
Citation: Yao, J.; Matusiewicz, K.;

Zimmer, V. Post Quantum Design in

SPDM for Device Authentication and

Key Establishment. Cryptography

2022, 6, 48. https://doi.org/10.3390/

cryptography6040048

Academic Editor: Josef Pieprzyk

Received: 12 August 2022

Accepted: 8 September 2022

Published: 21 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Article

Post Quantum Design in SPDM for Device Authentication and
Key Establishment
Jiewen Yao * , Krystian Matusiewicz and Vincent Zimmer

Intel Corporation, 2200 Mission College Blvd, Santa Clara, CA 95054, USA
* Correspondence: jiewen.yao@intel.com

Abstract: The Security Protocol and Data Model (SPDM) defines a set of flows whose purpose
includes the authentication of a computing device’s hardware identity. SPDM also allows for the cre-
ation of a secure session wherein data communication between two devices has both confidentiality
and integrity protection. The present version of SPDM, namely version 1.2, relies upon traditional
asymmetric cryptographic algorithms, and these algorithms are known to be vulnerable to quantum
attacks. This paper describes the means by which support for post-quantum (PQ) cryptography
can be added to the SPDM protocol in order to prepare SPDM for the upcoming world of quantum
computing. As part of this paper, we examine the SPDM 1.2 protocol and discuss various aspects of
using PQC algorithms, including negotiation of the use of post-quantum cryptography (PQC) algo-
rithms, support for device identity reporting, mechanisms for device authentication, and establishing
a secure session. We consider so-called “hybrid modes” where both classical and PQC algorithms
are used to achieve security properties, especially given the fact that these modes are important
during the transition period from the classical to the quantum computing regime. We also share our
experience with implementing a software embodiment of PQC in SPDM, namely “PQ-SPDM”, and
we provide benchmarks that evaluate a subset of the winning NIST PQC algorithms.

Keywords: PQ digital signature; PQ key establishment; post-quantum SPDM; device authentication;
device secure session

1. Introduction
1.1. The Threat of Quantum Computers

Virtually all asymmetric cryptosystems used in practice are based on one of two
difficult computational problems, either integer factorization or finding discrete logarithms
in appropriately chosen cyclic groups. Concrete examples include RSA, ECDSA, and
EdDSA for digital signatures and ephemeral DiffieHellman over finite fields (FFDHE) or
elliptic curves (ECDHE) for key establishment.

Unfortunately, all of the above listed algorithms can be broken by a sufficiently
large quantum computer. This lack of safety is based upon attacks leveraging Shor’s
algorithm [1–4] that can break cryptosystems relying upon the hardness of integer fac-
torization and discrete logarithms in abelian groups. While the race to build large-scale
quantum computers is still at an early phase, a recent survey [5] shows that many ex-
perts expect quantum computers capable of breaking RSA2048 to be available in fifteen to
thirty years.

To address this challenge, alternatives to vulnerable algorithms have been studied
over the past fifteen years, and the notion of post-quantum cryptography algorithms (PQC) has
emerged. They are classical algorithms (requiring only classical computers to be executed)
that are expected to be secure against both classical and quantum attacks. This process
accelerated after the National Institute of Standards and Technology (NIST) announced a
competition to select a suite of quantum resistant algorithms [6].

Cryptography 2022, 6, 48. https://doi.org/10.3390/cryptography6040048 https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography6040048
https://doi.org/10.3390/cryptography6040048
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0000-0003-1944-3277
https://orcid.org/0000-0002-1817-7176
https://doi.org/10.3390/cryptography6040048
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography6040048?type=check_update&version=2

Cryptography 2022, 6, 48 2 of 23

1.2. Device Security and SPDM

The Security Protocol and Data Model (SPDM) 1.2 specification [7] is defined by
the Distributed Management Task Force (DMTF). SPDM entails various usages, includ-
ing device identity collection, device authentication, measurement collection, and device
secure session establishment. The SPDM protocol is a standard for use by the broad de-
vice community. SPDM has been adopted by various other standard groups, including
Peripheral Component Interconnect (PCI) [8], Compute Express Link (CXL) [9], Mobile
Industry Processor Interface (MIPI) [10], and Trusted Computing Group (TCG) [11]. For
example, various application protocols have been created above the SPDM protocol, includ-
ing PCI express (PCIe) Integrity and Data Encryption (IDE) Key Management (IDE_KM)
protocol [12] for PCIe link encryption, CXL Integrity and Data Encryption (IDE) Key Man-
agement (IDE_KM) protocol [13] for CXL link encryption, PCI express TEE Device Interface
Security Protocol (TDISP) [14] for confidential computing, and MIPI Service Association
Configuration Protocol (SACP) [15] for automotive system security management. The TCG
Platform Firmware Profile Standard [16] and Open Compute Project (OCP) Attestation of
System Components requirements [17] also relies upon SPDM-based device attestation for
the associated the platform.

The current SPDM 1.2 specification uses traditional asymmetric cryptographic algo-
rithms that will be vulnerable to quantum attacks. Since some devices are expected to have
long lifetimes in the field and need to be supported well beyond 2030, it seems prudent to
consider supporting post-quantum cryptography (PQC) in the SPDM protocol.

A significant body of research has been dedicated to the augmentation of network
security infrastructure with PQC capabilities, including X.509 certificates [18–22], Media
Access Control security (MACsec) [23], Internet Protocol Security (IPSec) [24,25], Trans-
port Layer Security (TLS) [26–36], Secure Shell (SSH) [32,37], and WireGuard [38–40]. In
addition, PQC algorithms have been implemented in devices as part of their secure boot
capability [41,42].

As far as we know, this paper is the first study of PQC algorithm adoption for a
device communication security protocol, such as SPDM. This aspect seems to be currently
particularly relevant for the Internet of Things (IoT) ecosystem. The IoT market is expanding
with diverse security needs, including long-term security requirements. In addition, these
IoT devices need to be supported by backend services where performance is also critical
due to the sheer number of endpoint devices.

1.3. Our Contributions

The focus of this analysis includes infrastructure to support post-quantum crypto-
graphic algorithms in the SPDM protocol, including algorithm negotiation, device certificate
transfer, digital signature signing and verification, and authenticated key exchange for
secure sessions. We evaluated a prototype implementation of a PQC-enlightened SPDM
stack in a device with different modes:

• Traditional mode: PQC algorithms are not used.
• PQC mode: only PQC algorithms are used.
• Hybrid mode: both traditional algorithms and PQC algorithms are used.

Hybrid mode was studied in [43,44] and recommended by NIST during the transition
and migration phases [45].

We also consider design challenges for adopting post-quantum algorithms for de-
vices with SPDM capability, including considerations for backward compatibility and
message size.

The paper is organized as follows. We begin with a brief recap of SPDM in Section 2.
Section 3 is dedicated to the extending algorithm negotiation phase. Then, we follow with
changes to support PQC-ready device identities in Section 4, and we continue with device
authentication in Section 5. The next topic entails establishment of secure session keys,
which is treated in detail in Section 6 with an associated security analysis. Finally, we report

Cryptography 2022, 6, 48 3 of 23

the results of our proof-of-concept implementation and related discussion in Section 7 and
Section 8, respectively.

The PQC algorithm selection has been driven by the National Institute of Standards
and Technology (NIST) [46]. Although the protocol design is algorithm agnostic, thus
allowing usage with any new PQC scheme, we report performance results for the four
recently announced winners of the NIST PQC competition.

As a final note, given that symmetric cryptographic algorithms can be used in the
quantum computing world with increased key sizes and larger hash digests, we do not
study any symmetric cryptographic algorithms for SPDM, including hash algorithms or
Authenticated Encryption with Associated Data (AEAD) algorithms.

1.4. Related Work

Various studies have been undertaken to investigate options for adding PQC to devices.
For example, ref. [47] provided a general survey for PQC algorithm adoption in an IoT
device; ref. [48,49] evaluated the runtime PQC algorithm performance of the TLS protocol
for an IoT or embedded devices. In [50], the authors evaluated the boot time performance
impact of PQC digital signature verification for secure boot; refs. [51,52] provided a survey
of a hardware implementation of Lattice-Based Cryptography (LBC) for IoT Devices. In [53],
the authors discussed the usage of LBC, including identity-based encryption, homomorphic
encryption, and secure authentication key exchange, along with the performance impact.

2. SPDM Background
2.1. SPDM Device Authentication

In the SPDM specification, the authentication of the identity of a device involves
two steps: device identification and device authentication.

During the device manufacturing phase, each device is provisioned with a device
certificate chain. This certificate chain can be treated as the device identity. The device
certificate chain includes all of the certificates from a trusted root certificate authority
(CA) certificate, and these certificates chains are linked to a device-specific leaf certificate.
The device certificate contains the public key that corresponds to the device private key.
The root CA endorses the device public/private key pair through the certificate chain.
At runtime, an SPDM initiator, also known as the “SPDM requester”, may use a GET_-
CERTIFICATE message to ask an SPDM device, also known as an “SPDM responder”, to
return its certificate chain as the device’s identity.

The SPDM device authentication step uses a challenge–response mechanism. The
initiator (requester) sends a CHALLENGE message to the SPDM device (responder). The
CHALLENGE message includes a nonce to prevent any replay attacks. As a next step, the
device signs the challenge with its private key and returns a CHALLENGE_AUTH message. The
authentication initiator, in turn, can verify the digital signature by using the device public
key extracted from the certificate chain.

2.2. SPDM Secure Session

The SPDM specification also allows for two devices to establish a secure communi-
cation channel, similar to the capability of the network protocol Transport Layer Security
(TLS) 1.3. To initiate such a channel, an SPDM requester and an SPDM responder may
use an authenticated key exchange protocol to derive a set of session keys. These session
keys will provide for both confidentiality and integrity of the communication data by using
encryption and message authentication.

2.3. SPDM Algorithm Negotiation

The SPDM specification defines a message NEGOTIATE_ALGORITHMS, which is sent by
an SPDM requester, along with a message ALGORITHMS, which in turn is returned by the
SPDM responder. Together these two messages perform the task of negotiating a common
set of cryptographic algorithms. The cryptographic algorithm selection in SPDM is different

Cryptography 2022, 6, 48 4 of 23

from the implementation mechanism in TLS. Specifically, a TLS entity selects one cipher
suite that covers all algorithms, including key exchange or agreement, authentication, block
or stream ciphers, and message authentication. An SPDM requester, on the other hand,
lists all individual algorithms it can support, such as hash algorithms, responder direction
asymmetric digital signature algorithms, requester direction asymmetric digital signature
algorithms, key exchange algorithms and Authenticated Encryption with Associated Data
(AEAD) ciphers. With this requester information in hand, the SPDM responder chooses
one of these options in each category as the final negotiated algorithm. This differs from
TLS cipher suites in that each type of SPDM algorithm can be negotiated separately.

