executed off-chain and submit
them as one transaction to Etherium [4]. The approach is based on zero knowledge proofs,
which refers to a way of proving that you know something without revealing what it is
that you know. Zero-knowledge rollups batch together many layer-2 transactions off chain
into one transaction on the Etherium mainnet. This single transaction constitutes a validity
proof, since the mainnet is only updated once this transaction has been verified. These
batches may contain thousands of transactions. The ability to verify a large number of
transactions at once improves scalability and performance. Using this approach, Etherium’s
raw processing rate of about 15 to 30 transactions per second can be increased to over 40,000
transactions per second. By comparison, Arbitrum uses an optimistic rollup, which posts
transactions as soon as they are validated and allows anyone to dispute the result during
an interactive challenge period [5]. Suspicious transactions are processed off-chain by
sending part of the transaction back through the Etherium virtual machine. Smart contracts
are vulnerable to a wide range of cybersecurity attacks, including malicious code, social
engineering, and more. Further, the addition of outside technologies such as off-chain
layer 2 processing or cross-chain bridging increases the attack surface. In 2022 nearly USD
2 billion was stolen due to vulnerabilities in cross-chain bridges alone [6].

In this paper, a smart contract test bed was built to evaluate several of these vulnerabilities,
and best practices for attack mitigation recommended based on the experimental results. This
work experimentally demonstrates attacks and mitigation using insecure arithmetic, denial of
service, and re-entrancy. Related approaches including a variety of social engineering attacks
and cross-chain bridging attacks and their mitigation are also discussed.

This approach has not previously been discussed in the literature. Very recent system-
atic reviews of the technical literature [7] focus on different issues such as plagiarism and
copyright infringement. Formal methods of blockchain smart contract verification have
been discussed [8] but without attention to the software-based security vulnerabilities in
this work. There is some discussion in the literature of vulnerability detection in contract
validation [9]; however, this does not address experimental validation of the issues noted
in the test bed. The literature discusses formal verification, or how to evaluate if a contract
behaves in the desired manner. Expected behavior of the contract can be described using
formal modeling, and specification languages can be used to create formal properties. A
formal model is an abstract mathematical description of the contract, which are used to
establish if the contract is functionally correct. There has been a great deal of work on
different approaches to smart contract validation [10–12]; however, this body of work does
not categorize security vulnerabilities which can be exploited to subvert an otherwise
functionally correct contract. There have been related studies of blockchain management

Cryptography 2023, 7, 15 3 of 13

systems [13–15] which are more concerned with how to manage and maintain smart con-
tract functionality rather than how to mitigate security vulnerabilities. Further, none of
this prior art has formally classified the major vulnerabilities according to the industry
standardized Common Vulnerability Scoring System (CVSS) [16]. Thus, contributions from
this research investigate areas which have not previously received as much attention from
blockchain researchers.

The remainder of this paper is organized as follows. Following the introduction,
the design of the test bed is described. Next, there is a discussion of common social
engineering attacks which have been demonstrated against smart contracts. Then, there is
an investigation of code-based attacks, including insecure arithmetic, denial of service, and
re-entrancy attacks. Cross-chain bridging attacks are also briefly discussed. Experimental
results are then summarized along with recommended best practices for attack mitigations.

2. Materials and Methods for the Smart Contract Test Bed

The smart contract test bed is shown in Figure 1. A locally hosted website for an
Etherium node was created for this testing, as well as a Metamask wallet. Both the Etherium
node and Metamask wallet code are available open source and were customized for use
in this test bed. This arrangement can be used to test the effect of vulnerabilities in smart
contract code and digital wallet code, and to propose mitigations. This design also allows
the test bed to bridge transactions between Etherium and Arbitrum, which makes it suitable
for testing cross-chain bridge attacks (as discussed later in this paper). Draft smart contracts
are compiled into Javascript bytecode. A Metamask digital wallet is connected to our host
website using Javascript code; the compiled smart contract results are inserted into the
wallet using Javascript as well. In this way, the smart contract interacts with the digital
wallet, host website, and any required web3 libraries (several library options are discussed
later in this paper). The Web3 libraries are incorporated into our host website using HTML
code in the website. This environment used widely available Intel x86 hardware with
1 Gbit/s network interface cards and is typical of those used for cryptocurrency or NFT
trading, as well as other smart contract applications. The test bed consists of two servers
occupying two data center rack units.

Cryptography 2023, 7, x FOR PEER REVIEW 3 of 13

are used to establish if the contract is functionally correct. There has been a great deal of

work on different approaches to smart contract validation [10–12]; however, this body of

work does not categorize security vulnerabilities which can be exploited to subvert an

otherwise functionally correct contract. There have been related studies of blockchain

management systems [13–15] which are more concerned with how to manage and main-

tain smart contract functionality rather than how to mitigate security vulnerabilities. Fur-

ther, none of this prior art has formally classified the major vulnerabilities according to

the industry standardized Common Vulnerability Scoring System (CVSS) [16]. Thus, con-

tributions from this research investigate areas which have not previously received as

much attention from blockchain researchers.

The remainder of this paper is organized as follows. Following the introduction, the

design of the test bed is described. Next, there is a discussion of common social engineer-

ing attacks which have been demonstrated against smart contracts. Then, there is an in-

vestigation of code-based attacks, including insecure arithmetic, denial of service, and re-

entrancy attacks. Cross-chain bridging attacks are also briefly discussed. Experimental re-

sults are then summarized along with recommended best practices for attack mitigations.

2. Materials and Methods for the Smart Contract Test Bed

The smart contract test bed is shown in Figure 1. A locally hosted website for an

Etherium node was created for this testing, as well as a Metamask wallet. Both the Ether-

ium node and Metamask wallet code are available open source and were customized for

use in this test bed. This arrangement can be used to test the effect of vulnerabilities in

smart contract code and digital wallet code, and to propose mitigations. This design also

allows the test bed to bridge transactions between Etherium and Arbitrum, which makes

it suitable for testing cross-chain bridge attacks (as discussed later in this paper). Draft

smart contracts are compiled into Javascript bytecode. A Metamask digital wallet is con-

nected to our host website using Javascript code; the compiled smart contract results are

inserted into the wallet using Javascript as well. In this way, the smart contract interacts

with the digital wallet, host website, and any required web3 libraries (several library op-

tions are discussed later in this paper). The Web3 libraries are incorporated into our host

website using HTML code in the website. This environment used widely available Intel

x86 hardware with 1 Gbit/s network interface cards and is typical of those used for cryp-

tocurrency or NFT trading, as well as other smart contract applications. The test bed con-

sists of two servers occupying two data center rack units.

Figure 1. Smart contract test bed.

The Remix independent development environment (IDE) was used to write, debug,

and compile smart contracts. This is available online from remix.etherium.org, as the Re-

mix Desktop client, or as an extension to VSCode. This environment was chosen because

it is representative of many commercially available smart contracts. The IDE requires min-

imal setup, fosters a rapid development cycle, and features a wide variety of plugins with

Figure 1. Smart contract test bed.

The Remix independent development environment (IDE) was used to write, debug,
and compile smart contracts. This is available online from remix.etherium.org, as the Remix
Desktop client, or as an extension to VSCode. This environment was chosen because it is
representative of many commercially available smart contracts. The IDE requires minimal
setup, fosters a rapid development cycle, and features a wide variety of plugins with
intuitive graphical user interfaces. Further, this environment reportedly offers a faster
execution time than alternatives in serving both static and dynamic content. A sample
screenshot is provided in Figure 2. On the far left is a vertical icon menu, which is used to
select plugins that will appear in the adjacent panels (in Figure 2, this is annotated with a

Cryptography 2023, 7, 15 4 of 13

red circle around the plugin currently in use). Remix allows the system to only load the
functionality required; other plugins can be turned off. Since most functionality in Remix
is implemented through plugins, the plugin manager is an important part of this screen.
The file explorer window on the left is used for navigation and also allows the developer to
view/set parameters for smart contract deployment, such as viewing calculated gas fees.
For example, the button highlighted in red is used to choose a test environment and gas
fees. The window on the right shows the actual smart contract code, and allows execution
of application code, displays debugging and error messages, and may be used to execute
other scripts as well. This window can also be used to compile files or plugins from the
independent development environment. Additional workspaces can be opened to help
separate and organize projects. It is possible to associate workspaces with a Git, or to clone
a repo using the appropriate plugin. Code written in Remix is saved to the browser storage
by default, which is not permanent; inadvertently clearing the browser storage cache will
permanently delete all files stored there, unless they are backed up to another location.

