
Citation: Nişancı, G.; Flikkema, P.G.;

Yalçın, T. Symmetric Cryptography

on RISC-V: Performance Evaluation

of Standardized Algorithms.

Cryptography 2022, 6, 41.

https://doi.org/10.3390/

cryptography6030041

Academic Editor: Josef Pieprzyk

Received: 17 June 2022

Accepted: 30 July 2022

Published: 10 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Review

Symmetric Cryptography on RISC-V: Performance Evaluation
of Standardized Algorithms
Görkem Nişancı 1,*, Paul G. Flikkema 2 and Tolga Yalçın 3

1 Intel Corporation , Chandler, AZ 85226, USA
2 School of Informatics, Computing and Cyber Systems, Northern Arizona University,

Flagstaff, AZ 86011, USA
3 Google LLC , San Diego, CA 92121, USA
* Correspondence: gorkem.nishandji@intel.com

Abstract: The ever-increasing need for securing computing systems using cryptographic algorithms
is spurring interest in the efficient implementation of common algorithms. While the algorithms
can be implemented in software using base instruction sets, there is considerable potential to reduce
memory cost and improve speed using specialized instructions and associated hardware. However,
there is a need to assess the benefits and costs of software implementations and new instructions that
implement key cryptographic algorithms in fewer cycles. The primary aim of this paper is to improve
the understanding of the performance and cost of implementing cryptographic algorithms for the
RISC-V instruction set architecture (ISA) in two cases: software implementations of the algorithms
using the rv32i instruction set and using cryptographic instructions supported by dedicated hardware
in additional functional units. For both cases, we describe a RISC-V processor with cryptography
hardware extensions and hand-optimized RISC-V assembly language implementations of eleven
cryptographic algorithms. Compared to implementations with only the rv32i instruction set, im-
plementations with the cryptography set extension provide a 1.5× to 8.6× faster execution speed
and 1.2× to 5.8× less program memory for five of the eleven algorithms. Based on our performance
analyses, a new instruction is proposed to increase the implementation efficiency of the algorithms.

Keywords: RISC-V; cryptography; ISA

1. Introduction

The ever-increasing need for securing computing systems using cryptographic algo-
rithms is spurring interest in the efficient implementation of common algorithms. While
the algorithms can be implemented in software using the base instruction set of processors,
there is considerable potential to reduce memory cost and improve speed using specialized
instructions and associated hardware. However, there is a need to assess the relative
benefits and costs of software implementations and new instructions that implement key
cryptographic algorithms in fewer cycles. With the growing popularity of the extensible
RISC-V ISA, there is a need to improve the understanding of the cost of implementing
cryptographic algorithms for both implementations of the algorithms in software using the
rv32i instruction set and with the implementation of instructions as hardware in additional
functional units.

RISC-V is an open-source RISC ISA, which was developed starting in 2010 at UC-
Berkeley [1]. In 2011, the team published Volume 1 of the RISC-V ISA manual [2]. In 2015,
the RISC-V International Foundation [3] was founded to build a RISC-V ISA community.
RISC-V has 32-bit and 64-bit versions, and currently, it has eight ratified instruction set
extensions (-M, -A, -F, -D, -Q, -C, -Zicsr, -Zifencei) and the base instruction set (-I) [4].
However, there are several upcoming extensions.

One of these upcoming extensions is the RISC-V cryptography extension (-crypto),
which has two sets of instructions—Scalar & Entropy Source [5] and Vector [6]. The

Cryptography 2022, 6, 41. https://doi.org/10.3390/cryptography6030041 https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography6030041
https://doi.org/10.3390/cryptography6030041
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://doi.org/10.3390/cryptography6030041
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography6030041?type=check_update&version=2

Cryptography 2022, 6, 41 2 of 29

scalar extension has groups of instructions. The first group includes instructions that are
borrowed from the upcoming bitmanip extension [7], and five other groups are designed
to accelerate particular cryptography algorithms: AES [8], SHA-256 [9], SHA-512 [9],
SM3 [10], and SM4 [11]. The scalar extension provides both 32-bit and 64-bit versions of the
instructions. Similarly, the vector cryptography extension provides vector versions of some
of the bitmanip instructions and vector instructions to accelerate the AES and the SHA2 [9]
algorithms. The RISC-V cryptography extension task group published version v1.0.0-rc6 of
the RISC-V Cryptography Extensions Volume 1—Scalar & Entropy Source Instructions [5].
There is a slight difference between the instructions explained in version v1.0.0-rc6 and the
instructions that are evaluated in this work. In this work, we implemented grev[i], shlf[i],
and unshlf[i], which were removed from the cryptography extension in version 0.7.2 [12].
These instructions are replaced with brev8, rev8, zip, and unzip instructions, which are
simplified versions of grev[i], shlf[i], and unshlf[i].

This work presents software-only algorithms for eleven cryptographic algorithms
using the RISC-V rv32i ISA and compares the performance of these algorithms to the
performance of a RISC-V processor with additional hardware modules that implement
specialized instructions for single-cycle execution of cryptographic primitives.

In our study, we have not implemented any of the cryptographic algorithms fully in
hardware. Instead, we wanted to observe their software performance without and with the
aid of hardware acceleration via application-specific instruction set extensions. The only
hardware modules we implemented are those added into the processor datapath in order
to realize those additional instructions.

On the other hand, our software implementations reflect a balanced approach between
execution speed and code size, with a greater emphasis on execution speed. To this end,
we used loop unrolling where it was most effective and did not increase the program
memory significantly. Furthermore, all SBOX tables were pre-computed and stored in
memory rather than being calculated on the fly unless there is a specialized instruction that
calculates the SBOX value. We obtained the clock cycle count, program memory, and static
memory requirements of the software implementations and performed the comparison.

We grouped the cryptography instructions based on their structure and designed each
group as a hardware module. The modular approach allows integration of any subset of
modules with the RISC-V processor that we also implemented. Since each algorithm uses
only a subset of the 32-bit scalar cryptography instructions, to ensure a valid performance
comparison, we determined the module usage of each of the algorithms and evaluated the
implementation cost accordingly.

1.1. Previous and Related Work

RISC-V ISA cryptography extensions have been the subject of several recent stud-
ies. In [13], two new cryptography instructions are proposed for the RISC-V ISA. The
instructions accelerate the AES and SM4 block ciphers. Using the AES instructions, one
round of AES can be implemented using only 16 instructions instead of 80. The instruc-
tions lead to a similar reduction for the SM4 algorithm. An efficient way to implement
these instructions in hardware is proposed in [14]. An ISE [15] for RISC-V is proposed
to accelerate a stream-cipher called ChaCha [16]. Compared to OpenSSL baseline and
ISA-based optimized implementations, ISE-assisted ChaCha speeds up at least 5.4× and
3.4×, respectively.

The core building block of ASCON is implemented as an instruction extension for
RISC-V ISA [17]. Comparing the results with efficient C implementations, the accelerator
sped up the implementations by about a factor of 50 for ASCON and 80 for ASCON-HASH.
Furthermore, the extensions lead to significant binary size reduction.

A set of hardware accelerators and 29 new instructions for lattice-based cryptography
are proposed in [18], with implementations of a RISC-V-based processor with the proposed
accelerators and instructions in ASIC and FPGA. Compared to pure software implemen-
tations, accelerators and the instructions lead to a speed-up factor of 11.4 for NewHope,

Cryptography 2022, 6, 41 3 of 29

9.6 for Kyber, and 2.7 for Saber. On the other hand, the cell count of the CPU is increased
by a factor of 1.6 compared to the original RISC-V design due to additional instructions
and accelerators.

An energy-efficient crypto-coprocessor is designed for the AES, ECC, and SHA-256
algorithms and integrated with an open-source RISC-V core in [19], using a conditionally
charged flip-flop to implement the crypto-coprocessor. The pipelined design achieved a
10.3% power reduction on average for cryptography tasks. Reference [20] developed an
optimized RISC-V assembly the implementation of the table-based AES, bitsliced-AES,
ChaCha, and Keccak- f [1600] algorithms.

The RISC-V cryptography extensions task group published RISC-V Cryptography
Extensions Volume 1—Scalar & Entropy Source Instructions version v1.0.0-RC6 [5]. The
extension provides details about the cryptography instructions; however, it does not ana-
lyze software implementations using these instructions. Although an increase in software
implementation efficiency using the extension is expected, the possible gain is not provided.

A versatile RISC-V Galois Field ISA extension is proposed in [21]. The researchers
achieved 5X acceleration for AES, Reed–Solomon codes, and Classic McEliece by increasing
the logic utilization by 1.27%.