3. Post-Quantum Design for SPDM Algorithm Negotiation

The SPDM specification defines cryptographic algorithms separately. An SPDM
entity can negotiate an individual cipher, such as a hash algorithm, a responder direction
asymmetric digital signature algorithm, a requester direction asymmetric digital signature
algorithm, a key exchange algorithm, and an Authenticated Encryption with Associated
Data (AEAD) cipher suite. Table 1 shows an example.

Table 1. Current SPDM algorithm negotiation (example).

Algorithm Requester’s List Responder’s Selection

Hash
SHA256,
SHA384

SHA384

Responder Digital Signature
RSASSA_3072,
ECDSA_NIST_P256,
ECDSA_NIST_P384

ECDSA_NIST_P384

Requester Digital Signature
RSASSA_3072,
RSAPSS_3072

RSAPSS_3072

Key Exchange
FFDHE_3072,
ECDHE_secp256r1,
ECDHE_secp384r1

ECDHE_secp384r1

AEAD
AES_256_GCM,
CHACHA20_POLY1305

AES_256_GCM

In order to support a post-quantum world, we extend three algorithm types: PQC
responder digital signature algorithm, PQC requester digital signature algorithm, and PQC
key exchange algorithm. The original responder digital signature algorithm, requester
digital signature algorithm, and key exchange algorithms are interpreted as traditional
algorithms only for purposes of compatibility support.

Table 2 shows an example of an SPDM algorithm negotiation with PQC in traditional
mode, PQC mode, and hybrid mode. The Responder Digital Signature designates the
SPDM asymmetric key signature algorithm for purposes of signature generation by the
responder and verification by the requester. The Requester Digital Signature describes
the SPDM asymmetric key signature algorithm for signature generation by the requester
and verification by the responder. The PQC algorithms are separated from traditional
algorithms because we expect that the responder will select both one of the PQC algorithms
and one of the traditional algorithms in hybrid mode.

Assuming that the SPDM Requester has full capabilities, including traditional-only,
PQC-only and hybrid mode, the requester needs to declare all supported algorithms.
Given this declaration, the SPDM responder needs to make the final decision. As such, if
the responder wants to choose traditional-only mode, it will select one of the traditional
algorithms and not select any PQC algorithm. In turn, if the responder wants to choose PQC-
only mode, it will select one of the PQC algorithms and not select any of the traditional
algorithms. Finally, if the Responder wants to choose hybrid mode, it will select one
traditional algorithm and one PQC algorithm.

Cryptography 2022, 6, 48 5 of 23

Table 2. SPDM Algorithm negotiation with PQC (example).

Algorithm Requester’s List
(Full Capability)

Responder’s Selection
(Trad. Mode)

Responder’s Selection
(PQC Mode)

Responder’s Selection
(Hybrid Mode)

Hash SHA256,
SHA384

SHA384 SHA384 SHA384

Responder Digital
Signature

RSASSA_3072,
ECDSA_NIST_P256,
ECDSA_NIST_P384

ECDSA_NIST_P384 - ECDSA_NIST_P384

Requester Digital
Signature

RSASSA_3072,
RSAPSS_3072

RSAPSS_3072 - RSAPSS_3072

Key Exchange FFDHE_3072,
ECDHE_secp256r1,
ECDHE_secp384r1

ECDHE_secp384r1 - ECDHE_secp384r1

AEAD AES_256_GCM AES_256_GCM AES_256_GCM AES_256_GCM

PQC Responder Digital
Signature

Falcon-512,
Falcon-1024

- Falcon-512 Falcon-512

PQC Requester Digital
Signature

Dilithium2,
Dilithium5

- Dilithium2 Dilithium2

PQC Key Exchange Kyber512,
SIDH-p434,
SIKE-p434

- SIDH-p434 SIDH-p434

There is one limitation for the use of this mechanism, though. Namely, a requester or a
responder may want to say: “I can support either traditional mode or PQC mode, but I do
not want to support hybrid mode”. For this case, there is no way to pass such information
via the NEGOTIATE_ALGORITHMS request and ALGORITHMS response messages. As such, we
need to use the GET_CAPABILITIES request and CAPABILITIES response messages. To ac-
commodate this use-case, we have added additional capabilities bits, including:

• PQC Capability: this means an entity supports PQC mode;
• Hybrid Capability: this means an entity support hybrid mode.

If both entities indicate PQC capability, then PQC mode is chosen. If both entities
indicate hybrid capability, then hybrid mode is chosen. If both PQC capability and hybrid
capability are selected, then hybrid mode takes precedence. We do not define a traditional
algorithm capability for compatibility consideration, though.

The SPDM specification also defines the timing requirements. The requester and
the responder need to inform their peer of a CTExponent timing parameter, which is the
maximum amount of time for cryptographic processing. A PQC algorithm might have
different timing requirements compared to a traditional algorithm. In addition, the timing
in hybrid mode could be the addition of timing for both traditional mode and PQC only
mode. Unfortunately, the timing parameter in CAPABILITIES is negotiated before the
algorithm negotiation in ALGORITHMS. As such, it is difficult to use a single CTExponent
to indicate the timing parameter of three different modes. To address this concern, the
setting of a maximum value is one option, but this maximum value might cause the
requester to wait for en excessive period prior to a retry. The other option is to add a new
PQCTExponent to indicate the PQC-specific timing. With this new parameter in hand, the
final interpretation of the timing parameter could be:

• Timing in Traditional Mode: 2CTExponent;
• Timing in PQC Mode: 2PQCTExponent;
• Timing in Hybrid Mode: 2CTExponent + 2PQCTExponent.

Cryptography 2022, 6, 48 6 of 23

3.1. Design Considerations
3.1.1. Mode Identification

A requester and a responder may negotiate traditional algorithms and PQC algorithms
separately. A device that only supports traditional mode may provide or select traditional
algorithms and ignore PQC algorithms. A PQC-mode-only device may provide or select
PQC algorithms and ignore traditional algorithms. Finally, a hybrid mode-aware device
may provide a list of traditional algorithms and a list of PQC algorithms. Then, the hybrid
mode-aware device peer may select one traditional algorithm and one PQC algorithm.
For any of these cases, an SPDM requester or an SPDM responder can ascertain the final
negotiated mode by checking if both traditional algorithms and PQC algorithms have
been negotiated.

The other option is to merge the traditional algorithm and PQC algorithm together
in one field. There is no impact to a requester in choosing this approach. The impact for a
responder is that we need to allow the algorithm selection field to designate one or two
algorithms. If only one algorithm is selected, then it is traditional mode or PQC mode. If
two algorithms are selected, namely one that is traditional and the other that is PQC, then
it is hybrid mode.

3.1.2. No Combinatorial Explosion

Since SPDM allows both entities to negotiate algorithms individually, there is no
danger of a combinatorial explosion of algorithms. We use a similar technique to handle
the hybrid mode. To support this economy of storage, SPDM uses one bit to indicate one
algorithm. As such, in order to support N traditional mode ciphers and M PQC mode
ciphers, the total required bit space is (N + M).

3.1.3. Security Level Matching

Technically, traditional algorithms and PQC algorithms are orthogonal. In the real
world, a product may need to meet an NIST security level requirement. As such, an entity
should choose the required traditional algorithm and a PQC algorithm with a matching
security level in hybrid mode. For example, the Level 1 PQC algorithm should go with the
ECC P-256 curve, the Level 3 PQC algorithm should go with the ECC P-384 curve, and the
Level 5 PQC algorithm should go with the ECC P-521 curve.

3.1.4. Algorithm Set Matching

In addition to a set of NIST algorithms, such as SHA, AES, RSA, DH, and ECC, SPDM
1.2 also adds support for Shang-Mi (SM) algorithms, such as SM3, SM4, and SM2. In the
real world, the product may choose either an NIST algorithm set or an SM algorithm set. In
the future, if NIST or SM define their own PQC algorithm sets, the PQC algorithm should
go with the traditional algorithm in the same set.

3.1.5. Hash Algorithm Used in Digital Signature

Some traditional digital signature algorithms require fixed length input messages for
signing. To reduce the combinatorial explosion problem, the hash algorithm is negotiated
separately from the digital signature algorithm in SPDM. Some PQC digital signature
algorithms, such as SPHINCS+, have an associated hash algorithm such as SHA256 or
SHAKE256. This leads to the challenge of how to indicate which hash algorithm is required
for a given PQC digital signature. Currently, we let the original SPDM hash algorithm
only associate with the traditional digital signature. The PQC digital signature algorithm
should indicate the hash algorithm explicitly, though. For example, SPHINCS+-SHA256-
128f-robust or SPHINCS+-SHAKE256-128f-robust are potential options.

4. Post-Quantum Design for SPDM Device Identity

The SPDM specification uses an X.509 certificate chain as the device identity. If an
SPDM device supports a PQC algorithm, whether it be PQC and/or hybrid mode, the

Cryptography 2022, 6, 48 7 of 23

device should carry an X.509 certificate with PQC support. This X.509 certificate can be a
PQC or hybrid X.509 certificate. In hybrid mode, the SPDM requester can use the GET_-
CERTIFICATE command to retrieve one X.509 certificate chain and the SET_CERTIFICATE
command to provision one. This one certificate chain contains both a traditional algorithm
and a PQC algorithm. In either PQC mode or traditional mode, this hybrid certificate chain
may still be used since the verifier can just skip the unneeded algorithm and certificate
digital signature.

An alternate approach is to extend the GET_CERTIFICATE command to indicate which
type of certificate chain is required, namely a traditional certificate chain or a PQC certificate
chain. The Certificate Type can be in param2 and includes

• Traditional Certificate Chain (0),
• PQC Certificate Chain (1),
• Hybrid Certificate Chain (2).

In hybrid mode, the requester needs to request the certificate chain twice: one for the
traditional certificate chain and the other for the PQC certificate chain.

The X.509 certificate format is out of scope of the SPDM specification. As such, we will
not discuss the details here.

The SPDM specification may also allow a device to provision a raw public key of the
peer during the manufacturing phase. In this case, the trust of the public key of the peer is
established without the certificate-based public key infrastructure. If PQC is required in
the raw public key scenario, then the manufacturer may need to provision the public keys
for both a traditional algorithm and a PQC algorithm. The format of the raw public keys is
out of scope of the SPDM specification. Given that the raw key format is implementation
specific, we omit a discussion of the details here.