Cryptography 2023, 7, x FOR PEER REVIEW 4 of 13

intuitive graphical user interfaces. Further, this environment reportedly offers a faster ex-

ecution time than alternatives in serving both static and dynamic content. A sample

screenshot is provided in Figure 2. On the far left is a vertical icon menu, which is used to

select plugins that will appear in the adjacent panels (in Figure 2, this is annotated with a

red circle around the plugin currently in use). Remix allows the system to only load the

functionality required; other plugins can be turned off. Since most functionality in Remix

is implemented through plugins, the plugin manager is an important part of this screen.

The file explorer window on the left is used for navigation and also allows the developer

to view/set parameters for smart contract deployment, such as viewing calculated gas

fees. For example, the button highlighted in red is used to choose a test environment and

gas fees. The window on the right shows the actual smart contract code, and allows exe-

cution of application code, displays debugging and error messages, and may be used to

execute other scripts as well. This window can also be used to compile files or plugins

from the independent development environment. Additional workspaces can be opened

to help separate and organize projects. It is possible to associate workspaces with a Git, or

to clone a repo using the appropriate plugin. Code written in Remix is saved to the

browser storage by default, which is not permanent; inadvertently clearing the browser

storage cache will permanently delete all files stored there, unless they are backed up to

another location.

Figure 2. Sample screen shot of smart contract IDE.

3. Results and Discussion for Social Engineering Attacks

Due to the currently unregulated nature of most smart contracts, there are a wide

range of social engineering attacks which do not require a high level of technical expertise.

Most of these assume that trading in cryptocurrencies or NFTs is a zero-sum game [17].

These may be combined with code-based attacks, as will be discussed in a later section.

Unless system administrators and others with access to sensitive information (such as pri-

vate keys and verification nodes) are regularly trained to resist social engineering, even a

well-crafted and tested smart contract may be compromised. Some of the major types of

social engineering attacks that have been observed in online marketplaces are reviewed

in the following sections.

3.1. Pump and Dump Attacks

“Pump and Dump” attacks are not a new invention, although they are prohibited by

more conventional financial regulations. Digital currencies have proven to be an excellent

opportunity for their implementation with few repercussions. Pump and dumps typically

consist of an attacker picking an existing youthful asset (such as a struggling cryptocoin)

and purchasing a large amount at a low price. This generates false “hype” and encourages

Figure 2. Sample screen shot of smart contract IDE.

3. Results and Discussion for Social Engineering Attacks

Due to the currently unregulated nature of most smart contracts, there are a wide
range of social engineering attacks which do not require a high level of technical expertise.
Most of these assume that trading in cryptocurrencies or NFTs is a zero-sum game [17].
These may be combined with code-based attacks, as will be discussed in a later section.
Unless system administrators and others with access to sensitive information (such as
private keys and verification nodes) are regularly trained to resist social engineering, even
a well-crafted and tested smart contract may be compromised. Some of the major types of
social engineering attacks that have been observed in online marketplaces are reviewed in
the following sections.

3.1. Pump and Dump Attacks

“Pump and Dump” attacks are not a new invention, although they are prohibited by
more conventional financial regulations. Digital currencies have proven to be an excellent
opportunity for their implementation with few repercussions. Pump and dumps typically
consist of an attacker picking an existing youthful asset (such as a struggling cryptocoin)
and purchasing a large amount at a low price. This generates false “hype” and encourages
others to invest in the asset, artificially driving up the price. Social media forums are
used to disseminate false information and generate more hype around the asset. Potential
investors are encouraged to act quickly to avoid missing out on profits. The attacker waits
for the value of the asset to inflate, and then sells their majority holdings to cash out and
make a profit. This typically results in collapse of the asset value, and other investors are

Cryptography 2023, 7, 15 5 of 13

left with near valueless coins. One of the largest such attacks on record resulted in the loss
of over USD 1 billion [18].

3.2. Rug Pull

Rug pulls are very similar in overall design to pump and dump schemes. The main
difference is that rug pulls are conducted by more highly skilled attackers who develop a
new asset entirely with the intent of cashing out and causing the asset value to collapse.
The attackers are also the asset developers. Since they are present at the creation of the
asset, they not only have the largest profit potential but also can claim to have a personal
stake in the asset success, giving investors a reason to trust them while they hype the value
of the asset. Since the developers often take a more public role in promoting the asset,
they typically need to become anonymous once the fraud is uncovered and the asset value
collapses. The victim often has little recourse, since they may not know the real name
or location of the attacker. In one example over USD 14 M worth of cryptocurrency was
stolen [19].

3.3. Wash Trading

Wash trading is an attack that consists of several parties cooperatively trading an
asset with each other, in order to manipulate the market value. This creates the perception
of increased trading volume, which artificially raises the asset value, or reduced trading
to devalue an asset (purposely making it unstable or making it a candidate for a bulk
investment at a lower price). The collusion of parties in the crypto market is harmful
because assets can be devalued, invested in, artificially appreciated, and then dumped
which can destabilize the market and affect the value of assets held by genuine investors.
This scam requires less outside investment than the pump and dump and can easily be
perpetrated again and again by cooperating parties on a variety of different trading assets.
Recent research suggests that over USD 30 B of NFT trading volume on Etherium is actually
wash trading [20].

3.4. Red Queen’s Race

Red Queen’s Race is named after a passage from Lewis Carroll’s Through the Looking-
Glass, where Alice runs as fast as she can but is only able to stay in the same place; the Red
Queen tells her that she must run twice as fast to move herself. This attack refers to the
rapid fluctuation in asset value in crypto markets, which can quickly make investments
less profitable than intended. For example, if malicious actors execute a pump and dump
scheme at nearly the same time as a genuine investor obtains their stake, the legitimate
investor may lose their expected profit as the asset rapidly depreciates; they are stuck in
the same place they started, or may be even worse off. The effect has been described in the
context of security in an article published by the International Systems Security Agency [21]
and in the context of blockchain-based transactions [22].

3.5. Gold Brick

Gold brick attacks entail deceivingly selling an asset for more than it is actually worth.
The name is derived from historical scams of selling ingots that are simply plated with
gold, as opposed to being solid gold, for the price of a solid gold ingot. In the same way
that it is hard to tell if the ingot is indeed solid gold, it can sometimes be hard to tell what
assets are indeed worth their marketed price. NFTs are particularly susceptible to this effect,
since it is difficult to assign objective worth to the asset; it is only worth what someone
else is willing to pay at any given time. This technique may be combined with the social
engineering attacks discussed previously.

3.6. Flash Loans

Flash loans are uncollateralized loans that must be paid back in one blockchain transac-
tion or else the loan is reversed. Their name reflects that such loans occur very quickly, and

Cryptography 2023, 7, 15 6 of 13

the hasty turnaround is aided by decentralized smart contracts. This technology provides
yet another opportunity to commit fraud, as large amounts of flash loans can be taken out
simultaneously leading to temporary manipulation of an asset’s market value until the
loans are reversed. Flash loan scams offer a relatively low risk market manipulation attack.
Two recent flash loan attacks resulted in the loss of nearly USD 1 M [23].

4. Results and Discussion for Code-Based Attacks

A smart contract is fundamentally just code, and thus, is subject to attacks based on
vulnerabilities inherent in that code. These practices include cryptojacking (user devices
are infiltrated with malware, and processing power is stolen to gain mining rewards) and
griefing (deliberately acting to ensure transactions fail, in order to cause chaos for legitimate
users; the name is taken from the video game community where it describes individuals
who act in bad faith). In the following sections, different code-based attacks are investigated.
The vulnerability is first described, and a hypothesis for an attack vector is formed. The
test bed from Figure 1 is used to demonstrate an effective attack, and to test whether a
proposed attack mitigation is successful.

4.1. Insecure Arithmetic Attack

Smart contracts for financial transactions need to conduct checks to prevent overdrafts
(if a wallet balance is low enough) or to prevent overflows (if a wallet balance is too large).
Insecure arithmetic refers to the use of arithmetic operations in a Solidity smart contract
that can lead to unexpected or incorrect results. Specifically, this refers to certain conditions
not being properly checked before an operation is performed, and most commonly results
in operations dividing by zero or operations resulting in overflow/underflow of integer
values.

