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Abstract: Sidechains are among the most promising scalability and extended functionality solutions
for blockchains. Application of zero knowledge techniques (Latus, Mina) allows for reaching high
level security and general throughput, though it brings new challenges on keeping decentralization
where significant effort is required for robust computation of zk-proofs. We consider a simultaneous
decentralized creation of various zk-proof trees that form proof-trees sequences in sidechains in
the model that combines behavior of provers, both deterministic (mutually consistent) or stochastic
(independent) and types of proof trees. We define the concept of efficiency of such process, introduce
its quantity measure and recommend parameters for tree creation. In deterministic cases, the
sequences of published trees are ultimately periodic and ensure the highest possible efficiency (no
collisions in proof creation). In stochastic cases, we obtain a universal measure of prover efficiencies
given by the explicit formula in one case or calculated by a simulation model in another case. The
optimal number of allowed provers’ positions for a step can be set for various sidechain parameters,
such as number of provers, number of time steps within one block, etc. Benefits and restrictions for
utilization of non-perfect binary proof trees are also explicitly presented.

Keywords: blockchain; sidechain; zk-SNARK; succinct blockchain; binary tree; perfect tree; free
magma; operad; PRO; occupancy distribution

1. Introduction

Sidechains (SCs) were first proposed in [1] and quickly became a universal and very
comfortable tool in blockchain technology, while [1] proposed sidechains with a “classical”
proof-of-work (PoW) protocol for usage in Bitcoin blockchain, the next article [2] builds
secure proof-of-stake (PoS) sidechains, and articles [3,4] create a special type of sidechain
consensus, the Latus protocol, which is secure for both PoW and PoS sidechains. They may
be considered as an additional construction bound to blockchain (called mainchain (MC))
with the aim to provide some additional functionalities. SCs should be bound to an MC, as
described in mentioned articles, to provide stronger security guarantees using blockchain
properties, such as liveness and persistence [5]. Binding means that SCs also should send
some information to the MC to guarantee the fairness of transformations in the SC [3].

In Latus, this information contains a series of recursive zk-SNARK-proofs [6,7] to
establish decentralized and verifiable cross-chain transfers. Such an approach is similar to
the ones proposed in [8] (Mina) and [9] (zkSync Era), but with additional features that allow
its secure usage in sidechains. Latus introduces a special dispatching scheme that assigns
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the generation of proofs randomly to interested parties, who then implement these tasks in
parallel and submit generated proofs to the blockchain. An incentive scheme provides a
reward for each accepted proof.

There are a variety of purposes to use SCs in different blockchains: for making smart-
grid systems scalable and adaptable [10]; for secure data isolation in scalable consortium
blockchain architecture based on world-state collaborative storage methods [11]; for secure
parallel computation [12]; and for creating an exchange platform that allows the ability to
trade tokens issued from different sidechains [13].

SCs may be based on various consensus protocols (such as PoW [14], PoS [15], etc.).
In this paper, we assume that SC uses the Latus protocol [4], which is a hybrid PoS

based on Ouroboros Praos [16]. However, as SCs may be based on various consensuses,
our main results may be applied for other consensus protocols (such as proof of work,
proof of stake, etc.) with similar properties, allowing distributed proof generation and
recursive SNARKs.

Following the modern trends in blockchain investigations, we use SNARKs to prove
the correct functioning of SCs (detailed survey about different types of SNARKs used in
blockchain can be found in [17]). These cause some modifications of the Merkle tree, which
we call the “proof tree”.

Distributed proof generation for block creation is the basic feature of Latus consensus.
In brief, the procedure of block creation is as follows. A block forger—an entity that creates
the block—shares a list of transactions to be included into the block. Then, other entities,
called provers, construct SNARK-proofs for these transactions and also for each node of
the corresponding proof trees built on these transactions.

Each prover, who creates a SNARK-proof, sets the prices for their proofs, according
to the pricing policy of the current epoch. In the case of collisions, when there are several
proofs for some node of the binary tree, the block forger chooses the cheapest one. Proofs
that were included into the block are paid by the block forger from the corresponding
transaction fees.

Our previous papers [18–20] considered only issues related to a single block creation.
We used probabilistic and game-theoretic approaches to answer the questions on the
optimal choice of SC parameters (e.g., a recommended number of transactions per block
and a recommended value of incentives chosen). The model in which we obtain our
results is very close to realistic with only one simplifying assumption: splitting of the block
construction process into a fixed number of similar steps. Such assumption can be justified
by the fact that the network synchronization time is essentially smaller than the proof
generation time.

In this paper, unlike the previous ones, we consider algorithms related to simultaneous
construction of trees by different block forgers. The sequence of such trees forms a linearly
ordered forest. When the following block is published, the most left tree is included into
it, and the remaining ones are regarded as a buffer for further block generation. The base
assumptions used in this paper is almost the same as in the our previous papers, with
the following modification: In practice, blockchain’s sequences of transitions are proved
using base SNARK for certifying single state transitions (in leaves) and merge SNARK for
merging two proofs (in other vertices) ([21], section 4.1.1). We consider the scheme that
replaces each base proof for a transaction by merged proofs for pair of leaves from the new
additional level. So, we obtain a mathematically equivalent model where trees are one level
higher and a pair of fresh leaves correspond to each transaction; therefore, we obtain more
succinct algorithms.

The paper is organized as follows. The necessary basic preliminary results on binary
trees are presented in Section 2. For us it is convenient to consider the sets of strict binary
trees and of non-strict binary trees as specific realizations of the free magmaM = än>0M0
with a single generator. In Section 2.2, we introduce agreed monoid structures on infinite
sequences of strict binary trees and positive numbers. The background of these construc-
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tions is explained in Appendix A. In Section 2.3, we introduce the concept of perfect forest
necessary for description of the main algorithm.

Section 3 presents the general scheme for 2 × 2 algorithms corresponding to the
prover‘s behavior: deterministic (mutually consistent) or stochastic (independent), and
shapes of generated trees: strict binary or perfect binary. It works with a potentially infinite
sequence of trees t called a buffer. In the external for-loop, the first element is removed
from the buffer and published as the following block. Block generation is divided into a
fixed number of steps, each of which calls the OneStep() procedure. In all 2× 2 cases each
of suitable subsequent pairs of trees is merged into a single tree. Selection of such suitable
pairs, deterministic or stochastic, is the unique difference among 2× 2 cases (see Table 1).
Its result can be encoded as a sequence Λ of trees with the height 6 1. After this, the result
of OneStep() procedure can be described as a function f : t 7→ Λ ◦ t, acting on the buffer t
via the product defined in Section 2.2. Iteration of f over all steps and then a removal of the
first tree from the buffer determines a function F(t) describing transformation of the buffer
during block generation. In Section OneStep, we consider a reduction of the above scheme,
where only the number of leaves of each tree is taken into account. This is sufficient to
study the throughput parameters of the blockchain(s). This reduction is possible due to the
homomorphism of monoids described in Section 2.2.

In Section 4, we consider the case when behavior is deterministic. We prove that a
sequence (t, Ft, F2t, . . .) of buffer states takes a finite number of values and, hence, this
sequence and the sequence of published trees are ultimately periodic. In Section 4.1,
deterministic generation of strict binary trees is considered. The sequences of buffer states
and published blocks are ultimately periodic with a period of length 1. This follows from
the fact that transformation of the buffer after each block publishing is a weak contraction
with respect to the Hamming distance. Under some natural assumption the height of the
tree published over the period is the sum of (the integer part of) the binary logarithm of
the number of provers and of the number of steps. An explicit formula for the fixed point
is obtained in terms of the product on infinite sequences of binary trees. In Section 4.2,
deterministic generation of perfect binary trees is considered. It is observed that the period
of the sequence of published trees consists of perfect trees of two heights hmax−1 and hmax.
The total efficiency is independent of shapes of generated trees and can be expressed by an
explicit formula and admits natural asymptotics. Explicit results are obtained in the cases
of a singe prover of a single step.

In Section 5, we consider the case when behavior is stochastic. In Section 5.1, it is
shown that the placement of provers into suitable positions at each stage can be described
by the classical occupancy distribution. In the deterministic case, the total number of
generated proofs is the product of numbers of published blocks, of steps in a block and
of provers. In the stochastic case, we define the total efficiency (respectively the block
publishing efficiency) as the total number of generated proofs (respectively the number of
proofs embodied in published blocks) divided by the above product. Thus, both efficiencies
are numbers in the interval [0, 1]. They are convenient to compare the cases of various
shapes and various values of integer parameters. The total efficiency is independent of
shapes of generated trees and is expressed by an explicit formula and admits natural
asymptotics. In Section 5.2, average values of the block publishing efficiency are calculated
using a simulation model. We compare two cases when the shape of trees is binary strict or
perfect. The maxima of these values as functions of numbers of positions are investigated.
In Section 5.3 for generation of strict binary trees in a stochastic case we investigate an
analog of the deterministic Formula (22) for heights of trees. Using the least squares method,
we find the best approximation of the expected height of generated trees linear on the
number of steps and logarithmic on the number of provers.

