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Abstract: The Panopticon (which means “watcher of everything”) is a well-known prison structure
of continuous surveillance and discipline studied by Bentham in 1785. Today, where persistent,
massive scale, surveillance is immensely facilitated by new technologies, the term Panopticon vaguely
characterizes institutions with a power to acquire and process, undetectably, personal information.
In this paper we propose a theoretical framework for studying Panopticons and their detectability
status. We show, based on the Theory of Computation, that detecting Panopticons, modelled either as a
simple Turing Machine or as an Oracle Turing Machine, is an undecidable problem. Furthermore,
we show that for each sufficiently expressive formal system, we can effectively construct a Turing
Machine for which it is impossible to prove, within the formal system, its Panopticon status. Finally,
we discuss how Panopticons can be physically detected by the heat they dissipate each time they
acquire, effortlessly, information in the form of an oracle and we investigate their detectability status
with respect to a more powerful computational model than classical Turing Machines, the Infinite
Time Turing Machines (ITTMs).

Keywords: formal methods; security; privacy; undecidability; panopticon; turing machine; oracle
computations; irreversible computations; Infinite Time Turing Machines (ITMs)

1. Introduction

In 1785, the English philosopher and social theorist Jeremy Bentham (see [1]) described
an unprecedented institutional punishment establishment, the Panopticon. The architecture
of this establishment consisted of a circular building dominated by an “observation tower”
in the center of which a single guard was continuously watching the inmates, imprisoned
in cells arranged around the circular building. Moreover, the prisoners, themselves, could
never be able to see the inspector, who remained for ever “invisible” to them. In the 70s,
Foucault studied, deeply, Bentham’s concepts, pointing to the Panopticon as a generic
power model impacting people’s everyday life. In his own words: “a figure of political
technology that may and must be detached from any specific use” [2].

Nowadays, technological achievements have given rise to new, non-physical (unlike
prisons), means of constant surveillance that transcend physical boundaries. This fact
necessitates a revision of the Panopticon concept to reconcile it with the current techno-
logical progress and its, virtually unlimited, surveillance potential. Thus, the Panopticon
behaviour is now manifested in the countless Internet services that accumulate people’s
personal information, in the ubiquitous portable devices that contain massive and often
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sensitive information about their owners as well as the Internet giants to which billions of
people trust their digital data.

Based on this observation, in this paper we investigate the question of detecting
Panopticons, that is malicious entities whose mission is massive surveillance and covert
information acquisition. Our approach follows the paradigm of the pioneering work of
Cohen (see [3,4]) in computer viruses and, in general, computer malware. The breakthrough
idea of Cohen was to model the vague, then, concept of a “computer virus” in a formal way
so that the question of whether computer viruses can be detected algorithmically, i.e., by
automated detection tools, can be posed precisely and unambiguously so that it is amenable to
a formal analysis and resolution. Cohen modelled computer viruses using the most general,
formal, model for an entity whose behaviour is determined through the execution of a
sequence of elementary, or mechanical, steps: the Turing Machine (proposed in the pioneering
work of Alan Turing in [5,6]). This idea, not only allowed a formal and, thus, unambiguous,
definition of what computer viruses are but allowed Cohen to deploy the rich theoretical
framework of the Theory of Computation for the analysis of whether computer viruses can
be detected algorithmically or not (see, e.g., [7] for a comprehensive treatment of Turing
Machines and the fundamental results of the Theory of Computation). To the best of our
knowledge, our work is the first one which targets a realistic, formal, definition of the
vague concept of Panopticons, as well as the formal analysis of their detectability properties
based on the Turing Machine formalism and the fundamental results of the Theory of
Computation. In other words, although all understand, intuitively, what a Panopticon is,
i.e., a massive surveillance entity, there is no, to the best of our knowledge, formal definition
of Panopticons which transforms this intuition into a formal framework for the definition
and analysis of their properties. Our work is a first step towards this direction.

Therefore, along the same lines of thought as Cohen, in this paper we investigate the
problem of whether Panopticons can be, algorithmically, detected. We formally model
Panopticons, as Cohen did with computer viruses, as special types of Turing Machines and
we analyze their detectability properties using results from the Theory of Computation.
More specifically, we provide two different, but not unrealistic, Turing Machine based
theoretical models of a Panopticon and show that there is no algorithm, i.e., no system-
atic procedure, that can detect all Panopticons that fall under these two definitions. In
other words, detecting Panopticons, at least the ones that fall under these two plausible
definitions, is an undecidable problem, in principle.

More specifically, the first formal model we examine studies Panopticons whose
Panopticon properties are manifested through the execution of states (in the Turing Machine
terminology) or actions (e.g., specific programming instructions such as reading from a disk
file) that belong to a specific set of states that characterizes Panopticons of this type. This
model is based on the formal computer virus model proposed by Cohen in [3,4]. In some
sense, since the focal point of this model is the execution of states or actions of a particular
type, the model captures the visible behaviour of the Panopticon, according to the actions it
performs, and, thus we call this model behavioural.

The second formal model focuses on the impact or consequences of the actions of the
Panopticon and not the actions themselves. In particular, this model captures an essential
characteristic of Panopticons, that of acquiring, rather, effortlessly information through
surveillance and eavesdropping. We model this characteristic using Oracle Turing Machines.
This concept was proposed by Turing in [5,6] to investigate the undecidability status of
problems whenever they receive free information (in the form of an oracle) about some other
undecidable problems. The Oracle, in the Panopticon context, models information acquired
“for free” based on surveillance (observations) and eavesdropping actions, without requiring
computational effort. This model is, in some sense, based on the information that a
Panopticon deduces using “free” information and, thus, we call it deductive. Essentially,
this model focuses on the semantics of a Turing Machine, i.e., outcomes of operation, while
the first model focuses on the syntax, i.e., definition, of a Turing Machine. We extend a
particular result from [8] (also proved in [7]) in order to show that this class of Panopticons
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can, not only cannot be detected, in general, but belong to a higher undecidability class
in the hierarchy of undecidable problems which has important consequence for restricted
types of Panopticons. For instance, restricted (in some sense) Panopticons of the first formal
model we examine are detectable while similarly restricted types of Panopticons of the
second formal model remain, still, undetectable.

Furthermore, based on a fundamental result from [9], we show that for any formal
system, we can construct a Turing Machine whose Panopticon status, under the second
formal model, cannot be proved within the formal system. That is, no proof can be produced
by the formal system that this Turing Machine is a Panopticon and no proof that it is not
a Panopticon. In other words, given any formal system, one can provide a procedure that
generates a Turing Machine for which it is impossible to decide whether it is a Panopticon or
not within the formal system.

In some final, rather philosophical, considerations we discuss, based on the exposition
in [10], how Panopticons’ power of obtaining information instantaneously and effortlessly
merely by observing, renders them detectable through the heat dissipated in their envi-
ronment as a result of the irreversible action of obtaining this information as an oracle
reply without performing any computational steps. Finally, we show how oracle-based
Panopticons are easy to be detected using hypercomputation based on Infinite Time Turing
Machines (ITTMs) based on concepts and results from [11]. Although hypercomputa-
tion is considered unrealistic, the concept can, nevertheless, provide an interesting context
within the super-power Panopticons can be compared with super-power Turing Machines,
studying how well super-power TMs fare against super-power Panopticons.