In Solidity, integer values have a fixed size and can therefore only hold a limited range
of values. For example, an uint8 (unsigned 8-bit integer) can hold values from 0 to 255. If a
value is assigned to an uint8 that is not in this range, it can be hypothesized that this will
cause an overflow or underflow, resulting in an incorrect value being stored in the variable.
When the value is too large, an overflow occurs, and if the value is too low, an underflow
occurs. Likewise, an uint16 or uint256 should not be assigned values outside its specified
range. The feasibility of using this approach to induce an overflow condition is illustrated
by sample code from the smart contract test bed shown in Figure 3, in which an uint256 is
incorrectly employed in balance/overflow checking code.

Cryptography 2023, 7, x FOR PEER REVIEW 6 of 13

someone else is willing to pay at any given time. This technique may be combined with

the social engineering attacks discussed previously.

3.6. Flash Loans

Flash loans are uncollateralized loans that must be paid back in one blockchain trans-

action or else the loan is reversed. Their name reflects that such loans occur very quickly,

and the hasty turnaround is aided by decentralized smart contracts. This technology pro-

vides yet another opportunity to commit fraud, as large amounts of flash loans can be

taken out simultaneously leading to temporary manipulation of an asset’s market value

until the loans are reversed. Flash loan scams offer a relatively low risk market manipula-

tion attack. Two recent flash loan attacks resulted in the loss of nearly USD 1 M [23].

4. Results and Discussion for Code-Based Attacks

A smart contract is fundamentally just code, and thus, is subject to attacks based on

vulnerabilities inherent in that code. These practices include cryptojacking (user devices

are infiltrated with malware, and processing power is stolen to gain mining rewards) and

griefing (deliberately acting to ensure transactions fail, in order to cause chaos for legiti-

mate users; the name is taken from the video game community where it describes indi-

viduals who act in bad faith). In the following sections, different code-based attacks are

investigated. The vulnerability is first described, and a hypothesis for an attack vector is

formed. The test bed from Figure 1 is used to demonstrate an effective attack, and to test

whether a proposed attack mitigation is successful.

4.1. Insecure Arithmetic Attack

Smart contracts for financial transactions need to conduct checks to prevent over-

drafts (if a wallet balance is low enough) or to prevent overflows (if a wallet balance is too

large). Insecure arithmetic refers to the use of arithmetic operations in a Solidity smart

contract that can lead to unexpected or incorrect results. Specifically, this refers to certain

conditions not being properly checked before an operation is performed, and most com-

monly results in operations dividing by zero or operations resulting in overflow/under-

flow of integer values.

In Solidity, integer values have a fixed size and can therefore only hold a limited

range of values. For example, an uint8 (unsigned 8-bit integer) can hold values from 0 to

255. If a value is assigned to an uint8 that is not in this range, it can be hypothesized that

this will cause an overflow or underflow, resulting in an incorrect value being stored in

the variable. When the value is too large, an overflow occurs, and if the value is too low,

an underflow occurs. Likewise, an uint16 or uint256 should not be assigned values outside

its specified range. The feasibility of using this approach to induce an overflow condition

is illustrated by sample code from the smart contract test bed shown in Figure 3, in which

an uint256 is incorrectly employed in balance/overflow checking code.

Figure 3. Example of insecure arithmetic code.

Dividing by zero is another example of potential risk for insecure arithmetic in Solid-

ity. This is because Solidity, unlike most programming languages, does not throw an error

Figure 3. Example of insecure arithmetic code.

Dividing by zero is another example of potential risk for insecure arithmetic in Solidity.
This is because Solidity, unlike most programming languages, does not throw an error
when the code attempts to divide by zero. Instead, Solidity just returns a value of zero.
This incorrect operation can lead to unexpected results which an attacker can exploit. A
trivial code error in the smart contracts used by our test bed demonstrates that a divide by
zero error goes undetected under normal operating conditions.

To mitigate these risks, there are a few best practices that are recommended for
developers. First, use the appropriate data types for variables. In Solidity, different data
types have varying ranges of values that they can hold. It is vital to use the appropriate
data type for each variable to avoid overflow/underflow conditions. Secondly, use the

Cryptography 2023, 7, 15 7 of 13

SafeMath library, a commonly used library in Solidity that provides a set of mathematical
functions which automatically check for overflow and underflow conditions and revert
the transaction if they occur (SafeMath is recommended by smart contract auditing firms
such as OpenZeppelin [24]). Lastly, test and audit the contract. Before deploying a contract
to the blockchain, it is important to design and execute a thorough test plant to identify
any potential vulnerabilities, including those related to insecure arithmetic. Once the smart
contract is on the blockchain, it is immutable, and any vulnerabilities can and will be
exploited. To test these approaches, a smart contract instance was created in the test bed,
which induced an overflow condition as shown in Figure 3. This condition was detected
using a test plan which analyzes variable types against the range of potential values they
are designed to hold. By changing the variable type, we experimentally demonstrated
that the error condition was corrected. A second new contract was created with the same
error, which was again successfully mitigated by deploying the SafeMath library in the
test bed. A third new contract was then created with a deliberate divide by zero error;
this was identified and mitigated by deploying the SafeMath library. We repeated this
process five times for each of the three insecure arithmetic errors to validate that these
recommendations worked consistently under a variety of input conditions.

Results have been analyzed using the Common Vulnerability Scoring System (CVSS)
version 3.1 [16], a method used by the National Institute of Standards and Technology
(NIST) to measure vulnerability severity. CVSS consists of three metric groups: base,
temporal, and environmental. The base metrics produce a score ranging from 0 to 10, which
can then be modified by scoring the temporal and environmental metrics. A CVSS score
is also represented as a vector string, a compressed textual representation of the values
used to derive the score. The CVSS is well established as a standard measurement system
for consistent vulnerability severity scores, which may be used as a factor in prioritizing
vulnerability remediation activities. Results of the CVSS analysis for insecure arithmetic
attacks are shown in Figure 4, along with the corresponding vector string, following the
standard approach described in [16].

Cryptography 2023, 7, x FOR PEER REVIEW 7 of 13

when the code attempts to divide by zero. Instead, Solidity just returns a value of zero.

This incorrect operation can lead to unexpected results which an attacker can exploit. A

trivial code error in the smart contracts used by our test bed demonstrates that a divide

by zero error goes undetected under normal operating conditions.

To mitigate these risks, there are a few best practices that are recommended for de-

velopers. First, use the appropriate data types for variables. In Solidity, different data

types have varying ranges of values that they can hold. It is vital to use the appropriate

data type for each variable to avoid overflow/underflow conditions. Secondly, use the

SafeMath library, a commonly used library in Solidity that provides a set of mathematical

functions which automatically check for overflow and underflow conditions and revert

the transaction if they occur (SafeMath is recommended by smart contract auditing firms

such as OpenZeppelin [24]). Lastly, test and audit the contract. Before deploying a contract

to the blockchain, it is important to design and execute a thorough test plant to identify

any potential vulnerabilities, including those related to insecure arithmetic. Once the

smart contract is on the blockchain, it is immutable, and any vulnerabilities can and will

be exploited. To test these approaches, a smart contract instance was created in the test

bed, which induced an overflow condition as shown in Figure 3. This condition was de-

tected using a test plan which analyzes variable types against the range of potential values

they are designed to hold. By changing the variable type, we experimentally demon-

strated that the error condition was corrected. A second new contract was created with

the same error, which was again successfully mitigated by deploying the SafeMath library

in the test bed. A third new contract was then created with a deliberate divide by zero

error; this was identified and mitigated by deploying the SafeMath library. We repeated

this process five times for each of the three insecure arithmetic errors to validate that these

recommendations worked consistently under a variety of input conditions.

Results have been analyzed using the Common Vulnerability Scoring System (CVSS)

version 3.1 [16], a method used by the National Institute of Standards and Technology

(NIST) to measure vulnerability severity. CVSS consists of three metric groups: base, tem-

poral, and environmental. The base metrics produce a score ranging from 0 to 10, which

can then be modified by scoring the temporal and environmental metrics. A CVSS score

is also represented as a vector string, a compressed textual representation of the values

used to derive the score. The CVSS is well established as a standard measurement system

for consistent vulnerability severity scores, which may be used as a factor in prioritizing

vulnerability remediation activities. Results of the CVSS analysis for insecure arithmetic

attacks are shown in Figure 4, along with the corresponding vector string, following the

standard approach described in [16].