The performance of the AES, RC6, Twofish, SPECK128, and ChaCha20-Poly1305
algorithms is presented in [22]. The researchers included execution time, throughput,
and power consumption as performance parameters. Based on the obtained performance
parameters, the researchers decided that ChaCha20-Poly is a very good option for resource-
constrained devices, along with SPECK128 and LEA.

1.2. Objectives

In this paper, we implement 11 cryptographic algorithms in both RISC-V assembly
code using the 32-bit base RISC-V instructions (rv32i) and using the 32-bit scalar cryp-
tography instruction set in addition to base instructions (rv32i+crypto). We analyze the
performance of the two approaches using clock cycle count, program memory, and static
memory requirements and extract area requirements of the hardware implementations. We
then use these results to analyze the benefit vs. cost in terms of the acceleration of execution
times as a function of the additional hardware cost relative to that for the rv32i datapath
implementation. Finally, based on our results, we propose a new instruction to increase
the software implementation efficiency of the cryptographic algorithms and analyze its
benefits and costs.

2. Materials and Methods

We implemented eight ISO standard symmetric-key block ciphers and three NIST
standard hash functions. Five of the block ciphers (TDEA [23], MISTY1 [24], CAST-128 [25],
HIGHT [26], PRESENT [27]) have a 64-bit block size, and the remaining three (AES-128,
CAMELLIA [28], SEED [29]) have a 128-bit block size. PRESENT is the only lightweight
cipher among these eight block ciphers, specified in the ISO/IEC 29192-2:2019 standard.
The other seven ciphers are specified in the ISO/IEC 18033-3:2010 standard. The hash
algorithms are SHA-256 [9], SHA-512 [9], and SHA3-256 [30]. SHA3-256 is specified in the
NIST FIPS-202 [30], and two other hash functions are specified in NIST FIPS-180 [9].

We implemented a simple assembly language simulator for RISC-V, which allowed us
to easily modify the simulator to display the required outputs (clock cycle count, program
memory, static memory). We also built a simple assembler in the Python programming
language to convert RISC-V assembly language code to machine code. We developed
de novo a 32-bit RISC-V processor and cryptography instruction modules using Verilog
HDL. Designs were simulated on Xilinx’s Vivado Design Suite. The Yosys [31] open-source
framework for Verilog RTL synthesis was used to extract the hardware area requirements
for the different implementations.

Cryptography 2022, 6, 41 4 of 29

3. Cryptographic Algorithms

This section summarizes the eleven implemented cryptographic algorithms: eight
symmetric block ciphers and three hash functions. All of the algorithms are standardized
algorithms. Tables 1 and 2 list the block ciphers and hash functions, respectively. To limit
the scope while retaining the ability to develop insights, we implemented only one key size
of the listed block ciphers.

Table 1. Symmetric block ciphers.

Cipher Block Size (Bits) Key Size (Bits) Comment Reference

AES 128 128,192,256 ISO/IEC 18033-3:2010,
FIPS 197 [8,32]

SEED 128 128 ISO/IEC 18033-3:2010 [29,32]
CAMELLIA 128 128,192,256 ISO/IEC 18033-3:2010 [28,32]

MISTY1 64 128 ISO/IEC 18033-3:2010 [24,32]
CAST-128 64 40 to 128 ISO/IEC 18033-3:2010 [25,32]

HIGHT 64 128 ISO/IEC 18033-3:2010 [26,32]
TDEA 64 112,168 ISO/IEC 18033-3:2010 [23,32]

PRESENT 64 80,128 ISO/IEC 29192-2:2019 [27,33]

Table 2. Hash functions.

Function Output Size
(Bits)

State Size
(Bits) Round # Comment Reference

SHA-256 256 256 (8 ×32) 64 FIPS 180-3 [9]
SHA-512 512 512 (8 ×64) 80 FIPS 180-3 [9]
SHA3-256 256 1600 (5 ×5 ×64) 24 FIPS 202 [30]

4. Software Implementations

This section summarizes the software implementation process. In order to have a
flexible development environment, we implemented a RISC-V assembly language simulator
using MATLAB and implemented the algorithms using this simulator. First, the algorithms
were implemented by only using the 32-bit RISC-V integer instructions, and then, the
cryptography instructions were used to accelerate them. The following sections will
give more details about how the cryptography instructions are used to accelerate the
initial implementations.

4.1. Software Implementation of AES

In this study, we implemented the AES-128 encryption algorithm using the T-table
approach [34]. We used the T-table approach because the AES instructions are designed
according to this approach [13]. The T-table approach accelerates the software imple-
mentation by pre-calculating the “SubBytes” and “MixColumns” layers. The approach is
explained in detail below.

Figure 1 shows the state matrices of the AES-128 encryption algorithm after the “Sub-
Bytes” (S(i)), “ShiftRows”, and “MixColumns” layers. The “MixColumns” layer multiplies
each column of matrix B to calculate matrix C.

Figure 2 shows the formulas used in the “MixColumns” layer to calculate matrix C. If
we re-arrange the formulas, we can use the 32-bit ak (k = 1, 2, . . . , 15) values to calculate
matrix C as shown in Figure 2.

The T-table implementation pre-calculates and stores the 32-bit ak values for every
possible 8-bit b value. Therefore, it is possible to calculate matrix C directly using matrix A.
Figure 3 shows the four T-tables used for the implementation. It is also possible to store
only one T-table and calculate the other three T-tables using logical rotate operations.

Cryptography 2022, 6, 41 5 of 29

Figure 1. AES state matrices.

Figure 2. AES-128 round state matrix calculation.

Figure 3. T-tables.

We can use the aes32esmi instruction to calculate the 32-bit ak values and XOR it with
the rs1 to implement the “MixColumns” layer [13]. The aes32esi instruction is used to
perform AES SBOX transformation for key scheduling and the last round of the algorithm.

4.2. Software Implementation of Seed

The function F and function G use modular 232 addition and subtraction. These func-
tions are explained in the SEED documentation [29]. These operations can be implemented
using ADD[I] and SUB instructions, respectively. The RISC-V ISA does not have a carry
flag, so the carry bit should be calculated when needed.

SEED provides two versions of the algorithm. Both versions generate the same output
when the same input is given. The only difference is that Version 1 is slower than Version 2.
However, Version 1 uses less data memory space for SBOX table storage than Version 2.
Version 1 and Version 2 use two 8 × 8 SBOX tables and four 8×32 SBOX tables, respectively.

Cryptography 2022, 6, 41 6 of 29

Version 2 of the algorithm accelerates the G function implementation by sacrificing data
memory space (explained in [29]).

One of the most time-consuming operations for the block ciphers is to read the SBOX
table from memory. For simplicity, the SBOX tables are stored into the memory such that
the SBOX value of the input x is stored into the memory location (x + offset), where the
offset is zero in our implementation. Assembly code for memory address calculation of the
Version 1 SBOX table is shown in Figure 4. The state values are stored in 32-bit registers, but
the SBOX transformation is applied for each individual byte for the state value. Therefore,
we shift the input byte to the least significant position and mask it. Then, we add the offset
address to the masked value. The RD3 register has the 32-bit memory address of the SBOX
table value.

To accelerate this operation, we can use one of the crossbar permutation instructions
(xperm4 or xperm8). The RS1 register holds the required value to shift the desired byte to
the least significant byte position.

Figure 4. Memory address calculation for 8 × 8 SBOX table.

4.3. Software Implementation of CAMELLIA

In this work, we implemented CAMELLIA-128. The CAMELLIA key scheduling uses
128-bit logical left rotation (≪). A 128-bit value is stored in four 32-bit registers. Therefore,
to perform the 128-bit rotate operation, we need to modify all four registers (RS1, RS2, RS3,
RS4), as shown by the assembly code in Figure 5. The imm values are calculated based on
the rotation amount, and the new results are stored in the registers T1, T2, T3, and T4. For
each 128-bit rotate operation, we need 12 instructions.

Figure 5. Assembly code for 128-bit rotation using rv32i.

The algorithm has two versions according to the SBOX tables. Version 1 stores four 8 × 8
SBOX tables in the memory. Version 2 calculates three of these tables using Equations (1)–
(3). Therefore, Version 1 of the algorithm computes the result faster by sacrificing data
memory space.

SBOX2[x] = ROTL(SBOX1[x], 1); (1)
SBOX3[x] = ROTL(SBOX1[x], 7); (2)
SBOX4[x] = SBOX1[ROTL(x, 1)]; (3)

Version 2 of the algorithm uses 8-bit rotation to calculate the SBOX tables using the
equations above. The 8-bit left rotation is performed as shown by the assembly code in
Figure 6. Suppose RS1 stores a zero-extended 8-bit value. The imm1 value is the rotate

Cryptography 2022, 6, 41 7 of 29

amount, where imm2 is equal to 8 minus imm1. The FL and invFL functions contain 32-bit
left rotate operations, which can be accelerated using the rotate instructions. The FL and
invFL functions are described in the CAMELLIA documentation [28].

