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Abstract: Advanced, superscalar microprocessors (µP) are highly susceptible to wear-out failures
because of their highly complex, densely packed circuit structure and extreme operational frequencies.
Although many types of fault detection and mitigation strategies have been proposed, none have
addressed the specific problem of detecting faults that lead to information leakage events on I/O
channels of the µP. Information leakage can be defined very generally as any type of output that the
executing program did not intend to produce. In this work, we restrict this definition to output that
represents a security concern, and in particular, to the leakage of plaintext or encryption keys, and
propose a counter-based countermeasure to detect faults that cause this type of leakage event. Fault
injection (FI) experiments are carried out on two RISC-V microprocessors emulated as soft cores on a
Xilinx multi-processor System-on-chip (MPSoC) FPGA. The µP designs are instrumented with a set
of counters that records the number of transitions that occur on internal nodes. The transition counts
are collected from all internal nodes under both fault-free and faulty conditions, and are analyzed
to determine which counters provide the highest fault coverage and lowest latency for detecting
leakage faults. We show that complete coverage of all leakage faults is possible using only a single
counter strategically placed within the branch compare logic of the µPs.

Keywords: information leakage; RISC-V; FPGA fault injection and emulation

1. Introduction

Fail secure refers to systems that incorporate countermeasures (CMs) that prevent
sensitive data from being exposed, e.g., on I/O channels, when a fault occurs. In the context
of a microprocessor (µP), applications that encrypt data are very common, and fall into a
special class of applications that possess private information that should not be revealed to
outside entities, namely, plaintexts and encryption keys. Fail secure in this context refers
to µPs outfitted with CMs that detect and prevent faults that would otherwise leak keys
and plaintexts through I/O channels. Note that CMs which address private information
leakage can be designed to target only those faults that lead to leakage events, and as a
result, can have a smaller negative impact on the performance and area of the µP.

There exists a wide variety of software and hardware CMs that have been proposed to
provide fault tolerance within the complex system architectures of µPs [1]. All fault tolerant
techniques require a detection mechanism and then some type of mitigation strategy. Many
of the previously proposed techniques introduce redundancy and voting to detect and
then correct fault effects, but in general, these approaches are considered heavy-weight
because of the adverse impact they have on the size of the hardware implementation and its
performance [2,3]. Hardware-software-based continuous symptom monitoring strategies
are lighter weight but require moderate to significant changes to the µP architecture [4,5].
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The latency of software monitors that leverage existing hardware features may be too large
to prevent leakage [6]. Similarly, on-line techniques introduce specialized instructions
within the hardware-software stack of the µP and carry out periodic built-in self-test using
a scan chain infrastructure [7].

In contrast, our proposed periodic testing method introduces only a small set of
counters and halts execution on the activation of information leakage faults (and on a large
subset of non-leakage fault types). Although the proposed countermeasure is able to detect
different types of leakage sensitive faults, our primary goal is to detect delay faults because
they represent a precursor to hard faults, e.g., stuck at 0 and stuck at 1. Given most µPs
enable frequency control, one possible approach of applying the proposed periodic testing
strategy is to test a counter-instrumented RISC-V design at the highest possible frequency
in an attempt to detect a delay fault from a set that have been pre-identified as leading to a
fail-insecure outcome.

In this work, we evaluate the counter-based CM on the Rocket µP [8] by executing
the Advanced Encryption Algorithm (AES) with a fixed plaintext and key in a large set of
proof-of-concept FPGA emulation experiments. Although the counter values depend on the
specific plaintext and key used in the encryption operation, our previous work [9] shows
a large overlap exists in the sets of leakage sensitive faults in two different plaintext/key
combinations, which suggests the proposed strategy is data insensitive and will remain
effective for other plaintext/key combinations. As further support of the approach, a
second µP, called Potato [10], is tested with the counter-based CMs and the results are
shown to be nearly identical.

Although the simplest mitigation strategy after detecting the occurrence of a leakage sen-
sitive fault is simply to halt execution of the processor, other mitigation strategies described
in previous work, e.g., checkpoint and replay, are also possible. For these more complex
recovery mechanisms, and especially for fail-operational designs where execution needs to
continue in spite of failure, the latency between fault occurrence and fault detection becomes
an important factor in reducing the complexity and effectiveness of the recovery mechanism.