2. Definitions and Notation

Since our theoretical model for the Panopticon considers it as a computational en-
tity which is what actually happens in practice in active massive surveillance based on
information technologies, we briefly state the relevant definitions and notation from the
computation theory that will be used in the subsequent sections (see [7]).

Definition 1 (Turing Machine(s)). A Turing machine is a septuple

M=(Q, Σ, Γ, δ, q0, B, F)

where Q is a finite set of normal operation states, Γ is a finite set called the tape alphabet, where
Γ contains a special symbol B that represents a blank, Σ is a subset of Γ−{B} called the input
alphabet, δ is a partial function from Q×Γ to Q×Γ×{L, R} called the transition function, q0∈Q is
a distinguished state called the start state, F ⊂ Q is a set of final states.

Notation-wise, given M we denote by < M > its code, i.e., an encoding of its de-
scription elements as stated in Definition 1 using any fixed alphabet, usually the alphabet
{0, 1} (binary system). The details can be found in, e.g., [7,12] but they are inessential for
our arguments.

One of the main outcomes of Turing’s pioneering work [5] was that there exist prob-
lems that Turing Machine(s) cannot solve. The first, such, problem was the, so called,
Halting problem (see, also, [13] for an excellent historic account):

The Halting Problem
Input: A string x =< M, w > which is actually the encoding (description) of a Turing
machine <M> and its input w.
Output: If the input Turing M machine halts on w, output True. Otherwise, output False.

The language corresponding to the Halting problem is Lu = {< M, w > |w ∈ L(M)}.
In other words, the language Lu contains all possible Turing machine-input pair encodings
< M, w > such that w is accepted by M. This is why Lu is also called universal language
since the problem of deciding whether a given Turing machine M accepts a given input w
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is equivalent to deciding whether < M, w >∈ Lu. The language Lu was the first language
proved to be non-recursive or undecidable by Turing in his seminal work [5].

In order to discuss Panopticons, we need an important variant of Turing Machine(s),
called oracle Turing Machines. Such a machine has a special tape on which it can write
queries to which they obtain the answer instantaneously in one step, no matter what query
it is. This type of Turing Machines was, first, discussed, briefly, by Turing himself in [6]
under the name O-machine. Post developed further this concept in a series of papers [14–16]
and his collaboration with Kleene in [17] resulted to the definition that is used today in the
Theory of Computation.

Below, we give a formal definition of an Oracle Turing Machine:

Definition 2 (Oracle Turing Machine). Let A be a language, A⊆Σ∗. A Turing machine with
oracle A is a single-tape Turing machine with three special states q?, qy and qn. The special state q?
is used to ask whether a string is in the set A. When the Turing machine enters state q? it requests
an answer to the question: “Is the string of non-blank symbols to the right of the tape head in A?’’
The answer is provided by having the state of the Turing machine change on the next move to one of
the states qy or qn. The computation proceeds normally until the next time q? is reached, at which
point the Turing machine requests another answer from the oracle.

With respect to notation, we denote by MA the Turing machine M with oracle A. Also,
a set (language) L is recursive with respect to A if L = L(MA) for some Turing machine
MA that always halts while two oracle sets (languages) are called equivalent if each of them
is recursive in the other (see [7]).

3. The Panopticon Detection Problem and Our Approach

Formal proofs about the impossibility of detecting malicious computation-based enti-
ties already exist for a long time for a very important category of such entities, the computer
viruses or malware in general.

In Cohen’s pioneering work (see [3,4]) a natural, formal, definition of a virus is provided
based on Turing Machine(s). Specifically, Cohen defined a virus to be a Turing machine
that simply injects its transition function into other Turing Machine(s)’ transition functions
(see Definition 1) replicating, thus, itself indefinitely. Then, he proves that Lu reduces to
the problem of deciding whether a given Turing Machine behaves in this way proving that
detecting viruses is an undecidable problem.

Following Cohen’s paradigm, we will propose two definitions that precisely describe
the operation of a computation-based Panopticon system. In the context of the first model,
a Panopticon is a Turing machine that when executed will demonstrate a specific, recog-
nizable, behaviour particular to Panopticons manifested by the execution of a sequence of
actions. For instance, it will publish secret information about an entity, it will download
information illegally etc., that is it will take actions that are reflected by actually reaching, dur-
ing its operation, particular states in a set Qpan which contains malware behaviour states.

However, an objection to this rationale can be posed on the grounds that one can scan
the transition function (i.e., program code) of a Turing Machine and if a malware state is
detected on the right-hand side of δ then the Turing Machine can be declared as malware
or Panopticon in our case. That is, one can propose that the mere existence of malware
states, but not their actual execution, is sufficient to declare a particular Turing Machine
as malware or Panopticon. There, is, however a plausible reply to this objection. First of
all, the set Qpan may be unknown and, thus, no particular state of the Turing Machine can
be identified as belonging in this (unknown) set of states. In other words, it may not be
known which subset of the states of a Turing Machine description actually belong in Qpan
until they are invoked and manifest, themselves, as malicious actions through their execution
and actual negative impact on the Turing Machine’s environment. On the other hand, let
us assume that Qpan is known. Then one can now, indeed, locate a Panopticon state (i.e.,
a state in the known, set Qpan) in the right-hand side of δ of a Turing Machine, if it exists.
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However, this Turing Machine is not known whether it will ever operate as a Panopticon
and perform the threatening actions represented by the states in Qpan. The argument of
simply locating states in Qpan to detect Panopticons is similar to an argument of declaring
a Turing machine as halting simply because on the right-hand side of its transition function
it contains a halting state. To be characterized as “halting”, the Turing Machine must,
actually, invoke a halting state.

Now, based on the discussion above, we define formally the behavioural Panopticons:

Definition 3 (Behavioural Panopticons). A Behavioural Panopticon is an octuple

M=(Q, Qpan, Σ, Γ, δ, q0, B, F)

where Q is a finite set of normal operation states, Γ is a finite set called the tape alphabet, where
Γ contains a special symbol B that represents a blank, Σ is a subset of Γ−{B} called the input
alphabet, δ is a partial function from Q×Γ to Q×Γ×{L, R} called the transition function, q0∈Q
is a distinguished state called the start state, F ⊂ Q is a set of final states, and Qpan ⊂ Q,
Qpan ∩ F = ∅, is a distinguished set of states linked to Panopticon behaviour. We assume that
transitions from states in Qpan do not change the Turing Machine’s tape contents, i.e., they are
purely interactions with the external environment of the Turing Machine and can affect only
the environment.

This is much like Cohen’s definition of a virus since it characterizes Panopticons
according to their displayed or manifested behaviour. We stress the word interactions in order
to preclude situations where a false alarm is raised for “Panopticons” which merely list
actions that are characteristic of Panopticon behaviour without ever actually invoking them
during their operation. Instead, they operate normally without any actions taking place
that manifest Panopticon behaviour.