Figure 6. Assembly code for 8-bit rotation using rv32i.

4.4. Software Implementation of CAST

Compared to the other block ciphers in this thesis, CAST-128 has the biggest SBOX
tables that occupy 8KB memory space. The algorithm has eight 8 × 32 SBOX tables. The
rv32i provides byte-addressed 32-bit address space. Therefore, we need to leave the most
significant two bits of the address zero when we read the 32-bit value with the rv32i LW
instruction. Figure 7 shows the assembly codes of the address calculation operation for the
8 × 32 SBOX table.

Figure 7. Memory address calculation for 8×32 SBOX table using rv32i.

4.5. Software Implementation of SHA-256 and SHA-512

The RISC-V cryptography instruction set extension has specific instructions that are
designed to accelerate SHA-256 and SHA-512. The instructions implement the SIGMA and
SUM transformation functions (explained in [9]) of these algorithms. The following section
will describe the benefits of using the cryptography extension instructions.

Each transformation function of SHA-256 is implemented as a single instruction in the
cryptography extension. Figure 8 shows the three different software implementations of
the SHA-256 σ0 (SIGMA0) function. All three implementations receive the register x as the
input and store the 32-bit result into the register RD.

Figure 8. SHA-256 σ0 function software implementation.

The SHA-512 transformation functions receive a 64-bit input and generate a 64-bit
result. Therefore, each transformation function takes two SHA-512 instructions to calculate
in a 32-bit RISC-V processor, and it is not possible to use 32-bit rotate instructions to perform
a 64-bit rotate operation. Figure 9 shows the software implementations of the SHA-512 σ1
(SIGMA1) function.

Cryptography 2022, 6, 41 8 of 29

Figure 9. SHA-512 σ1 function software implementation.

4.6. Software Implementation of TDEA

The algorithm has several bit permutations. The assembly code, shown in Figure 10,
shows a basic way to perform single-bit permutation using rv32i. First, we shift a bit
of the RS1 to the least significant bit position and mask it. Then, we shift the bit to its
new position. It is possible to perform any bit permutation just by repeating these four
assembly instructions.

Figure 10. Single-bit permutation using rv32i.

4.7. Software Implementation of MISTY1

MISTY1 [24,32] is a 64-bit block cipher with a 128-bit key. The algorithm has a variable
number of rounds, but the eight-round version of the algorithm is recommended. The
algorithm uses two SBOX tables named S7 and S9, which are 7 × 7 and 9 × 9 SBOX tables,
respectively. The MISTY1 key scheduling algorithm (Algorithm 1) uses the primary key (K)
to generate 16-bit round keys (EK). Each element of K (K[i]) holds a byte of the key.

Algorithm 1 MISTY1 key scheduling.
Date: 128-bit Main Key(K)

Result: Array of 16-bit round keys

for i = 0 to 7 { EK[i] = K[i×2]×256 XOR K[i×2 + 1]; }

for i = 0 to 7 { EK[i + 8] = FI(EK[i], EK[(i + 1)%8]);

EK[i + 16] = EK[i + 8] & 0x1ff;

EK[i + 24] = EK[i + 8] >> 9; }

Figure 11 shows the assembly implementation of the Misty FI and FL functions. The
functions are described in [24].

Cryptography 2022, 6, 41 9 of 29

Figure 11. MISTY1 FI and FL functions using the PACK instruction.

4.8. Software Implementation of HIGHT

HIGHT [26,32] is a 64-bit block cipher with a 128-bit key size. The algorithm uses
32 rounds with no SBOX table. Algorithm 2 describes the HIGHT key scheduling algorithm.
The 128-bit subkeys are generated at each round.

Algorithm 2 HIGHT key scheduling.
Date: s0 = 0, s1 = 1, s2 = 0, s3 = 1, s4 = 1, s5 = 0, s6 = 1

d0 = s6 || s5 || s4 || s3 || s2 || s1 || s0

Result: Subkey Array SK

for i = 1 to 127{ s(i + 6) = s(i + 2)⊕ s(i− 1)

di = s(i + 6)||s(i + 5)||s(i + 4)||s(i + 3)||s(i + 2)||s(i + 1)||si }

for i = 0 to 7 { for i = 0 to 7 { SK(16×i + j) = K(j − i mod 8) [+] d(16×i + j) } }

for j = 0 to 7 { SK(16×i + j + 8) = K((j − i mod 8) + 8) [+] d(16×i + j + 8) }

HIGHT takes the 64-bit plaintext (P) block as the input and generates the 64-bit
ciphertext (C). Figure 12 shows the structure of HIGHT. The algorithm uses 8-bit operations,
which require additional operations on a 32-bit system. For example, the modulo 28

addition and subtraction operations require masking on a 32-bit system. Furthermore, the
algorithm uses 8-bit rotate operations, which require three instructions using rv32i.

Figure 12. HIGHT encryption.

Cryptography 2022, 6, 41 10 of 29

4.9. Software Implementation of PRESENT

PRESENT is a 64-bit block cipher that uses a substitution–permutation network of
31 rounds. “sBoxLayer” and “pLayer” are the two key parts of this algorithm. The assembly
code in Figure 13 shows the “SBoxLayer” implementation with crossbar permutation
instructions. The code performs the PRESENT SBOX transformation on each nibble of the
registers S0 and S1.

We used the lower part of SBOX (B1 register) to transform each nibble using the
xperm4 instruction. If a nibble is greater than seven, the corresponding nibble will be zero
in register T0. Then, we used a masking value (B2 = 88,888,888) to flip the most significant
bit of each nibble and transform the nibbles using the upper part of the PRESENT SBOX
table and save the result to T1. Then, we XORed T0 and T1 to obtain the result that holds
the transformed version of nibbles in register S0. The same operation is applied to S1, and
the result is saved to Y1.

Figure 13. PRESENT “sBoxLayer” using crossbar permutation instructions.

The “pLayer” of the algorithm performs bit permutation defined by the “pLayer” table
in [27]. Figure 14 shows the assembly code that implements the PRESENT “pLayer” using
shuffle instructions.

Figure 14. PRESENT “pLayer” using generalized shuffle instructions.

5. Hardware Implementations

This section describes the hardware module designs that are implemented in this
project. The hardware design contains eight modules:

1. RISC-V Core
2. Bit Re-positioning Instructions
3. Carry-Less Multiply Instructions
4. Crossbar Permutation Instructions
5. Logic With Negate Instructions
6. Packing Instructions
7. Hash Instructions
8. AES and SM4 Instructions

The first module is a 32-bit 5-stage pipelined RISC-V processor that only supports base
integer instructions. The remaining seven modules implement cryptography extension
instructions. The instruction extension modules share logic to optimize the hardware area.
Any combination of the seven extension modules can be used to extend the processor. The

Cryptography 2022, 6, 41 11 of 29

following sections will explain some of the hardware design highlights we used to reduce
the area of the modules. All the modules are designed as fully combinational to allow one
clock cycle execution.

5.1. Hardware Architecture of Bit Re-Positioning Instructions

The bit re-positioning instructions re-position the bits of the register RS1 based on
the value of the register RS2 and save the result to the register RD. The bit re-positioning
instructions are rotate (ROR[I], ROL), generalized reverse (GREV[I]), and shuffle (SHFL[I],
UNSHFL[I]). Figure 15 shows the hardware block diagram of the bit re-positioning
instructions.

We used matrix multiplication for the hardware design of these instructions. To clarify
the bit re-positioning with matrix multiplication, see Figure 16, which demonstrates a 4-bit
matrix multiplication. It is possible to choose a matrix B such that when we multiply it
with matrix A, matrix C will have the bits of A in the desired position. For example, if we
set b03, b12, b21, and b30 to 1 and the rest of the B matrix elements to 0, we reverse the A
matrix elements’ order and save the result to the C matrix.

The architecture contains five multiplexers and five 32-bit matrix multipliers. Each
multiplexer chooses one of the six 32×32 B matrices based on the instruction and rs2. Then
multipliers perform the matrix multiplication to re-position the bits of rs1. Finally, the
output of the fifth matrix multiplier gives the result.

Figure 15. Hardware architecture of re-positioning instructions.

Figure 16. The 4-bit matrix multiplication in GF(2).

5.2. Hardware Architecture of Carry-Less Multiply Instructions

The carry-less multiplication is multiplication in GF(2). The carry-less multiplication
can be implemented with logical AND (&) and XOR gates. Figure 17a demonstrates 4-bit
carry-less multiplication.