To address this issue, we also investigate the latency of the counter-based CM. Al-
though the latency analysis is relevant only to continuous symptom monitoring-based
methods, our findings reveal that increasing the number of counters decreases the latency
of detecting faults and therefore, counter set size and latency represent a trade-off. Given
the ease at which counters can be added to the design, we argue that the ability to tune
the number of counters to meet the requirements of the recovery mitigation strategy is an
attractive feature. Moreover, the nodes identified by the counter analysis presented here
are highly sensitive to fault propagation effects, and therefore, they represent attractive
targets for alternative continuous symptom monitor-based approaches.

Contributions

In this paper, we utilize the fault injection engine and instrumented RISC-V Rocket
design [11] from previous work as well as the post-processing system developed for
identifying leakage faults [9,12,13]. The counter-based CM, on the other hand, is a novel
contribution of this paper. The specific contributions of this work include:

• The evaluation of a counter-based CM that can detect leakage sensitive faults (also called
severe) with latencies sufficiently low to prevent leakage in a periodic testing paradigm.

• The identification of a set of counters that provide the highest fault coverage and
lowest latency for the targeted information leakage faults.

• An extended analysis that reveals the collateral fault coverage provided by the selected
counters for detecting faults from the larger sets of 85,714 stuck at 0, stuck at 1, delay
and invert faults.

• An enhancement to a codesign-based fault emulation engine developed in previous
work that enables the latencies of fault effects to be determined quickly using a binary
search algorithm.
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Although the experiments are conducted as emulations on an FPGA, the proposed
CM is designed to be integrated into a hard-wired, custom implementation of the µPs. The
synthesis tool flow which converts the designs to an FPGA implementation is constrained
to ensure the results presented in this paper are applicable to hard-wire versions.

The remainder of this paper is organized as follows. Section 2 discusses additional
related work. Section 3 describes the experimental design and attributes of the FI experi-
ments. Section 4 describes the fault coverage results obtained using a subset of counters
while Section 4.3 presents an analysis of latency. Section 5 presents our conclusions and
future plans.

2. Related Work

The previous work presented in this section provides additional references and details
on the techniques described in the Introduction. Although the related work described here
addresses fault tolerance in µP, to the best of our knowledge, no previous work exists that
is focused on the detection of leakage sensitive faults.

A transient fault detection continuous symptom monitor (CSM) technique is proposed
in [4] in which a program is duplicated and run concurrently as multiple threads on a pro-
cessor. It leverages a microarchitectural feature called simultaneous multi-threading which
utilizes processor resources that would otherwise remain idle because of data dependencies
within a single thread. The technique requires the insertion of a specialized delay buffer
into the microarchitecture to enable comparisons between the execution result streams of
the two threads. The authors presents simulation results that show the time penalty of
executing two copies is 10–30% larger.

A µP dynamic verification CSM method for detecting transient and permanent faults
is proposed in [14]. A DIVA checker is proposed that recomputes the functional unit
result using the instruction input operands and compares the results before allowing the
instruction to commit. Although the checker design is simplified because it can leverage the
processor pipeline decisions, the checker pipeline introduces area overhead for additional
register file and cache ports, and for redundant functional units. Area estimates are
provided in follow-on work [15] which predicts a value of ≈5%, i.e., 10 mm2 in an Alpha
µP with area 205 mm2.

A hardware-software high-level CSM fault detection technique is proposed in [6] that
monitors software execution for anomalous behavior. Fault detection is performed at a high
level by observing hardware traps and microprocessor performance counters. Although
the technique is able to detect 95% of the unmasked faults, the latency for detection can
be high. Although most were detected in less than 100K instructions, others take longer,
up to 10 million instructions. The area and performance overheads are ≈0% because the
technique leverages only existing architectural features that are accessible by software
running on the µP. However, given the large latencies in some cases, it is unclear whether
this technique will be able to detect leakage sensitive faults before leakage occurs.

The authors of [7] propose a periodic built-in self-test (PBST) fault detection and
diagnosis technique that utilizes a set of special instructions, called access-control extension
(ACE) instructions, to access state and control µP execution. The extended instruction set
leverages the existing scan-chain intrastructure to enable access to all microarchitectural
state components which keeps hardware overhead low. The technique periodically sus-
pends execution and runs a set of manufacturing tests that are crafted to provide high fault
coverage. An area overhead of 5.8% is reported for Sun’s Niagara OpenSPARC T1 µP. The
performance overhead depends on the length of the checkpoint interval and fault model.
The minimum average performance overhead is reported as 5.5% for stuck-at fault-model
testing and for a checkpoint interval of 100M instructions.