Beyond displayed behaviour, Panopticons can be reasonably assumed to also possess
deductive powers, not directly visible or measurable. In other words, one type of such
Panopticons may operate by gathering or computing totally new information, distinct from
the information already known to it. We model this type of Panopticon with the language S′1
defined later in this Section. Moreover, another type of Panopticons can take advantage of
easily acquired, or even stolen, freely provided (in some sense) information. In other words,
based on information the Panopticon acquires for free by eavesdropping or data breaching,
for instance, it deduces further information, perhaps expending some computational effort
this time. We model the characteristic Panopticon action, i.e., observation, surveillance
and illicit information gathering, using oracle Turing Machines, where the freely acquired or
eavesdropped information for particular targets is modelled by the oracle set of the machine.
Based on this information, the Turing machine deduces, through its normal computation
steps, further information about its targets. This type of Panopticon is modelled with the
language S′2 defined later in this Section. Below, we describe both types of Panopticons,
the ones based on S′1 and the ones based on S′2 since their common characteristic is the
deduction of new information from already known information.

Definition 4. (Deductive Panopticons) A Deductive Panopticon is a Turing Machine that either
by itself (language S′1) or based on observed or stolen information acquired without expending any
computational effort (language S′2), deduces (perhaps with computational effort) further information
about entities.

In the definition above, the Panopticon operating by itself, i.e., without oracles (lan-
guage S′1), is weaker (as we will show in what follows) than the one with oracles (language
S′2) since the latter is allowed to obtain free advice or information, in the form of an oracle.



Cryptography 2022, 6, 42 6 of 18

Naturally, many other deductive Panopticon definitions would be reasonable or
realistic. Our main motivation behind the ones stated above was a balance of theoretical
simplicity and plausibility in order to spark interest on the study on formal properties of
Panopticons as well as the difficulty of detecting them algorithmically.

Based on the two Panopticon definitions we gave above, we can define the correspond-
ing Panopticon detection problems. The aim of a Panopticon detection algorithm or Turing
machine, is to take as input the encoding of another Turing machine and decide whether it
is Panopticon or not based on the formal definition.

The Deductive Panopticon Detection Problem 1
Input: A description of a Turing machine (program).
Output: If the input Turing machine operates like a Panopticon according to Definition 3
output True. Otherwise, output False.

More formally, if by Lb we denote the language consisting of Turing machine encodings
< M > which are Panopticons according to Definition 3, then we want to decide Lb, i.e., to
design a Turing machine that, given < M >, decides whether < M > belongs in Lb or not.

The Deductive Panopticon Detection Problem 2
Input: A description of a Turing machine (program).
Output: If the input Turing machine operates like a Panopticon according to Definition 4
output True. Otherwise, output False.

Essentially, the deductive Panopticon detection problem 2 asks to decide the languages
S′1 and S′2.

Our approach is different for each of the two Panopticon models we propose since
they are of a different nature, i.e syntactic (for the behavioural model) vs. semantic (for
the deductive model). For the behavioural model, we provide a simple adaptation of
Cohen’s pioneering formal model of a virus and prove a Panopticon detection impossibility
result much like Cohen’s result for virus detection. For the deductive model, we follow a
completely different approach using Oracle Turing Machines and a technique that can be
applied to prove undecidabililty results for this type of machines.

More specifically, in Chapter 8 of [7] a technique from [8] is presented that establishes a
hierarchy of undecidable problems for Oracle Turing Machines. In particular, the technique
targets the oracle set S1={<M> |L(M)=∅}, with <M> denoting the encoding of Turing
machine M. Then, the sets Si+1=

{
<M> |L(MSi )=∅

}
can be, recursively, defined and the

following can be proved (see [7,8]):

Theorem 1. The membership problem for TM’s without oracles is equivalent to S1 (i.e., Lu is
equivalent to S1).

Theorem 2. The problem of deciding whether L(M) = Σ∗ is equivalent to

S2=
{
<M> |L(MS1)=∅

}
.

Our first contribution is to propose a plausible Panopticon model which incorporates
the information deduction characteristic of a Panopticon (see Definition 4). Information
deduction takes place whenever the Turing machine under scrutiny produces a completely
new information set given a set of fixed, finitely many, already known information sets. This
set models the information that the Panopticon already knows through surveillance and
observation, without (usually) expending considerable effort since it, merely, intercepts or
eavesdrops information.

More formally, let Ni =
{

Li
1, Li

2, . . . , Li
k
}

be a set of recursively enumerable lan-
guages, for some fixed integer k ≥ 1, such that ∅ /∈ Ni for all i. Also, let Mi

1, Mi
2, . . . , Mi

k
the Turing Machine(s) that, correspondingly, accept these languages. These Turing Ma-
chine(s) and their corresponding languages model the fixed information sets already
known to the Panopticon. We, also, say that a set is disjoint from a collection of sets
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if it is disjoint from all the sets in the collection. We will, now, define the oracle set S′1 =
{< M > |L(M) is disjoint from N1}, with< M > denoting the encoding of Turing machine M,
and, recursively, in analogy with [7,8], the sets S′i+1 =

{
< M > |L(MS′i ) is disjoint from Ni+1

}
.

The sets S′1 and

S′2 =
{
< M > |L(MS′1) is disjoint from N2

}
in particular, are central to our approach.

Based on this framework, in Section 5 we prove two theorems analogous to Theorems 1
and 2 on the undecidability of the problem of detecting a deductive Panopticon. Theorem 4
is focused on the weaker form of the deductive Panopticons, related to the set S′1, while the
more powerful one, based on oracle computation for “free” information gathering, related
to the set S′2, is handled by Theorem 5. In particular, in Theorem 4 we prove that Lu is
equivalent to S′1 and in Theorem 5 we prove that the problem of whether L(M) = Σ∗ is
equivalent to S′2.

Finally, in Section 6 we show that for any sufficiently expressive formal system F ,
such as Set Theory, we can effectively construct a Turing Machine which is impossible to
classify it as a Panopticon or non-Panopticon within F . In other words no formal system is
powerful enough so that given any Turing Machine, it can provide either a proof that it is a
Panopticon or a proof that it is not a Panopticon.

Before continuing, we should remark that the essential element of the proposed
definition of deductive Panopticons is that the oracle consultations model the “effortless”,
through surveillance, interception or eavesdropping, information gathering by Internet
surveillance agencies and organizations. In this context, the sets S′i+1 define an infinite
hierarchy of deductive Panopticons in which a Panopticon whose accepted language belongs
in S′i+1 operates by consulting a (weaker) lower-level Panopticon whose language belongs
in S′i , with the weakest Panopticons being the ones whose accepted languages belong in
S′1. These last level Panopticons do not have oracle consultations or effortless information
gathering capabilities.

4. Impossibility of Detecting Behavioural Panopticons

We will show below that Lu is recursive in Lb. This implies that if we had a decision
procedure for Lb then this procedure could also be used for deciding Lu which is undecid-
able. Thus, no decision procedure exists for Lb too. Our proof is similar to Cohen’s proof
about the impossibility of detecting viruses.