In Appendix A, we recall the concept of a non-symmetric operad and construction of
the corresponding PRO. As the following step, one can obtain a monoid structure of infinite
sequences of operations. The non-symmetric magma operad and the non-symmetric semi-
group operad as its factor come from corresponding free objects with a single generator.
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The corresponding monoids of infinite sequences of strict binary trees and its factor-monoid
given by taking the number of leaves of each tree are considered in Section 2.2.

In Appendix B, we describe the software implementation of our algorithms and explain
how they are used in the main text.

2. Preliminaries: Binary Trees and Forests
2.1. Binary Trees and Free Magmas

Trees, as a part of Graph Theory, are used in mathematics ([22], Chapter 5) and
computer science, (see the classical volume [23]). In this subsection, we give some necessary
definitions related to various types of binary rooted trees and forests, as there is no precise
description convenient for our purposes and there might exist a confusion in terminology.

Rooted trees can be defined either (1) recursively, or as (2) partially ordered sets, or as
(3) special types of graphs. All of these points of view are useful in their respective contexts.

A tree is defined as a connected acyclic undirected graph. Choosing a vertex in a tree
as a root determines the natural direction for all edges (towards the root). However, usually
it is not shown explicitly.

A rooted tree is a directed graph with a distinguished vertex called the root such that
there exists a unique path from each vertex to the root. Thus, the set of vertices is equipped
with a natural partial order: v 6 w if there exists a path from v to w. In addition, the rooted
tree itself becomes the Hasse diagram for this partial order (being drawn root up). If v→ w
is an edge in a directed rooted tree, we say that v is a child of w, and w is a parent of v. A
vertex that has no child is called a leaf. Let us denote as ht t the height of the tree t, i.e., the
maximal length of the path from a leaf to the root. Thus, leaves are minimal elements, and
the root is the greatest element in the corresponding partially ordered set.

Each tree can be embedded in the plane. For a rooted tree all such embeddings are
classified by linear orderings for the children of each vertex. Thus, if all such orderings are
fixed, we say they are an ordered rooted tree (or a plane rooted tree).

Here, we mainly consider strict binary plane rooted trees (Instead of the term “strict
binary tree”, the terms “complete binary trees” and “full binary trees” are also used.),
where “strict binary” means that every vertex is either a leaf or has exactly two children
(left and right). In this case, for each non-leaf vertex, its left child vertex and its right child
vertex are roots of maximal binary subtrees called, respectively, a left child tree and a right
child tree.

Notation 1. Let us denote as nv(t) the number of vertices, as ni(t) the number of internal vertices
and as n`(t) the number of leaves in a rooted tree t.

In a strict binary tree t these numbers satisfy the identities

nv(t) = ni(t) + n`(t), n`(t) = ni(t) + 1. (1)

A magma is a set equipped with a binary operation ? without any additional properties
Chapter 1 [23], ([24], 0.2). The free magmaMwith a single generator ∗ (up to isomorphism)
is described recursively as

M :=
∞

ä
n=1
Mn

of recursively described subsets:

M1 := {∗}, Mn :=
n−1

ä
m=1
{(xy) | x ∈ Mm ∧ y ∈ Mn−m} for n > 1.

Thus, an element of Mn+1 is a bracketing of a string of n + 1 symbols ∗, i.e., the
insertion of n left parentheses and n right parentheses defining the order of an n-fold
application of the binary operation, e.g., five elements ofM4 are presented in Figure 1a
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(with the outer brackets removed). Cardinality ofMn+1 is counted by Catalan number

Cn :=
1

n + 1
(2n

n ). Various kinds of objects that are counted using Catalan numbers are

called Catalan families. The Stanley’s book [25] presents 214 Catalan families including
various types of trees.

Strict binary trees are mentioned in Exercise 2.5 [25]. The generator of the free magma
of strict binary trees is the zero height tree • whose single vertex is the root. For two binary
trees t1, t2, the binary tree t1 ? t2 is a binary tree with a new root, whose left child tree is t1
and the right child tree is t2. Strict binary trees with four leaves corresponding to elements
ofM4 are presented in Figure 1c.

Non-strict binary trees (often in computer science literature just “binary trees”) obtain
yet another example of Catalan family Exercise 2.4 [25]. Thus, they can be defined recur-
sively in the same way as strict binary trees, with the only difference that their free magma
generator is the empty tree. A non-empty non-strict binary tree can be represented by a
plane rooted tree, where each vertex has 0, 1 or 2 children, but with additional structure,
every single child must be labeled “left” or “right”. Such trees with three vertices corre-
sponding to elements ofM4 are presented in Figure 1b. Note that a non-strict binary tree
is obtained from the corresponding strict binary by removing all its leaves.

(a)

(b)

(c)

((∗∗)∗)∗ (∗(∗∗))∗ ∗((∗∗)∗) ∗(∗(∗∗)) (∗∗)(∗∗)

Figure 1. Images of the free magma: (a) bracketing, (b) non-strict binary tree, (c) strict binary tree.

2.2. Monoid of Sequences of Strict Binary Trees

Here, we consider composition t ◦ t′ of infinite sequences of strict binary trees given
by the gluing of subsequent leaves in t with subsequent roots in t′, and composition ` ◦ `′
of infinite sequences of positive integers corresponding to the numbers of leaves in a tree.

First, for a strict binary tree t with n leaves and strict binary trees t1, . . . , tn, we define
the composition t ◦ (t1, . . . , tn) obtained by gluing together the i-th leaf in t with the root of
ti for i = 1, 2, . . . n.

This obtains the a non-symmetric operad structure on strict binary trees. Then one
can apply the construction from Appendix A to obtain the monoidal structures described
below. The details of the Appendix A are not necessary to understand the remainder of
the material.

Let T = Tstrict be a set of sequences (ti)i>0 of strict binary trees with only a finite
number of non-zero height trees, equipped with a binary operation (t, t′) 7→ t ◦ t′, where

(t ◦ t′)i = ti ◦
(
t′n`(t0)+···+n`(ti−1)

, t′n`(t0)+···+n`(ti−1)+1, . . . , t′n`(t0)+···+n`(ti)−1
)
, (2)

i.e., each ti is successively applied in the sense of (A1) to the first not yet used n`(ti)
elements of t′.

Let L = Lstrict be a set of sequences (`i)i>0 of positive integers with only a finite
number of elements > 1, equipped with a binary operation (`, `′) 7→ ` ◦ `′, where

(` ◦ `′)i = `′`0+···+`i−1
+ `′`0+···+`i−1+1 + · · ·+ `′`0+···+`i−1, (3)

i.e., successively each (t ◦ t′) is the sum of the first not yet used `i elements of `′.
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Corollary 1. The above binary operations turn both T and L into monoids. The units are
t(0) = (•)i>0 ∈ T and `(0) = (1)i>0 ∈ L. The map T → L,

(
ti
)

i>0 7→
(
n`(ti

)
)i>0 is a

morphism of monoids.

2.3. Perfect Binary Trees and Forests

A rooted tree is called perfect (“complete” by some authors) if all leaves are of the same
distance to the root (that equals to the height h of the tree).

Notation 2. For each non-negative integer h, the unique perfect binary tree of height h is denoted
as t?h.

The perfect binary tree t?h has 2h leaves; moreover, 2d vertices are on the distance d
from the root (they can be subsequently indexed with 0 6 j < 2d, whose binary string
representation has length d), and 2h+1 − 1 vertices in total. See Figure 2.

ε

0

00

000 001

01

010 011

1

10

100 101

11

110 111

Figure 2. The perfect binary tree t?3 with nodes labeled by binary strings

Note that a non-strict binary tree can be obtained from the corresponding strict binary
tree by removing all its leaves.

All perfect binary trees are built recursively using magma square:

t?0 = •, t?h+1 = t?h ? t?h.

Perfect binary trees are most convenient to store a maximal number of leaves (that
correspond to transactions).

A forest (respectively plane forest) f is a co-product (disconnected disjoint union) of
a family of trees (respectively plane trees) (ti)i∈I . In both cases, the set of components I
is unordered.

Let us recall that a subset I ⊆ P in a poset P is called a down-set (respectively up-set) if,
for each x ∈ I and y ∈ P with y 6 x (respectively y > x), we have y ∈ I. Note that a subset
I ⊆ P is a down-set if its complement P\I is an up-set.