3. System Overview

The details of the fault campaign, fault emulation engine, fault injection and counter
circuit design, FPGA testing process, computer-aided-design (CAD) tool flow, fault injection
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experiment run times and fault analysis are presented in this section. As indicated earlier,
the soft core implementations of the µPs on the FPGA are constructed using application-
specific integrated circuit (ASIC) tools as a means of ensuring the emulated fault behaviors
are consistent with those that would be observed in custom layout of the µPs .

3.1. Fault Campaign Characteristics

The term fault campaign is used in reference to the fault emulation system and
its capabilities [16], and is defined by several attributes including the computing and
communication mechanism between the fault injection manager (FIM) and fault emulation
(FE) engine, the design-under-test, the fault model(s) and fault analysis techniques. A
summary of the fault campaign utilized in this research is given as follows:

• The RISC-V River µP (Rocket) [11,17] is used as the processor-under-test, configured
with a 32 KB ROM for application code and a 512 KB BRAM for scratch memory. The
netlist for Rocket is generated using an ASIC synthesis and place&route computer-
aided design (CAD) tool flow. The netlist is instrumented with scan-chains that
connect to a set of fault injection circuits and a set of counters. The instrumented
netlist is used as input to a FPGA CAD tool flow which produces the programming
bitstreams for the FPGA.

• The FIM is implemented as a C program that runs on an embedded processor within
a multiprocessor system-on-chip (MPSoC) FPGA. Similar to the FI architecture pro-
posed in [18], we leverage two 32-bit high-speed, memory-mapped general purpose
input/output (GPIO) registers between the processor and programmable logic (PL)
components for fault injection, control and counter data retrieval.

• A set of single-bit faults emulating stuck at 0 (SA0), stuck at 1 (SA1), invert and delay
fault types are inserted and reported on.

• The FE engine is constructed as a set of PL-side state machines tightly integrated with
the processor-under-test. The FIM communicates with the FE engine and drives the
scan chains using the GPIO registers.

• The FPGA is reprogrammed with the bitstream before each FI experiment to elim-
inate error propagation between FI experiments that affect non-resettable FFs and
block RAMs.

• The fault emulation process includes a fault free emulation to determine the im-
pact of each fault on the toggle (transition) activity associated with each of Rocket’s
circuit nodes.

• The analysis of the counter values is done off-line using the counter values collected
from the fault-free experiment and each of the FI experiments.

3.2. System Architecture

A block diagram of the experimental design is shown in Figure 1. The Zynq UltraScale+
MPSoC incorporated on the Xilinx ZCU102 development board includes a processor side
(PS) and programmable logic side (PL) side. The Linux operating system (OS) boots from a
16 GB SD card and runs on an ARM Cortex-A53 processor [19]. An ethernet channel is set
up to enable communications between the host and the FIM, which is implemented as a C
program on the FPGA.

The Xilinx Vivado block diagram tool is used to add an AXI-lite GPIO port to the
PL-side FE engine. The block diagram in Figure 2 illustrates the connectivity to and from
the two GPIO registers on the PL-side. The two 32-bit GPIO Ins and GPIO Outs registers
can be directly accessed from the FIM as variables within a C program because they are
memory-mapped into the PS-side address space.

As indicated earlier, the FIM dynamically reconfigures the PL side before each FI
experiment as a means of ensuring the emulated Rocket processor state is reset and isolated
from fault effects from previous FI experiments. Dynamic reconfiguration (DR), in contrast
to dynamic partial reconfiguration (DPR), reprograms the entire PL-side, resetting all
FF and Block RAM (BRAM) resources to their initialized, fault-free state. The processor
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configuration access port (PCAP) shown in Figure 1 is used to accelerate the DR process,
which takes approximately 215 milliseconds.

The FIM C program communicates with the FE master state machine (Mst) through
the GPIO registers as shown in Figure 2. The FIM-controlled scan clock (scanClk) and scan
enable (scanen) signals connect to clock trees on the PL-side to enable scan operations, i.e.,
fault injection and counter value read-out, to proceed at high speed.