Theorem 3. The language Lb is undecidable.

Proof. Let < M, w > be an instance of the Halting problem. We will show how we can decide
whether < M, w > belongs in Lu or not using a hypothetical decision procedure (Turing
machine) for the language Lb. In other words, we will show that Lu is recursive in Lb.

Given < M, w >, a set Qpan of states, Qpan ∩Q = ∅, where each state is related with
actions that manifest Panopticon behaviour, is embedded into M. We design a Turing
machine Mcon that it gets M as input and modifies the transition function (see Definition 1)
of M so as when a final state is reached (i.e., a state in the set F of M) a transition takes
place that essentially starts the execution of the actions related to some state of Qpan. In a
sense, Mcon produces now a new Turing machine M′ containing the actions of M followed
by actions (any of them) corresponding to the states in Qpan. Now, M′ is given as input the
input of M, i.e., w, and operates as described above.

Let us assume that there exists a Turing machine Mb that decides Lb and suppose that
Mb answers that M′ ∈ Lb when M′ is given as input to Mb. Since a state in Qpan was finally
activated, as Mb decided, this implies that M halted on w since M′ initially simulated M
on w. Then we are certain that M halts on w.

Assume, now, that Mb decides that M′ is not a Panopticon, i.e., M′ /∈ Lb. Then a state
in Qpan was never reached, which implies that no halting state is reached by M on w since
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a state of Qpan in M′ is reached only from halting states of M, which is simulated by M′.
Thus, M does not halt on w. It appears that M′ is a Panopticon if and only if M halts on w
and, thus, we have shown that Lu is recursive in Lb.

However, there is a catch that invalidates this reasoning: if M itself can exhibit the
Panopticon behaviour, i.e., it already contains Qpan and it can reach a state in Qpan before
reaching a final state. This means that Panopticon behaviour can be manifested without
ever M reaching a final state that would lead M′ to invoke a Panopticon state in Qpan, by its
construction. This situation can be solved if we create a new set of dummy (“harmless” or
“no-operation”) “Panopticon” states Q′pan which contains a new state for each of the states in
Qpan. Then we replace the states from Qpan that appear in the transition function of M with
the corresponding states in Q′pan. This new version of M is given to Mcon to produce M′ as
mentioned previously. Actually, this transformation removes from a potential Panopticon
the actions that if executed would manifest a Panopticon. We stress, again, the fact the mere
existence of Panopticon actions is not considered Panopticon behaviour.

With this last transformation, M′ is a Panopticon if and only if M halts on w and, thus,
Lu is recursive in Lb.

5. Impossibility of Detecting Deductive Panopticons

In the following two theorems, we prove the undecidability of S′1 and S′2. Although
their undecidability follows, directly, from Rice’s Theorem (see [7,18]), the proofs we give
below provide more insightful information as they place S′2 in a higher undecidability level
than S′1 (see, also, the discussion about the Arithmetical and the Analytical Hierarchies in
Section 7.3).

We, first, prove the undecidability of S′1, i.e., the impossibility of deciding for a given
Turing machine (its encoding, to be precise) whether it accepts a language disjoint from
a given, fixed, finite set of languages. In other words, it is impossible to detect Turing
Machine(s) that decide, perhaps with effort, new information sets given some known ones.

Theorem 4. The Halting Problem for Turing Machine(s) without oracles, i.e., Lu, is equivalent to S′1.

Proof. We first prove that given an oracle for S′1 we can recognize Lu. We construct a Turing
machine MS′1 such that given 〈M, w〉 constructs a Turing machine M

′
which operates as

follows. It ignores its input and simulates, internally, M on w. M
′

accepts its input if M
accepts w which means that L(M

′
) = Σ∗ otherwise, i.e., if M does not accept w then M

′

does not accept its input and L(M
′
) = ∅. Then, MS′1 asks the oracle whether < M

′
>∈ S′1.

If the answer is yes, i.e., L(M
′
) = ∅, then M does not accept w. If the answer is no, then

L(M
′
) = Σ∗ and, thus, M accepts w. We, thus, can recognize Lu.
Now, we show that given an oracle for Lu we can recognize S′1. We will construct

a Turing machine M
′ ′

such that, given M, it constructs another Turing machine M
′

that
operates as follows. M

′
ignores its own input initially, and uses a generator of triples (i, j, l),

1 ≤ l ≤ k + 1, for simulating the lth Turing machine, Ml , with Mk+1 = M, on the ith string
lexicographically constructed for j steps (the Turing machine Ml runs on the ith string for j
steps i.e., it applies the transition function j times). The triples are generated in increasing
order of the sum n = i + j + l of their components and for triples of equal component
sum, in increasing i, then in increasing j (if the i components are equal), and finally in
increasing l (if the i and j components are equal). Each time one of the Turing Machine(s)
M1, M2, . . . , Mk accepts a particular input, this input is recorded on M

′
’s second tape. Each

time Mk+1 accepts an input (i.e., M accepts an input), it is also recorded on M
′
’s second

tape separately from the inputs accepted by M1, M2, . . . , Mk. Then, M
′

checks (using
the recorded inputs stored on its second tape) whether this Mk+1 input, or one accepted
previously by Mk+1, has been accepted by one of the M1, M2, . . . , Mk. If no, the process
continues. If yes, M

′
stops the simulation and accepts its own input that was initially

ignored. Thus, < M > ∈ S′1 if L(M
′
) = ∅ since this means that L(M) is disjoint from



Cryptography 2022, 6, 42 9 of 18

N1 while < M > /∈S′1 if L(M
′
) = Σ∗, i.e., M

′
accepts all its inputs, ε in particular. Then,

M
′ ′Lu may query its oracle set Lu for

〈
M
′
, ε
〉

. If the answer is yes then M
′ ′

rejects < M >

which means that < M >/∈ S′1, otherwise it accepts < M > i.e., < M >∈ S′1. Thus, S′1
is recognizable.

Theorem 5. The problem of deciding whether L(M) = Σ∗ is equivalent to S′2.

Proof. We first show that deciding whether L(M) = Σ∗ is recursive in S′2. We construct
a Turing machine M̂

′S′2 that takes as input a Turing machine M and constructs from it
a Turing machine M̂S′1 , that is a Turing machine with oracle set S′1, that operates in the
following way. It enumerates strings x over the alphabet Σ, and for each such string it uses
oracle S′1 in order to decide whether M accepts x. This can be accomplished by constructing
M′ which ignores its input and simulates M on x. If M accepts x then M′ accepts its input
which means that L(M′) = Σ∗ while L(M′) = ∅ if M does not accept any x. Then, M̂S′1

asks the oracle whether < M′ >∈ S′1. If the answer is yes, which means that M does not
accept any x, then M̂S′1 accepts its input.

Thus, M̂S′1 accepts its own input if and only if there is a string x not accepted by M.
Consequently,

L(M̂S′1) =

{
∅, if L(M) = Σ∗

Σ∗ otherwise.