Lemma 1. For a finite sequence f = (ti)06i<p of strict binary trees, the following conditions are
equivalent:

1. There exists a bracketing, i.e., an element of the free magmaMp, such that, after the corre-
sponding application of p− 1 magma operations ?, a perfect binary tree t?( f ) is obtained;

2. (ti)06i<p is a down-set of some perfect binary tree containing all its leaves with components
ordered from left to right;

3. (a) Each tree ti in the family is perfect,

(b) For each i, n`(ti) divides ∑
j=i−1
j=0 n`(j);

(c) The total sum ∑
j=p−1
j=0 n`(j) is an power of 2.

Proof. 1 ⇔ 2: For a down-set in the perfect binary tree containing all its leaves, its
complement is the non-strict binary tree corresponding to the appropriate bracketing.
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1⇒ 3: (a) and (c) are obvious; to prove (b), let t′ be a subtree of height h′ in a perfect
tree t of height h such that each leaf in t′ is a leaf in t. Then, there exists a subforest in t that
consists of 2h−h′ perfect trees of height h including t′.

3⇒ 2: Split the leaves of f into equal left and right halves. If there is a tree ti in our
forest whose leaves are in both halves, then, from 3(c), we conclude that the forest consists
of this unique tree. Otherwise, we can represent f = f` t fr as a co-product of two forests
satisfying condition 3, so we suppose t?( f ) = t?( f`) ? t?( fr) and repeat the above choice
for f` and fr.

Definition 1. A finite sequence (ti)06i<p of binary trees satisfying conditions of the above lemma
is called a perfect binary forest.

Figure 3 shows an example of a perfect binary forest and the corresponding perfect
binary tree t?4 = (t?2 ? (t

?
1 ? (t

?
0 ? t?0))) ? (t

?
2 ? ((t

?
0 ? t?0) ? t?1)).

Figure 3. Example of a perfect binary forest.

In what follows, we use (potentially) infinite sequences of proof trees (ti)i>0 with only
a finite number of non-zero height trees as a buffer of proofs.

Definition 2. An infinite sequences of binary trees (ti)i>0 with only a finite number of non-zero
height trees is called perfect if some its initial fragment (ti)06i<p, containing all non-zero height
trees, is perfect.

Proposition 1. A sequence t ∈ T is perfect if there exists t′ ∈ T such that t′ ◦ t is a sequence that
consists of a single perfect tree followed by zero-height trees.

Definition 3. A pair (ti, ti+1) of subsequent trees in a perfect sequence is called a perfect, if the
new sequence with the pair (ti, ti+1) replaced with the product ti ? ti+1 remains perfect.

Note that the binary operation between two strict binary trees can be written as
t ? t′ = ∧ ◦ (t, t′), where ∧ is the strict binary tree of the height 1. Thus, to replace (ti, ti+1)
with the product ti ? ti+1 is the same as to take the composition ∧i ◦ t in the sense of (2),
where ∧i := (•, . . . , •︸ ︷︷ ︸

i

,∧, •, . . .︸ ︷︷ ︸
∞

).

According to Lemma 1 a pair (ti, ti+1) is perfect if n`(ti) = n`(ti+1) and 2n`(ti) divides

∑
j=i−1
j=0 n`(j).

Equivalently, suppose that the vertices of the whole perfect tree are labeled as in
Figure 2. A pair (ti, ti+1) of neighboring trees in its down-set is perfect if their roots are
labeled by strings ’w0’ and ’w1’ respectively for some w ∈ {0, 1}∗.

Obviously, two different perfect pairs cannot intersect. Thus, perfect pairs in a perfect
sequence form an infinite sequence.

3. The General Scheme

A special feature of Algorithm 1 considered in this paper is a simultaneous construction
of several trees forming a linear ordered forest, rather than a single tree. Periodically, the
leftmost tree is included into the published block, and the remainder are considered as a
buffer for further block generation.
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Algorithm 1: The general scheme of blocks generation

Input: bbehavior, bshape, nbl, nst, npr, npos;
Output: t© =

(
t©
i
)

06i<nbl
;

Initialization: t← (•)i>0; t© ← ();
for i← 1 to nbl do

for j← 1 to nst do
OneStep(bbehavior, bshape, npr, npos);

Block publishing: remove t0 from the buffer t and append t0 to the list t©;

Input parameters are:

• Dichotomous bbehavior regulates behavior of provers, deterministic (mutually consis-
tent) or stochastic (independent);

• Dichotomous bshape describes the shape of generated trees, only perfect binary trees
or arbitrary strict binary trees;

• nbl is the number of blocks published during the epoch;
• nst is the number of steps for one block generation;
• npr is the number of provers;
• npos is the number of positions allocated for proof.

During the work of the algorithm, a potentially infinite sequence of binary trees
t = (ti)i>0 arises that we call a buffer. It describes the state of the system and is used in the
further block generation.

The output is the sequence t© = (t©
i )06i<nbl

of binary trees included into published
blocks (one tree per block).

The published list is initialized with the empty list t© ← (). Theoretically, we assume
that at the beginning t = (•)i>0 is a potentially infinite sequence of zero height trees. In
practice, we initialize t with an empty list and put zero-height trees there as needed.

Remark 1. In a specific implementation, instead of two lists of binary trees, one can work with a
single list, and an integer pointer p; trees with indexes i < p are considered as published, and trees
with indexes i > p form a buffer. Block publishing in these terms is just an increment of the pointer
p← p + 1.

The external for-loop of Algorithm 1 runs over all nbl blocks in the epoch. The
body of this loop consists of the internal for-loop that runs over nst steps in the block
and the block publishing directives. The body of the internal loop consists of Proce-
dure OneStep(bbehavior, bshape, npr, npos).
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Procedure OneStep(bbehavior, bshape, npr, npos)

switch bbehavior do
case deterministic do

switch bshape do
case strict do

for k← npr − 1 to 0 by −1 do
in buffer t replace t2k, t2k+1 by t2k ? t2k+1;

case perfect do
for k← npr − 1 to 0 by −1 do

in t replace the k-th perfect pair with their magma product;

case stochastic do
RandomPositions← ∅;
for k← 0 to npr do

put to RandomPositions a random integer from 0 to npos − 1;

sort RandomPositions descending;
switch bshape do

case strict do
foreach k in RandomPositions do

in buffer t replace t2k, t2k+1 by t2k ? t2k+1;

case perfect do
foreach k in RandomPositions do

in t replace the k-th perfect pair with their magma product;

This procedure presents the general scheme for 2× 2 different cases corresponding
to combinations of two dichotomous parameters bbehavior and bshape. It acts on the buffer:
some subsequent pairs of trees (tk, tk+1) are replaced with their magma product tk ? tk+1,
and these pairs essentially depend on dichotomous parameters bbehavior and bshape.

In the case “bbehavior is deterministic”, the number of such pairs coincides with the
number of provers npr; then, for the case that “bshape is strict”, these pairs are first npr
subsequent pairs of the trees in the buffer: {(t0, t1), (t2, t3), . . . (t2npr−2, t2npr−1)}; for the
case that bshape is perfect, we use first npr perfect pairs in the buffer. In the case “bbehavior
is stochastic”, first npos subsequent/perfect positions are reserved for the random choice.
Each prover independently with equal probability selects one of these positions. For
positions selected by at least one prover, the corresponding pair of trees is replaced with its
magma product.

For fixed input parameters bbehavior, bshape, nst, npr, npos, the following functions
(deterministic or random) together with their domains and codomains are defined. Let
us denote

• T = Tbshape
the set of bshape (i.e., strict/perfect) binary trees;

• T = Tbshape
the set of sequences t = (ti)i>0 of bshape binary trees with finitely many

non-zero height trees;
• t[ ] be the sequence obtained by the shift, i.e., t[ ]i = ti+1 for i > 0.

f = fbbehavior,bshape,npr,npos : T→ T, t 7→ Λ ◦ t, (4)

F = Fbbehavior,bshape,nst,npr,npos : T→ T, t 7→
(

f nst(t)
)[ ], (5)

π = πbbehavior,bshape,nst,npr,npos : T→ T, t 7→
(

f nst(t)
)

0. (6)

Here, the function (4) is determined by Procedure OneStep. It can be described as
a product (2) with the sequence Λ = Λbbehavior,bshape,npr,npos ∈ T of trees of height 6 1. The
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internal for-loop of Algorithm 1 means the nst-th iteration of this function. Then, block
publishing determines the map (6), and the state of the buffer after each block publishing is
changed according to the map (5).

Table 1 shows the whole scheme. This four cases are also implemented in software
described in Appendix B.

Table 1. The scheme of 2× 2 algorithms.