Figure 1. Block diagram of the experimental setup with fault injection and counter circuit scan chains
for accelerating data collection.

Figure 2. PS-to-PL-side GPIO registers for FIM and FE engine communication and scan chain
implementation characteristics.

3.3. Fault Injection and Counter Circuit Design

The Rocket netlist obtained from the CAD tool synthesis flow contains 85,714 nodes.
The netlist is post-processed to create an instrumented design with fault injection circuits
inserted in series at each of the circuit nodes. A subset of the fault injection sites are
also instrumented with counter circuits. The Rocket netlist and fault injection circuits use
significant FPGA resources, limiting the number of counters that could be inserted to 2001
per bitstream. In order to obtain complete coverage, a set of fourty-three FPGA bitstreams
are created, each with 2001 counter circuits instantiated at unique fault injection sites (the
last bitstream instantiates only 1714 counters). The last counter instance in each bitstream
is repeated as the first counter instance in the next bitstream to enable consistency checks
to be carried out on data read out from consecutive bitstream experiments. Therefore, the
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FI experiments are repeated fourty-three times as a means of collecting the counter values
for the entire set of 85,714 nodes.

The fault injection circuit is shown in schematic form along the bottom of Figure 3
while the counter circuit is shown above it enclosed within a red rectangle. A set of three
scan chains, labeled scan in[2:0], are used to control the insertion of faults. The signal scan
in[0], a.k.a. fault en, controls the insertion of the fault between the Rocket circuit node
labeled in and out. The scan in[2:1] signal pair selects the fault type, which can be any one of
four possible fault conditions, stuck-0, stuck-1, delay and invert.

Figure 3. Schematic of the counter circuit integrated into the fault injection scan chain.

The delay fault component utilizes a flip-flop (FF) to insert a one-cycle delay, as a model
for a fault condition that delays the signal propagation of a Rocket node to a downstream
gate input. The output of this FF is also used to trigger the counter circuit, labeled Cnter, to
increment the count when a value change (transition) occurs on the corresponding Rocket
node, which is accomplished using the XOR gate logic shown along the top of Figure 3.
On any particular clock cycle, if the old state of the node is a ‘0’ and the new state is a ‘1’,
the output of the XOR gate is ‘1’, and vise versa. The XOR gate drives the select input to a
2-to-1 MUX that selects the ‘+1’ feedback connection from the counter when a transition
occurs on the corresponding Rocket node.

During system operation, the count value in the Cnter is transferred to a shadow copy,
labeled Scan Cnter in Figure 3, after the test completes. The 24-bits of the Scan Cnter are
stitched into the scan chain by partitioning the counter bits into three 8-bit groups, one
group for each of the three scan chains.

3.4. Testing Process

The following sequence of operations is carried out during each FI experiment to
measure and then scan out the contents of the Scan Cnters:
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1. The PL side is reprogrammed using DR. The initial state of the FE engine asserts
the reset signal to Rocket and disables the Clk, which prevents any switching activity
within Rocket.

2. The FIM configures a register within the FE engine that controls the run time of Rocket,
which is specified as a terminating clock cycle count.

3. The FIM inserts a fault using the scan inputs, i.e., scan in and scan Clk.
4. The scan en is asserted and Rocket’s clock is pulsed for one cycle, which clears the

Cnter values.
5. The scan en signal is de-asserted and the FIM starts the FE engine, which simultane-

ously releases reset on Rocket and enables the Clk input.
6. The FE engine counts precisely up to the terminating clock cycle count and then

simultaneously re-asserts reset and disables Clk. It then informs the FIM that the test
has completed.

7. The FIM pulses scan Clk one time with scan en low to transfer the contents from the
Cnters to the Scan Cnters.

8. The FIM asserts scan en and scans out the contents of the scan chains and reconstructs
the counter values.

3.5. Rocket Synthesis

The goal of the synthesis and place&route CAD tool flow is to produce an implemen-
tation of Rocket that can be fabricated as a stand-alone device, i.e., an ASIC. The structural
netlist produced by the ASIC tool flow is used as input to a second FPGA CAD tool flow to
generate a design that can be used in the FPGA emulation experiments. The FI insertion
technique ensures the FPGA version is structurally identical to the ASIC version, as a means
of making the reported results meaningful to an actual application that would utilize the
ASIC device. The following process is followed to meet this goal.