Figure 4. CVSS scores for insecure arithmetic; the corresponding vector string is

AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:L/E:H/RL:W/RC:C/CR:X/IR:X/AR:X/MAV:L/MAC:L/MPR:L

/MUI:N/MS:U/MC:N/MI:H/MA:L.

4.2. Denial of Service (DoS) Attacks

Bad actors can cause disruption to normal services, either for their own financial gain

or simply to prevent legitimate transactions from occurring [25]. An example of this attack

is an NFT auction in which fallback contracts can be tailored to ensure that attackers are

always the highest bidder. The hypothesis is that an attacker bids with a fallback function

Figure 4. CVSS scores for insecure arithmetic; the corresponding vector string is AV:L/AC:L/
PR:L/UI:N/S:U/C:N/I:H/A:L/E:H/RL:W/RC:C/CR:X/IR:X/AR:X/MAV:L/MAC:L/MPR:L/MUI:N/
MS:U/MC:N/MI:H/MA:L.

4.2. Denial of Service (DoS) Attacks

Bad actors can cause disruption to normal services, either for their own financial
gain or simply to prevent legitimate transactions from occurring [25]. An example of
this attack is an NFT auction in which fallback contracts can be tailored to ensure that
attackers are always the highest bidder. The hypothesis is that an attacker bids with a
fallback function that is designed to revert payment. If the attacker is able to become the
leading bidder, then the attacker can act to make sure refunds issued to them always fail,
resulting in a revert of payment. If the attacker is not able to receive the refund, no one
else can call the bid function and take the spot of the highest bidder from the attacker.
This denies other bidders the normal functionality of the auction and allows the attacker
to always win the auction. A sample code block illustrating how such an attack can be
written is shown in Figure 5. To test this condition, a smart contract instance was created
in the test bed using the code shown in Figure 5. The test bed experimentally verified

Cryptography 2023, 7, 15 8 of 13

that this attack is feasible during an NFT auction simulation. It is hypothesized that
the attack can be mitigated by a combination of techniques, including implementing
pull over push payments, marking contracts identified as untrusted, avoiding state
changes after external calls, performing error handling in external calls rather than in
the main contract, and not assuming contracts are created with a zero balance [25]. Each
of these changes was implemented in the test bed code, and the NFT auction simulation
was repeated to demonstrate that the attack was no longer effective. This process was
repeated five times to validate that these recommendations worked consistently under a
variety of input conditions.

Cryptography 2023, 7, x FOR PEER REVIEW 8 of 13

that is designed to revert payment. If the attacker is able to become the leading bidder,

then the attacker can act to make sure refunds issued to them always fail, resulting in a

revert of payment. If the attacker is not able to receive the refund, no one else can call the

bid function and take the spot of the highest bidder from the attacker. This denies other

bidders the normal functionality of the auction and allows the attacker to always win the

auction. A sample code block illustrating how such an attack can be written is shown in

Figure 5. To test this condition, a smart contract instance was created in the test bed using

the code shown in Figure 5. The test bed experimentally verified that this attack is feasible

during an NFT auction simulation. It is hypothesized that the attack can be mitigated by

a combination of techniques, including implementing pull over push payments, marking

contracts identified as untrusted, avoiding state changes after external calls, performing

error handling in external calls rather than in the main contract, and not assuming con-

tracts are created with a zero balance [25]. Each of these changes was implemented in the

test bed code, and the NFT auction simulation was repeated to demonstrate that the attack

was no longer effective. This process was repeated five times to validate that these recom-

mendations worked consistently under a variety of input conditions.

Figure 5. Sample denial of service attack code.

Another type of DoS attack involves exploitation of gas limits. Functions inside smart

contracts requre gas fees to execute computations. It is hypothesized that these fees can

become excessive if a large number of small computations, or a few computationally com-

plex actions, are taken. To test this, a new smart contract for an NFT auction simulation

was deployed in the test bed, and it was shown that if the total gas fees included in a block

exceed the block gas limit, the block will not be successfully written to the chain. Recom-

mended mitigation for this type of DoS attack involves careful auditing of smart contracts

for vulnerability to gas fee lmiting conditions. We verified this approach successfully mit-

igates attacks by implementing code which checks both transaction frequency and size,

pausing execution of the contract with an error message when the established gas fees are

exceeded. This process was repeated at least five times to validate that these recommen-

dations worked consistently under a variety of input conditions.

Results of the CVSS analysis for denial-of-service attacks are shown in Figure 6, along

with the corresponding vector string, following the standard approach described in [16].

Figure 5. Sample denial of service attack code.

Another type of DoS attack involves exploitation of gas limits. Functions inside smart
contracts requre gas fees to execute computations. It is hypothesized that these fees can
become excessive if a large number of small computations, or a few computationally com-
plex actions, are taken. To test this, a new smart contract for an NFT auction simulation
was deployed in the test bed, and it was shown that if the total gas fees included in a
block exceed the block gas limit, the block will not be successfully written to the chain.
Recommended mitigation for this type of DoS attack involves careful auditing of smart
contracts for vulnerability to gas fee lmiting conditions. We verified this approach suc-
cessfully mitigates attacks by implementing code which checks both transaction frequency
and size, pausing execution of the contract with an error message when the established
gas fees are exceeded. This process was repeated at least five times to validate that these
recommendations worked consistently under a variety of input conditions.

Results of the CVSS analysis for denial-of-service attacks are shown in Figure 6, along
with the corresponding vector string, following the standard approach described in [16].

Cryptography 2023, 7, x FOR PEER REVIEW 9 of 13

Figure 6. CVSS scores for denial of service attack; the corresponding vector string is

AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:H/E:H/RL:W/RC:C/CR:X/IR:H/AR:H/MAV:L/MAC:L/MPR:

L/MUI:N/MS:X/MC:N/MI:H/MA:H.

4.3. Re-Entrancy Attack

When a smart contract calls another external contract, it is possible for a bad actor to

make unexpected changes to the data or take over control flow (i.e., which part of the

contract executes and how many times it executes) [26]. This is known as a re-entrancy

attack, since it allows an attacker to re-enter the control flow in such a way that subsequent

code functions will never be executed. For example, consider a smart contract designed to

make financial transactions, in which the intended victim has a contract which tracks their

current balance, deposits, and withdrawals using function calls as illustrated in Figure 7.

First, the attacker deposits 1 ETH (the unit of coins in Etherium) to the Victim Bank con-

tract. This allows the attacker to pass the Require() function in the victim contract’s With-

draw() function. The Attacker Contract’s Attack() function then calls the victim contract’s

Withdraw() function. The Withdraw() function uses the built-in Ethereum Call() function

to send the attack contract the value of the balance variable. Now, because Balance [At-

tacker] is 1, the contract sends 1 ETH to the attacker contract. However, Call() also looks

to call a function in the attacker contract, and since it finds no matching signature, it au-

tomatically calls the Fallback() function. This is where the attack really begins. The

Fallback() function then calls Withdraw() again, re-entering the control flow at an incor-

rect point. Subsequent calls to the Withdraw() function continue recursively looping until

the Victim Contract is drained of all its ETH. The reason this attack was possible was be-

cause the Withdraw() function set the value of the balance [contract] back to 0 after the

function call. Effectively the victim contract was tricked into believing that the attacker

has a balance of 1 in its bank balance, when in reality, that value had already been sent to

the attacker contract.

Figure 7. Control flow diagram for re-entrancy attack.

To test this attack hypothesis, we created a sample victim contract and attack script

for the test bed as shown in Figure 8. Note that in order to call an external contract, the

address of that contract in hex is saved in a variable and then the code will dot (.) the

function inside the contract to be called. Note that the last two lines of the victim contract

never execute, allowing the attacker to drain the victim’s account balance. We successfully

repeated this attack at least five times to demonstrate the feasibility of such an approach.

Figure 6. CVSS scores for denial of service attack; the corresponding vector string is AV:L/AC:L/
PR:N/UI:N/S:U/C:N/I:H/A:H/E:H/RL:W/RC:C/CR:X/IR:H/AR:H/MAV:L/MAC:L/MPR:L/
MUI:N/MS:X/MC:N/MI:H/MA:H.