Strict binary trees:
merged positions are first
pairs of subsequent trees

Perfect binary trees:
merged positions are first
so-called perfect pairs

Deterministic prover behavior:
provers act mutually consistent,
taking the first possible npr merge
positions

bbehavior is deterministic
bshape is strict

bbehavior is deterministic
bshape is perfect

Stochastic prover behavior:
provers act independently, with
each selecting one of npos merge
positions

bbehavior is stochastic
bshape is strict

bbehavior is stochastic
bshape is perfect

The Algorithm in Terms of Numbers of Leaves

Let us recall that a perfect tree is completely determined by its height, but there
are Cn strict binary trees with n + 1 leaves. However, the exact shape of trees is not
important for the blockchain(’s) throughput parameters’ study. Thus, we can collect
information about the number of leaves (and, therefore, (1) about the number of vertices)
and optionally about heights of trees. Thus, instead of the sequence of trees t = (ti)i>0,
one can consider the sequence of integers ` = (`i)i>0, where `i = n`(ti) is the number of
leaves of the corresponding tree. The initial state is described as (`i = 1)i>0. The magma
operation ? on strict trees corresponds to addition of the numbers of leaves: n`(ti ? ti+1) =
n`(ti) + n`(ti+1).

A pair of numbers (`j, `j+1) in a perfect sequence (`i)i>0 is perfect (i.e., corresponds to
the perfect pair of trees) if

`j = `j+1 and 2`j divides
j−1

∑
i=0

`i. (7)

If, moreover, the sequence (`i)i>0 is non-increasing, the condition (7) takes the equiva-
lent form

`j = `j+1 and #{i | 0 6 i < j ∧ `i = `j} is even. (8)

Let us denote by L = Lbshape
a set of sequences (`i)i>0 of positive integers with only a

finite number of elements > 1, in the case that bshape is perfect. For a version of Algorithm 1
in terms of numbers of leaves, one considers the functions corresponding to (4)–(6). We
keep the same names for the functions. Different (co)domains avoid ambiguity:

f : L→ L, ` 7→ λ ◦ `, (9)

F : L→ L, ` 7→
(

f nst(`)
)[ ], (10)

π : L→ Z>0, t 7→
(

f nst(`)
)

0, (11)

where in (9), λ = λbbehavior,bshape,npr,npos ∈ L is the sequence of 1 or 2.
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Functionality of the transition from trees to their numbers of leaves is expressed by
the commutative squares

T T

L L

n`

f

n`

f

T T

L L

n`

F

n`

F

T T

L Z>0

n`

π

n`

π

Here, n` : T→ L means
(
ti
)

i>0 7→
(
n`(ti)

)
i>0.

Let us define the sequences of sequences (of elements of L) as

`(n,k) := f k(Fn((1)i>0
))

, n > 0, 0 6 k 6 npr, (12)

`(n) := `(n,0) = Fn((1)i>0
)
, n > 0. (13)

Elements of the double sequence
(
`(n,k)) are naturally linearly ordered, lexicographi-

cally on the pairs (n, k). In this sequence,

`(n,k+1) = f
(
`(n,k)), `(n+1,0) = `(n,nst) [ ].

The length of the sequence ` = (`i)i>0 ∈ L is defined as follows:

Len ` := min
j
{j > 0 | ∀i > j : `i = 1}. (14)

4. Deterministic Case

In this section, we consider only the case of Algorithm 1 when bbehavior is deterministic.
We consider sequences `(n,k) for an arbitrary n that corresponds to the limiting case nbl → ∞
of an infinite outer for-loop. One can also consider the infinite sequence ˆ̀ of the number of
leaves of published trees with elements

`©
n = π

(
`(n)

)
, n > 0.

Lemma 2. In the case, bbehavior is deterministic, and the function f : L→ L preserves a property
of a sequence to be non-increasing.

Proof. In the case bshape is perfect, take into account (8).

Corollary 2. In the case that bbehavior is deterministic, the sequences `(n,k) from (12) are non-
increasing for all n > 0 and 0 6 k 6 npr.

Let us denote as L↘ a set of non-increasing sequences from L.
For a non-increasing sequence ` ∈ L (e.g., for all `(n,k) when bbehavior is deterministic),

the Formula (14) can be simplified:

Len ` = min
j
{j > 0 | `j = 1}.

For ` ∈ L, the sum
Ni(`) := ∑

j
(`j − 1) (15)

has only finite non-zero summands and, according to (1), can be interpreted as the total
numbers of internal vertices. Independently on bshape, for ` ∈ L, we have the identities

Ni( f (`)) = Ni(`) + npr.
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π(`)− 1 + Ni(F(`)) = Ni(`) + nstnpr. (16)

Lemma 3. In the case “bbehavior is deterministic”, for fixed nst, npr the total number of internal
vertices (and, hence, the length and all elements) of all `(n,k) are bounded together, i.e.,:

sup
n,k

Ni(`
(n,k)) < ∞, sup

n,k
Len `(n,k) < ∞, sup

n,k,j
`
(n,k)
j < ∞.

Proof. In the case “bshape is strict”, Len `(n,k) 6 npr and Len `(n) < npr. This follows from
the observation that Len ` 6 2npr implies Len f (`) 6 npr.

In the case that “bshape is perfect”, the number of the same non-zero height trees in the
buffer is bounded by npr + 1. See (27) for more accurate estimates.

Then, we can estimate from above the total number of internal vertices:

Ni(`
(n)) 6 Cbshape

(`
(n)
0 ) =

{
(npr − 1)(`(n)0 − 1), if bshape is strict,

(npr + 1)(2`(n)0 − log2 `
(n)
0 − 1), if bshape is perfect.

In the second case, we use the fact that all `(n)j are powers of 2. For `
(n)
0 > 1 and

npr > 1, the function Cbshape
is monotone increasing and, hence, invertible. Let Ni(`

(n)) >

Cbshape
(nstnpr + 1). Then, π(`(n)) > `

(n)
0 > nstnpr + 1 and, by (16), we have Ni(F(`)) 6

Ni(`). Thus, supn,k Ni(`
(n,k)) < Cbshape

(nstnpr + 1) + nstnpr.

Definition 4. The sequence x = (xi)i∈Z>−1 is called ultimately periodic if there exists r ∈ Z>0
and s ∈ Z>0 such that, if i > r, then xi = xi+s. In this case, we write

x = x0, . . . , xr︸ ︷︷ ︸
preperiod

, (xr+1, . . . , xr+s︸ ︷︷ ︸
period

).

The minimal preperiod is the minimal r satisfying the above condition. The minimal period
is the minimal s for minimal r satisfying the above condition.

Given a function g : X → X and an element x0 ∈ X, the sequence x0, g(x0), g(g(x0)), . . .
is ultimately periodic, whenever X is finite. Lemma 3 implies that the set

{
`(n) | n > 0

}
is finite.

Corollary 3. In the case that "bbehavior is deterministic", the sequences
(
`(n)

)
n>0 of buffer states

and `© of published trees are ultimately periodic.

Lemma 4. If (`(r+1), . . . , `(r+s)) is a period of
(
`(n)

)
, then

`©
r+1 + · · ·+ `©

r+s − s = snstnpr. (17)

Proof. The identity (17) is the result of the summing of (16) over a period, i.e., for ` =
`(r+1), . . . , `(r+s).

4.1. Generation of Strict Binary Trees

In this subsection, we consider the case “bbehavior is deterministic” and “bshape is strict”.
In this case, one-step functions (4) and (9) are



Cryptography 2023, 7, 14 13 of 27

t 7→ Λ ◦ t, Λ = npr∧ = (∧, . . . ,∧︸ ︷︷ ︸
npr

, •, . . .︸ ︷︷ ︸
∞

),

` 7→ λ ◦ `, λ = npr · 2 = (2, . . . , 2︸ ︷︷ ︸
npr

, 1, . . .︸︷︷︸
∞

).

Lemma 5.
t(0,k) = (npr∧)◦k, t(n,k) = (npr∧)◦k ◦ t(n). (18)

`(0,k) = (npr · 2)◦k, `(n,k) = (npr · 2)◦k ◦ `(n). (19)

Let us consider the Hamming distance for `, `′ ∈ L↘ :

dH(`, `′) := #{i | `i 6= `′i}.

Lemma 6. In the case that "bbehavior is deterministic and bshape is strict", the transformation F is a

weak contraction on (L↘ , dH):

dH(F(`), F(`′)) < dH(`, `′), ` 6= `′ ∈ L↘ .

Corollary 4. The sequence of buffer states
(
`(n)

)
n>0 is stabilized at the fixed point of F. Thus, this

sequence and the sequence of published blocks are ultimately periodic with a period of length 1. The
tree published in the period has nprnst + 1 leaves.

The following lemma shows that, if nst > log2(npr− 1), then the length of pre-period 6 1.