The SPDM 1.2 specification defines an alias certificate mode to support device com-
patibility with the Trusted Computing Group (TCG) Device Identity Composition Engine
(DICE) specification [54]. A DICE device may include a device ID certificate and an alias
certificate. The device ID certificate includes the device ID key derived from the Compound
Device Identity (CDI) value computed by the DICE process. The certificate depends upon
the unique device secret (UDS) and measurement of DICE layer 0. The alias certificate
includes a device alias key that is computed using the last CDI value in the chain of the
device Trust Computing Base (TCB) component. The alias certificate is usually generated
during the runtime phase of a device because the CDI includes the measurement of the
last layer, which includes mutual firmware elements. If a DICE device chooses to support
a PQC alias certificate chain or hybrid alias certificate chain, each DICE layer needs to
support the PQC algorithm.

4.1. Design Considerations
4.1.1. No Duplicate Message in Transport

In hybrid mode, if we require an entity to pass only one hybrid certificate chain, then
the message includes the identity information. In this case, the authority information just
needs to be transmitted once.

If we require an entity to pass both a traditional certificate chain and a PQC certificate
chain, then the identity information and authority information will be transmitted twice.
In addition, both certificate chains need to be included in the transcript calculation. This
doubling of communication is not efficient and might cause latency problems. In addition,
the entity needs to check if the two certificate chains use the same identity information or
authority information. If the information provided is different, then the entity needs to
record the difference and verify against the pre-defined policy. Such bookkeeping adds
significant complexity.

Cryptography 2022, 6, 48 8 of 23

4.1.2. Local Storage Size

When an entity considers the compatibility requirements, the entity will consider
the capability of the peer. Because the peer may support traditional mode, PQC mode,
and hybrid mode, the entity may need to prepare a traditional mode certificate chain, a
PQC mode certificate chain, and a hybrid mode certificate chain. A small device may only
have limited storage size. As such, provisioning three certificate chains might not be the
best choice.

4.1.3. Transport Message Size

The SPDM specification does not define the message size limitation. However, any
secured message using SPDM [55] is constrained to a 16-bit application data length field.
As such, the maximum size of an encrypted message is 216 bytes. The SPDM transport
layer binding specifications also have a size limitation. For example, the PCI Data Object
Exchange (DOE) mailbox [12] uses an 18-bit length field for the double-word (4 byte)
number, which means the maximum message size is 220 bytes. The Management Compo-
nent Transport Protocol (MCTP) over System Management Bus (SMBus)/Inter-Integrated
Circuit (I2C) [56–58] only supports 256 bytes as a maximum size in a given packet.

For a large message that may potentially exceed the 256-byte limitation, SPDM 1.0
and 1.1 defines a command-specific chunking mechanism. For example, the GET_CERTI-
FIACTE request message includes both 16-bit OFFSET and 16-bit LENGTH fields to indicate
the requested certificate data buffer offset and length. The CERTIFICATE response message
includes a 16-bit PortionLength and 16-bit RemainderLength to indicate the transmitted
data buffer length and remaining data buffer length, respectively. SPDM does not rely on
any low level transport layer fragmentation support. A more generic chunking mechanism
(CHUNK_CAP) is defined in SPDM 1.2. As such, all SPDM messages can support chunking
after the chunking capability is negotiated, such as the SET_CERTIFIACTE and CSR.

The SPDM public certificate size depends upon the PQC public key size. Some PQC
algorithms, such as Dilithium and Falcon, use public keys larger than 256 bytes. The public
key sizes of both Rainbow and GeMSS algorithms are larger than 216 bytes. As such, the
current GET_CERTIFICATE command cannot meet the requirement. We may need to extend
the 16-bit offset and length field to 32 bits in a new version of GET_CERTIFICATE, or we can
redefine GET_CERTIFICATE to use the generic SPDM 1.2 chunking mechanism. However,
considering a recent attack [59] on Rainbow, these PQC algorithms with larger key size
might not be a concern going forward.

In addition, we may define a new format for secured message using SPDM [55] by
extending the 16-bit application length field to 32 bits. This would help accommodate
devices without the capability for chunking.

5. Post-Quantum Design for SPDM Device Authentication

Some SPDM messages, such as CHALLENGE_AUTH response, MEASUREMENTS response,
KEY_EXCHANGE_RSP response, and FINISH request, require a digital signature. The digital
signature can include RSA, ECDSA, EdDSA, and SM2. The SPDM specification defines the
binary format of the digital signature for a specific algorithm with a fixed size.

The signature format in PQC mode is exactly the same as the one in traditional mode.
The signature size can be interpreted as the digital signature size of the PQC algorithm.
In hybrid mode, we require that both a traditional algorithm and a PQC algorithm sign
the same message data. The digital signature field in the SPDM message entails the
concatenation of the two signatures. The first part is the traditional digital signature
with fixed size, and the second part is the PQC digital signature. In order to maintain
compatibility, we do not add the signature size field. The format of the PQC digital
signature should be defined by the PQC algorithm.

Figure 1 shows the high-level view of SPDM authentication message flow.

Cryptography 2022, 6, 48 9 of 23

Cryptography 2022, 1, 0 9 of 24

Initiator Responder

randi ← {0, 1}256

challengei ← challengeopi||randi||opaquei
challengei

randr ← {0, 1}256

challengeauth1r ← challengeauthopr||randr||opaquer
thauth← spdmvca||pkr||challengei||challengeauth1r

sigr ← SIG.Sign(skr, thauth)
challengeauthr ← challengeauth1r||signr

challengeauthr

thauth← spdmvca||pkr||challengei||challengeauth1r
SIG.Verify(pkr, thauth)

Figure 1. SPDM device authentication flow.

5.1. Message Flow
5.1.1. First Message

CHALLENGE (initiator to responder)

1. The initiator generates a 256-bit random number (randi) as a challenge value to prevent
the replay attacks.

2. The CHALLENGE message (challengei) is the concatenation of the opcode (challengeopi),
the random number (randi), and the initiator specific opaque data.

5.1.2. Second Message

CHALLENGE_AUTH (responder to initiator)

1. The responder also generates a 256-bit random number (randr).
2. The responder can prepare the CHALLENGE_AUTH message (challengeauth1r), which is

concatenation of the opcode (challengeauthopr), the random number (randr), and the
responder specific opaque data.

3. Now, the responder creates the transcript for authentication (thauth), which is the
concatenation of the negotiated SPDM protocol version, capability and algorithm
(spdmvca), the permanent public certificate chain or public key of the responder as
identity information (pkr), the CHALLENGE message from initiator (challengei), and the
response generated CHALLENGE_AUTH message (challengeauth1r).

4. The next step is to sign the transcript (thauth) with the responder secret key (skr) and
generate the signature (sigr).

5. The final full CHALLENGE_AUTH message (challengeauthr) is the concatenation of the
response generated CHALLENGE_AUTH message (challengeauth1r) and the signature
(sigr).

After the initiator receives the CHALLENGF_AUTH, it will follow the same process to
construct the transcript for authentication (thauth) and verify the signature (sigr) with
the responder public key (pkr). If the signature verification passes, then the initiator
authenticates the responder successfully.

Figure 1. SPDM device authentication flow.

5.1. Message Flow
5.1.1. First Message

CHALLENGE (initiator to responder)

1. The initiator generates a 256-bit random number (randi) as a challenge value to prevent
the replay attacks.

2. The CHALLENGE message (challengei) is the concatenation of the opcode (challengeopi),
the random number (randi), and the initiator specific opaque data.

5.1.2. Second Message

CHALLENGE_AUTH (responder to initiator)

1. The responder also generates a 256-bit random number (randr).
2. The responder can prepare the CHALLENGE_AUTH message (challengeauth1r), which is

concatenation of the opcode (challengeauthopr), the random number (randr), and the
responder specific opaque data.

3. Now, the responder creates the transcript for authentication (thauth), which is the
concatenation of the negotiated SPDM protocol version, capability and algorithm
(spdmvca), the permanent public certificate chain or public key of the responder as
identity information (pkr), the CHALLENGE message from initiator (challengei), and the
response generated CHALLENGE_AUTH message (challengeauth1r).

4. The next step is to sign the transcript (thauth) with the responder secret key (skr) and
generate the signature (sigr).

5. The final full CHALLENGE_AUTH message (challengeauthr) is the concatenation of the re-
sponse generated CHALLENGE_AUTH message (challengeauth1r) and the signature (sigr).

After the initiator receives the CHALLENGF_AUTH, it will follow the same process to
construct the transcript for authentication (thauth) and verify the signature (sigr) with
the responder public key (pkr). If the signature verification passes, then the initiator
authenticates the responder successfully.

5.2. Design Considerations
5.2.1. Hybrid Digital Signature

For a hybrid digital signature, we require that both a traditional algorithm and a
PQC algorithm be used to sign the same message data. After signing, two signatures are
concatenated together.

We do not choose the option to let one algorithm sign the digital signature output
from the other algorithm. This aligns with the current practice of TLS hybrid mode.

Cryptography 2022, 6, 48 10 of 23

5.2.2. No Duplicate Message in Transport

In hybrid mode, both the traditional and PQC digital signatures are combined together.
There is no need to send the CHALLENGE/CHALLENGE_AUTH twice, namely one for classic
mode and the other for PQC mode. Instead, the transcript calculation just needs to happen
one time.

5.2.3. Transport Message Size

As we discussed in a previous section, there is a size limitation in the transport
message. Unfortunately, most post-quantum algorithms have a large digital signature
size. The signature size of Dilithium, Falcon, SPHINCS+, and picnic algorithms are larger
than 256 bytes. The signature size of picnic_{L3,L5}_{FS,UR,full} can be larger than
216 bytes.

Currently, there are multiple SPDM messages that include a digital signature, includ-
ing CHALLENGE_AUTH response, MEASUREMENTS response, KEY_EXCHANGE_RSP response, and
FINISH request message. In order to support the transportation of these large messages, we
can use the generic SPDM 1.2 chunking message for these instances.

5.2.4. Timing

As we discussed in a previous section, a PQC algorithm may have a different signature
generation timing requirement. Some hash-based signature (HBS) algorithms, such as
SPHINCS+, are much slower than the lattice-based algorithms, such as Dilithium2 or
Falcon. As such, the PQCTExponent should be larger than the maximum signing time for
the supported PQC signature algorithms.