4.3. Re-Entrancy Attack

When a smart contract calls another external contract, it is possible for a bad actor
to make unexpected changes to the data or take over control flow (i.e., which part of the
contract executes and how many times it executes) [26]. This is known as a re-entrancy
attack, since it allows an attacker to re-enter the control flow in such a way that subsequent

Cryptography 2023, 7, 15 9 of 13

code functions will never be executed. For example, consider a smart contract designed to
make financial transactions, in which the intended victim has a contract which tracks their
current balance, deposits, and withdrawals using function calls as illustrated in Figure 7.
First, the attacker deposits 1 ETH (the unit of coins in Etherium) to the Victim Bank
contract. This allows the attacker to pass the Require() function in the victim contract’s
Withdraw() function. The Attacker Contract’s Attack() function then calls the victim
contract’s Withdraw() function. The Withdraw() function uses the built-in Ethereum Call()
function to send the attack contract the value of the balance variable. Now, because Balance
[Attacker] is 1, the contract sends 1 ETH to the attacker contract. However, Call() also
looks to call a function in the attacker contract, and since it finds no matching signature,
it automatically calls the Fallback() function. This is where the attack really begins. The
Fallback() function then calls Withdraw() again, re-entering the control flow at an incorrect
point. Subsequent calls to the Withdraw() function continue recursively looping until
the Victim Contract is drained of all its ETH. The reason this attack was possible was
because the Withdraw() function set the value of the balance [contract] back to 0 after the
function call. Effectively the victim contract was tricked into believing that the attacker
has a balance of 1 in its bank balance, when in reality, that value had already been sent to
the attacker contract.

Cryptography 2023, 7, x FOR PEER REVIEW 9 of 13

Figure 6. CVSS scores for denial of service attack; the corresponding vector string is

AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:H/E:H/RL:W/RC:C/CR:X/IR:H/AR:H/MAV:L/MAC:L/MPR:

L/MUI:N/MS:X/MC:N/MI:H/MA:H.

4.3. Re-Entrancy Attack

When a smart contract calls another external contract, it is possible for a bad actor to

make unexpected changes to the data or take over control flow (i.e., which part of the

contract executes and how many times it executes) [26]. This is known as a re-entrancy

attack, since it allows an attacker to re-enter the control flow in such a way that subsequent

code functions will never be executed. For example, consider a smart contract designed to

make financial transactions, in which the intended victim has a contract which tracks their

current balance, deposits, and withdrawals using function calls as illustrated in Figure 7.

First, the attacker deposits 1 ETH (the unit of coins in Etherium) to the Victim Bank con-

tract. This allows the attacker to pass the Require() function in the victim contract’s With-

draw() function. The Attacker Contract’s Attack() function then calls the victim contract’s

Withdraw() function. The Withdraw() function uses the built-in Ethereum Call() function

to send the attack contract the value of the balance variable. Now, because Balance [At-

tacker] is 1, the contract sends 1 ETH to the attacker contract. However, Call() also looks

to call a function in the attacker contract, and since it finds no matching signature, it au-

tomatically calls the Fallback() function. This is where the attack really begins. The

Fallback() function then calls Withdraw() again, re-entering the control flow at an incor-

rect point. Subsequent calls to the Withdraw() function continue recursively looping until

the Victim Contract is drained of all its ETH. The reason this attack was possible was be-

cause the Withdraw() function set the value of the balance [contract] back to 0 after the

function call. Effectively the victim contract was tricked into believing that the attacker

has a balance of 1 in its bank balance, when in reality, that value had already been sent to

the attacker contract.

Figure 7. Control flow diagram for re-entrancy attack.

To test this attack hypothesis, we created a sample victim contract and attack script

for the test bed as shown in Figure 8. Note that in order to call an external contract, the

address of that contract in hex is saved in a variable and then the code will dot (.) the

function inside the contract to be called. Note that the last two lines of the victim contract

never execute, allowing the attacker to drain the victim’s account balance. We successfully

repeated this attack at least five times to demonstrate the feasibility of such an approach.

Figure 7. Control flow diagram for re-entrancy attack.

To test this attack hypothesis, we created a sample victim contract and attack script
for the test bed as shown in Figure 8. Note that in order to call an external contract, the
address of that contract in hex is saved in a variable and then the code will dot (.) the
function inside the contract to be called. Note that the last two lines of the victim contract
never execute, allowing the attacker to drain the victim’s account balance. We successfully
repeated this attack at least five times to demonstrate the feasibility of such an approach.

Cryptography 2023, 7, x FOR PEER REVIEW 10 of 13

Figure 8. Sample code for re-entrancy attack.

The best practice for re-entrancy mitigation is to execute all required control flow

operations inside of the function before calling an external function. We modified the

smart contract code according to this recommendation, and experimentally verified that

the attack was successfully mitigated. Another way to prevent re-entrancy attacks might

be to use a reentrancy guard such as provided by OpenZepplin and other smart contract

auditing services, although we did not test such services. Lastly, a method of preventing

re-entrancy is by using a gas limit to prevent the recursive calling of a function. This can

be done by using the function Transfer() which has a gas limit of 2300 specifically to pre-

vent this type of attack. We created a new smart contract instance and tested the use of

the function Transfer() to show that it successfully mitigated this attack; all mitigation

tests were repeated at least five times to demonstrate effectiveness.

Results of the CVSS analysis for re-entrancy attacks are shown in Figure 9, along with

the corresponding vector string, following the standard approach described in [16].

Figure 9. CVSS scores for re-entrancy attacks; the corresponding vector string is

AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H/E:H/RL:T/RC:R/CR:H/IR:H/AR:H/MAV:N/MAC:L/MPR

:N/MUI:N/MS:X/MC:H/MI:H/MA:H.

4.4. Cross-Chain Bridge Attack

Cross-chain bridges are used to span transactions between different blockchains. For

example, an investor purchasing an NFT through layer-1 Etherium will incur relatively

high gas fees. These fees are less if the purchase is made through layer-2 Arbitrum. Ar-

bitrum must be added to the investor’s Metamask wallet, then the desired amount of ETH

can be converted from one chain to another. Since the bridges need to interface with mul-

tiple blockchain and smart contracts, they are a high value target and provide a unique

opportunity for code vulnerabilities. For example, prior to the release of Arbitrum’s Nitro

code, errors were found in Solidity that prevented the Arbitrum–Etherium bridge from

working correctly [27]. Due to the inbox sequencer being delayed, incoming Ethereum

deposits could be diverted into an attacker’s wallet without being detected. In addition,

the Wormhole Bridge was attacked when the verification protocol was bypassed and a

fake sysvar account was created; using the “complete-wrapped” function, a malicious

Figure 8. Sample code for re-entrancy attack.

Cryptography 2023, 7, 15 10 of 13

The best practice for re-entrancy mitigation is to execute all required control flow
operations inside of the function before calling an external function. We modified the
smart contract code according to this recommendation, and experimentally verified that
the attack was successfully mitigated. Another way to prevent re-entrancy attacks might
be to use a reentrancy guard such as provided by OpenZepplin and other smart contract
auditing services, although we did not test such services. Lastly, a method of preventing
re-entrancy is by using a gas limit to prevent the recursive calling of a function. This can be
done by using the function Transfer() which has a gas limit of 2300 specifically to prevent
this type of attack. We created a new smart contract instance and tested the use of the
function Transfer() to show that it successfully mitigated this attack; all mitigation tests
were repeated at least five times to demonstrate effectiveness.

Results of the CVSS analysis for re-entrancy attacks are shown in Figure 9, along with
the corresponding vector string, following the standard approach described in [16].

Cryptography 2023, 7, x FOR PEER REVIEW 10 of 13

Figure 8. Sample code for re-entrancy attack.

The best practice for re-entrancy mitigation is to execute all required control flow

operations inside of the function before calling an external function. We modified the

smart contract code according to this recommendation, and experimentally verified that

the attack was successfully mitigated. Another way to prevent re-entrancy attacks might

be to use a reentrancy guard such as provided by OpenZepplin and other smart contract

auditing services, although we did not test such services. Lastly, a method of preventing

re-entrancy is by using a gas limit to prevent the recursive calling of a function. This can

be done by using the function Transfer() which has a gas limit of 2300 specifically to pre-

vent this type of attack. We created a new smart contract instance and tested the use of

the function Transfer() to show that it successfully mitigated this attack; all mitigation

tests were repeated at least five times to demonstrate effectiveness.

Results of the CVSS analysis for re-entrancy attacks are shown in Figure 9, along with

the corresponding vector string, following the standard approach described in [16].