Lemma 7. If nst > log2(npr − 1), then

t(n) =
(
(npr∧)◦nst

)[ ], t©
n =

(
(npr∧)◦nst ◦

(
(npr∧)◦nst

)[ ])
0
, n > 1. (20)

If nst > log2(npr), then

(
(npr∧)◦nst

)[ ]
=
(
(npr∧)◦dlog2 npre

)[ ]
. (21)

Proof. In both cases, we use the observation: for t, t′ ∈ T, if n`(t0) > Len t′, then (t ◦ t′)[ ] =
t[ ].

Thus, if nst > log2(npr), then the period of the sequence of published trees consists

of a single tree
(
(npr∧)◦nst ◦

(
(npr∧)◦dlog2 npre

)[ ])
0
. According to (17), this is a tree with

nstnpr + 1 leaves.

Proposition 2. For nst > log2 npr, the height of the tree published in the period is the following

ht
(
(npr∧)◦nst ◦

(
(npr∧)◦dlog2 npre

)[ ])
0
= blog2 nprc+ nst. (22)

Proof. Both parts of (22) equal to ht
(
(npr∧)◦nst

)
0 + ht

(
(npr∧)◦dlog2 npre

)
1
.
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Example 1. Let npr = 2m and nst > m; then, the period of the buffers consists of the single
sequence (21) of perfect trees

((2m∧)◦m)[ ] = (t?m, t?m−1, t?m−1, . . . , t?1 , . . . , t?1︸ ︷︷ ︸
2m−1

, t?0 . . .).

Let us consider a semi-infinite matrix, where rows are given by (21) for npr > 1, and
the corresponding matrix, where each tree is replaced by the number of its leaves. Elements(
(n∧)◦dlog2 ne

)
0
= t?dlog2 ne are removed after the shift. The matrix is lower triangular in the

sense that
(
(n∧)◦dlog2 ne

)
m
= • for m > n > 1.

Proposition 3. Let us denote fk,p =
(

p · ∧, (2k − p) · •
)

the sequence of trees of length 2k for

0 6 p 6 2k.

1. For each m > 1, the following sequence can be presented as the concatenation

((
(n∧)◦dlog2 ne

)
m

)
n>m

=
∞⊕

k=1

(
2k−1(m− 1)t?k , t?k ◦ fk,1, t?k ◦ fk,2, . . . , t?k ◦ fk,2k

)
. (23)

2. For n > m > 1,

(
(n∧)◦dlog2 ne

)
m
=

{
t?k ◦ fk,n−2km, if

⌈
log2

n
m+1

⌉
=
⌊
log2

n
m
⌋
= k,

t?k , if
⌈
log2

n
m
⌉
=
⌊
log2

n
m+1

⌋
+ 1 = k.

Proof. For each m > 1, the sequence (23) is the concatenation over all positive integers
k of sequences consisting of 2k−1(m − 1) copies of t?k and then compositions t?k ◦ (p∧)
for p from 1 to 2k. (Note that t?k ◦ (2

k∧) = t?k+1.) The tree t?k appears in the positions
2k−1(m + 1) 6 n 6 2km, or, equivalently, n

m 6 2k 6 2n
m+1 . The tree t?k ◦ (p∧) appears in the

position 2km < n = p + 2km 6 2k(m + 1), or, equivalently, n
m+1 6 2k < n

m .

Corollary 5. For each m > 1,((
(n · 2)◦dlog2 ne

)
m

)
n>m

=
(
1, 2, . . . , 2︸ ︷︷ ︸

m

, 3, . . . , 2k+1 − 1, 2k+1, . . . , 2k+1︸ ︷︷ ︸
2k(m−1)+1

, 2k+1 + 1, . . .
)

(24)

is a sequence of positive integers with inserted additional (m− 1) · 2k copies of 2k+1 for each k > 0.

4.2. Generation of Perfect Binary Trees

Let us recall that the perfect tree is completely determined by its height. Thus, in this
subsection, we consider the sequences h = (hi)i>0 of heights of perfect trees instead of
perfect trees itself: t =

(
t∗hi

)
i>0. Buffer states and published trees are characterized by the

sequences of heights h(n,k) and h© with t(n,k)
i = t?

h(n,k)
i

and t©
i = t?

h©
i

.

According to Lemma 2, at each moment, the sequence of heights of perfect trees in
the buffer is non-increasing. By Lemma 3, the heights of trees are bounded by the constant
hmax, the same for all buffer states.

Let µh = µ
(n,k)
h be the number of perfect trees in the buffer of positive height h, i.e., the

buffer at each step has the form

h(n,k) =
(

h×µhmax
max , (hmax − 1)×µhmax−1 , . . . , 1×µ1 , 0×∞

)
, (25)
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where h×µ
i := hi, . . . , hi︸ ︷︷ ︸

µ

.

The following Lemma describes these parameters for a fixed number of provers npr
and number of steps nst.

Lemma 8. At every step,

µh 6
npr − 1

2h−1 + 2, 1 6 h 6 hmax; (26)

hmax

∑
h=1

⌊µh
2

⌋
6 npr. (27)

The map f corresponding to one step is given by the formula

µ
(n,k+1)
h = 2

{
µ
(n,k)
h /2

}
+

{⌊
µ
(n,k)
h−1 /2

⌋
, if h > 1,

npr −∑h′
⌊
µ
(n,k)
h′ /2

⌋
, if h = 1.

(28)

Here 2{p/2} ∈ {0, 1} is the parity of p.

Proof. The inequality (26) is proved by induction. Let µmax
h = maxn,k µ

(n,k)
h . Then µmax

1 6

1 + npr and µmax
h+1 6 1 +

⌊
µmax

h
2

⌋
6

npr−1
2h + 2.

The inequality (27) and the formula (28) are proved together. If (27) is satisfied, then
the quantity of provers is sufficient to build all possible non-zero height perfect trees and,
hence, we obtain (28). Now, suppose that ∑h

⌊ µh
2
⌋
6 npr; then, at the next step, by (28),

∑
h

⌊
µ
(n,k+1)
h

2

⌋
=

{µ
(n,k)
1
2

}
+

npr

2
− 1

2 ∑
h′

µ
(n,k)
h′

2

+
hmax

∑
h=2

{µ
(n,k)
h
2

}
+

1
2

µ
(n,k)
h−1
2


6

1
2
+

npr

2
− 1

2 ∑
h′

µ
(n,k)
h′

2

+
hmax

∑
h=2

1
2
+

1
2

µ
(n,k)
h−1
2


6
⌊

2npr + 1
2

⌋
= npr,

where the last inequality follows from the fact that the number of non-zero summands
in (27) is not greater than npr.

Remark 2. The above lemma allows for constructing an optimized implementation of OneStep()
procedure according to formula (28), and then to obtain a (pre-)reduced form of h© according to
Definition 5. The remainder of the results in this subsection essentially use this implementation.

Let h© = h©(npr, nst
)

be the sequence of heights of trees in generated blocks. Accord-
ing to Corollary 3, it is ultimately periodic.

Hypothesis 1.

hmax = blog2 nstnprc+ 1 = min{k ∈ Z>0 | 2k > nstnpr}.

Moreover, µhmax = 0 after block publishing.

Hypothesis 2. A period of h© consists of perfect trees of heights hmax−1 and hmax in some order.
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Corollary 6. Let a (respectively b) be the number of perfect trees of height hmax−1 (respectively
hmax). Then, the length of the period is

a + b = 2blog2 nstnprc−ν,

for some ν ∈ {0, 1, . . . , ν2(nstnpr + 1)}, where ν2(nstnpr + 1) is the multiplicity of 2 in prime
factorization of nstnpr + 1, and

a = 2blog2 nstnprc+1−ν −
nstnpr + 1

2ν
, b =

nstnpr + 1
2ν

− 2blog2 nstnprc−ν.

Remark 3. The difference h©
i+1 − h©

i can be arbitrarily large:

h©(npr, nst) = nst, 2nst, . . . , whenever npr > 22nst−1 + 2nst−1.

Definition 5. The presentation h© = h©
1 , . . . , h©

r , (h©
r+1, . . . , h©

r+s) of the sequence (of heights) of
published trees with the smallest pre-period and period is called the reduced form of h©.

If h(1), . . . , h(r
′), (h(r

′+1), . . . , h(r
′+s′)) is the presentation of the sequence of buffer states with

the smallest pre-period and period, then the corresponding presentation of the sequence (of heights)
of published trees h© = h©

1 , . . . , h©
r′ , (h

©
r′+1, . . . , h©

r′+s′) is called the pre-reduced form of h©.