6. Post-Quantum Design for SPDM Secure Session

SPDM defines two ways to build a secure session based on either a pre-shared key
(PSK) or an asymmetric key exchange. The PSK-based key exchange involves only a
hash-based message authentication code (HMAC), which is still secure against quantum
adversaries. The asymmetric key exchange uses an ephemeral Diffie–Hellman (DH) over
finite fields or elliptic curves. The SPDM specification defines the binary format of the DH
public key (ExchangeData) for both the SPDM requester and the SPDM responder.

The SPDM 1.2 specification only supports FFDHE and ECDHE. One-way authen-
tication is always required in an SPDM key exchange, whereas mutual authentication
is optional. Figure 2 provides the high-level overview of SPDM asymmetric handshake
message flow for mutual authentication. The step with an asterisk in the FINISH message
is not required for one-way authentication. The DH-related action is highlighted in blue.
The DH ephemeral secret key (esk) is highlighted in red, and the DH ephemeral public key
(epk) is highlighted in green.

NIST currently supports Key Encapsulation Mechanism (KEM) for the shared key
generation. The only DH-style PQC, namely Supersingular Isogeny Diffie–Hellman (SIDH),
has been proven vulnerable recently [60]. We adopted a KEM-style algorithm to support
the ExchangeData format in PQC mode. This is similar to the approach in traditional
mode. In this case, the requester’s ExchangeData is the requester’s public key generated
using the PQC KEM key generation algorithm. The responder’s ExchangeData is the
responder’s cipher text generated using the PQC KEM encapsulation. In hybrid mode,
the ExchangeData field in the SPDM message should be the concatenation of the two key
ExchangeData fields. The first part is the traditional key ExchangeData with a fixed size,
and the second part is the PQC key ExchangeData with a fixed size. The format of the PQC
key ExchangeData, such as public key and cipher text, should be determined by the selected
PQC algorithm. With this approach, only the key agreement part of SPDM is converted to
PQC. The remaining portion, such as the identity authentication, is unchanged.

Cryptography 2022, 6, 48 11 of 23

Cryptography 2022, 1, 0 11 of 24

Initiator Responder

(eski, epki)← DHE.Gen()
sidi ← {0, 1}16

randi ← {0, 1}256

keyexi ← keyexopi||sidi||randi||epki||opaquei
keyexi

(eskr, epkr)← DHE.Gen()
dhekey← DHE.Shared(eskr, epki)

sidr ← {0, 1}16

randr ← {0, 1}256

keyex1r ← keyexopr||sidr||randr||epkr||opaquer
(efk, ehki, ehkr)← SPDM.Derive(dhekey)

sigr ← SIG.Sign(skr, spdmvca||pkr||keyexi||keyex1r)
macr ←MAC.Mac(efk, spdmvca||pkr||keyexi||keyex1r||sigr)

keyexr ← keyex1r||sigr||macr

keyexr

dhekey← DHE.Shared(eski, epkr)
(efk, ehki, ehkr)← SPDM.Derive(dhekey)

SIG.Verify(pkr, spdmvca||pkr||keyexi||keyex1r)
MAC.Verify(efk, spdmvca||pkr||keyexi||keyex1r||sigr)

finish1i ← finopi
sigi ← SIG.Sign(ski, spdmvca||pkr||keyexi||keyexr||pki||finish1i)∗

maci ←MAC.Mac(efk, spdmvca||pkr||keyexi||keyexr||pki||finish1i||sigi)
finishpi ← finish1i||sigi||maci

finishi ← AEAD.Enc(ehki, finishpi)

finishi

AEAD.Dec(ehki, finishpi)
SIG.Verify(pki, spdmvca||pkr||keyexi||keyexr||pki||finish1i)∗

MAC.Verify(efk, spdmvca||pkr||keyexi||keyexr||pki||finish1i||sigi)
finishpr ← finopr

finishr ← AEAD.Enc(ehkr, finishpr)

finishr

AEAD.Dec(ehkr, finishpr)

Application Phase

Figure 2. Traditional SPDM DHE-based key exchange flow.

NIST currently supports Key Encapsulation Mechanism (KEM) for the shared key
generation. The only DH-style PQC, namely Supersingular Isogeny Diffie–Hellman (SIDH),
has been proven vulnerable recently [60]. We adopted a KEM-style algorithm to support
the ExchangeData format in PQC mode. This is similar to the approach in traditional
mode. In this case, the requester’s ExchangeData is the requester’s public key generated
using the PQC KEM key generation algorithm. The responder’s ExchangeData is the
responder’s cipher text generated using the PQC KEM encapsulation. In hybrid mode,
the ExchangeData field in the SPDM message should be the concatenation of the two key
ExchangeData fields. The first part is the traditional key ExchangeData with a fixed size,
and the second part is the PQC key ExchangeData with a fixed size. The format of the PQC
key ExchangeData, such as public key and cipher text, should be determined by the selected

Figure 2. Traditional SPDM DHE-based key exchange flow.

We did notice that the KEM-based authentication [61] was adopted by several standard
proposals, such as WireGuard [38] and KEMTLS [27,35,36]. However, following this
approach for SPDM will entail a significant impact for the SPDM KEY_EXCHANGE message
flow, as well as other digital-signature-based commands such as SPDM CHALLENGE or GET_-
MEASURMENT. Our future work entails exploring these various design approaches to support
SPDM KEM-based authentication, including analysis of any potential benefit therein.

6.1. SPDM KEM Message Flow

For PQC-SPDM, we use a KEM-based authenticated key exchange to replace DHE.
Figure 3 provides the high-level overview of a PQ-SPDM KEM-based handshake message
flow with mutual authentication. The step in the FINISH message that is typeset with an
asterisk is not required in one-way authentication. The KEM-related action is highlighted
in blue. The KEM ephemeral secret key (esk) is highlighted in red, and the KEM ephemeral
public key (epk) and cipher text are each highlighted in green. Here, spdmvca means
the SPDM transcript for the SPDM command/response: GET_VERSION/VERSION, GET_-
CAPABILITIES/CAPABILITIES, and NEGOTIATE_ALGORITHMS/ALGORITHMS.

Cryptography 2022, 6, 48 12 of 23

Cryptography 2022, 1, 0 13 of 24

Initiator Responder

(eski, epki)← KEM.Gen()
sidi ← {0, 1}16

randi ← {0, 1}256

keyexi ← keyexopi||sidi||randi||epki||opaquei
keyexi

(sharedkey,wrappedkey)← KEM.Encap(epki)
sidr ← {0, 1}16

randr ← {0, 1}256

keyex1r ← keyexopr||sidr||randr||wrappedkey||opaquer
(efk, ehki, ehkr)← SPDM.Derive(sharedkey)

sigr ← SIG.Sign(skr, spdmvca||pkr||keyexi||keyex1r)
macr ←MAC.Mac(efk, spdmvca||pkr||keyexi||keyex1r||sigr)

keyexr ← keyex1r||sigr||macr

keyexr

sharedkey← KEM.Decap(eski,wrappedkey)
(efk, ehki, ehkr)← SPDM.Derive(sharedkey)

SIG.Verify(pkr, spdmvca||pkr||keyexi||keyex1r)
MAC.Verify(efk, spdmvca||pkr||keyexi||keyex1r||sigr)

finish1i ← finopi
sigi ← SIG.Sign(ski, spdmvca||pkr||keyexi||keyexr||pki||finish1i)∗

maci ←MAC.Mac(efk, spdmvca||pkr||keyexi||keyexr||pki||finish1i||sigi)
finishpi ← finish1i||sigi||maci

finishi ← AEAD.Enc(ehki, finishpi)

finishi

finishpi ← AEAD.Dec(ehki, finishi)
SIG.Verify(pki, spdmvca||pkr||keyexi||keyexr||pki||finish1i)∗

MAC.Verify(efk, spdmvca||pkr||keyexi||keyexr||pki||finish1i||sigi)
finishpr ← finopr

finishr ← AEAD.Enc(ehkr, finishpr)

finishr

finishpr ← AEAD.Dec(ehkr, finishr)

Application Phase

Figure 3. PQ-SPDM KEM-based key exchange flow

6.1.1. First Message

KEY_EXCHANGE (initiator to responder)

1. The initiator needs to use the KEM algorithm to generate an ephemeral private/public
key pair (eski and epki).

2. To identify the session, the initiator generates a 16-bit session ID (sidi) as the first half
of a 32-bit session ID.

3. To prevent the replay attacks, the initiator generates a 256-bit random number (randi).
4. The KEY_EXCHANGE message (keyexi) is the concatenation of the opcode (keyexopi), the

initiator generated session ID (sidi), the random number (randi), the ephemeral public
key (epki), and the initiator specific opaque data.

Figure 3. PQ-SPDM KEM-based key exchange flow

6.1.1. First Message

KEY_EXCHANGE (initiator to responder)

1. The initiator needs to use the KEM algorithm to generate an ephemeral private/public
key pair (eski and epki).

2. To identify the session, the initiator generates a 16-bit session ID (sidi) as the first half
of a 32-bit session ID.

3. To prevent the replay attacks, the initiator generates a 256-bit random number (randi).
4. The KEY_EXCHANGE message (keyexi) is the concatenation of the opcode (keyexopi), the

initiator generated session ID (sidi), the random number (randi), the ephemeral public
key (epki), and the initiator specific opaque data.

6.1.2. Second Message

KEY_EXCHANGE_RSP (responder to initiator)

1. After the responder receives the KEY_EXCHANGE message, the responder uses the KEM
algorithm to encapsulate the ephemeral public key (epki) and derives the shared
session key and the cipher text.

Cryptography 2022, 6, 48 13 of 23

2. The responder generates a 16-bit session ID (sidr) as the second half of the 32-bit
session ID. The final session ID is the concatenation of the initiator’s session ID and
the responder’s session ID (sidi||sidr).

3. The responder also generates a 256-bit random number (randr).
4. Now, the responder can prepare the KEY_EXCHANGE_RSP message (keyex1r), which is

concatenation of the opcode (keyexopr), the half of the session ID (sidr), the random
number (randr), the KEM cipher text, and the responder specific opaque data.

5. From the shared key, the responder uses the SPDM-defined key schedule algorithm
to derive the ephemeral finish key (e f k), initiator direction ephemeral handshake
key (ehki), and responder direction ephemeral handshake key (ehkr). The ephemeral
finish key (e f k) will be used to generate a message authentication code (MAC) for the
transcript. The ephemeral handshake key will be used to AEAD the rest of messages
in the handshake phase such as FINISH and FINISH_RSP.