The method of performing the multiplication in a fully combinational circuit is to
calculate the result directly as shown in Figure 17a. In this case, we will have a logic
circuit (circuit1, . . . , circuit8) for each of the eight bits, where circuit8 is hardwired to zero.
Instead of using all eight circuits, we used the similarity between lower (circuit0,. . . ,circuit3)
and upper (circuit4, . . . , circuit6) parts of the logic circuits to reduce the circuit area. It is

Cryptography 2022, 6, 41 12 of 29

possible to use only the lower part of the circuits to calculate both the lower (c0, . . . , c3) and
higher (c4, . . . , c7) halves of the result. It is necessary to change the inputs of the circuits as
shown in Figure 17b in order to calculate the higher order half of the result.

Figure 17. Carry-less multiplication.

In this study, we implemented 32-bit carry-less multiplication. The hardware archi-
tecture takes advantage of the similarity between the upper and lower part of the full
carry-less multiplication circuit to reduce the area cost of the circuit, as explained above.
Figure 18 shows the block diagram of the hardware architecture of the carry-less multi-
plication circuit. The multiplexers are used to select the correct input for CLMULH and
CLMUL. The “Shift Left” block performs a logical 1-bit left shift. The “Multiplication Unit”
contains the lower part of the full 32-bit carry-less multiplication circuit. The “Reverse
Order” blocks reverse the order of the 32-bit values.

Figure 18. Hardware architecture of carry-less multiply instructions.

6. Hardware Architecture of 32-bit Algorithm Specific Cryptography Instructions

This section describes the hardware architecture of the algorithm-specific cryptography
instructions. The instructions are described in the RISC-V cryptography extension [5].

6.1. Hardware Architecture of Hash Instructions

The SHA-256 and sm3 instructions consist of 32-bit bitwise rotate and logical XOR
operations. Each bit of the result is obtained by XORing a subset of bits of rs1. This
operation can be implemented by a matrix multiplication, described in Figure 16. In the
case of SHA-512 instructions, each bit is calculated by XORing a subset of bits of rs1 and
rs2. In this case, two matrix multiplications and a 32-bit XOR operation are needed for
the calculation.

Figure 19 describes the hardware architecture of the hash instructions. The multiplex-
ers choose two 32× 32 matrices to be multiplied with rs1 and rs2 and the results are XORed
to generate the output.

Cryptography 2022, 6, 41 13 of 29

Figure 19. Hardware implementation of hash instructions.

6.2. Hardware Implementation of AES and SM4 Instructions

This Section describes the hardware architecture of the AES and SM4 instructions. The
instructions are described in RISC-V cryptography extension [5].

Figure 20 demonstrates the overall architecture of the AES and SM4 instructions.
Multiplexer 1 chooses one of the four bytes of rs1 as the SBOX module input. The selection
value bs is a 2-bit value specified in the instruction encoding. The SBOX module, described
in detail later on in this section, performs a one-to-one transformation. The module
performs the AES encryption (AES), AES decryption (AES−1) or SM4 algorithm SBOX
transformation based on the selection bits. The following multiplier performs the forward
or inverse mixcolumn multiplication of the AES. The SM4 operations module, described in
Figure 21, calculates the sm4_ed and sm4_ks values. After that, multiplexers three, four,
and five choose one of the values and send the result to the rotate modules. After the value
is rotated according to the bs value, the result is XORed with rs1 to generate rd. Figure 21
shows the hardware architecture of the “SM4 operations module”.

Figure 20. Hardware implementation of AES and SM4 instructions.

Cryptography 2022, 6, 41 14 of 29

Figure 21. SM4 operations module.

The SBOX transformations of the algorithms can be performed using finite field
arithmetic. The SBOX transformation of AES, AES−1, and SM4 algorithms are defined by
(4), (5), and (6), respectively. The SBOX module chooses one of these three equations to
calculate its output. The equations use affine transformations and require inverse operation
in GF(28) (I(x)). The affine transformations for the AES, AES−1, and SM4 algorithms are
shown in Figures 22 and 23. In the affine transformation, the B matrix is multiplied with an
8×8 matrix, and the result is added to the C matrix. The AES and SM4 algorithms use the
irreducible polynomials (7) and (8) for the inverse operation, respectively.

Calculating the inverse of a seventh-degree polynomial modulo an eighth-degree
polynomial in GF(28) is not easy. Therefore, we used the composite field approach to
simplify the operations.

S_AES(x) = AES_A.I(x) + AES_C (4)

S_AES−1(x) = I(INV_AES_A.x + INV_AES_C) (5)

SM4(x) = SM4_A.I(SM4_A.x + SM4_C) + SM4_C (6)

Figure 22. AES forward and inverse SBOX affine transformations.

Figure 23. SM4 affine transformation.

f (x) = x8 + x4 + x3 + x + 1 (7)

f (x) = x8 + x7 + x6 + x5 + x4 + x2 + 1 (8)

Two fields {GF(2n), Q(y) = yn + ∑ qi + yi } and {GF((2n)m), P(x) = xm + ∑ pi + xi
} are called a composite field if GF(2n) is constructed from GF(2) by Q(y) and GF((2n)m)

Cryptography 2022, 6, 41 15 of 29

is constructed from GF(2n) by P(x). A field GF(2nm) is isomorphic to the field GF((2n)m),
therefore mapping between fields is possible using an isomorphic transformation [35]. In
our case, we mapped the field GF(28) to the field GF((24)2), where P(x) = x2 + x + 9 and
Q(y) = y4 + y + 1. After the the mapping, it is possible to perform the operations in GF(24)
and re-map the composite field to the field GF(28).

The isomorphic transformation is a single matrix multiplication. In our case, the 8-bit
element in GF(28) is multiplied by an 8×8 matrix and the result is an 8-bit element in
GF((24)2).

Although the same mapping, GF(28) to GF((24)2) with P(x) = x2 + x + 9 and Q(y) =
y4 + y + 1 , is performed for both algorithms, we use different ISO matrices for AES and
SM4 because they require irreducible polynomials. Since there are no calculated ISO
matrices for this operation, we used an algorithm to determine the binary ISO matrices.

Figures 24 and 25 show the binary ISO matrices of the AES and the SM4 algorithms,
respectively. To find the ISO matrices, we used the algorithm described in Section 2.2
of [35].

Figure 24. AES binary matrices for forward and inverse ISO transformation.

Figure 25. SM4 binary matrices for forward and inverse ISO transformation.

Figure 26 demonstrates the hardware architecture of the SBOX module shown in
Figure 20. The architecture implements the SBOX transformations of the algorithms shown
in (4)–(6). Although it implements three SBOX transformations (AES, AES−1, SM4), the
architecture uses a single inverse module with selection of the appropriate input, reducing
the hardware area cost.

Figure 26. SBOX module.

Cryptography 2022, 6, 41 16 of 29

Figure 27 demonstrates the inverse in the GF(28) module. As explained before, the
inverse operation is performed in the composite field, GF((24)2). First, the elements in
GF(28) are mapped to the composite field, then the inverse operation is performed in
GF((22)4), and finally, the elements are mapped back to GF(28).

Figure 27. Hardware architecture of “inverse in GF(28)” module.

Equation (9) [36] shows the inversion in GF((24)2), where Â0 and Â1 are the lower and
upper 4 bits of the 8-bit input Â, respectively. w0 is constant nine due to P(x) = x2 + x + 9.

Â−1 =
Â1

Â0(Â0 + Â1) + w0Â12 Y +
Â1 + Â0

Â0(Â0 + Â1) + w0Â12 (9)

Figure 28 shows the hardware architecture of the inverse operation in GF((24)2). The
architecture implements (9). All the operations are performed in GF(24), modulo Q(y),
where Q(y) = y4 + y + 1. The operations are described below.

Figure 28. Hardware architecture of “inverse in GF((24)2)” module.

Cryptography 2022, 6, 41 17 of 29

Multiplication in GF(24):

Multiplication is implemented as polynomial multiplication mod Q(y). We implement
the modulus operation by replacing every occurrence of y4 with y + 1.

Square in GF(24):

To square a number in GF(24), we multiply the polynomial of degree four by it-
self and apply the mod Q(y) operation. When we take the square of the polynomial A,
(Equation (10)), we find the polynomial A2, (Equation (11)).

A = a3x3 + a2x2 + a1x + a0 (10)
A2 = a3x3 + (a3 + a1)x2 + a2x + (a2 + a0) (11)

Addition in GF(24):

The addition operation is implemented as a logical XOR operation.