Now M̂
′S′2 asks its oracle S′2 whether < M̂S′1 >∈ S′2, i.e., whether L(M̂S′1) is disjoint

from all sets in N2. If the answer is yes, then L(M̂S′1) = ∅ and consequently, L(M) = Σ∗.
If the answer is no, on the other hand, then L(M̂S′1) = Σ∗ and, thus, L(M) 6= Σ∗. Thus,
deciding whether L(M) = Σ∗ is recursive in S′2.

We now turn to showing that S′2 is recursive in the problem of whether L(M) = Σ∗.
In other words, if by L∗ we denote the codes of the Turing Machine(s) which accept all their
inputs, then we will prove that there exists a Turing machine M̂

′ ′L∗ , i.e., a Turing machine
with oracle set L∗, that recognizes S′2.

Given a Turing machine MS′1 , we define the notion of a valid computation of MS′1 using
oracle S′1 in a way similar to the notion defined in [7,8]. A valid computation is a sequence of
Turing Machine step descriptions, called Instantaneous Descriptions or ID, such that the next
one follows from the current one after a computational (not oracle query) step, according to
the internal operation details (i.e., transition function or program) of the Turing machine.
Roughly, an ID describes fully the status of a Turing Machine computation at each time
step, containing information such as tape contents, head position, and current state.

However, if a query step is taken, i.e., the Turing machine MS′1 enters state q?, and the
next state is qn, this means that MS′1 submitted a query to the oracle S′1 with respect to
whether some given Turing machine, say T, belongs to the set S′1, receiving the answer no.
In other words, the oracle replied that < T > /∈S′1 or, equivalently, L(T) is not disjoint from
all sets in N1. As evidence for the correctness of this reply from the oracle, we substitute the
query step with a valid computation of the ordinary (i.e., with no oracle) Turing machine T
that shows that a particular string from a language in N1 is, also, accepted by T. If, however,
after q? the state qy follows, no computation is inserted. Intuitively, such a computation
would be infinite. By definition, all valid computations conclude in a halting, i.e., acceptance
state (see [7,8] for details).

We, now, describe the operation of M̂
′ ′L∗ with < MS′1 > as input. Given MS′1 , M̂

′ ′L∗

constructs a Turing machine M
′

which accepts all computations of MS′1 which show that
they are not a Panopticon. We call these computations non-Panopticon computations and
they are of two disjoint types: (i) invalid computations, i.e., computations which contain
invalid successions of IDs, and (ii) unsuccessful computations, i.e., computations which,
although not invalid, they demonstrate that MS′1 is not a Panopticon.
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M
′

interprets its inputs as computations of MS′1 . Given such an input string, M
′

first
checks if the string is malformed (i.e., it does not follow the format of a computation of a
Turing Machine) or when one step does not follow from the previous one according to the
internals of the Turing machine MS′1 , or when the inserted, non-oracle, computation in a q?-
qn step is not valid. In all these cases M

′
accepts the input string as an invalid computation.

However, there is some difficulty in the q?-qy cases since, as we stated above, there
is no obvious finite computation evidence for the correctness or not of the reply. Now the
Turing machine M

′
must decide on its own whether the reply to each q?-qy query is correct.

Let us assume there are t ≥ 1 such queries in the examined computation (otherwise there
are no q?-qy cases to check). Let, also, w be the input string to the computation of MS′1 that
is checked by M

′
whether it is invalid, so as to accept it.

In particular, the reply qy to the ith, 1 ≤ i ≤ t, query means that the language
recognized by the queried Turing machine, say Ti, is disjoint from all the sets in N1,
i.e., < Ti >∈ S′1. Using a round robin technique similar to the triples generation technique
described in the proof of Theorem 4, M

′
cycles, concurrently (in a time sharing fashion)

• (Simulation A) over all the t q?-qy queries in the examined computation of MS′1 , trying
to locate a string accepted by a queried Turing Machine Ti and one of the Turing
Machines M1

1, M1
2, . . . , M1

k in S′1, and
• (Simulation B) over MS′1 and the Turing Machines M2

1, M2
2, . . . , M2

k in S′2, with the
same input w, trying to discover whether w, which is accepted by the examined (by
M
′
) computation of MS′1 , if valid, is, also, accepted by one of the Turing Machines

M2
1, M2

2, . . . , M2
k in S′2.

As long as none of the above simulations concludes, M
′

continues the search. If one of
them concludes, then M

′
stops the simulation and accepts its input string (which represents

a computation of MS′1 ) since the computation it represents was either invalid (Simulation A
concludes) or unsuccessful (Simulation B concludes). In other words, the computation was a
non-Panopticon computation.

Based on the above, L(M
′
) = Σ∗ if and only if < MS′1 > 6∈ S′2. Thus, M̂

′ ′L∗ can, now,
ask its oracle whether L(M

′
) = Σ∗ or not, deciding in this way S′2 and, thus, detecting

deductive Panopticons.

6. Impossibility of Proving Panopticon Status within Formal Systems

Based on the Recursion Theorem, the following, central to our approach in this section,
theorem is proved in [7] contained, among other similar results, in [9]:

Theorem 6. Given a formal system F , we can construct a Turing Machine MF for which no proof
exists in F that it either halts or does not halt on a particular input.

Based on Definition 4 of a Panopticon (see, also, Sections 3 and 5 for the formal details
of the definition), Theorem 6 and the Turing Machine MF , we now prove the following:

Theorem 7. Let F be a consistent formal system. Then we can construct a Turing Machine for which
there is no proof in F that it behaves as a Panopticon and no proof that it does not behave as a Panopticon.

Proof. We will reduce the problem of deciding whether the Turing Machine MF halts on a
given input w to the problem of deciding whether a given Turing Machine M is a Panopticon.

For some fixed k, we define a set N = {L1, L2, . . . , Lk} of recursively enumerable
languages and a set of corresponding Turing Machines M1, M2, . . . , Mk which recognize
them correspondingly. We also assume there exists a recursively enumerable language L,
recognized by a Turing Machine M, which is disjoint from N.

These elements can be effectively constructed. For instance, for k = 2, we can
set L1 = {The multiples of 2, except 2 itself}, L2 = {The multiples of 3, except 3 itself},
and L = {All primes}. For each of these languages (in particular L) we may construct a
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corresponding Turing Machine that recognizes it. Also, note that L is disjoint from the set
{L1, L2} and, thus, the Turing Machines that accept this language are Panopticons.

Given these elements as well as the Turing Machine MF and an input w on which we
want to decide whether MF halts or not, we proceed as follows. We construct a Turing
Machine M? which, given w′ as input, simulates M on w′ and MF on w, alternating between
them. Then M? accepts if either of them accepts at some step of the simulation process.

We, now, observe that L(M?) = L(M), if MF does not halt on w while L(M?) = Σ∗

if MF halts on w. Then, according to the definition of a deductive Panopticon, M? is a
Panopticon if and only if MF does not halt on w.

But, now, if a proof existed in the formal system F that M? either is a Panopticon or
it is not a Panopticon then the same proof could be used to prove that MF either halts or
does not halt, correspondingly, contradicting, thus, Theorem 6.