6. In order to prevent man-in-the-middle-attacks, the responder will create a transcript,
sign the transcript with its permanent private key (skr) ,and generate the digital
signature (sigr). Per the SPDM specification, the transcript of KEY_EXCHANGE_RSP for
signing is the concatenation of the negotiated SPDM protocol version, capability
and algorithm (spdmvca), the permanent public certificate chain or public key of the
responder as identity information (pkr), the KEY_EXCHANGE message from initiator
(keyexi), and the response generated KEY_EXCHANGER_RSP message (keyex1r).

7. The next step is to create another transcript and MAC the transcript with the ephemeral
finish key (e f k) and generate the MAC (macr). Per the SPDM specification, the tran-
script of KEY_EXCHANGE_RSP for MAC is the concatenation of the transcript of KEY_EX-
CHANGE_RSP for signing and the digital signature (sigr).

8. The final full KEY_EXCHANGE_RSP message (keyexr) is the concatenation of the response
generated KEY_EXCHANGER_RSP message (keyex1r), the digital signature (sigr), and the
MAC (macr).

6.1.3. Third Message

FINISH (initiator to responder)

1. Once the initiator receives the KEY_EXCHANGE_RSP message, it can use the KEM algo-
rithm to decapsulate the cipher text with its ephemeral private key (eski) and generate
the shared key.

2. The initiator can follow the SPDM-defined key schedule algorithm to derive the
ephemeral finish key (e f k) and initiate the direction ephemeral handshake key (ehki)
and the responder direction ephemeral handshake key (ehkr). These keys should be
same as the one derived by the responder.

3. Then, the requester will follow the same process to construct the transcript of KEY_EX-
CHANGE_RSP for signing and verifying the digital signature (sigr) with the responder’s
permanent public key (pkr). If the digital signature verification fails, then the initiator
will terminate the session handshake immediately.

4. The requester will follow the same process to construct the transcript of KEY_EX-
CHANGE_RSP for MAC and verify the MAC (macr) with the ephemeral finish key
(e f k). If the MAC verification fails, then the initiator will terminate the session
handshake immediately.

5. At this point, the initiator starts preparing the FINISH message (f inish1i) to close
the handshake.

6. If mutual authentication is required, the initiator will create the transcript of FINISH
for signing, which is the concatenation of spdmvca, the permanent public certificate
chain or public key of the responder as identity information (pkr), the KEY_EXCHANGE
message from initiator (keyexi) and the response generated KEY_EXCHANGER_RSP mes-
sage (keyexr), the permanent public certificate chain or public key of the initiator as
identity information (pki), and the initiator generated FINISH message (f inish1i). The

Cryptography 2022, 6, 48 14 of 23

initiator needs to sign the transcript with its permanent private key (ski) and generate
the digital signature (sigi).

7. Then the initiator will create the transcript of FINISH for MAC, which is the concate-
nation of the transcript of FINISH for signing and the digital signature (sigi). The
initiator needs to MAC the transcript with the ephemeral finish key (e f k) and generate
the MAC (maci).

8. The full FINISH message (f inishpi) is the concatenation of the requester generated
FINISH message (f inish1i), the digital signature (sigi), and the MAC (maci). The
digital signature is absent if mutual authentication is not required.

9. The final FINISH message (f inishi) is the AEAD of the full FINISH message (f inishpi)
with the initiator direction handshake key (ehki).

6.1.4. Fourth Message

FINISH_RSP (responder to initiator)
Once the responder receives the FINISH message, it performs AEAD decryption and

verifies the AEAD MAC.

1. If mutual authentication is required, the responder needs to verify the digital signature
with the initiator’s permanent public key (pki). If the digital signature verification
fails, then the responder will terminate the session handshake immediately.

2. The responder needs to verify the MAC with the ephemeral finish key (e f k). If the
MAC verification fails, then the responder will terminate the session
handshake immediately.

3. As the final step, the responder creates the FINISH_RSP message (f inishpr).
4. The final FINISH_RSP message (f inishr) is the AEAD of the responder-generated

FINISH_RSP message (f inishpr) with responder direction handshake key (ehkr).

After the requester receives the FINISH_RSP, it performs AEAD decryption and verifies
the AEAD MAC. If the AEAD MAC verification passes, then the secure session is set
up between the initiator and the responder. The session application message after the
handshake phase is unchanged, which uses the AEAD encryption.

In hybrid mode, there will be two shared secrets, including the traditional Diffie–
Hellman ephemeral (DHE) secret and the PQC shared secret. We concatenate them
together as the final SPDM key exchange shared secret and input it to the SPDM key
schedule algorithm.

Note that in the SPDM specification, the SPDM key schedule algorithm names the
SPDM key exchange shared secret to be “DHE Secret” because the traditional algorithms
only support DHE or ECDHE. We use a new term “key exchange shared secret” to avoid
any misunderstanding. In traditional mode, “key exchange shared secret" is “DHE Secret”.
In PQC mode, “key exchange shared secret" is “PQC shared secret”. In hybrid mode,
“key exchange shared secret” is “the concatenation of traditional DHE secret and PQC
shared secret”.

6.2. Security Analysis
6.2.1. KEM-Based Key Agreement

In this proposal, we replace the DHE-based key agreement with a KEM-based key
agreement. This mechanism is similar to the key exchange model in the TLS 1.3 hybrid
design [26]. The KEM includes three parts.

• KEM.Gen()->(esk,epk): A probabilistic key generation algorithm. It generates an
ephemeral public key (epk) and an ephemeral secret key (esk).

• KEM.Encap(epk)->(sharedkey, wrappedkey): A probabilistic encapsulation algorithm.
It takes epk as input and outputs a shared secret (sharedkey) and a ciphertext pk
wrapper (wrappedkey).

• KEM.Decap(esk, wrappedkey)->sharedkey: A decapsulation algorithm. It takes esk
and wrappedkey as input and outputs a shared key.

Cryptography 2022, 6, 48 15 of 23

Once the shared key is calculated, the remaining steps are the same as in the existing
SPDM standard, such as key derivation with the HMAC-based key derivation function
(HKDF), identity authentication using a digital signature, and the proof for the owner of
the session key via HMAC.

The required security property of a KEM scheme is indistinguishability under adaptive
chosen ciphertext attack (IND-CCA2), which ensures security against an active attacker.
All NIST PQC KEM finalists support IND-CCA2. However, two NIST PQC KEM alternate
candidates, BIKE and SIDH, only support indistinguishability under a chosen plaintext
attack (IND-CPA), which means they can only guarantee security against a passive attacker.
The implementer should choose a proper KEM algorithm based on the security needs. In
this case, we recommend ID-CCA2 schemes.

The existing SPDM only supports DHE. The DHE flow can be modeled as KEM, where

• KEM.Gen()->(esk,epk): To select an exponent x and calculate gx, then esk = x, epk = gx.
• KEM.Encap(epk)->(sharedkey, wrappedkey): To select an exponent y and calculate gy

and gx∗y, then sharedkey = gx∗y, wrappedkey = gy.
• KEM.Decap(esk, wrappedkey)->sharedkey: To compute sharedkey = gx∗y.

The details of DH-based KEM are described in RFC9180 [62].
The SPDM standard recommends that the requester and responder should generate a

fresh DHE key pair for each key exchange request or response. That means some key reuse
might be possible. The implementer should understand the limitation of key use, such as
forward secrecy, and understand the KEM algorithm specific requirement, such as number
of reuses. For example, PQC SIDH is not secure when keys are reused. We recommend
always using fresh, one-time key exchange values.

6.2.2. Shared Secret Combiner

In hybrid mode, we calculate the f inal_shared_secret to be the concatenation of
DHE_shared_secret and PQC_KEM_shared_secret, followed by the HKDF-Extract and
HKDF-Expand to derive the handshake secret and data secret. See Figure 4.

0

HKDF-Extract
DHE_shared_secret ||
PQC_KEM_shared_secret

HKDF-Expand0

HKDF-Extract

HKDF-Expand

handshake secrets

application data secrets

Figure 4. SPDM key derivation flow.

In the current SPDM and NIST PQC KEM algorithms, the length of shared_secret is
fixed. As such, the length of f inal_shared_secret is also fixed.

The f inal_shared_secret will have the hybrid property; the secret is secure if at least one
of the key exchange algorithms is secure. The analysis of KEM combiners were provided
in [44,63]. The construction follows the dual-PRF combiner which was approved to be
IND-CCA secure in [44].

Cryptography 2022, 6, 48 16 of 23

6.3. Design Considerations
6.3.1. Hybrid Key Exchange

We require that a traditional algorithm and a PQC algorithm each generate key Ex-
changeData separately and then concatenate them together. We do not pursue the option
of defining a new key exchange algorithm to combine both traditional and PQC algorithms.
This aligns with the current practice in TLS hybrid mode.

6.3.2. No Duplicate Message in Transport

In hybrid mode, the traditional and PQC key ExchangeData are combined together.
There is no need to send the KEY_EXCHANGE message twice, namely one for classic mode
and the other for PQC mode. The transcript calculation just needs to happen one time.

6.3.3. Hybrid Key Schedule

We concatenate the raw traditional DHE secret and raw PQC KEM shared secret as
the final key exchange shared secret.

We do not perform any other mathematical operations, such as XOR or Key Derivation
Function (KDF), to process the shared secrets. This aligns with the current practice in TLS
hybrid mode.

6.3.4. Transport Message Size

As we discussed in the previous section, there is a size limitation in the transport
message. The public key and the cipher text of the PQC key establishment algorithm are
involved in the transmission. The public key size and the cipher text size of BIKE, HQC,
Kyber, NTRU-HPS, ntrulpr, Saber, FrodoKEM, and SIDE/SIKE are larger than 256 bytes.
The public key size of classic-McEliece-{6688128,6960119,8192128} exceeds 216 bytes.

The current KEY_EXCHANGE request and response messages need to pass the key Ex-
changeData. In order to support large message transportation, we can use the generic
SPDM 1.2 chunking message for such transactions.

6.3.5. Timing

As we discussed in a previous section, a PQC algorithm may have different KEM
encapsulation timing requirements. Some isogenies of elliptic curves-based algorithms such
as SIKE are much slower than the lattices-based or code-based algorithms, such as NTRU
or Classic-McEliece. The PQCTExponent should be larger than the maximum encapsulation
time for the supported KEM algorithms.

7. Results

We have developed a prototype that implements the above PQ-enabled SPDM variant
based on the existing SPDM implementation [64]. We use liboqs [65] as a library that pro-
vides post-quantum algorithm implementations. The implementation is open sourced [66]
which should make it relatively easy to reproduce the below tests. It includes a requester
emulator and a responder emulator. The SPDM emulators can run under both the Microsoft
Windows and Linux systems.