Inverse in GF(24):

The inverse of each element in GF(24) is calculated by applying modulus Q(y) to yi

(i = 0 to 15). By doing this, we find the 16 elements listed in Table 3. The inverse of each
element yi is yj, where i + j = 15. If we multiply a polynomial with its multiplicative
inverse, the product is 1.

Table 3. Inverse of Elements in GF(24).

Element Inverse

y0 = 1 1
y1 = y y3 + 1
y2 = y2 y3 + y2 + 1
y3 = y3 y3 + y2 + y + 1
y4 = y + 1 y3 + y2 + y
y5 = y2 + y y2 + y + 1
y6 = y3 + y2 y3 + y
y7 = y3 + y + 1 y2 + 1
y8 = y2 + 1 y3 + y + 1
y9 = y3 + y y3 + y2

y10 = y2 + y + 1 y2 + y
y11 = y3 + y2 + y y + 1
y12 = y3 + y2 + y + 1 y3

y13 = y3 + y2 + 1 y2

y14 = y3 + 1 y
y15 = 1 1

7. Results

In this section, we analyze the software and the hardware implementation results
and propose an instruction to improve performance. We evaluated the performance of the
eleven cryptography algorithms described in Section 3. The algorithms are implemented
first using the 32-bit base integer instruction set (rv32i) and then the extended base instruc-
tion set (rv32i+crypto). From now on, the “rv32i” and “rv32i+crypto” implementations will
be called base and crypto software implementations, respectively. The base software imple-
mentations use only the base instruction set [4]. The crypto software implementations use
the base instruction set and also a subset of the cryptography instructions. The crypto in-
structions used for each of the crypto software implementations are specified. The analysis
includes clock cycle count (CC), program memory, and static memory requirements.

Using these results, we analyze the gain in performance as a function of the hardware
cost for the rv32i+crypto hardware, measured as the acceleration vs. hardware cost for the
processor with the cryptography instructions and the new proposed instruction relative

Cryptography 2022, 6, 41 18 of 29

to the rv32i hardware. Finally, based on the performance of the software and hardware
implementations, we propose a new instruction.

7.1. Clock Cycle Count

The clock cycle count is the total number of clock cycles required to process one block
of data with each algorithm on the 5-stage RISC-V processor. The processor is a single-
issue, in-order processor and the execution stage requires one cycle for all instructions.
Therefore, the clock cycle count is almost equal to the total number of executed instruc-
tions. Tables 4–6 show the clock cycle count count and the acceleration for the software
implementations. The acceleration is computed as the ratio of CC for the base and crypto
software implementations. Figures 29 and 30 graphically compare the CC for the block
ciphers and hash algorithms, respectively. The results show that the TDEA algorithm
requires the highest, and MISTY1 requires the lowest CC among block ciphers. PRESENT
has the highest acceleration. MISTY1, CAST-128, HIGHT, and CAMELLIA V1 have almost
no acceleration. Some of the algorithms do not have a crypto implementation because the
cryptography instructions could not be used to accelerate the algorithms. Clock cycle count
and acceleration for these algorithms are stated as NC (Not Calculated).

Table 4. Clock cycle count of 64-bit block ciphers.

Algorithm TDEA MISTY1 CAST-128 HIGHT PRESENT

rv32i 25,041 1013 2237 4528 14,102
rv32i+crypto NC 977 2139 4400 1641
Acceleration NC 1.037 1.046 1.029 8.607

Table 5. Clock cycle count of 128-bit block ciphers.

Algorithm AES CAMELLIA
V1

CAMELLIA
V2 SEED V1 SEED V2

rv32i 1606 1861 2258 2133 4533
rv32i+crypto 438 1768 NC NC 2854
Acceleration 3.685 1.053 NC NC 1.589

Table 6 shows that SHA3-256 has the highest CC among hash functions.

Table 6. Clock cycle count of hash functions.

Algorithm SHA-256 SHA-512 SHA3-256

rv32i 4755 13975 25,976
rv32i+crypto 2708 8471 NC
Acceleration 1.756 1.650 NC

Cryptography 2022, 6, 41 19 of 29

TD
EA

M
IS

TY
1

C
A

ST
-1

28

H
IG

H
T

PR
ES

EN
T

A
ES

C
A

M
EL

LI
A

-V
1

C
A

M
EL

LI
A

-V
2

SE
ED

-V
1

SE
ED

-V
2

0

0.5

1

1.5

2

2.5

·104
C

lo
ck

C
yc

le
C

ou
nt

(C
C

)

rv32i
rv32i+crypto

Figure 29. Clock cycle count of block ciphers.

SH
A

3-
25

6

SH
A

-5
12

SH
A

-2
56

0

0.5

1

1.5

2

2.5

·104

C
lo

ck
C

yc
le

C
ou

nt

rv32i
rv32i+crypto

Figure 30. Clock cycle count of hash functions.

Cryptography 2022, 6, 41 20 of 29

Table 7 shows the CC of the SBOX address calculation for the SEED implementations.
Version-1 and Version-2 of the algorithm use 8×8 and 8×32 SBOX tables, respectively.
Section 4.2 shows how we used the xperm4 instruction to accelerate the address calculation
for 8×8 SBOX tables. We did not implement the crypto implementation for the 8×32 SBOX
address calculation. The CC of the address calculation occupies 38% and 18% of the CC of
the Version-1 and Version-2 base software implementation of the algorithm, respectively,
with a corresponding significant reduction in executed instructions.

Table 7. Clock cycle count for SEED SBOX address calculation.

Algorithm V1 (rv32i) V2 (rv32i) V2 (rv32i+crypto)

SBOX Address Calcu-
lation 800 800 640

The CAMELLIA block cipher contains several rotate operations and address calcula-
tion for the 8×8 SBOX table. Section 4.3 explains the software implementations of the rotate
operations. Table 8 shows the CC for the rotate and address calculation operations for the
CAMELLIA-128 encryption algorithm. The clock cycle count of the address calculation
occupies 24% and 20% of the CC of Version-1 and Version-2 base software implementations
of the algorithm, respectively.

Table 8. Clock cycle count of CAMELLIA-128 rotate operations.

Operation V1 (rv32i) V2 (rv32i) V1 (rv32i+crypto)

128-bit Rotate 132 132 132
32-bit Rotate 12 12 4
8-bit Rotate 0 396 0
SBOX Address Calcu-
lation 440 440 352

The CAST-128 block cipher reads the SBOX table 384 times for encrypting one block of
data. Address calculation for each of the SBOX read operations requires three instructions in
the base software implementation. Section 4.4 explains the SBOX table address calculation
for CAST-128. The algorithm uses an 8×32 SBOX table, so the address calculation is not
accelerated using crypto instructions. Table 9 shows the instruction counts for 32-bit rotate
and SBOX address calculations for CAST-128.

Table 9. Clock cycle count of CAST-128 operations.

Operation rv32i rv32i+crypto

SBOX calculation 1152 1152
32-bit Rotate 64 16

One of the key operations for the HIGHT block cipher is the 8-bit rotation. Section 4.3
explains the software implementation of 8-bit rotation. The rv32i+crypto implementation
requires 9% fewer instructions (Table 10).

Table 10. Clock cycle count of HIGHT operations.

Operation rv32i rv32i+crypto

8-bit Rotation 1408 1280

Cryptography 2022, 6, 41 21 of 29

Table 11 displays the CC of key operations in TDEA. The CC of the SBOX table read
operation includes address calculation and the load instructions that are used to read the
data memory. The clock cycle count of the SBOX table read operation occupies 22% of
the TDEA base software implementation. It is costly to implement the bit permutation
operations with a 32-bit architecture; the clock cycle count of the permutation operations
occupies 73% of the TDEA base software implementation.

Table 11. Clock cycle count of TDEA operations.

Operation rv32i

Initial Permutation 152
Inverse Initial Permutation 254
SBOX Table Read 5424
E Permutation 2016
P Permutation 6144
Permuted Choice 1 399
Permuted Choice 2 9216

Finally, as shown in Table 12, the rv32i+cypto instruction set greatly reduces the CC
for the sBoxLayer and pLayer of the PRESENT block cipher.

Table 12. Clock cycle count of PRESENT operations.

Operation rv32i rv32i+crypto

pLayer 7936 558
sBoxLayer 5766 248

7.2. Program Memory

Tables 13 and 14 provide program memory requirements of the software implementa-
tions of the block ciphers, where the the ratio of program memory requirement of the base
software implementation to that for the rv32i+crypto software implementation is shown as
Reduction. The program memory is calculated by multiplying the number of instructions
in the assembly language program by four (since each instruction is four bytes), with
verification by examining the output of the RISC-V GNU Compiler Toolchain. CAMELLIA
and SEED-V1 respectively have the highest and lowest program memory requirement.
With the rv32i+crypto implementations, PRESENT and AES have low program memory
requirements and hence a high reduction ratio compared to the other block ciphers. SHA3-
256 requires 6.3 times more program memory than SHA-256, although they generate the
same size message digest, as shown in Table 15.