7. Philosophical Remarks on Panopticon Detectability

In this final section, we consider the problem of detecting oracle-based Panopticons
through their physical properties and by Hypercomputation computational models, focusing
on the Infinite Time Turing Machine (ITTM) model.

With respect to the physical detection, we discuss how the action of receiving infor-
mation “for free” through the oracle reply, forces the Panopticon to perform an irreversible
operation which, necessarily, dissipates heat to the environment, manifesting the Panopti-
con’s presence. A reversible operation of a Turing Machine implies that one can trace or
rewind the computation back to the beginning, from any step of the evolution of computa-
tion or, equivalently, if the Turing Machine is found at a particular state, then there is only
a unique predecessor state from which this state may have resulted. We base our discussion
on the theory of the thermodynamics of computation and the fact that irreversible compu-
tational operations, necessarily, consume energy and dissipate heat to the environment
(see [10,19]).

Moving to hypercomputation, we consider the power of Infinite Time Turing Machines
with respect to detecting oracle-based Panopticons. We conclude that since the hypercom-
putation decidability powers transcend the Arithmetical Hierarchy and reach the first level
of the Analytical Hierarchy (see [11]), simple oracle-based Panopticons are detectable by
ITTMs. Then we consider the question of defining ITTM-based Panopticons that evade the
detectability power of ITTMs.

7.1. Detectability of Panopticons by Their Thermal Emissions

In the preceding sections, we proved that, under a plausible formal definition of
Panopticons as Oracle Turing Machines, detecting Panopticons by “normal” Turing Machines,
i.e., Turing Machines without oracles, fully realizable and algorithmic in operation, is an
undecidable problem. However, as we discuss in this section, it may still be possible
to detect Panopticons or, more generally, Turing Machines deploying Oracles, based on
non-algorithmic approaches, namely the theory of the thermodynamics of computation.

It is a well-known fact that any (non-oracle) Turing Machine can be transformed so as to
operate, in a physical implementation, in a way that does not dissipate energy, i.e., it can be
transformed so as to operate reversibly (see [19]). Reversibility in computation is important
due to the fact that only operations that are irreversible necessarily consume energy and
dissipate heat to their environment. Such irreversible operations include, for instance,
the logical AND of two bits or resetting to a default state (e.g., to ‘0’) a 1-bit memory.
However, as we stated above, in principle any Turing Machine, which normally operates
in an irreversible way, can be transformed into an equivalent, as far as the computation is
concerned, reversible Turing Machine (see [19] for the formal details of the transformation).

On the other hand, Oracle Turing Machines and Panopticons as we defined them in this
paper, for that matter, include a step which cannot be performed reversibly. This step results
from the consultation of the oracle when the Oracle Turing Machine enters the oracle query
state. The oracle consultation cannot be replaced, in general, by the computation of a Turing
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Machine that always halts and supplies the correct answer to the oracle query since the
oracle may correspond to an undecidable problem such as the Halting Problem, as it is in
our case. Moreover, this step is irreversible, by its nature since to a particular oracle query
response there may correspond more than one (perhaps infinitely many) strings for which
the response is correct. Thus, it is not possible to infer, uniquely, the query string, given the
query response. More precisely, the oracle reply, Yes or No, is stored in a 1-bit memory as a 1
or 0 respectively. Since there is no connection with the query to which the reply was given,
the memory can be considered as containing a random or unknown bit just before the reply
is given to the next query. However, setting a previously unknown bit to either 0 or 1 is an
irreversible operation since given the set value, it is impossible to infer the previous one.
According to the thermodynamics of information, this operation consumes energy equal
to kBT ln 2, where kB is Boltzmann’s constant and T the environment temperature, and,
thus, dissipates heat to the Panopticon’s environment (see, e.g., [10]). Therefore, this oracle
consultation step, which is unavoidably irreversible, dissipates heat to the environment of
the Panopticon and, thus, provides evidence of its existence and operation (in the form of
increasing temperature in its environment), even though detecting Panopticons algorithmically,
i.e., by non-Oracle Turing Machines, is an undecidable problem.

In some sense, an Oracle Turing Machine can be viewed as a type of Maxwell’s Demon.
The reader is urged to consult the excellent collection of seminal papers in [20] on its history
as well as impact on philosophy, information theory, and thermodynamics of computation.
Similarly to Maxwell’s Demon, the Oracle Turing Machine involves itself in a cyclic process
of (i) normal computation followed by an observation, in the form of submitting a query
string to its oracle, which results to an instantaneous “observation” result, i.e., the reply of
the oracle, and (ii) Storing the result of the observation (i.e., query reply, “YES” or “No”)
on an 1-bit memory. As in the resolution of the tantalizing operation of Maxwell’s Demon
which appears to perform useful work without consuming energy, apparently violating
the Second Thermodynamics Law. In the final resolution of the “paradox”, after many failed
attempts, Bennett showed (see [10,19]) that it was not the observation the process that
should, necessarily, consume energy (it can be performed reversibly) but the operation
of resetting of the 1-bit memory from an unknown value, to a specific value that reflects
the result of the observation, 1 or 0 (i.e., “YES” or “NO”, as oracle replies in our case).
Thus, information theory was linked, tightly, to thermodynamics. Likewise, the Panopticon
operating as an Oracle Turing Machine does not betray its presence through the process of
“observation”, i.e., invoking the oracle, bur by manipulating the 1-bit memory that holds
the oracle reply.

In summary, it appears that the very strength of Panopticons (defined as Oracle Turing
Machines), which is their ability to “observe” everything and acquire knowledge without
computational effort, can be their very weakness. This is due to the fact that this ability
relies on irreversible operations (i.e., setting to either 0 or 1 an 1-bit memory which holds
a random value that holds the result of the observation, or, query to the oracle) which
dissipate energy and emit heat to the Panopticon’s environment revealing, in this way,
the Panopticon’s existence and operation.

7.2. Infinite Time Turing Machine Hypercomputation Model

The Oracle Turing Machines (see Definition 2), or O-machines as defined by Turing, is
an instance of a general class of theoretical computation models named Hypercomputation
or Super-Turing (see [21,22]). Within the context of all these models, problems such as the
Halting Problem can be solved, which cannot by solved by ordinary Turing Machines and,
thus, are not confined by the Church-Turing Thesis.

In this section we focus on Infinite Time Turing Machine computational model or ITTM
for short. A machine in this model operates much like an ordinary Turing Machine in
the sense of Definition 1, as follows: each computational step is executed, in succession,
after the previous one through the application of the transition function based on the
contents of each tape cell and the current machine state. In this way, each configuration of
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the machine at computation step t + 1 results from the configuration of the machine at step
t according to the tape contents and the actions of the transition function, as it is the case
for ordinary Turing Machines under Definition 1. The critical difference is that in contrast
with Turing Machines which are required to produce the correct computation result after a
finite number of steps (otherwise the computation proceeds indefinitely without producing
any result) the machines in the ITTM model are allowed to compute and produce results
using an infinity of steps. To avoid some important technicalities (see [11] for the details)
with respect to how a result can be obtained within an infinite number of steps, the theory
of ordinals is employed to define specific computation limit steps upon which results are
obtained from a machine in the ITTM model. Before we continue, we should remark
that this computational model has received harsh criticism (see, for instance, [13,23,24]).
However, this model can be, nevertheless, proved to be a promising theoretical tool for
studying the limits of Panopticism, at least when Panopticons are based on some formal
theoretical computational model.