7.1. Test Environment

The PQ-SPDM implementation executes in a Field Programmable Gate Array (FPGA)
Smart Network Interface Card (NIC) and communicates with a host system. Both the Smart
NIC and the host environment include an Intel Core CPU. We choose this high-end config-
uration as our first target IoT devices because we believe the high-end devices most likely
would be the first ones to adopt SPDM to achieve advanced security, such as PCI express or
CXL IDE for link encryption [12,13] or PCI express TDISP for confidential computing [14].
The data have been collected on an Intel Core(TM) i7-8665U CPU @ 1.90 GHz.

Cryptography 2022, 6, 48 17 of 23

7.2. Test Method

Usually, a device is an SPDM responder, and a host operating system is an SPDM
requester. We collected data from a SPDM requester and responder separately. We consider
two typical use cases: (1) device authentication which includes digital signature signing
and verification, and (2) one-way authenticated secure session establishment, which in-
cludes key establishment and digital signature support. In the figure, we highlight the
time-consuming portions. These long-lived activities include certificate verification (CERT_-
VERIFY) in GET_CERTIFICATE, digital signature signing (CHAL_SIGN) and verification
(CHAL_VERIFY) in CHALLENGE for authentication, KEM generation (KEY_EX_KEM_GEN),
encapsulation (KEY_EX_KEM_ENCAP), decapsulation (KEY_EX_KEM_DECAP) in KEY_-
EXCHANGE, and digital signature signing (KEY_EX_SIGN) and verification (KEY_EX_VER-
IFY) in KEY_EXCHANGE for authentication secure session setup.

7.3. Test Algorithm

We collected data for the winning PQC algorithms (i.e., Kyber as a KEM and DILITHIUM,
FALCON, SPHINCS+ as digital signature primitives) described in the status report of NIST
PQC third round finalists [46] and compared them with the RSA and ECC results in both
traditional mode and hybrid mode. For system parameters, we chose NIST security level 1,
3 and 5 separately.

Figures 5 and 6 show the data for the SPDM requester. Figures 7 and 8 show the data
for the SPDM responder. L1, L3, and L5 designate the minimal NIST security level for the
combination. The algorithm list used is below. Note that for hybrid modes we have both
classical and PQC algorithm suites:

• L1-RSA: ECDHE_secp256r1 + RSASSA_3072
• L1-EC: ECDHE_secp256r1 + ECDSA_NIST_P256
• L1-RSA+KB+DL: ECDHE_secp256r1 & Kyber512 + RSASSA_3072 & Dilithium2
• L1-EC+KB+DL: ECDHE_secp256r1 & Kyber512 + ECDSA_NIST_P256 & Dilithium2
• L1-EC+KB90+DLA: ECDHE_secp256r1 & Kyber512-90s + ECDSA_NIST_P256 & Dili-

thium2-AES
• L1-RSA+KB+FC: ECDHE_secp256r1 & Kyber512 + RSASSA_3072 & Falcon-512
• L1-EC+KB+FC: ECDHE_secp256r1 & Kyber512 + ECDSA_NIST_P256 & Falcon-512
• L1-RSA+KB+SPHRK: ECDHE_secp256r1 & Kyber512 + RSASSA_3072 & SPHINCS+-

Haraka-128f-robust
• L1-RSA+KB+SPSHA: ECDHE_secp256r1 & Kyber512 + RSASSA_3072 & SPHINCS+-

SHA256-128f-robust
• L1-RSA+KB+SPSHK: ECDHE_secp256r1 & Kyber512 + RSASSA_3072 & SPHINCS+-

SHAKE256-128f-robust
• L1-EC+KB+SPHRK: ECDHE_secp256r1 & Kyber512 + ECDSA_NIST_P256 & SPHINCS+-

Haraka-128f-robust
• L1-EC+KB+SPSHA: ECDHE_secp256r1 & Kyber512 + ECDSA_NIST_P256 & SPHINCS+-

SHA256-128f-robust
• L1-EC+KB+SPSHK: ECDHE_secp256r1 & Kyber512 + ECDSA_NIST_P256 & SPHINCS+-

SHAKE256-128f-robust
• L3-EC: ECDHE_secp384r1 + ECDSA_NIST_P384
• L3-EC+KB+DL: ECDHE_secp384r1 & Kyber768 + ECDSA_NIST_P384 & Dilithium3
• L3-EC+KB90+DLA: ECDHE_secp384r1 & Kyber768-90s + ECDSA_NIST_P384 & Dili-

thium3-AES
• L3-EC+KB+FC: ECDHE_secp384r1 & Kyber768 + ECDSA_NIST_P384 & Falcon-1024
• L5-EC: ECDHE_secp521r1 + ECDSA_NIST_P521
• L5-EC+KB+DL: ECDHE_secp521r1 & Kyber1024 + ECDSA_NIST_P521 & Dilithium5
• L5-EC+KB90+DLA: ECDHE_secp521r1 & Kyber1024-90s + ECDSA_NIST_P521 & Dili-

thium5-AES
• L5-EC+KB+FC: ECDHE_secp521r1 & Kyber1024 + ECDSA_NIST_P521 & Falcon-1024

Cryptography 2022, 6, 48 18 of 23

Figure 5. SPDM requester performance—Kyber, DILITHIUM, FALCON (microsecond).

Figure 6. SPDM requester performance—SPHINCS+ (microsecond).

Cryptography 2022, 6, 48 19 of 23

Figure 7. SPDM responder performance—Kyber, DILITHIUM, FALCON (microsecond).

Figure 8. SPDM responder performance—SPHINCS+ (microsecond).

8. Discussion

The data on the requester side shows that the cryptography timing caused by the
hybrid mode is less than double of the traditional time. Kyber, DILITHIUM, and FALCON
all demonstrate good performance. The data on the responder side shows that the digital
signature process contributed the majority of time. DILITHIUM is much better than
FALCON. However, SPHINCS+ takes significantly longer time in both signature generation
and verification.

Cryptography 2022, 6, 48 20 of 23

8.1. Challenges

The SPDM specification defines the digital signature data or the public key Exchange-
Data as fixed size fields. However, some PQC algorithms will generate a signature with
variable size, such as FALCON. The actual size is smaller than the maximum size. The
liboqs implementation uses the first four bytes to store the actual size. Care should be taken
when moving the variable signature data to or from a fixed size buffer in order to avoid
buffer overflows.

If there is a transport message size limitation, we have to use a chunking mechanism to
transfer the large signature or public key. Chunking will increase the overhead on message
disassembling and reassembling. However, even in cases where the transport layer has
the capability to transfer a large message, we may still consider chunking. The rationale
is that the SPDM transport layer might not be reliable. As such, a package may be lost
or broken during transmission. For this scenario, a message retry may be needed. The
overhead to retry a large message is bigger than the cost to retry a small chunked messaged.
The implementer needs to balance the overhead of chunking against the overhead of
message retry.

8.2. Backward Compatibility

According to the previous discussion, the PQ-SPDM design can achieve partial back-
ward compatibility with the SPDM 1.2 protocol. See Table 3.

Table 3. PQ-SPDM message compatibility.

SPDM Message Changes for PQ-SPDM Compatible?

GET_CAPABILITIES, CAPABILITIES
1. Add extra capabilities (PQC, Hybrid mode)
2. May add extra field PQCTExponent as the timing required for PQC
processing

YES

NEGOTIATE_ALGORITHMS, ALGORITHMS 1. Add PQC algorithms bits (PQC signature, PQC Key establishment) YES

GET_CERTIFICATE, CERTIFICATE
1. May add certificate type (PQC, Hybrid).
2. May enlarge PortionLength/RemainderLength and Offset/Length
field from 2 bytes to 4 bytes or retire the CERTIFICATE specific chunking.

NO

CHALLENGE, CHALLENGE_AUTH 1. Add PQC or Hybrid digital signature. YES

GET_MEASUREMENTS, MEASUREMENTS 1. Add PQC or Hybrid digital signature. YES

KEY_EXCHANGE, KEY_EXCHANGE_RSP 1. Add PQC or Hybrid key exchange.
2. Add PQC or Hybrid digital signature.

YES

FINISH, FINISH_RSP 1. Add PQC or Hybrid digital signature, in mutual authentication. YES

GET_CSR, CSR 1. Add PQC or Hybrid digital signature. YES

SET_CERTIFICATE, CERTIFICATE 1. May add certificate type (PQC, Hybrid). YES

Secured Message Using SPDM 1. May enlarge ApplicationDataLength and Length field from 2 bytes to
4 bytes

NO

9. Conclusions and Future Work

In this paper, we propose a way to add PQC capability to the SPDM protocol. This
addition entailed some minimal modifications of the existing SPDM protocol. We success-
fully created a prototype based upon the proposal. This prototype shows that PQC-SPDM
is feasible in practice. We hope our analysis will help prepare the industry to adopt SPDM
for device firmware with long-lived service requirements. This class of solution is im-
perative given the looming need to have more widespread support for post-quantum
security capabilities. We notice that the latency caused by the digital signature signing
on the responder side might become a performance concern in the future. The KEM-
based authentication [61] approach could be a way to resolve this timing problem. We will
perform research on that area in the future.

Cryptography 2022, 6, 48 21 of 23

Author Contributions: Conceptualization, J.Y. and V.Z.; methodology, J.Y. and K.M.; software, J.Y;
formal analysis, J.Y. and K.M.; data curation, J.Y.; writing—original draft preparation, J.Y. and K.M.;
writing—review and editing, V.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data collected in the paper can be reproduced by using the
openspdm-pqc project [66].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shor, P.W. Algorithms for Quantum Computation: Discrete Logarithms and Factoring. In Proceedings of the 35th Annual

Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; pp. 124–134. [CrossRef]
2. Shor, P.W. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM J.

Comput. 1997, 26, 1484–1509. [CrossRef]
3. Proos, J.; Zalka, C. Shor’s Discrete Logarithm Quantum Algorithm for Elliptic Curves. Quantum Inf. Comput. 2003, 3, 317–344.

[CrossRef]
4. Roetteler, M.; Naehrig, M.; Svore, K.M.; Lauter, K. Quantum Resource Estimates for Computing Elliptic Curve Discrete

Logarithms. In Proceedings of the Advances in Cryptology—ASIACRYPT 2017, Hong Kong, China, 3–7 December 2017; Springer
International Publishing: Cham, Switzerland, 2017; pp. 241–270. [CrossRef]

5. Mosca, M.; Piani, M. 2021 Quantum Threat Timeline Report. Global Risk Institute. 2021. Available online: https://
globalriskinstitute.org/publications/2021-quantum-threat-timeline-report/ (accessed on 10 August 2022).