Table 13. Program memory requirement of 64-bit block ciphers in bytes.

Algorithm TDEA MISTY1 CAST-128 HIGHT PRESENT

rv32i 6680 3256 3760 3028 1552
rv32i+crypto NC 3132 3704 2996 352
Reduction NC 1.040 1.015 1.011 4.409

Table 14. Program memory requirement of 128-bit block ciphers in bytes.

Algorithm AES CAMELLIA
V1

CAMELLIA
V2 SEED V1 SEED V2

rv32i 2536 7448 9032 1048 2248
rv32i+crypto 436 7076 NC NC 1416
Reduction 5.817 1.053 NC NC 1.588

Cryptography 2022, 6, 41 22 of 29

Table 15. Program memory requirement of hash functions in bytes.

Algorithm SHA-256 SHA-512 SHA3-256

rv32i 632 1392 3996
rv32i+crypto 488 1088 NC
Reduction 1.295 1.279 NC

7.3. Static Memory

The static memory required by an implementation is another important factor, espe-
cially for embedded applications where memory size is limited. A program’s static memory
is allocated at compile time, unlike dynamic memory, which is allocated during execution.
In our analyses, the static memory used is calculated by adding up the memory required to
store constant values, including, but not limited to, SBOX tables and initialization vectors.
The static memory requirement for an algorithm can change based on the implementation.
In this study, the AES-128 is implemented with T-tables as described Section 4.1. This ap-
proach provides significant acceleration for the algorithm by sacrificing static memory. In
general, we attempted to minimize the CC of of the software implementation. Note that the
rv32i+crypto implementations do not provide a reduction in static memory requirements:
the same constant values are required regardless of the ISA used. Tables 16–18 provide the
static memory requirements of the algorithms. Due to its 8KB SBOX table, CAST-128 has
the largest static memory requirement, while HIGHT and PRESENT have the lowest static
memory requirements.

Table 16. Static memory requirement of 64-bit block ciphers in bytes.

Algorithm TDEA MISTY1 CAST-128 HIGHT PRESENT

Memory 256 642 8192 10 8

Table 17. Static memory requirement of 128-bit block ciphers in bytes.

Algorithm AES CAMELLIA
V1

CAMELLIA
V2 SEED V1 SEED V2

Memory 1288 1072 304 4176 576

Table 18. Static memory requirement of SHA algorithms in bytes.

Algorithm SHA-256 SHA-512 SHA3-256

Memory 288 704 188

7.4. Analysis for Cryptography Instructions

In Section 5, we grouped the cryptography instructions and described the hardware
architecture of each group. Each group of instructions is designed as a separate hardware
module, and modules can be added to the RISC-V core in any combination. Table 19 lists
the hardware modules with their gate equivalent (GE) area.

Cryptography 2022, 6, 41 23 of 29

Table 19. Area (GE) of hardware modules.

Hardware Module AREA (GE)

RISC-V Core 19,706
Bit Re-positioning Instructions 766
Carry-Less Multiply Instructions 2248.5
Crossbar Permutation Instructions 756.5
Logic With Negate Instructions 177
Packing Instructions 52
Hash Instructions 2030.5
AES and SM4 Instructions 1437

Table 20 shows the cryptography instructions used for each crypto implementation.
The AES, SHA-256, and SHA-512 crypto implementations only use the algorithm-specific
instructions. The rest of the implementations use only a subset of the 32-bit cryptography
bitmanip instructions. The rightmost column of the table shows the cryptography instruc-
tion modules that are used by the crypto implementations. The table shows that some of
the cryptography instructions are not used by any crypto implementation. This does not
mean that these instructions are not used in other cryptography applications; for example,
Shay and Micheal [37] show the usage of a Carry-Less multiply instruction for computing
AES in GCM mode.

Table 20. Cryptography instruction and instruction module extension usage of crypto implementations.

Cryptographic Algorithm Instruction Usage Instruction Module Extension

AES aes32esmi , aes32esi AES and SM4

SEED V2 xperm4 , rori Crossbar Permutation, Bit Re-
positioning

CAMELLIA V1 xperm4 , rol Crossbar Permutation, Bit Re-
positioning

MISTY1 pack Packing
CAST-128 pack Packing
HIGHT grev Bit Re-positioning

PRESENT xperm4 , unshfli , rori Crossbar Permutation, Bit Re-
positioning

SHA-256 SHA-256 Instructions Hash
SHA-512 SHA-512 Instructions Hash

The benefit vs. cost of the additional specialized hardware for rv32i+crypto can be
visualized by plotting the acceleration (reduction in clock cycle count) against the relative
hardware cost. The relative hardware cost is the area of extended RISC-V core divided by
the RISC-V core area. The extended RISC-V core includes modules that are needed by the
crypto implementation, specified in Table 20. To calculate the implementations’ hardware
cost, we summed the gate equivalent area of each module used in each implementation.
For example, to calculate the hardware cost of the AES crypto implementation, we added
gate equivalent area of the RISC-V core and the modules for AES and SM4 Instructions. The
hardware cost of the base software implementations includes only the area of the RISC-V
core module. Figure 31 shows the acceleration vs. the relative hardware cost of the crypto
implementations. Compared to implementations with only the base rv32i instruction set,
implementations with the cryptography set extension provide 1.5× to 8.6× faster execution
speed, at additional hardware cost of less than 9%.

Cryptography 2022, 6, 41 24 of 29

Figure 31. Acceleration vs. hardware cost of implementation of crypto implementations.

7.5. Proposed New Instruction for SBOX Address Calculation

Section 7.1 shows that address calculation for data memory to read SBOX values is
one of the most time-consuming operations. Therefore, we developed an instruction to
accelerate the address calculation for 8-bit input SBOX tables. Figure 32 shows the assembly
code for the address calculation of 8-bit input SBOX tables using rv32i instructions, where
one of the 4 bytes of the 32-bit RS1 register is the SBOX input byte, and the input byte bx
is stored in the memory location (bx + offset). The new instruction performs the address
calculation operation. Therefore, instead of three instructions, implementation with the
new instruction uses one. The implementation with the new instruction (rv32i+PI) uses
the 32-bit base integer instructions and the new instruction only. Figure 33 shows the
hardware architecture of the address calculation instruction. Similar to the assembly
language implementation, the architecture selects one of the four bytes, zero extends the
byte and shifts the result left before adding the offset. Table 21 shows the GE area of
the architecture.

Figure 32. Assembly code for address calculation of 8-bit input SBOX tables.

Cryptography 2022, 6, 41 25 of 29

Figure 33. Hardware architecture of address calculation instruction.

Figure 34 compares the clock cycle count for the five software implementations that
are implemented with the three different instruction sets. Figure 35 shows the cost-benefit
analysis of five software implementations that use the new address calculation instruction.
The instruction provides a 1.2× to 1.6× faster execution time for the implementations with
an incremental hardware cost of <1.5%.

In summary, our results show that additional, application-specific hardware for cryp-
tographic primitives can significantly improve execution time performance at a small
additional areal cost. We also grouped the cryptographic instructions into modules that
enable precise matching of capability to specific sets of algorithms. Moreover, we have
demonstrated that just one additional instruction can provide significant improvement
based on a careful analysis of algorithmic requirements.

A
ES

SE
ED

V
1

SE
ED

V
2

C
A

ST
-1

28

C
A

M
EL

LI
A

V
1

1

2

3

4

5

C
lo

ck
C

yc
le

C
ou

nt
(×

10
00

)

rv32i
rv32i+crypto

rv32i+PI

Figure 34. Clock cycle count comparison.

Table 21. Area (GE) of address calculation instruction hardware module.

Hardware Module AREA (GE)

Address Calculation Instruction 220

Cryptography 2022, 6, 41 26 of 29

Figure 35. Acceleration vs. hardware cost of crypto implementations with new address calculation
instruction.

7.6. Conclusion

In this work, we developed software-only algorithms for eleven key cryptographic
algorithms using the RISC-V rv32i ISA, and compared the performance of these algorithms
to the performance of a RISC-V processor with additional hardware modules that imple-
ment specialized instructions for single-cycle execution of cryptographic primitives. Our
software implementations reflect a balanced approach between execution speed and code
size, with a greater emphasis on execution speed. To this end, we used loop unrolling where
it was most effective and did not increase the program memory significantly. Furthermore,
all SBOX tables were pre-computed and stored memory rather than calculated on the fly
unless there is a specialized instruction that calculates the SBOX value.