Ordinals can be used as “labels” of the order of the elements of a well-ordered set,
i.e., a set in which every pair of its elements is comparable. The labeling is as follows:
the smallest element of the set is labeled 0, the one coming after the smallest element is
labeled 1, the next element 2 etc. The size of the set is equal to the least ordinal that does
not constitute a label for a set element. This size is the order type of the set.

An ordinal can be, inductively, defined as the set of the preceding ordinals. For in-
stance, the finite ordinal 20 is the order type (or size) of the ordinals that precede it, i.e., the
finite ordinals 0 up to 19 which is the immediate predecessor of 20. Thus, the ordinal 20
is identified as the set {0, 1, . . . , 19}. Conversely, any well-ordered set S such as for each
ordinal α ∈ S and any β < α, it also holds that β ∈ S, can be identified with an ordinal.

Except the finite ordinals, which can be identified with the elements of the set N of
natural numbers, there are also infinite ordinals, the smallest one being ω, the order type of
the natural numbers (which are the finite ordinals). The ordinal ω, thus, can be identified
with the set N of natural numbers.

In the terminology of ordinals, if an ITTM reaches a halting state within a number of
steps equal to a finite ordinal, then the halting procedure is the one followed by an ordinary
Turing Machine. However, whereas the computation may be impossible for an ordinary
Turing Machine, which implies that for some input(s) it fails to halt within a finite number
of steps, as it happens for the Halting Problem of any undecidable problem, for machine
in ITTM the computation is considered to step on all finite ordinals, until it reaches the
first infinite ordinal ω which is the first infinite halting step. Thus, after all finite ordinals,
comes the first infinite ordinal ω. Next, in succession, come the infinite ordinals ω + 1,
ω + 2 etc. until we reach ω + ω or ω · 2. Then come ω · 2 + 1, ω · 2 + 2 etc. until we reach
ω · 3 which is ω + ω + ω. In general, the infinite ordinals are written as ω · n + m, with n, m
natural numbers (or finite ordinals). With this set of ordinals we associate the ordinal ωω.
Likewise, some ordinals which come next are ω · 4, and then later on ω · 5. Analogously,
we have ordinals such as ω3, ω4, ω5, ωω, ωωω

and at some point the ordinal ε0. This
can be continued infinitely, enumerating the countable ordinals until we reach the smallest
uncountable ordinal ω1. Loosely speaking, much as we say an ordinary Turing Machine falls
in an infinite loop and, thus, does not terminate if the number of steps is infinite, or we may
say ω in the language of ordinals, we may, likewise, say that a machine in the ITTM model
falls in an infinite loop if the computation steps over all countable ordinals reaches ω1.

The key element in the computation of a machine of the ITTM model is to define its
state at steps that go over the countable set of the limit ordinals such as ω, which is the
first infinite ordinal and, thus, the first “infinite step” of a machine operation after the finite
steps (ordinals) which are the natural numbers N and which form the numbers of steps
that a computation of an ordinary Turing Machine is allowed to take.

Moreover, the most important thing in the operation and halting process of a machine
of the ITTM is to define a type of limit for an infinite computation to which the computation
will be said to converge providing the correct computation result. Thus, we need to define
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the machine’s state or configuration at limit steps ω, ω · 2, ω · 3 etc., i.e., all limit ordinals of
the hypercomputation. As described in [11], at limit states, the machine tape head is rewound
to the first cell and the machine is set at a distinguished state, the limit state much like the
halting state of an ordinary Turing Machine. At this point, the limit value of all tape cells
is taken according to the following rule: if the value appearing in a cell has converged,
i.e., they have reached the value 0 or 1 before the limit step we examine, then the cell keeps
this value at the limit step. If convergence has not taken place before the limit step, that is if
the values of the cell were alternating between 0 and 1, unboundedly often, then the cell is set
at the limit value 1. Equivalently, the cell’s limit value is set to the lim sup of the cell values
appearing before the limit step we examine.

This discussion (see [11]) describes, precisely, the configuration of a machine of the
ITTM model at all limit steps β, i.e., all limit infinite ordinals, the first of which is ω. Between
limit steps, i.e., β + 1, β + 2, . . . before reaching the next limit step β + ω, the computation
proceeds normally, as in ordinary Turing Machines. If at any computation step between
limit steps the machine reaches the halting state, the computation stops the the cell value is
the value already existing there. As long as the halting state is not reached, the computation
proceeds indefinitely, over the limit ordinals and the steps (natural numbers) between them.

7.3. Detecting Deductive Panopticons with Ittm Computation Model

Based on the above, it is easy to see that the Halting Problem is decidable by a machine
of the ITTM class. Given an ordinary Turing Machine M and an input w to it, we provide
< M, w > to a Universal Machine of the class ITTM. This universal machine writes 0 at a
designated output cell, meaning “NO”, i..e. the Turing Machine has not halted yet. Then
it simulates M on w if at any step the Turing machine halts, the universal machine writes
“YES” on the output cell and halts, signifying that M halted on w. Otherwise, the first limit
step ω will be reached, the limit value 0 will be computed on the output cell (actually,
the same as the initial value - no alternation between values took place), and the universal
machine will halt.

Definition 5. The i-th level of the arithmetical hierarchy contains 3 classes Σ0
i , Π0

i , and ∆0
i .

The class Σ0
i is the set of languages defined as

L = {x ∈ {0, 1}∗ : ∃y1∀y2∃y3 · · · Q yi R(x, y1, · · · , yi) = 1}

for some total Turing machine R, where Q is the quantifier ∀ when i is even, or ∃ when i is odd.
The class Π0

i is the complement of Σ0
i , and ∆0

i = Σ0
i ∩Π0

i .

Thus, the arithmetical hierarchy includes sets definable by first order logic or arithmetic
statements. If we allow quantification over sets instead of single elements, we obtain the
analytical hierarchy with analogous definition and a notation in which the superscript 0
replaced by 1 (see [25]).

In particular the first level of the arithmetical hierarchy corresponds to the classes
Σ0

1 = RE, Π0
1 = coRE, and ∆0

1 the set of decidable languages RE∩ coRE.
We can study the set of Turing Machine computable functions within the context of

oracles, as we discussed in Section 3. That is, we can consider Oracle Turing Machines
with oracle set the empty set ∅. We can iterate this process much like it is done with the
sets Si defined in Section 3. It is easy to see that O-machines at a specific iteration level i
cannot solve the Halting Problem for themselves but only for lower levels, acting as oracles
with the oracle set ∅. Thus, as i increases, we obtain increasingly more powerful classes of
Turing Machines.