Figure 9. CVSS scores for re-entrancy attacks; the corresponding vector string is

AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H/E:H/RL:T/RC:R/CR:H/IR:H/AR:H/MAV:N/MAC:L/MPR

:N/MUI:N/MS:X/MC:H/MI:H/MA:H.

4.4. Cross-Chain Bridge Attack

Cross-chain bridges are used to span transactions between different blockchains. For

example, an investor purchasing an NFT through layer-1 Etherium will incur relatively

high gas fees. These fees are less if the purchase is made through layer-2 Arbitrum. Ar-

bitrum must be added to the investor’s Metamask wallet, then the desired amount of ETH

can be converted from one chain to another. Since the bridges need to interface with mul-

tiple blockchain and smart contracts, they are a high value target and provide a unique

opportunity for code vulnerabilities. For example, prior to the release of Arbitrum’s Nitro

code, errors were found in Solidity that prevented the Arbitrum–Etherium bridge from

working correctly [27]. Due to the inbox sequencer being delayed, incoming Ethereum

deposits could be diverted into an attacker’s wallet without being detected. In addition,

the Wormhole Bridge was attacked when the verification protocol was bypassed and a

fake sysvar account was created; using the “complete-wrapped” function, a malicious

Figure 9. CVSS scores for re-entrancy attacks; the corresponding vector string is AV:N/AC:L/
PR:N/UI:N/S:U/C:H/I:H/A:H/E:H/RL:T/RC:R/CR:H/IR:H/AR:H/MAV:N/MAC:L/MPR:N/
MUI:N/MS:X/MC:H/MI:H/MA:H.

4.4. Cross-Chain Bridge Attack

Cross-chain bridges are used to span transactions between different blockchains. For
example, an investor purchasing an NFT through layer-1 Etherium will incur relatively
high gas fees. These fees are less if the purchase is made through layer-2 Arbitrum.
Arbitrum must be added to the investor’s Metamask wallet, then the desired amount of
ETH can be converted from one chain to another. Since the bridges need to interface with
multiple blockchain and smart contracts, they are a high value target and provide a unique
opportunity for code vulnerabilities. For example, prior to the release of Arbitrum’s Nitro
code, errors were found in Solidity that prevented the Arbitrum–Etherium bridge from
working correctly [27]. Due to the inbox sequencer being delayed, incoming Ethereum
deposits could be diverted into an attacker’s wallet without being detected. In addition,
the Wormhole Bridge was attacked when the verification protocol was bypassed and a fake
sysvar account was created; using the “complete-wrapped” function, a malicious message
successfully minted 120,000 ETH valued at over USD 320 M [28]. Similarly, a private key
leak and failure of two signature authentication allowed attackers to take control of the
Harmony bridge, conscripting the multisigwallet to call the function Confirmtransaction()
directly and transfer USD 100 M from the bridge [29].

As noted previously, the test bed has the capability to bridge transactions between
Ethereum and Arbitrum. While the release of Arbitrum’s Nitro code mitigates some forms
of cross-chain bridge vulnerabilities, attacks similar to the Wormhole Bridge or Harmony
Bridge are still feasible. Similar attacks can be demonstrated in the test bed. Mitigation of
these attacks requires additional test and auditing of the bridge and the blockchain code on
either side of the bridge, in order to identify and correct lapses in authentication or race
conditions with can result in private key leakage. This can be accomplished in the test
bed, although the auditing process can be time consuming and has not been automated
as of this writing. Mitigation was tested at least give times to demonstrate effectiveness.
Further, bridge attacks can be combined with social engineering techniques discussed
previously, so mitigation must also include regular training of system administrators to
resist such attacks. For example, Axie Infinity is a blockchain/NFT based online game

Cryptography 2023, 7, 15 11 of 13

which uses the Ronin bridge; attackers pretending to be job recruiters targeted an employee
who eventually responded to a phishing attack, giving the attackers private keys which
allowed them to compromise validator nodes on the blockchain. When 5 out of 9 validators
were compromised, it became possible to forge several withdrawals totaling over USD 625
M [30]. It is possible to re-create such attacks in the test bed, if it is assumed that an initial
social engineering attack is successful. As before, the preferred mitigation involves regular
training and education of administrators to resist these attacks.

Results of the CVSS analysis for cross-chain bridge attacks are shown in Figure 10,
along with the corresponding vector string, following the standard approach described
in [16].

Cryptography 2023, 7, x FOR PEER REVIEW 11 of 13

message successfully minted 120,000 ETH valued at over USD 320 M [28]. Similarly, a

private key leak and failure of two signature authentication allowed attackers to take con-

trol of the Harmony bridge, conscripting the multisigwallet to call the function Con-

firmtransaction() directly and transfer USD 100 M from the bridge [29].

As noted previously, the test bed has the capability to bridge transactions between

Ethereum and Arbitrum. While the release of Arbitrum’s Nitro code mitigates some forms

of cross-chain bridge vulnerabilities, attacks similar to the Wormhole Bridge or Harmony

Bridge are still feasible. Similar attacks can be demonstrated in the test bed. Mitigation of

these attacks requires additional test and auditing of the bridge and the blockchain code

on either side of the bridge, in order to identify and correct lapses in authentication or race

conditions with can result in private key leakage. This can be accomplished in the test bed,

although the auditing process can be time consuming and has not been automated as of

this writing. Mitigation was tested at least give times to demonstrate effectiveness. Fur-

ther, bridge attacks can be combined with social engineering techniques discussed previ-

ously, so mitigation must also include regular training of system administrators to resist

such attacks. For example, Axie Infinity is a blockchain/NFT based online game which

uses the Ronin bridge; attackers pretending to be job recruiters targeted an employee who

eventually responded to a phishing attack, giving the attackers private keys which al-

lowed them to compromise validator nodes on the blockchain. When 5 out of 9 validators

were compromised, it became possible to forge several withdrawals totaling over USD

625 M [30]. It is possible to re-create such attacks in the test bed, if it is assumed that an

initial social engineering attack is successful. As before, the preferred mitigation involves

regular training and education of administrators to resist these attacks.

Results of the CVSS analysis for cross-chain bridge attacks are shown in Figure 10,

along with the corresponding vector string, following the standard approach described in

[16].

Figure 10. CVSS scores for re-entrancy attacks; the corresponding vector string is

AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H/E:H/RL:X/RC:X/CR:H/IR:H/AR:H/MAV:N/MAC:X/MPR

:X/MUI:X/MS:C/MC:H/MI:H/MA:H.

5. Conclusions

Blockchain, smart contracts, and related concepts have emerged in recent years as a

promising technology for cryptocurrency, NFTs, and other areas. However, there are still

many security issues that must be addressed as these technologies evolve. This paper re-

viewed some of the leading social engineering attacks on smart contracts, as well as sev-

eral vulnerabilities which result from insecure code development (the code vulnerabilities

can be combined with social engineering attacks in many cases). A smart contract test bed

using Solidity and a Metamask wallet was used to evaluate vulnerabilities such as inse-

cure arithmetic, denial of service, re-entrancy attacks, and cross-chain vulnerabilities re-

sulting from layer 2 side-chain processing. Possible attack methods are hypothesized and

documented and are then tested experimentally; proposed mitigations are also experi-

mentally tested. Insecure arithmetic attacks were experimentally mitigated by changing

variable data types to avoid overflow and underflow conditions, and by using the Safe-

Math library. Denial of service attacks were experimentally mitigated by implementing

pull over push payments, marking contracts identified as untrusted, avoiding state

Figure 10. CVSS scores for re-entrancy attacks; the corresponding vector string is AV:N/AC:L/
PR:N/UI:R/S:U/C:H/I:H/A:H/E:H/RL:X/RC:X/CR:H/IR:H/AR:H/MAV:N/MAC:X/MPR:X/
MUI:X/MS:C/MC:H/MI:H/MA:H.