For the RISC-V processor augmented with cryptographic hardware, the cryptography
instructions were grouped based on their structure, with each group designed as a hardware
module. The modular approach allows integration of any subset of modules with the
processor. Since each algorithm uses only a subset of the 32-bit scalar cryptography
instructions, to assure a valid performance comparison, we determined the module usage
of each of the algorithms and evaluated the implementation cost accordingly.

The key technical contributions of this work are:

• Compared to implementations using only the base rv32i instruction set, implementa-
tions with the cryptography set extension provide 1.5× to 8.6× faster execution speed
and 1.2× to 5.8× less program memory for five of the eleven algorithms. For the
remaining six algorithms, the increase in execution speed and reduction in program
memory requirement is less than 6%.

• The hardware crypto implementations have an additional hardware complexity of
0.3% to 7.7% over the software implementations using the rv32i ISA.

• The benefit-cost analysis in Figure 31 graphically shows the acceleration of execution
time as a function of the relative hardware cost, summarizing the gains in execution

Cryptography 2022, 6, 41 27 of 29

time as a function of the costs in terms of hardware complexity for each algorithm. As
one illustration of the benefit vs. cost, we see that for the SHA algorithms, we achieve
an acceleration of approximately 1.7× at a hardware cost increase of less than 7.5%.

• Based on our analysis of execution times, we proposed a new instruction to accelerate
the memory address calculation operations for the 8-bit input SBOX table, which is
dominant in the execution time for four of the eleven algorithms. This new instruction
provided a 1.2× to 1.6× faster execution time for the four algorithms with only a 1.1%
additional hardware cost, as shown in Figure 35.

Our work differs from the previous studies done on cryptographic hardware accelera-
tion support for RISC-V in mainly its completeness. Instead of implementing support for
only cryptographic algorithms as in [38], we have implemented support also for permuta-
tion instructions, thereby providing a more complete solution for the implementation of
any cryptographic algorithm. This approach allows software support and hardware accel-
eration not only for any symmetric cryptographic algorithm including future standards,
but also asymmetric algorithms. The additional cost for permutation instructions is only
4K GE, which is only 8% higher than the area cost of 3.7K GE required for cryptographic
instruction support (see Table 19). In comparison, a synthesis of the solution proposed
in [38], would require close to 5K GE for cryptographic instructions alone.

The eleven cryptographic algorithms evaluated here have similar structures. For
example, none of the algorithms use multiply/divide instructions or floating-point instruc-
tions. Some of the cryptography instructions are not used for any of the implementations.
However, this does not mean that these instructions are not helpful for other cryptographic
algorithms and applications. Therefore, future research should investigate the usability of
these instructions for cryptographic algorithms not considered here. Future efforts could
also examine implementations of different ISAs for the same set of algorithms, revealing
the pros and cons of the RISC-V ISA compared to other ISAs.

Author Contributions: Conceptualization, G.N., P.G.F., and T.Y.; methodology, G.N. and T.Y.; soft-
ware, G.N.; validation, G.N.; formal analysis, G.N.; investigation, G.N.; resources, G.N, P.G.F., and T.Y.;
data curation, G.N. and T.Y.; writing—original draft preparation, G.N.; writing—review and editing,
P.G.F. and T.Y.; visualization, G.N.; supervision, P.G.F. and T.Y.; project administration, P.G.F.; funding
acquisition, P.G.F. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by U.S. Air Force Research Laboratory Contract FA8750-
19-2-0503.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AES Advanced Encryption Standard
SHA Secure Hash Algorithm
FPGA Field Programmable Gate Array
ISE Instruction Set Extension
ISA Instruction Set Architecture
HDL Hardware Description Language
RTL Register Transfer Level
GF Galois Field
RISC Reduced Instruction Set Computer
PI Proposed Instruction
GE Gate Equivalent
NC Not Calculated

Cryptography 2022, 6, 41 28 of 29

References
1. History-RISC-V International. Available online: https://riscv.org/about/history/ (accessed on 26 March 2021)
2. Waterman, A.; Lee, Y.; Patterson, D.A.; Asanovic, K. UCB/EECS-2011-62; The RISC-V Instruction Set Manual, Volume i: Base

User-Level Isa. EECS Department: Berkeley, CA, USA, 2011; Volume 116.
3. RISC-V INTERNATIONAL . Available online: https://riscv.org/ (accessed on 26 March 2021).
4. The RISC-V Instruction Set Manual Volume I: Unprivileged ISA 2019, volume 1. Available online: https://riscv.org/wp-content/

uploads/2019/12/riscv-spec-20191213.pdf (accessed on 3 August 2022).
5. Zeh, A.; Glew, A.; Spinney, B.; Marshall, B.; Page, D.; Atkins, D.; Dockser, K.; Saarinen, M.-J.O.; Menhorn, N.; Deutsch, L.P.; et al.

RISC-V Cryptographic Extension Proposals Volume I: Scalar & Entropy Source Instructions Version v1.0.0-rc6, 2021. Available
online: https://github.com/riscv/riscv-crypto/releases/tag/v1.0.0-rc6-scalar (accessed on 20 July 2022).

6. Zeh, A.; Glew, A.; Spinney, B.; Marshall, B.; Page, D.; Atkins, D.; Dockser, K.; Saarinen, M.J.O.; Menhorn, N.; Newell, R.; et al.
RISC-V Cryptographic Extension Proposals Volume II: Vector Instructions. 2020. Available online: https://github.com/riscv/
riscv-crypto/releases/tag/v0.7.0 (accessed on 20 July 2022).

7. RISC-V Bitmanip Extension Document Version 0.94 Draft. Available online: https://github.com/riscv/riscv-bitmanip/blob/
main-history/bitmanip-draft.pdf (accessed on 24 July 2022).

8. Pub, N.F. FIPS 197: Advanced Encryption Standard (AES), FIPS PUB 197, US Department of Commerce/NIST, November 2001,
2001. Available online: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf (accessed on 3 August 2022).

9. Dang, Q. Changes in Federal Information Processing Standard (FIPS) 180-4, Secure Hash Standard. Cryptologia 2013, 37, 69–73.
[CrossRef]

10. Specification of SM3 Cryptographic Hash Function . 2010. Organization of State Commercial Administration of China. Available
online: https://www.chinesestandard.net/PDF.aspx/GBT32905-2016 (accessed on 3 August 2022).

11. Diffie, W.; Translators, G.L. SMS4 Encryption Algorithm for Wireless Networks. Cryptology ePrint Archive, Paper 2008/329,
2008. Available online: https://eprint.iacr.org/2008/329 (accessed on 3 August 2022).

12. Zeh, A.; Glew, A.; Spinney, B.; Marshall, B.; Page, D.; Atkins, D.; Dockser, K.; Saarinen, M.J.O.; Menhorn, N.; Newell, R. RISC-V
Cryptographic Extension Proposals Volume I: Scalar & Entropy Source Instructions Version 0.7.2, 2021. Available online:
https://github.com/riscv/riscv-crypto/releases/tag/v0.7.2-scalar (accessed on 3 August 2022).

13. Saarinen, M.J.O. A Lightweight ISA Extension for AES and SM4. arXiv 2020, arXiv.2002.07041.
14. Marshall, B.; Newell, G.R.; Page, D.; Saarinen, M.J.O.; Wolf, C. The Design of Scalar AES Instruction Set Extensions for

RISC-V. Cryptology ePrint Archive, Paper 2020/930, 2020. Available online: https://eprint.iacr.org/2020/930 (accessed on 3
August 2022).

15. Marshall, B.; Page, D.; Hung Pham, T. A lightweight ISE for ChaCha on RISC-V. In Proceedings of the 2021 IEEE 32nd International
Conference on Application-Specific Systems, Architectures and Processors (ASAP), Virtual, 7–9 July 2021; pp. 25–32. [CrossRef]

16. Bernstein, D.J.; et al. ChaCha, a Variant of Salsa20. Workshop Record of SASC, 2008, Volume 8, pp. 3–5. Available online:
http://cr.yp.to/chacha/chacha-20080120.pdf (accessed on 3 August 2022).

17. Steinegger, S.; Primas, R. A Fast and Compact Accelerator for Ascon and Friends. IACR Cryptol. ePrint Arch. 2020, 2020, 1083.
18. Fritzmann, T.; Sigl, G.; Sepúlveda, J. RISQ-V: Tightly Coupled RISC-V Accelerators for Post-Quantum Cryptography. IACR Trans.