Remark 4. The pre-reduced and reduced forms of h© can be different as in the following cases:

h©(26 + 1, 1) = 1, 2, 3, 4, 5, 6×31, (6×30, 7, 6)

= 1, 2, 3, 4, 5, 6×30, (6×31, 7);

h©(360, 1) = 1, 2, 3, 4, 5, 6, 7, 8×4, 9, 8, (8, 9, . . . , 9, 8︸ ︷︷ ︸
28

)

= 1, 2, 3, 4, 5, 6, 7, 8×4, 9, (8×2, 9, . . . , 9︸ ︷︷ ︸
28

);
(29)

h©(361, 1) = 1, 2, 3, 4, 5, 6, 7, 8×4, 9, 8×2, (9, 8, . . . , 9, 82︸ ︷︷ ︸
27

)

= 1, 2, 3, 4, 5, 6, 7, 8×4, 9, (8×2, 9, 8, . . . , 9︸ ︷︷ ︸
27

).
(30)

Hypothesis 3. The pre-period of the reduced form of h© is a non-decreasing sequence.

Remark 5. The above hypothesis is not true for the pre-reduced form of h© as we can see in (29)
and (30).

4.2.1. The Case of a Single Prover npr = 1

In the case of a single prover Conjectures 1 and 2 are obvious, moreover explicit
description is obtained.

Proposition 4. Let 2h 6 k + 1 6 2h+1. In the case of a single prover npr = 1, the sequence
h© = h©(1, k) can be determined recursively together with an auxiliary sequence g that calculates
the number of generated proofs in the buffer

g0 = 0, h©
n = blog2(gn + k + 1)c =

{
h, if gn + k < 2h+1 − 1,
h + 1, otherwise,

gn+1 = gn + k− 2h©
n + 1.

(31)
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Corollary 7. In the case of a single prover npr = 1, the sequence h©(1, k) is periodic.
Let k, k′ ∈ [2h − 1, 2h+1 − 1] and k + k′ = 2h+1 + 2h − 2. Then, the periods of reduced forms

of h©(1, k) and h©(1, k′) are obtained each from the other with order reversing and replacement
h↔ h + 1.

Proof. The sequence of the buffer state is periodic because at each step the increment of
the number of generated proofs in the buffer is constant k by module 2h − 1.

If (q0, q1, . . . , qs−1) is the period of the sequence of the number of generated proofs in
the buffer for k steps, then (2h − qs−1, . . . , 2h − q1, 2h − q0) is the period of the sequence of
the number of generated proofs in the buffer for k′ = 2h+1 + 2h − 2− k steps. Equation (31)
for the first data implies the same equations for the second data.

Example 2. The cases of npr = 1 and nst are closed to 2h − 1. The following presentations are
special cases (31):

• k1 = 2h − 1, k2 = 2h+1 − 1

h©(1, 2h − 1) = (h), h©(1, 2h+1 − 1) = (h + 1).

• k1 = 2h, k2 = 2h+1 − 2

h©(1, 2h) = (h×(2
h−1), h + 1), h©(1, 2h+1 − 2) = (h, (h + 1)×(2

h−1)).

• k1 = 2h + 1, k2 = 2h+1 − 3

h©(1, 2h) + 1 = (h×(2
h−1−1), h + 1), h©(1, 2h+1 − 3) = (h, (h + 1)×(2

h−1−1)).

• k1 = 2h + 2, k2 = 2h+1 − 4, if h = 3, 5, 7, . . .

h©(1, 2h + 2) =
(

h×
2h−2

3 , h + 1, h×
2h−2

3 , h + 1, h×
2h−5

3 , h + 1
)

,

h©(1, 2h+1 − 4) =
(

h, (h + 1)×
2h−5

3 , h, (h + 1)×
2h−2

3 , h, (h + 1)×
2h−2

3

)
,

if h = 4, 6, 8, . . .

h©(1, 2h + 2) =
(

h×
2h−1

3 , h + 1, h×
2h−4

3 , h + 1, h×
2h−4

3 , h + 1
)

,

h©(1, 2h+1 − 4) =
(

h, (h + 1)×
2h−4

3 , h, (h + 1)×
2h−4

3 , h, (h + 1)×
2h−1

3

)
.

4.2.2. The Case of a Single Step nst = 1

Hypothesis 4. Let k1, k2 ∈ [2h − 1, 2h+1 − 1] and k1 + k2 = 2h+1 + 2h − 2. Then the periods of
reduced forms of h©(k1, 1) and h©(k2, 1) are obtained each from the other by order reversing and
replacement h↔ h + 1.

Example 3. The cases of nst = 1 and npr closed to 2h − 1 agree with the above hypothesis:

• k1 = 2h − 1, k2 = 2h+1 − 1

h©(2h − 1, 1) = 1, 2, . . . , h− 1, (h), h©(2h+1 − 1, 1) = 1, 2, . . . , h, (h + 1);

• k1 = 2h, k2 = 2h+1 − 2

h©(2h, 1) = 1, 2, . . . , h− 1, h×(2
h−h), (h×(2

h−1), h + 1),
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h©(2×(h+1) − 2, 1) = 1, 2, . . . , h, (h, (h + 1)×(2
h−1));

• k1 = 2h, k2 = 2h+1 − 2, h > 3

h©(2h + 1, 1) = 1, 2, . . . , h− 1, h×(2h−1−b h−1
2 c), (h×(2

h−1−1), h + 1),

h©(2h+1 − 3, 1) = 1, 2, . . . , h, (h, (h + 1)×(2
h−1−1)).

5. Stochastic Case

In this section, we consider the result of Algorithm 1 only in the case of “bbehavior
is stochastic”.

5.1. Occupancy Distribution: Efficiency

Placement of provers into suitable positions at each stage can be described by the
classical occupancy distribution. See [26], the more recent [27] and references therein.
Another closely related model is a coupon collector problem.

Thus, we have npr > 1 provers placed independently and with equal probability into
npos > 1 positions. In terms of urn models [26], provers and positions correspond to balls
and bins, respectively. Let us denote ξnprnpos a random number of non-empty positions. It
takes integer values i from 1 to min{npr, npos} with probabilities

Pr{ξnprnpos = i} = n
−npr
pos

(
npos

i

)
i!
{

npr

i

}
= n

−npr
pos (npos)i

{
npr

i

}
.

Here, we use the following notations:

Notation 3. • {n
m} is the Stirling number of the second kind, i.e., the number of factorizations

of an n-element set to an m-element factor-set;
• (n)k = n(n− 1) · · · (n− k + 1) is the falling factorial.

Mean and variance of the occupancy distribution (e.g., Theorem 2A [27]) are obtained
as the special cases of expected values of falling factorials Theorem 1A [27]:

E
(
npos − ξnprnpos

)
r =

(
npos

)
rEr, Er =

(
1− r/npos

)npr , 0 6 r < npos;

E ξnprnpos = npos(1− E1), Var ξnprnpos = npos
(
(npos − 1)E2 + E1 − nposE2

1
)
.

Let Nt := Len ` denote the total number of generated trees, N` and Nint, respectively,
the numbers of leaves and internal vertices in these trees. Similarly let N©

t = nbl be the
number of published trees, N©

` and N©
int, respectively, the number of leaves and internal

vertices in these trees.
Note that, according to (1),

N` = Nint + Nt, N©
` = N©

int + nbl. (32)

Moreover, as a random variable,

Nint = nblnstξ
nprnpos . (33)

Throughput of our system can be naturally measured by the number of processed
transactions, i.e., be the number of leaves N` and N©

` . On the other hand, the useful work
of provers is given by the number of internal vertices Nint and N©

int. According to (32), if
nstnpr � 1, then Nint/N` ≈ 1 and N©

int/N©
` ≈ 1.

Note that in the cases that “bbehavior is deterministic”, Nint = nblnstnpr. We use this to
define the “normalized” values:
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• proof generation efficiency

Ef(npr, npos) := E
Nint

nblnstnpr
= E

ξnprnpos

npr
=

npos

npr

(
1−

(
1− 1/npos

)npr
)

, (34)

• proof publishing efficiency

Ef©(nbl, nst, npr, npos) := E
N©

int
nblnstnpr

. (35)

Note that
0 < Ef© 6 Ef 6 1.

There are two limit cases:

lim
npos→∞

Ef(npr, npos) = 1, lim
npr→∞
npos→∞

npr/npos→γ

Ef(npr, npos) =
1− e−γ

γ
.

5.2. Simulation Model for Block Publishing Efficiencies

In both cases that “bshape is strict” and “bshape is perfect”, Ef© is an increasing function
of nbl. In the cases that “bshape is strict”, the lengths of buffers h(n) are not greater then
npos − 1. This implies convergence in the following proposition.

Proposition 5. In the case that “bshape is strict”, Ef© ↗ Ef whenever nbl → ∞.

Hypothesis 5. In the case that “bshape is perfect”, Ef© ↗ Ef whenever nbl → ∞.

We try to illustrate the above convergences in Figure 4. As we can see, in the case
that “bshape is strict”, Ef© tends quickly to Ef. On the contrary, in the case that “bshape is
perfect”, the convergence is very slow. Note that the limit value is Ef |npr=npos=5 = 0.67232,

and some values close to asymptote are Ef© |nbl=1000 = 0.6359, Ef© |nbl=2000 = 0.6451,
Ef© |nbl=3000 = 0.6497, Ef© |nbl=5000 = 0.6541.