6. NIST. Post-Quantum Cryptography Project. 2016. Available online: https://csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization (accessed on 10 August 2022).

7. DMTF. Security Protocol and Data Model (SPDM) Specification, DSP0274. 2021. Available online: https://www.dmtf.org/dsp/
DSP0274 (accessed on 10 August 2022).

8. PCI SIG. PCI-SIG Homepage. 2022. Available online: https://pcisig.com/ (accessed on 10 August 2022).
9. CXL. Compute Express Link Homepage. 2022. Available online: https://computeexpresslink.org/ (accessed on 10 August 2022).
10. MIPI. MIPI Home Page. 2022. Available online: https://www.mipi.org/ (accessed on 10 August 2022).
11. TCG. TCG Home Page. 2022. Available online: https://trustedcomputinggroup.org/ (accessed on 10 August 2022).
12. PCI SIG. PCI Express Base Specifiction Revision 6.0. 2022. Available online: https://pcisig.com/specifications (accessed on 10

August 2022).
13. CXL 3.0. CXL 3.0 Specification. 2022. Available online: https://www.computeexpresslink.org/download-the-specification/

(accessed on 10 August 2022).
14. PCI SIG. PCI TEE Device Interface Security Protocol (ECN). 2022. Available online: https://pcisig.com/specifications (accessed

on 10 August 2022).
15. MIPI. MIPI Security Framework. Available online: https://www.mipi.org/sites/default/files/How-the-MIPI-Security-

Framework-Protects-Automotive-SerDes-Applications-from-Security-Risks.pdf (accessed on 10 August 2022).
16. TCG. TCG Platform Firmware Profile 1.05. Available online: https://trustedcomputinggroup.org/resource/pc-client-specific-

platform-firmware-profile-specification/ (accessed on 10 August 2022).
17. OCP. OCP Attestation of System Components v1.0. Available online: https://www.opencompute.org/documents/attestation-v1

-0-20201104-pdf (accessed on 10 August 2022).
18. Ounsworth, M.; Pala, M. Composite Signatures for Use In Internet PKI. Internet-Draft draft-ounsworth-pq-composite-sigs-06,

Internet Engineering Task Force, 2022. Work in Progress.
19. Truskovsky, A.; Geest, D.V.; Fluhrer, S.; Kampanakis, P.; Ounsworth, M.; Mister, S. Multiple Public-Key Algorithm X.509

Certificates. Internet-Draft draft-truskovsky-lamps-pq-hybrid-x509-01, Internet Engineering Task Force, 2018. Expired Draft.
20. Ounsworth, M. Post-quantum Multi-Key Mechanisms for PKIX-like protocols; Problem Statement and Overview of Solution

Space. Internet-Draft draft-pq-pkix-problem-statement-01, Internet Engineering Task Force, 2019. Work in Progress.
21. Kampanakis, P.; Panburana, P.; Daw, E.; Geest, D.V. The Viability of Post-quantum X.509 Certificates. Cryptology ePrint Archive,

Report 2018/063. 2018. Available online: https://ia.cr/2018/063 (accessed on 10 August 2022).
22. Pradel, G.; Mitchell, C.J. Post-Quantum Certificates for Electronic Travel Documents. In Proceedings of the Computer Security:

ESORICS 2020 International Workshops, Guildford, UK, 17–18 September 2020; Springer: Berlin/Heidelberg, Germany, 2020;
pp. 56–73. [CrossRef]

23. Cho, J.Y.; Sergeev, A. Post-quantum MACsec in Ethernet Networks. J. Cyber Secur. Mobil. 2021, 10, 161–176. [CrossRef]
24. Fluhrer, S.; Kampanakis, P.; McGrew, D.; Smyslov, V. Mixing Preshared Keys in the Internet Key Exchange Protocol Version

2 (IKEv2) for Post-quantum Security. In RFC 8784. 2020 . Available online: https://doi.org/10.17487/RFC8784 (accessed on
10 August 2022).

http://doi.org/10.1109/SFCS.1994.365700
http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.26421/QIC3.4-3
http://dx.doi.org/10.1007/978-3-319-70697-9_9
https://globalriskinstitute.org/publications/2021-quantum-threat-timeline-report/
https://globalriskinstitute.org/publications/2021-quantum-threat-timeline-report/
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://www.dmtf.org/dsp/DSP0274
https://www.dmtf.org/dsp/DSP0274
https://pcisig.com/
https://computeexpresslink.org/
https://www.mipi.org/
https://trustedcomputinggroup.org/
https://pcisig.com/specifications
https://www.computeexpresslink.org/download-the-specification/
https://pcisig.com/specifications
https://www.mipi.org/sites/default/files/How-the-MIPI-Security-Framework-Protects-Automotive-SerDes-Applications-from-Security-Risks.pdf
https://www.mipi.org/sites/default/files/How-the-MIPI-Security-Framework-Protects-Automotive-SerDes-Applications-from-Security-Risks.pdf
https://trustedcomputinggroup.org/resource/pc-client-specific-platform-firmware-profile-specification/
https://trustedcomputinggroup.org/resource/pc-client-specific-platform-firmware-profile-specification/
https://www.opencompute.org/documents/attestation-v1-0-20201104-pdf
https://www.opencompute.org/documents/attestation-v1-0-20201104-pdf
https://ia.cr/2018/063
http://dx.doi.org/10.1007/978-3-030-66504-3_4
http://dx.doi.org/10.13052/jcsm2245-1439.1016
https://doi.org/10.17487/RFC8784

Cryptography 2022, 6, 48 22 of 23

25. Tjhai, C.; Tomlinson, M.; Bartlett, G.; Fluhrer, S.; Geest, D.V.; Garcia-Morchon, O.; Smyslov, V. Multiple Key Exchanges in IKEv2.
Internet-Draft draft-ietf-ipsecme-ikev2-multiple-ke-04, Internet Engineering Task Force, 2021. Work in Progress.

26. Stebila, D.; Fluhrer, S.; Gueron, S. Hybrid key exchange in TLS 1.3. Internet-Draft draft-ietf-tls-hybrid-design-04, Internet
Engineering Task Force, 2022. Work in Progress.

27. Celi, S.; Schwabe, P.; Stebila, D.; Sullivan, N.; Wiggers, T. KEM-based Authentication for TLS 1.3. Internet-Draft draft-celi-
wiggers-tls-authkem-01, Internet Engineering Task Force, 2022. Work in Progress.

28. Campagna, M.; Crockett, E. Hybrid Post-Quantum Key Encapsulation Methods (PQ KEM) for Transport Layer Security 1.2 (TLS).
Internet-Draft draft-campagna-tls-bike-sike-hybrid-07, Internet Engineering Task Force, 2021. Expired Draft.

29. Kiefer, F.; Kwiatkowski, K. Hybrid ECDHE-SIDH Key Exchange for TLS. Internet-Draft draft-kiefer-tls-ecdhe-sidh-00, Internet
Engineering Task Force, 2018. Expired Draft.

30. Schanck, J.M.; Stebila, D. A Transport Layer Security (TLS) Extension For Establishing An Additional Shared Secret. Internet-Draft
draft-schanck-tls-additional-keyshare-00, Internet Engineering Task Force, 2017. Expired Draft.

31. Whyte, W.; Zhang, Z.; Fluhrer, S.; Garcia-Morchon, O. Quantum-Safe Hybrid (QSH) Key Exchange for Transport Layer Security
(TLS) version 1.3. Internet-Draft draft-whyte-qsh-tls13-06, Internet Engineering Task Force, 2017. Expired Draft.

32. Schanck, J.M.; Whyte, W.; Zhang, Z. Quantum-Safe Hybrid (QSH) Ciphersuite for Transport Layer Security (TLS) version 1.2.
Internet-Draft draft-whyte-qsh-tls12-02, Internet Engineering Task Force, 2016. Expired Draft.

33. Crockett, E.; Paquin, C.; Stebila, D. Prototyping Post-Quantum and Hybrid Key Exchange and Authentication in TLS and SSH. In
Proceedings of the NIST 2nd Post-Quantum Cryptography Standardization Conference, Santa Barbara, CA, USA, 22–24 August
2019. Available online: https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/
accepted-papers/stebila-prototyping-post-quantum.pdf (accessed on 10 August 2022).

34. Sikeridis, D.; Kampanakis, P.; Devetsikiotis, M. Post-Quantum Authentication in TLS 1.3: A Performance Study. In Proceedings
of the 27th Annual Network and Distributed System Security Symposium, NDSS 2020, San Diego, CA, USA, 23–26 February 2020.
[CrossRef]

35. Schwabe, P.; Stebila, D.; Wiggers, T. More Efficient Post-quantum KEMTLS with Pre-Distributed Public Keys. In Proceedings of
the Computer Security—ESORICS 2021—26th European Symposium on Research in Computer Security, Darmstadt, Germany,
4–8 October 2021; Proceedings, Part I; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2021; Volume 12972,
pp. 3–22. [CrossRef]

36. Schwabe, P.; Stebila, D.; Wiggers, T. Post-Quantum TLS Without Handshake Signatures. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security; Association for Computing Machinery: New York, NY, USA, 2020;
pp. 1461–1480. [CrossRef]

37. Kampanakis, P.; Stebila, D.; Friedl, M.; Hansen, T.; Sikeridis, D. Post-quantum public key algorithms for the Secure Shell (SSH)
protocol. Internet-Draft draft-kampanakis-curdle-pq-ssh-00, Internet Engineering Task Force, 2020. Expired Draft.

38. Hülsing, A.; Ning, K.C.; Schwabe, P.; Weber, F.; Zimmermann, P.R. Post-Quantum WireGuard. In Proceedings of the 2021 IEEE
Symposium on Security and Privacy (SP), San Francisco, CA, USA, 24–27 May 2021; pp. 304–321. [CrossRef]

39. Raynal, M.; Genet, A.; Romailler, Y. PQ-WireGuard: We Did It Again. In Proceedings of the NIST Third PQC Standardization
Conference, Online, 7–9 June 2021. Available online: https://csrc.nist.gov/CSRC/media/Events/third-pqc-standardization-
conference/documents/accepted-papers/raynal-pq-wireguard-pqc2021.pdf (accessed on 10 August 2022).

40. Kniep, Q.M.; Müller, W.; Redlich, J.P. Post-Quantum Cryptography in WireGuard VPN. In Proceedings of the Security and
Privacy in Communication Networks, Washington, DC, USA, 21–23 October 2020; Springer International Publishing: Cham,
Switzerland, 2020; pp. 261–267. [CrossRef]

41. Kampanakis, P.; Panburana, P.; Curcio, M.; Shroff, C. Post-Quantum Hash-Based Signatures for Secure Boot. Cryptology ePrint
Archive, Report 2020/1584. 2020. Available online: https://ia.cr/2020/1584 (accessed on 10 August 2022).