Cryptogr. Hardw. Embed. Syst. 2020, 2020, 239–280. [CrossRef]
19. Wang, W.; Han, J.; Cheng, X.; Zeng, X. An energy-efficient crypto-extension design for RISC-V. Microelectron. J. 2021, 115, 105165.

[CrossRef]
20. Stoffelen, K. Efficient Cryptography on the RISC-V Architecture. In Progress in Cryptology–LATINCRYPT 2019; Schwabe, P.,

Thériault, N., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 323–340. [CrossRef]
21. Kuo, Y.M.; Garcia-Herrero, F.; Ruano, O.; Maestro, J.A. RISC-V Galois Field ISA Extension for Non-Binary Error-Correction Codes

and Classical and Post-Quantum Cryptography. IEEE Trans. Comput. 2022. [CrossRef]
22. Saraiva, D.A.F.; Leithardt, V.R.Q.; de Paula, D.; Sales Mendes, A.; González, G.V.; Crocker, P. PRISEC: Comparison of Symmetric

Key Algorithms for IoT Devices. Sensors 2019, 19, 4312. [CrossRef] [PubMed]
23. Barker, E.; Mouha, N. Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher; NIST Special Publication

800-67 Revision 2; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017. [CrossRef]
24. Matsui, M. New block encryption algorithm MISTY. In Fast Software Encryption; Biham, E., Ed.; Springer: Berlin/Heidelberg,

Germany, 1997; pp. 54–68. [CrossRef]
25. Adams, C. The CAST-128 Encryption Algorithm. Available online: https://www.ietf.org/rfc/rfc2144.txt (accessed on 3

August 2022).
26. Hong, D.; Sung, J.; Hong, S.; Lim, J.; Lee, S.; Koo, B.S.; Lee, C.; Chang, D.; Lee, J.; Jeong, K.; et al. HIGHT: A New Block Cipher

Suitable for Low-Resource Device. In Cryptographic Hardware and Embedded Systems-CHES 2006; Goubin, L., Matsui, M., Eds.;
Springer: Berlin/Heidelberg, Germany, 2006; pp. 46–59. (accessed on 3 August 2022). [CrossRef]

27. Bogdanov, A.; Knudsen, L.R.; Leander, G.; Paar, C.; Poschmann, A.; Robshaw, M.J.B.; Seurin, Y.; Vikkelsoe, C. PRESENT: An
Ultra-Lightweight Block Cipher. In Cryptographic Hardware and Embedded Systems-CHES 2007; Paillier, P.; Verbauwhede, I., Eds.;
Springer: Berlin/Heidelberg, Germany, 2007; pp. 450–466. (accessed on 24 July 2022). [CrossRef]

https://riscv.org/about/history/
https://riscv.org/
https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf
https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-crypto/releases/tag/v1.0.0-rc6-scalar
https://github.com/riscv/riscv-crypto/releases/tag/v0.7.0
https://github.com/riscv/riscv-crypto/releases/tag/v0.7.0
https://github.com/riscv/riscv-bitmanip/blob/main-history/bitmanip-draft.pdf
https://github.com/riscv/riscv-bitmanip/blob/main-history/bitmanip-draft.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
http://doi.org/10.1080/01611194.2012.687431
https://www.chinesestandard.net/PDF.aspx/GBT32905-2016
https://eprint.iacr.org/2008/329
https://github.com/riscv/riscv-crypto/releases/tag/v0.7.2-scalar
https://eprint.iacr.org/2020/930
https://doi.org/10.1109/ASAP52443.2021.00011
http://cr.yp.to/chacha/chacha-20080120.pdf
http://dx.doi.org/10.46586/tches.v2020.i4.239-280
http://dx.doi.org/10.1016/j.mejo.2021.105165
http://dx.doi.org/10.1007/978-3-030-30530-7_16
http://dx.doi.org/10.1109/TC.2022.3174587
http://dx.doi.org/10.3390/s19194312
http://www.ncbi.nlm.nih.gov/pubmed/31590354
http://dx.doi.org/10.6028/NIST.SP.800-67r2
http://dx.doi.org/10.1007/BFb0052334
https://www.ietf.org/rfc/rfc2144.txt
http://dx.doi.org/10.1007/11894063_4.(accessed on 3 August 2022)
http://dx.doi.org/10.1007/978-3-540-74735-2_31.(accessed on 24 July 2022)

Cryptography 2022, 6, 41 29 of 29

28. Aoki, K.; Ichikawa, T.; Kanda, M.; Matsui, M.; Moriai, S.; Nakajima, J.; Tokita, T. Camellia: A 128-Bit Block Cipher Suitable
for Multiple Platforms—Design andAnalysis. In Selected Areas in Cryptography; Stinson, D.R., Tavares, S., Eds. Springer:
Berlin/Heidelberg, Germany, 2001, pp. 39–56. (accessed on 20 July 2022). [CrossRef]

29. Lee, S.; Yoon, J.; Cheon, D.H.; Lee, J.; Lee, H. The SEED Encryption Algorithm. RFC 4269, 2005. Available online: https:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.374.1600 (accessed on 24 July 2022). [CrossRef]

30. Dworkin, M. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions. August 2015. FIPS PUB 202.
Federal Information Processing Standards Publication. Information Technology Laboratory National Institute of Standards and
Technology. Available online: https://www.nist.gov/publications/sha-3-standard-permutation-based-hash-and-extendable-
output-functions (accessed on 3 August 2022). [CrossRef]

31. Wolf, C.; Glaser, J.; Kepler, J. Yosys-a free Verilog synthesis suite. In Proceedings of the 21st Austrian Workshop on Microelectronics
(Austrochip), Linz, Austria, 10 October 2013.

32. ISO/IEC 18033-3:2010; Information Security—Lightweight Cryptography—Part 3: Block Ciphers. ISO: London, UK, 2010.
33. ISO/IEC 29192-2:2019; Information security—Lightweight Cryptography—Part 2: Block Ciphers. ISO: London, UK, 2019.
34. Daemen, J.; Rijmen, V. AES Proposal: Rijndael 1999. AES Submission Document on Rijndael. Available online: https://csrc.nist.

gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf (ac-
cessed on 3 August 2022).

35. Paar, C. Efficient VLSI Architectures for Bit-Parallel Computation in Galois Fields. PhD Thesis, Institute for Experimental
Mathematics, University of Duisburg-Essen: Essen, Germany, 1994.

36. Canright, D. A Very Compact S-Box for AES. In Cryptographic Hardware and Embedded Systems–CHES 2005; Rao, J.R., Sunar, B.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 441–455. [CrossRef]

37. Gueron, S.; Kounavis, M.E. Intel® Carry-Less Multiplication Instruction and Its Usage for Computing the GCM Mode. White
Paper, April 2014. Revision 2.02 Available online: https://www.intel.com/content/dam/develop/external/us/en/documents/
clmul-wp-rev-2-02-2014-04-20.pdf (accessed on 3 August 2022).

38. RISC-V Cryptography Extensions Standardisation Work. 2022. Available online: https://github.com/riscv/riscv-crypto
(accessed on 24 July 2022).

http://dx.doi.org/10.1007/3-540-44983-3_4.(accessed on 20 July 2022)
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.374.1600
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.374.1600
http://dx.doi.org/10.17487/RFC4269
https://www.nist.gov/publications/sha-3-standard-permutation-based-hash-and-extendable-output-functions
https://www.nist.gov/publications/sha-3-standard-permutation-based-hash-and-extendable-output-functions
http://dx.doi.org/10.6028/NIST.FIPS.202
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
http://dx.doi.org/10.1007/11545262_32
https://www.intel.com/content/dam/develop/external/us/en/documents/clmul-wp-rev-2-02-2014-04-20.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/clmul-wp-rev-2-02-2014-04-20.pdf
https://github.com/riscv/riscv-crypto

	Introduction
	Previous and Related Work
	Objectives

	Materials and Methods
	Cryptographic Algorithms
	Software Implementations
	Software Implementation of AES
	Software Implementation of Seed
	Software Implementation of CAMELLIA
	Software Implementation of CAST
	Software Implementation of SHA-256 and SHA-512
	Software Implementation of TDEA
	Software Implementation of MISTY1
	Software Implementation of HIGHT
	Software Implementation of PRESENT

	Hardware Implementations
	 Hardware Architecture of Bit Re-Positioning Instructions
	 Hardware Architecture of Carry-Less Multiply Instructions

	Hardware Architecture of 32-bit Algorithm Specific Cryptography Instructions
	Hardware Architecture of Hash Instructions
	Hardware Implementation of AES and SM4 Instructions

	Results
	Clock Cycle Count
	Program Memory
	Static Memory
	Analysis for Cryptography Instructions
	Proposed New Instruction for SBOX Address Calculation
	Conclusion

	References