Ef

Ef© strict

Ef© perfect

0 10 20 30 40 50 60 70
0.2

0.3

0.4

0.5

0.6

0.7

Figure 4. Dependencies of Ef© on the number of blocks for nst = npr = npos = 5.
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In practice, it is important to select a right value of npos when other parameters are
fixed. In Figure 5, dependencies of Ef and Ef© (for both cases “bshape is strict” and binary
and “bshape is perfect”) on the number of positions are shown in the case when nbl = 100,
nst = 10, npr = 10. Values for efficiencies are average over 300 random calculations.

Ef

Ef© strict

Ef© perfect

0 20 40 60 80 100 120 140

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5. Dependencies of Ef and Ef© on the number of positions.

In Table 2, for the case “bshape is perfect” and in Table 3 for the case “bshape is strict”,
the arguments of maxima and the corresponding maximal values of blocks publishing
efficiency Ef© are given, as functions of the number of positions npos for nbl = 200 and
various values of nst and npr.

Table 2. ArgMax and Max of the function nbl 7→ Ef© for the case “bshape is perfect”.

nst\npr 2 3 4 5 6 7 8 9 10

1 7
0.89

8
0.83

8
0.78

8
0.72

8
0.67

9
0.62

9
0.58

9
0.55

9
0.52

2 4
0.85

5
0.74

5
0.67

6
0.62

6
0.58

7
0.56

7
0.53

7
0.51

8
0.49

3 3
0.80

4
0.70

5
0.65

5
0.60

6
0.57

6
0.55

7
0.53

7
0.51

8
0.50

4 3
0.78

4
0.70

5
0.65

6
0.61

6
0.58

7
0.57

8
0.56

9
0.54

9
0.53

5 3
0.77

4
0.71

5
0.66

6
0.63

7
0.61

7
0.59

8
0.56

9
0.55

9
0.53

6 3
0.79

4
0.72

5
0.67

6
0.65

7
0.62

7
0.60

7
0.58

8
0.57

9
0.55

7 3
0.79

4
0.71

6
0.68

6
0.65

7
0.63

7
0.61

8
0.60

9
0.59

10
0.59

8 3
0.79

4
0.73

6
0.70

6
0.67

7
0.65

8
0.64

9
0.62

10
0.61

10
0.60

9 3
0.80

5
0.74

6
0.70

6
0.68

8
0.66

8
0.65

10
0.64

10
0.61

11
0.61

10 3
0.81

5
0.75

6
0.72

7
0.70

8
0.68

9
0.66

10
0.64

10
0.63

11
0.62
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Table 3. ArgMax and Max of nbl 7→ Ef© for the case “bshape is strict”.

nst\npr 2 3 4 5

1 13/0.92 19/0.90 23–24/0.89 28–29/0.88
2 14/0.93 21–22/0.91 28/0.90 34–35/0.89
3 15/0.94 23–24/0.92 32/0.91 38–39/0.90
4 16/0.94 25–26/0.93 33–34/0.92 41–42/0.91
5 18/0.95 27–28/0.93 36–37/0.92 44–46/0.92

5.3. Simulation Model for Heights of Strict Binary Trees

Here, we consider an analog of the formula (22) for average heights h of published strict
binary trees in the case when “bbehavior is stochastic”. We consider a linear approximation

h(nst, npr) ≈ αnst + β log2 npr + γ.

Optimal parameters α, β, γ are obtained by means of the least squares method. For a
fixed positive integer m, we consider all pairs of integers (nst, log2 npr) = (i, j) satisfying
1 6 j 6 i 6 m. Thus, the problem is to minimize the square of the error vector

r =
m

∑
i=1

i

∑
j=1

(
αi + βj + γ− h(i, 2j)

)2
.

The critical point (α, β, γ) is the solution of the system of linear equations
∂r
∂α = 0
∂r
∂β = 0
∂r
∂γ = 0

⇔
m

∑
i=1

i

∑
j=1

 i
j
1

( i j 1
) α

β
γ

− h(i, 2j)

 = 0. (36)

The inverse matrix for this system is: m

∑
i=1

i

∑
j=1

 i
j
1

( i j 1
)−1

=
6

(m + 2)4

 8 −4 −4m
−4 8 −4
−4m −4 3m2 + 3m + 2

.

It can be calculated using Wolfram Mathematica. Enthusiasts can verify this using for-
mulas for sums ∑n

k=1 k(p) = 1
p+1 n(p+1) of rising factorial powers for k(p) = k(k + 1) · · · (k +

p− 1) or the Faulhaber’s formulas for generalized harmonic numbers Hn,−p := ∑n
k=1 kp.

The results of numerical experiments (coefficients for linear approximation and the
standard deviation) are presented in Table 4.

Table 4. Linear approximations of average height of generated trees as functions of nst and log2 npr.

m α β γ
√

2r
m(m+1)

6 0.84 1.35 −0.75 0.072
7 0.81 1.40 −0.75 0.074
8 0.79 1.43 −0.74 0.075
9 0.77 1.46 −0.74 0.075
10 0.75 1.49 −0.73 0.075

For the case m = 8, the graphical presentation of average values h(i, 2j) and their
linear approximation are given in Figure 6.
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Figure 6. Average heights of generated trees and their linear approximation for m = 8.

6. Discussion

Latus consensus, proposed in [3,4], provides secure and stable sidechain operation,
even under the complete distrust assumption in sidechains, and even when all participants
in the sidechain consensus are malicious. We assume that the adversary in the sidechain
may try to sensor the transactions of other participants inside the SC, or from the MC to
the SC, or try to steal tokens in the SC, hide the state of the SC, or stop block production
in the SC, but these actions must not be successful. For reliable operation under such
assumptions, Latus consensus needs uninterruptible zk-SNARK-proof generation, which,
in turn, demands essential computational power and cannot be performed by a single
regular participant with commodity hardware. Projects Coda [8] or Polygon [28] implicitly
involve a semi-trusted participant with powerful computational capabilities (such as cloud
computation) to solve this task on time, but this approach may lead to a single failure
point. To eliminate this problem we propose a new approach for efficient decentralization
proof generation. According to our approach, decentralized generation is applied not
only to blocks in the whole epoch but even to each block. Thus, proofs are generated
with the involvement of a large number of independent participants, which are called
provers. This provides a decentralization of the zk-SNARK sidechain operation in secure
and reliable way.

In this article, we introduced the properties of this process as proof generation effi-
ciency Ef and proof publishing efficiency Ef©, which are investigated in Section 5.1.

For the generation of a single block considered in [18], the block forger initially
selects the number of levels ` of a perfect binary tree that will be included into a block.
In [18] (table 1), we find what number of provers is needed to build the perfect binary tree
with ` = 4, 5, 6, 7, 8, 9 levels during nst = 9 steps with probability > 0.95. In this limit case,
the role of the efficiency garnered from this article results in the ratio of the number of
useful proofs, which is the number of internal vertices ni(t) in the built tree to the total
number of proofs nstnpr produced by all provers during the block publishing process

Ef1 ≈
ni(t)

nstnpr
=

2`−1 − 1
9npr

. (37)
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In Table 5, we compare the values of Ef1 from (37) with the efficiencies Ef© obtained
by the emulation procedure when bshape is perfect in three cases: nbl = 10, nbl = 100 and
nbl = npr, and when bshape is strict and nbl = 10 (denoted Ef©

perfect and Ef©
strict, respectively).

The value of Ef calculated from (34) is the limit for both Ef©
perfect and Ef©

strict at nbl → ∞.

Table 5. Comparison of efficiencies for nst = 9 steps and npos = npr.

npr ` Ef1
Ef©

perfect Ef©
perfect Ef©

perfect Ef©
strict Ef

nbl = 10 nbl = 100 nbl = npr nbl = 10

3 4 0.26 0.64 0.69 0.50 0.69 0.70
4 4 0.19 0.64 0.67 0.54 0.67 0.68

10 5 0.17 0.48 0.59 0.50 0.62 0.65
33 6 0.10 0.34 0.45 0.43 0.58 0.64
95 7 0.07 0.18 0.27 0.26 0.56 0.63

452 8 0.03 0.05 0.09 0.11 0.53 0.63
2176 9 0.01 0.02 0.03 0.04 0.50 0.63

So, one can see Ef©/Ef1 ≈ 3 as the average . In the top half of Table 5, the values of Ef©

are closed to the best possible limit Ef. At the bottom, when the number of provers becomes
extreme, Ef©

perfect still obtains an increment with respect to Ef1; however, both values are

too small. The convergence Ef©
perfect → Ef is slow and a very big buffer size is required in

this situation. However, Ef©
strict remains closed to Ef.