42. Kampanakis, P.; Panburana, P.; Curcio, M.; Shroff, C.; Alam, M.M. Post-Quantum LMS and SPHINCS+ Hash-Based Signatures
for UEFI Secure Boot. Cryptology ePrint Archive, Report 2021/041. 2021. Available online: https://ia.cr/2021/041 (accessed on
10 August 2022).

43. Bindel, N.; Herath, U.; McKague, M.; Stebila, D. Transitioning to a Quantum-Resistant Public Key Infrastructure. In Proceedings
of the Post-Quantum Cryptography, Utrecht, The Netherlands, 26–28 June 2017; Springer International Publishing: Cham,
Switzerland, 2017; pp. 384–405. [CrossRef]

44. Bindel, N.; Brendel, J.; Fischlin, M.; Goncalves, B.; Stebila, D. Hybrid Key Encapsulation Mechanisms and Authenticated Key
Exchange. In Proceedings of the Post-Quantum Cryptography, Chongqing, China, 8–10 May 2019; Springer International
Publishing: Cham, Switzerland, 2019; pp. 206–226. [CrossRef]

45. NIST. Post-Quantum Cryptography FAQs. Available online: https://csrc.nist.gov/Projects/post-quantum-cryptography/faqs
(accessed on 10 August 2022).

46. NIST. NIST IR 8413—Status Report on the Third Round of the NIST Post-Quantum Cryptography Standardization Process. 2022.
Available online: https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf (accessed on 10 August 2022).

47. Fernández-Caramés, T.M. From Pre-Quantum to Post-Quantum IoT Security: A Survey on Quantum-Resistant Cryptosystems
for the Internet of Things. IEEE Internet Things J. 2020, 7, 6457–6480. [CrossRef]

https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/stebila-prototyping-post-quantum.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/stebila-prototyping-post-quantum.pdf
http://dx.doi.org/10.14722/ndss.2020.24203
http://dx.doi.org/10.1007/978-3-030-88418-5_1
http://dx.doi.org/10.1145/3372297.3423350
http://dx.doi.org/10.1109/SP40001.2021.00030
https://csrc.nist.gov/CSRC/media/Events/third-pqc-standardization-conference/documents/accepted-papers/raynal-pq-wireguard-pqc2021.pdf
https://csrc.nist.gov/CSRC/media/Events/third-pqc-standardization-conference/documents/accepted-papers/raynal-pq-wireguard-pqc2021.pdf
http://dx.doi.org/10.1007/978-3-030-63095-9_16
https://ia.cr/2020/1584
https://ia.cr/2021/041
http://dx.doi.org/10.1007/978-3-319-59879-6_22
http://dx.doi.org/10.1007/978-3-030-25510-7_12
https://csrc.nist.gov/Projects/post-quantum-cryptography/faqs
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf
http://dx.doi.org/10.1109/JIOT.2019.2958788

Cryptography 2022, 6, 48 23 of 23

48. Chung, C.C.; Pai, C.C.; Ching, F.S.; Wang, C.; Chen, L.J. When Post-Quantum Cryptography Meets the Internet of Things: An
Empirical Study. In Proceedings of the MobiSys 2022—Proceedings of the 2022 20th Annual International Conference on Mobile
Systems, Applications and Services, Portland, OR, USA, 27 June–1 July 2022. [CrossRef]

49. Bürstinghaus-Steinbach, K.; Krauß, C.; Niederhagen, R.; Schneider, M. Post-Quantum TLS on Embedded Systems: Integrating
and Evaluating Kyber and SPHINCS+ with mbed TLS. In Proceedings of the ASIA CCS’20: Proceedings of the 15th ACM Asia
Conference on Computer and Communications Security, Taipei, Taiwan, 5–9 October 2020. [CrossRef]

50. Marzougui, S.; Krämer, J. Post-Quantum Cryptography in Embedded Systems. In Proceedings of the ARES’19: Proceedings of
the 14th International Conference on Availability, Reliability and Security, Canterbury CA, UK, 26–29 August 2019. [CrossRef]

51. Asif, R. Post-Quantum Cryptosystems for Internet-of-Things: A Survey on Lattice-Based Algorithms. IoT 2021, 2, 71–91.
[CrossRef]

52. Khalid, A.; McCarthy, S.; Liu, W.; O’Neill, M. Lattice-Based Cryptography for IoT in A Quantum World: Are We Ready? Cryptol-
ogy ePrint Archive, Paper 2019/681. 2019. Available online: https://eprint.iacr.org/2019/681 (accessed on 10 August 2022).

53. Chaudhary, R.; Aujla, G.S.; Kumar, N.; Zeadally, S. Lattice-Based Public Key Cryptosystem for Internet of Things Environment:
Challenges and Solutions. IEEE Internet Things J. 2019, 6, 4897–4909. [CrossRef]

54. TCG. TCG DICE Layering Architecture. 2020. Available online: https://trustedcomputinggroup.org/resource/dice-layering-
architecture/ (accessed on 10 August 2022).

55. DMTF. DSP0277—Secured Messages Using SPDM Specification. 2020. Available online: https://www.dmtf.org/dsp/DSP0277
(accessed on 10 August 2022).

56. DMTF. DSP0275—Security Protocol and Data Model (SPDM) over MCTP Binding Specification. 2019. Available online:
https://www.dmtf.org/dsp/DSP0275 (accessed on 10 August 2022).

57. DMTF. DSP0276—Secured Messages Using SPDM over MCTP Binding Specification. 2020. Available online: https://www.dmtf.
org/dsp/DSP0276 (accessed on 10 August 2022).

58. DMTF. DSP0237—Management Component Transport Protocol (MCTP) SMBus/I2C Transport Binding Specification. 2020.
Available online: https://www.dmtf.org/dsp/DSP0237 (accessed on 10 August 2022).

59. Beullens, W. Breaking Rainbow Takes a Weekend on a Laptop. In Proceedings of the Proceedings CRYPTO 2022, Santa Barbara,
CA, USA, 13–18 August 2022; pp. 464–479. Available online: https://ia.cr/2022/214 (accessed on 10 August 2022). [CrossRef]

60. Castryck, W.; Decru, T. An Efficient Key Recovery Attack on SIDH. Cryptology ePrint Archive, Report 2022/975. 2022. Available
online: https://eprint.iacr.org/2022/975 (accessed on 10 August 2022).

61. Fujioka, A.; Suzuki, K.; Xagawa, K.; Yoneyama, K. Strongly Secure Authenticated Key Exchange from Factoring, Codes, and
Lattices. In Proceedings of the PKC’12: Proceedings of the 15th international conference on Practice and Theory in Public Key
Cryptography, Darmstadt, Germany, 21–23 May 2012; Springer International Publishing: Cham, Switzerland, 2012; pp. 467–484.
[CrossRef]

62. Barnes, R.; Bhargavan, K.; Lipp, B.; Wood, C.A. Hybrid Public Key Encryption. In RFC 9180. 2022 . Available online:
https://doi.org/10.17487/RFC9180 (accessed on 10 August 2022).

63. Giacon, F.; Heuer, F.; Poettering, B. KEM Combiners; Springer International Publishing: Cham, Switzerland, 2018; pp. 190–218.
[CrossRef]

64. DMTF. libspdm—A Sample Implementation following DMTF SPDM Specification. 2022. Available online: https://github.com/
DMTF/libspdm (accessed on 10 August 2022).

65. Open Quantum Safe Project. Liboqs. Available online: https://github.com/open-quantum-safe/liboqs (accessed on 10
August 2022).

66. Yao, J. Post-Quantum Cryptography Version of Openspdm. 2022. Available online: https://github.com/jyao1/openspdm-pqc
(accessed on 10 August 2022).

http://dx.doi.org/10.1145/3498361.3538766
http://dx.doi.org/10.1145/3320269.3384725
http://dx.doi.org/10.1145/3339252.3341475
http://dx.doi.org/10.3390/iot2010005
https://eprint.iacr.org/2019/681
http://dx.doi.org/10.1109/JIOT.2018.2878707
https://trustedcomputinggroup.org/resource/dice-layering-architecture/
https://trustedcomputinggroup.org/resource/dice-layering-architecture/
https://www.dmtf.org/dsp/DSP0277
https://www.dmtf.org/dsp/DSP0275
https://www.dmtf.org/dsp/DSP0276
https://www.dmtf.org/dsp/DSP0276
https://www.dmtf.org/dsp/DSP0237
https://ia.cr/2022/214
http://dx.doi.org/10.1145/2660267.2660308. Available online: https://ia.cr/2022/214 (accessed on 10 August 2022)
https://eprint.iacr.org/2022/975
http://dx.doi.org/10.1007/978-3-642-30057-8_28
https://doi.org/10.17487/RFC9180
http://dx.doi.org/10.1007/978-3-319-76578-5_7
https://github.com/DMTF/libspdm
https://github.com/DMTF/libspdm
https://github.com/open-quantum-safe/liboqs
https://github.com/jyao1/openspdm-pqc

	Introduction
	The Threat of Quantum Computers
	Device Security and SPDM
	Our Contributions
	Related Work

	SPDM Background
	SPDM Device Authentication
	SPDM Secure Session
	SPDM Algorithm Negotiation

	Post-Quantum Design for SPDM Algorithm Negotiation
	Design Considerations
	Mode Identification
	No Combinatorial Explosion
	Security Level Matching
	Algorithm Set Matching
	Hash Algorithm Used in Digital Signature

	Post-Quantum Design for SPDM Device Identity
	Design Considerations
	No Duplicate Message in Transport
	Local Storage Size
	Transport Message Size

	Post-Quantum Design for SPDM Device Authentication
	Message Flow
	First Message
	Second Message

	Design Considerations
	Hybrid Digital Signature
	No Duplicate Message in Transport
	Transport Message Size
	Timing

	Post-Quantum Design for SPDM Secure Session
	SPDM KEM Message Flow
	First Message
	Second Message
	Third Message
	Fourth Message

	Security Analysis
	KEM-Based Key Agreement
	Shared Secret Combiner

	Design Considerations
	Hybrid Key Exchange
	No Duplicate Message in Transport
	Hybrid Key Schedule
	Transport Message Size
	Timing

	Results
	Test Environment
	Test Method
	Test Algorithm

	Discussion
	Challenges
	Backward Compatibility

	Conclusions and Future Work
	References