The iteration step for obtaining the Halting Problem for a class of Oracle Turing Ma-
chines i with oracle set X in general (X is the empty set in our discussion but it can be any
set enumerable by an Oracle Turing Machine) is written X′ which is known as the jump
operator. In this notation, for X = ∅, the Halting Problem (and all Recursively Enumerable
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functions) can be seen to be recursive in ∅′, the Halting Problem for Oracle Turing Machines
with oracle set ∅′ is recursive in ∅′′ etc.

Based on the jump operator, the following can be proved:

1. The representation theorem: For any relation R, R is in the arithmetical hierarchy iff R is
definable in elementary arithmetic.

2. The strong hierarchy theorem:

• R ∈ ∆0
n+1 iff R is recursive in ∅(n) (i.e., the nth jump of the empty set).

• R ∈ Σ0
n+1 iff R is recursively enumerable in ∅(n).

• R ∈ Π0
n+1 iff R is recursively enumerable in ∅(n).

The Arithmetical and Analytical Hierarchies, separated by the jump operator (appearing as
0 instead of ∅) are shown in Figure 1.

(a) (b)

Figure 1. The Arithmetical and the Analytical Hierarchies. (a) The Arithmetical Hierarchy; (b) The
Analytical Hierarchy.

With respect to the power of machines of the ITTM class, in [11] it is shown that
the class of the ITTM-decidable sets lie between Σ1

1 ∪ Π1
1 and ∆1

2 and extends beyond
the arithmetical hierarchy into the analytical hierarchy of sets. The ITTM-decidable sets,
thus, certainly include Lu (the Halting Problem), which is placed low in the arithmetic
hierarchy in Σ0

1 (actually all sets in Σ0
1 many-one reduce to Lu) and the language consisting

of encodings of Turing Machines who accept Σ∗, which is placed, also, low (but higher than
Lu) in the arithmetical hierarchy in Π0

2 −Π0
1.
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Let us, now, examine our two deductive Panopticon detection problems in the context
of the ITTM computation model. We have defined two such problems, one represented
by the set S′1 and one by the set S′2. With respect to S′1, we proved in Theorem 4 that the
problem of deciding this language is equivalent to Lu, which represents the Halting Problem.
In view of the discussion above, a machine from the ITTM model decides S′1 since it decides
Lu, i.e., solves the Halting Problem, in ω steps.

With respect to the second Panopticon problem, i.e., deciding S′2, we proved in Theo-
rem 5 that this problem is equivalent to the problem of deciding the problem of whether,
for a given Turing Machine M, L(M) = Σ∗. This problem belongs to the Π0

2 −Π0
1 level

of the arithmetical hierarchy (see [25]) and, thus, deciding S′2, i.e., solving the second
Panopticon detection problem, is also in the Π0

2 −Π0
1 level.

8. Discussion and Directions for Future Research

Theorems 3–5 in Section 3 show that, even for Panopticons with the simple behaviours
described in Definitions 3 and 4, it is impossible, in principle, to detect them. Potential
Panopticons, naturally, can have any imaginable, complex, behaviour but then the problem
of detecting them may become harder compared to our definitions.

Comparing, now, Theorems 3–5, Theorem 3 examines the detection of Panopticons
based on the execution of specific visible or detectable actions, i.e., on a behavioural level,
such as connecting to a server and sending eavesdropped information or sending an email
to the unlawful recipient. Theorems 4 and 5 examine Panopticon detection not based
on their visible behaviour but from what languages they may recognize, without having
any visible clue of behaviour or actions, only their descriptions as Turing Machine(s) (i.e.,
programs or systems). These theorems, that is, examine the detection of Panopticons at a
“metabehavioural” level.

With respect to the difference between Theorems 4 and 5, we first observe that Lu is
recursively enumerable but not recursive while the {< M > |L(M) = Σ∗} language is
not recursively enumerable (see, e.g., [7]). Although they are, both, not recursive (i.e., not
decidable), their “undecidabilities” are of different levels, with the {< M > |L(M) = Σ∗}
language considered “more difficult” than Lu in restricted types of Turing Machine(s)
(Panopticons). For example, the Lu language is decidable for Context-free Grammars (i.e.,
for Turing Machine(s) modelling Context-free Grammars) while the {< M > |L(M) = Σ∗}
language is still undecidable. Also, for regular expressions, the problem of deciding Lu is
solvable efficiently (i.e., by polynomial time algorithms) while the {< M > |L(M) = Σ∗}
language has been shown, almost certainly, to require exponential time (in the length
of the given regular expression) to solve (see, e.g., [7]). Therefore, a similar decidability
complexity status is expected from S′1 (deductive Panopticons without external advice)
and S′2 (deductive Panopticons with external advice in the form of an oracle) since they
are equivalent to the languages Lu and {< M > |L(M) = Σ∗} respectively. That is, when
we consider more restricted definitions of Panopticons that render the detection problem
decidable, then deciding which Panopticons belong in S′1 is expected to be easier than
deciding which Panopticons belong in S′2.

Finally, Theorem 7 shows that for any formal system F , we can, effectively, exhibit a
particular Turing Machine for which there is no proof in F , that it is either a Panopticon or it
is not a Panopticon, emphasizing the difficulty of recognizing Panopticons by formal means.

As a next step, it is possible to investigate the status of the Panopticon detection
problem under other definitions, either targeting the behaviour (i.e., specific actions) of
the Panopticon or its information deducing capabilities (e.g., recognizing languages with
specific closure properties or properties describable in some formal system such as second
order logic). Our team plans to pursue further Panopticon definitions in order to investigate
their detection status, especially for the decidable (and, thus, more practical) cases of
suitably constrained Panopticons.
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Moreover, in view of the considerations discussed in Section 7.1, it would be interesting
to pursue, further, the computational undetectability of Panopticons in the form of oracle
Turing Machines with their, apparent, physical detectability. This detectability is possible
through the energy dissipation that takes place each time the oracle is consulted and
the result is provided without any computational effort which, if it was expended by the
Panopticon Turing Machine, it could be transformed into a reversible sequence of steps, so
that no energy dissipation takes place which could betray the Panopticon. It appears that
the mere Panopticon action, i.e., “knowing” without “toiling”, deprives the Panopticon of
any potential to hide its presence.

Finally, it would be interesting to study Panopticon capabilities in the context of other
“unrealistic” models such as the Infinite Time Turing Machines (ITTM) which we discussed
in Section 7.2. We remarked that a Turing Machine of the ITTM class decides the Panopticon
detection problem under both definitions that we gave in this paper, although the two
definitions lead to problems belonging in different levels of the Arithmetic Hierarchy.
Actually, since the power of such a Turing Machine steps well into the first level of the
Analytical Hierarchy, it would be interesting to provide (as natural as possible) Panopticon
definitions that fall in higher levels. Also, the possibility of an ITTM Panopticon can be
investigated in order to define its potential behaviour, its properties and power.

In conclusion, we feel that the formal study of the power and limitations of massive
surveillance establishments and mechanisms of today’s as well as of the future Information
Society can be, significantly, benefited from fundamental concepts and deep results of
computability and computational complexity theory. We hope that our work will be one
step towards this direction.
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