7. Conclusions

We investigated characteristics of blocks and characteristics of a SC in a whole under
various parameters of a SC, such as the number of blocks in an epoch, number of provers,
number of available transactions, time of block creation, etc. We obtained theoretical results
for a model with additional restrictions on provers’ behavior and various experimental
results for an extended model without such restrictions. These results are helpful when
determining the parameters of a sidechain, such as epoch length, block creation time, proof
incentives, etc. We show that in deterministic cases the sequences of published trees are
ultimately periodic and ensure the highest possible efficiency of the proof creation process,
because in this case there are no collisions in proof creation.

In stochastic cases, we obtain a universal measure of prover efficiencies taking values
in the interval [0,1] and given by the explicit formula in one case, calculated by simulation
models in other cases.

In the sense of efficiency defined, the optimal number of allowed prover positions for a
step can be proposed for various sidechain parameters, such as number of provers, number
of steps in a block, and so on. We also considered non-perfect binary tree utilization in a
blockchain, and described benefits and restrictions for such trees’ use. It turns out that we
can achieve large efficiency using these very trees.

Our algorithm for the strict binary trees gives the following differences (compared
with the case of perfect binary trees):

1. The buffer size is smaller;
2. Block publishing efficiency is higher;
3. The average height of the generated perfect binary trees is proportional to

log
(
nstnpr

)
= log nst + log npr. The average height of the generated strict binary

trees has a similar linear dependence on the logarithm of the number of provers
log npr, but a different linear dependence to the number of steps nst (not log nst). So,
we can consider the case of strict binary trees practically interesting only if the number
of steps nst is small.

All results from [18–20] and the present paper are related and, put together, give
a comprehensive description of SC behavior under our chosen parameters, allowing us
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to find the optimal sets of parameters that help to optimize functioning, in particular
increasing throughput.

One of the most interesting results in this article shows that, under the condition of
quick synchronization among block forgers, the throughput increases up to three times in
practical settings and can be increased even more for extreme settings cases.

One topic of future research is the investigation of the efficiency of Verkle tree [29]
and Curve tree structures [30], which can be used for creating proof trees instead of using
different variants of Merkle trees.
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PRO product category

Appendix A. Monoid from Operad

Here we describe two constructions of the monoidal category from a plain operad and
the monoid from the monoidal category. Necessary knowledge about category theory and
about operads can be obtained in [31–35], respectively, while [36] serves as a begining in-
troduction to both subjects. The monoids from Section 2.2 are results of these constructions
applied to the magma and monoid operads.

Let us recall the direct definition a non-symmetric set operad.

Definition A1. A non-symmetric operad is a sequence (P(n))n>1 of sets, whose elements are
called n-ary operations, equipped with

• for all positive integers n, m1, . . . , mn, a composition function

γn;m1,...,mn : P(n)× P(m1)× · · · × P(mn)→ P(m1 + · · ·+ mn)

(θ, θ1, . . . , θn) 7→ θ ◦ (θ1, . . . , θn),
(A1)

• an element 1 ∈ P(1) called the identity,

satisfying the following coherence axioms, associativity and identity:

θ ◦
(

θ1 ◦ (θ1,1, . . . , θ1,m1), . . . , θn ◦ (θn,1, . . . , θn,mn)
)

=
(

θ ◦ (θ1, . . . , θn)
)
◦ (θ1,1, . . . , θ1,m1 , . . . , θn,1, . . . , θn,mn),

(A2)

θ ◦ (1, . . . , 1) = θ = 1 ◦ θ. (A3)

https://github.com/annanelasa/ProofStream
https://ncatlab.org/nlab/show/PRO
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A morphism of non-symmetric operads P→ P′ is a family of maps
(

gn : P(n)→ P′(n)
)

n>1
compatible with compositions and units:

gm1+···+mn γn;m1,...,mn = γn;m1,...,mn(gn × gm1 × · · · × gmn), n, m1, . . . , mn ∈ Z>0,

g1(1) = 1.

Example A1. The components of a free magma with a single generator forms a non-symmetric
magma operad (Mn)n>1. If elements ofMn are interpreted as strict binary trees with n leaves,
the composition t ◦ (t1, . . . , tn) is obtained by gluing together of i-th leaf in t with the root of ti for
i = 1, 2, . . . n, and the unit is zero height tree •.

The free semi-group with a single generator can be identified with the additive semigroup of
positive integers (Z>0,+). The non-symmetric semi-group operad has the single n-ary operation
(m1, . . . , mn) 7→ m1 + · · ·+ mn for each n > 0.

The map t 7→ n`(t) (number of leaves of strict binary tree) is the unique morphism between
the magma operad and the semi-group operad.

Given a non-symmetric operad P, there exists a general functorial construction P 7→
P̂ of the corresponding PRO. P̂ is a category whose objects are non-negative integers,
morphisms are finite lists of operations:

m1 + · · ·+ mn
(θ1,...,θn)−−−−−→ n, θi ∈ P(mi), 1 6 i 6 n

and for θi ∈ P(mi), 1 6 i 6 n, the composition in P̂ is expressed via the operadic composition:

(θ1, . . . , θn) ◦ (θ1,1, . . . , θ1,m1 , . . . , θn,1, . . . , θn,mn)

:=
(
θ1 ◦ (θ1,1, . . . , θ1,m1), . . . , θn ◦ (θn,1, . . . , θn,mn)

)
.

The category P̂ is equipped with a strict monoidal structure (⊕, 0) given by addition
of objects and by concatenation of a list on morphisms:(

m
(θ1,...,θn)−−−−−→ n

)
⊕
(

m′
(θ′1,...,θ′n′ )−−−−−→ n′

)
:=

(
m + m′

(θ1,...,θn ,θ′1,...,θ′n′ )−−−−−−−−−→ n + n′
)

.

Let us consider the pushout (i.e., the colimit) of the diagram of sets and functions:

Mor P̂ Id←− Mor P̂ −⊕1−−→ Mor P̂,

involving the set Mor P̂ of all morphisms in P̂. This is the factor-set Mor P̂/ ∼ by the transi-
tive relation ∼ obtained by identifications (θ1, . . . , θn) ∼ (θ1, . . . , θn, 1) for each morphism
(θ1, . . . , θn) in P̂. Moreover, this factor-set can be naturally identified with a set of infinite
sequences (θi)i>0 with only finite number θi 6= 1.

One can turn this set into a monoid. The composition of sequences θ and θ′ with
θi ∈ P(mi) is described as

(θ ◦ θ′)i = θi ◦ (θ′j)Mi−16j<Mi , Mi =
i

∑
j=0

mj.

The unit for this composition is the constant sequence (1)i>0.
The natural projection π : Mor P̂→ Mor P̂/ ∼ is a functor with an additional property:

π(θ ⊕ 1) = π(θ).

Appendix B. Software Implementation

The software is implemented in C] as a console application based on a single class
with static procedures. Due to the peculiarities found during the studies, it turned out to
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be convenient to implement 2× 2 cases as separate procedures DP(), DS(), SP(), SS(), where
the first (respectively second) letter in the name corresponds to the case when bbehaviour is
D[eterministic] or S[tochastic] (respectively bshape is P[erfect] or S[trict]). In addition, we
have procedures SPP(), SSP() which repeat simulations and with additional external loop
over the number of positions. The Main() procedure calls one of the above 6 procedures
depending on the input parameters, which corresponds to command lines “>ProofStream
. . . ” with the following 4, 5, 6 or 8 parameters.

Two cases when bbehaviour is deterministic:

• >ProofStream 1 0 nbl nst npr
In the case bshape is strict is the most simple. The corresponding calculations helped to
formulate the results from Section 4.1 which all then was proved.

• >ProofStream 1 1 nst npr
In the case bshape is perfect the output is the complete description of ultimately periodic
sequences of buffer states and heights of published trees for special values of number
of steps nst and number of provers npr. Hypothesis 1–4 are based on numerous
computation.

Two cases when bbehaviour is stochastic require the additional parameter: the number
of positions npos. They use a pseudo-random number generator with seeds obtained from
cryptographic RNG.

• >ProofStream 0 0 nbl nst npr npos
• >ProofStream 0 1 nbl nst npr npos

Graphs in Figures 4–6 were obtained using Wolfram Mathematica. A part of data to
plot as well as some result in Tables 2–4 are results of running loop over different parameter.
In particular, the loop for(int npos = min; npos < max; npos+= increment){. . . } is called by
the command lines:

• >ProofStream 0 0 nsimulations nbl nst npr min max increment
• >ProofStream 0 1 nsimulations nbl nst npr min max increment

The initial C] code with a brief description and some calculation examples is available
at the annanelasa/ProofStream repo on GitHub.
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