5. Conclusions

Blockchain, smart contracts, and related concepts have emerged in recent years as
a promising technology for cryptocurrency, NFTs, and other areas. However, there are
still many security issues that must be addressed as these technologies evolve. This paper
reviewed some of the leading social engineering attacks on smart contracts, as well as sev-
eral vulnerabilities which result from insecure code development (the code vulnerabilities
can be combined with social engineering attacks in many cases). A smart contract test bed
using Solidity and a Metamask wallet was used to evaluate vulnerabilities such as insecure
arithmetic, denial of service, re-entrancy attacks, and cross-chain vulnerabilities resulting
from layer 2 side-chain processing. Possible attack methods are hypothesized and docu-
mented and are then tested experimentally; proposed mitigations are also experimentally
tested. Insecure arithmetic attacks were experimentally mitigated by changing variable
data types to avoid overflow and underflow conditions, and by using the SafeMath library.
Denial of service attacks were experimentally mitigated by implementing pull over push
payments, marking contracts identified as untrusted, avoiding state changes after external
calls, performing error handling in external calls rather than in the main contract, and not
assuming contracts are created with a zero balance. Re-entrancy attacks were experimen-
tally mitigated by executing all required control flow operations inside of the function
before calling an external function, and by using the function Transfer() which has a gas
limit to prevent recursive calling of a function. Cross-chain bridge attacks were the most
difficult to mitigate, since they required auditing of the code on either side of the bridge to
correct lapses in authentication or race conditions that can induce private key leakage.

At this time, best practices to mitigate these vulnerabilities include careful auditing
of all smart contract code (with particular emphasis on order of execution exceptions),
avoiding function calls untrusted contracts or insecure libraries, and avoiding transactions
submitted by unvetted third parties. While the results of the testbed clearly demonstrate
successful attack mitigation, the research described in this paper is limited by available data
from vulnerable smart contracts. This work does not include samples of the compromised
code from the breaches mentioned in the text, since this code has not yet been made
publicly available. Such code samples are expected to be available in the future, and
comparisons with the testbed results can be used to help ensure that the proposed approach

Cryptography 2023, 7, 15 12 of 13

is correct. Future work will evaluate whether additional mitigation is required to prevent
the recurrence of these attacks. In addition, the current test bed will continue to evaluate
the complex and subtle code interactions which can cause security exposures for smart
contracts, including a search for additional zero-day vulnerabilities not yet discovered.
Additional updates or data sets are planned to be made available through the public Marist
Innovation Lab Github site.

Author Contributions: Conceptualization, C.D. and B.G.; methodology, C.D. and B.G.; software, J.I.,
R.P., A.P. and J.V.; validation, J.I., R.P., A.P. and J.V.; writing—original draft preparation, J.I., R.P., A.P.
and J.V.; writing—review and editing, C.D.; supervision, C.D. and B.G.; project administration, C.D.
and B.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: We gratefully acknowledge the support of Phaelan Kook and Richard Schwab
during this research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gaur, N. “The Rising NFT Tide Lifts All Tokens”, Including IBM’s Definition of the Permissioned Blockchain Paradigm, April

2021. Available online: https://www.ibm.com/blogs/blockchain/2021/04/the-rising-nft-tide-lifts-all-tokens-so-what-is-an-nft/
(accessed on 8 December 2021).

2. Dixon, C. Why Web3 Matters. Available online: https://future.a16z.com/why-web3-matters/ (accessed on 8 December 2021).
3. Marlinspike, M. First Impressions of Web3. January 2022. Available online: https://moxie.org/2022/01/07/web3-first-

impressions.html (accessed on 8 December 2021).
4. Jain, M.; Oliveria, M.; Shin, A.; Apostolu, D.; Wackerow, P.; Zhu, R.; Awosika, E.; Richards, S.; Zhang, L.; Cook, J.; et al. “Zero

Knowledge Rollups”, Etherium Documentation. Available online: https://ethereum.org/en/developers/docs/scaling/zk-
rollups/ (accessed on 22 December 2022).

5. Kalodner, H.; Goldfeder, S.; Chen, X.; Weinberg, S.; Felten, E. Arbitrum: Scalable, Private Smart Contracts. In Proceedings
of the 27th USENIX Security Symposium, Baltimore, MD, USA, 15–17 August 2018; pp. 1353–1370. Available online: https:
//www.usenix.org/conference/usenixsecurity18/presentation/kalodner (accessed on 22 December 2022).

6. Shraddha, S. Top 11 Defi Cross-Chain Bridge Attacks of 2022: Hackers Bag over $2 Billion. BeInCrypto. 10 October 2022. Available
online: https://beincrypto.com/top-11-defi-cross-chain-bridge-attacks-of-2022-hackers-bag-over-2-billion/ (accessed on 22
December 2022).

7. Mochram, R.; Macawower, C.; Tanujaya, K.; Moniaga, J.; Jabar, B. Systematc Literature Review: Blockchain security in NFT
ownership. In Proceedings of the 2022 International Conference on Electrical and Information Technology, Malang, Indonesia,
15–16 September 2022; pp. 302–306.

8. Krichin, M.; Lahami, M.; Al-Haija, Q. Formal Methods for the Verification of Smart Contracts: A Review. In Proceedings of the
IEEE 15th International Conference on Security of Information Networks, Sousse, Tunesia, 11–13 November 2022; pp. 1–8.

9. Almakhour, M.; Sliman, L.; Samhat, A.; Mellouk, A. Verification of smart contracts: A survey. J. Pervasive Mob. Comput. 2020, 67,
101227–101230. [CrossRef]

10. Ante, L. Smart contracts on the blockchain: A bibliometric analysis and review. J. Telemat. Inf. 2021, 57, 101519–101525. [CrossRef]
11. Almakhour, M.; Sliman, L.; Samhat, A.; Mellouk, A. A formal verification approach for composite smart contract security using

FSM. J. King Saud Univ.-Comput. Inf. Sci. 2023, 53, 70–86. [CrossRef]
12. Hu, B.; Zhang, Z.; Liu, J.; Liu, Y.; Yin, J.; Yu, R.; Lin, X. A comprehensive survey on smart contract construction and execution:

Paradigms, tools, and systems. Patterns 2021, 2, 100179–100183. [CrossRef] [PubMed]
13. Hong, G.; Chang, H. A study on corporate information assets management system using NFT. In Proceedings of the IEEE 13th

International Conference on Information and Communication Technology Convergence, Jeju Island, Republic of Korea, 19–21
October 2022; pp. 608–610.

14. Takahashi, H.; Lakhani, U. Sustainable NFT blockchain storage for high availability and security. In Proceedings of the IEEE 11th
Global Conference on Consumer Electronics, Osaka, Japan, 18–21 October 2022; pp. 264–267.

15. Abaci, I.; Ulku, E.E. NFT based asset management system. In Proceedings of the IEEE International Symposium on Multidisci-
plinary Studies and Innovative Technologies, Ankara, Turkey, 20–22 October 2022; pp. 697–701.

https://www.ibm.com/blogs/blockchain/2021/04/the-rising-nft-tide-lifts-all-tokens-so-what-is-an-nft/
https://future.a16z.com/why-web3-matters/
https://moxie.org/2022/01/07/web3-first-impressions.html
https://moxie.org/2022/01/07/web3-first-impressions.html
https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://www.usenix.org/conference/usenixsecurity18/presentation/kalodner
https://www.usenix.org/conference/usenixsecurity18/presentation/kalodner
https://beincrypto.com/top-11-defi-cross-chain-bridge-attacks-of-2022-hackers-bag-over-2-billion/
http://doi.org/10.1016/j.pmcj.2020.101227
http://doi.org/10.1016/j.tele.2020.101519
http://doi.org/10.1016/j.jksuci.2022.08.029
http://doi.org/10.1016/j.patter.2020.100179
http://www.ncbi.nlm.nih.gov/pubmed/33659907

Cryptography 2023, 7, 15 13 of 13

16. Mell, P.; Spring, J.; Dugal, D.; Ananthakrishna, S.; Casotto, F.; Fridley, T.; Ganas, C.; Kundu, A.; Nordwall, P.; Pushpanathan, V.;
et al. Measuring the Common Vulnerability Scoring System Base Score Equation; National Institute of Standards and Technology:
Gaithersburg, MD, USA, 2022; NIST Internal or Interagency Report (IR) NIST IR 8409. Available online: https://nvlpubs.nist.
gov/nistpubs/ir/2022/NIST.IR.8409.pdf (accessed on 13 February 2023). [CrossRef]

17. Halpern, E. What Are Zero-Knowledge Rollups, Alchemy. 2022. Available online: https://www.alchemy.com/blog/zero-
knowledge-rollups (accessed on 22 December 2022).

18. Bowers, S. Langbar International, The Guardian, June 2011. Available online: https://www.theguardian.com/business/2011
/jun/24/langbar-international-fraud-history (accessed on 22 December 2022).

19. Cimpanu, Law Enforcement Seizes Dark Web Market. May 2019. Available online: https://www.zdnet.com/article/law-
enforcement-seizes-dark-web-market-after-moderator-leaks-backend-credentials/ (accessed on 8 December 2021).

20. Perper, R. Over $30B of NFT trading on Etherium Is Wash Trading. December 2022. Available online: https://www.coindesk.com/
web3/2022/12/23/over-30b-of-nft-trading-volume-on-ethereum-is-wash-trading-research-suggests/ (accessed on 8 December
2022).

21. Martin, L. Winning the Red Queen Race. November 2022. Available online: https://www.bluetoad.com/publication/index.php?
m=1336&i=659360&view=articleBrowser&article_id=3668188 (accessed on 8 December 2022).

22. Fauvel, A. The Red Queen, October 2018. Available online: https://medium.com/two-hop-ventures/the-red-queen-8d0844aa5
a20 (accessed on 22 December 2022).

23. Qureshi, H. The DeFi Flash Loan Attack that Changed Everything. February 2020. Available online: https://www.coindesk.com/
tech/2020/02/27/the-defi-flash-loan-attack-that-changed-everything/ (accessed on 8 December 2021).

24. OpenZeppelin Math Libraries. Available online: https://docs.openzeppelin.com/contracts/2.x/api/math (accessed on 8
December 2021).

25. Etherium Smart Contract Best Practices, “Denial of Service”. Available online: https://consensys.github.io/smart-contract-best-
practices/attacks/denial-of-service/ (accessed on 22 December 2022).

26. Marchenko, E. Constantinople Hard Fork Makes Us Rethink What Reentrancy Is. Medium, SmartDec Cybersecurity Blog. 17
January 2019. Available online: https://blog.smartdec.net/constantinople-hard-fork-makes-us-rethink-what-reentrancy-is-4557
16c53537 (accessed on 22 December 2022).

27. Mollen, F. Arbitrum Rewards Hacker for Detecting Critical Vulnerability. September 2022. Available online: https://bingx.com/
en-us/news/20483/ (accessed on 8 December 2022).

28. Certik Whte Paper, Wormhole Bridge Exploit Incident Analysis. August 2022. Available online: https://www.certik.com/
resources/blog/1kDYgyBcisoD2EqiBpHE5l-wormhole-bridge-exploit-incident-analysis (accessed on 8 December 2022).

29. Paige, C. Hacker Exploits Harmony Blockchain Bridge. June 2022. Available online: https://techcrunch.com/2022/06/24
/harmony-blockchain-crypto-hack/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_
sig=AQAAAAHb0-0Gtz_bLf43LyRFT6vAgmbQ7J7BOHADplYAOAw-hqKsPz7fFW5vEVacDr3pxDDgT_xsjRuJerGXFCFQSv2
IT-INVoLHlKJqv_bIU-Q3mJyaGUWr-55RDSJovfHMpexupKBoBuSZemTYg_vK3gopXpKNcpRJsGUHL7KuaVVO (accessed on 8
December 2022).

30. Colafi, A. Axie Infinity Hack. March 2022. Available online: https://www.techtarget.com/searchsecurity/news/252515336/
Axie-Infinity-hack-results-in-600M-cryptocurrency-heist (accessed on 8 December 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8409.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8409.pdf
http://doi.org/10.6028/NIST.IR.8409
https://www.alchemy.com/blog/zero-knowledge-rollups
https://www.alchemy.com/blog/zero-knowledge-rollups
https://www.theguardian.com/business/2011/jun/24/langbar-international-fraud-history
https://www.theguardian.com/business/2011/jun/24/langbar-international-fraud-history
https://www.zdnet.com/article/law-enforcement-seizes-dark-web-market-after-moderator-leaks-backend-credentials/
https://www.zdnet.com/article/law-enforcement-seizes-dark-web-market-after-moderator-leaks-backend-credentials/
https://www.coindesk.com/web3/2022/12/23/over-30b-of-nft-trading-volume-on-ethereum-is-wash-trading-research-suggests/
https://www.coindesk.com/web3/2022/12/23/over-30b-of-nft-trading-volume-on-ethereum-is-wash-trading-research-suggests/
https://www.bluetoad.com/publication/index.php?m=1336&i=659360&view=articleBrowser&article_id=3668188
https://www.bluetoad.com/publication/index.php?m=1336&i=659360&view=articleBrowser&article_id=3668188
https://medium.com/two-hop-ventures/the-red-queen-8d0844aa5a20
https://medium.com/two-hop-ventures/the-red-queen-8d0844aa5a20
https://www.coindesk.com/tech/2020/02/27/the-defi-flash-loan-attack-that-changed-everything/
https://www.coindesk.com/tech/2020/02/27/the-defi-flash-loan-attack-that-changed-everything/
https://docs.openzeppelin.com/contracts/2.x/api/math
https://consensys.github.io/smart-contract-best-practices/attacks/denial-of-service/
https://consensys.github.io/smart-contract-best-practices/attacks/denial-of-service/
https://blog.smartdec.net/constantinople-hard-fork-makes-us-rethink-what-reentrancy-is-455716c53537
https://blog.smartdec.net/constantinople-hard-fork-makes-us-rethink-what-reentrancy-is-455716c53537
https://bingx.com/en-us/news/20483/
https://bingx.com/en-us/news/20483/
https://www.certik.com/resources/blog/1kDYgyBcisoD2EqiBpHE5l-wormhole-bridge-exploit-incident-analysis
https://www.certik.com/resources/blog/1kDYgyBcisoD2EqiBpHE5l-wormhole-bridge-exploit-incident-analysis
https://techcrunch.com/2022/06/24/harmony-blockchain-crypto-hack/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAAHb0-0Gtz_bLf43LyRFT6vAgmbQ7J7BOHADplYAOAw-hqKsPz7fFW5vEVacDr3pxDDgT_xsjRuJerGXFCFQSv2IT-INVoLHlKJqv_bIU-Q3mJyaGUWr-55RDSJovfHMpexupKBoBuSZemTYg_vK3gopXpKNcpRJsGUHL7KuaVVO
https://techcrunch.com/2022/06/24/harmony-blockchain-crypto-hack/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAAHb0-0Gtz_bLf43LyRFT6vAgmbQ7J7BOHADplYAOAw-hqKsPz7fFW5vEVacDr3pxDDgT_xsjRuJerGXFCFQSv2IT-INVoLHlKJqv_bIU-Q3mJyaGUWr-55RDSJovfHMpexupKBoBuSZemTYg_vK3gopXpKNcpRJsGUHL7KuaVVO
https://techcrunch.com/2022/06/24/harmony-blockchain-crypto-hack/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAAHb0-0Gtz_bLf43LyRFT6vAgmbQ7J7BOHADplYAOAw-hqKsPz7fFW5vEVacDr3pxDDgT_xsjRuJerGXFCFQSv2IT-INVoLHlKJqv_bIU-Q3mJyaGUWr-55RDSJovfHMpexupKBoBuSZemTYg_vK3gopXpKNcpRJsGUHL7KuaVVO
https://techcrunch.com/2022/06/24/harmony-blockchain-crypto-hack/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAAHb0-0Gtz_bLf43LyRFT6vAgmbQ7J7BOHADplYAOAw-hqKsPz7fFW5vEVacDr3pxDDgT_xsjRuJerGXFCFQSv2IT-INVoLHlKJqv_bIU-Q3mJyaGUWr-55RDSJovfHMpexupKBoBuSZemTYg_vK3gopXpKNcpRJsGUHL7KuaVVO
https://www.techtarget.com/searchsecurity/news/252515336/Axie-Infinity-hack-results-in-600M-cryptocurrency-heist
https://www.techtarget.com/searchsecurity/news/252515336/Axie-Infinity-hack-results-in-600M-cryptocurrency-heist

	Introduction
	Materials and Methods for the Smart Contract Test Bed
	Results and Discussion for Social Engineering Attacks
	Pump and Dump Attacks
	Rug Pull
	Wash Trading
	Red Queen’s Race
	Gold Brick
	Flash Loans

	Results and Discussion for Code-Based Attacks
	Insecure Arithmetic Attack
	Denial of Service (DoS) Attacks
	Re-Entrancy Attack
	Cross-Chain Bridge Attack

	Conclusions
	References