First, a behavioral description of Rocket, derived from Chisel [8], is used as input to
an ASIC standard cell synthesis and place&route CAD tool flow using the ASAP7 7 nm
FinFET standard cell library [20]. The Synopsys Design Compiler [21] is used to generate a
gate-level netlist and Cadence Encounter [22] is used to perform place&route to generate a
layout representation. A netlist is extracted from the layout representation, which is then
converted into an instrumented design with scan-controlled FI circuits and counters using
a custom C program. As mentioned earlier, a set of 43 instrumented netlists are created
with the C program, each with a distinct set of counters.

Xilinx Vivado [23] is used to generate the bitstreams using the instrumented netlists as
input. The FI circuits and scan chains prevent Vivado from optimizing the original ASIC
netlist structure. The FPGA resources utilized to implement the emulated design are given
as follows:

Look-up Tables (LUTs): 153520 : 56.01%
LUT RAMs: 314 : 0.22%
Flip-Flops: 403643 : 73.64%
BRAM: 166 : 18.20%

Vivado takes approximately 6 h to synthesize, implement and generate a bitstream
for each netlist. Although this process takes about a day to complete with several servers
running multiple jobs in parallel, the run time for the data collection is much larger, and
therefore, bitstream preparation represents only a small fraction of the total FI campaign
run time.

3.6. Counter Location

The counter locations within the major functional units of Rocket are classified accord-
ing to the names in the synthesized netlist. The counter plots presented in the following
place counters within the same functional together as a group to assist with illustrating
the impact of faults at the functional unit level. Table 1 gives information regarding the
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functional unit names listed across the top of the figures. Note that this is a very broad
characterization of Rocket’s internal functions as they relate to Rocket’s pipeline shown in
Figure 4.

Table 1. Counter number to functional unit mapping.

Functional Unit Counter Range Description

Txxx 0 thr 29,283 Miscellaneous logic

alu 29,284 thr 34,894 Arithmetic logic unit, adder, etc

csr 34,895 thr 60,937 Control and status registers

div 60,938 thr 76,502 Divider

ex_ctrl 76,503 thr 80,510 Ctrl logic execute stage

io & mem 80,510 thr 85,713 I/O and memory logic

Figure 4. Rocket core pipeline [24].

3.7. FI Experiment Run Times

The FI experiments consist of emulating Rocket running one encryption operation
under fault-free and fault conditions, each at a series of stop points, as a means of evaluating
fault detection latency. A C program running on one of the Cortex A53 APUs serves as the
FIM, which automates and coordinates the entire testing process. In the fault experiments,
an outer loop in the FIM configures each of the faults into the scan chain (see Figure 2), one
at a time, while the inner loop configures the FE engine with a data word that controls the
run time, given as the number of clock cycles.

An initial set of experiments are run in which Rocket fully executes the AES encryption
algorithm as a means of determining which of the 85,714 faults of each fault type are masked
(benign) or unmasked (active). The DR operation takes approximately 215 milliseconds (ms),
while a full execution run allows Rocket to run for 222 clock cycles, which takes approximately
262 ms. The scan operations need to scan 85,714 fault cells and 8× 2001 counter cells, which takes
approximately 49.6 ms, computed as 488 nanoseconds/scan operation ×(85, 714+ 8× 2001).
Other C program execution time within the FIM takes an additional 73 ms. Therefore one full
execution takes approximately 600 milliseconds. With 4 fault types, total run time for these
experiments running on a single copy of the ZCU102 is 4× 85, 714× 0.6 ≈ 57 h per bitstream.
With 43 bitstreams, a complete data set was collected in approximately 51 days running on
2 copies of the ZCU102.

The 85,714 counter values collected from the FI experiments are compared with fault-
free values to determine which faults are masked (the process of distinguishing masked
faults is described in the following section). After eliminating the masked faults, the
total number of active (unmasked) faults reduces from 4 × 85,714 faults = 342,856 to
101,729 faults, more than a 3X reduction.

Using only the active faults, we identified the top five most sensitive counters (dis-
cussed later) and focused subsequent experiments only on them. In a second set of experi-
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ments, the latency for each of the active faults is determined using a binary search process.
Although the details are presented later, each search requires 15 iterations to identify the
point at which an active fault introduces an anomaly in the execution behavior of Rocket
at a resolution of 128 clock cycles. The total run time for these experiments is given by
101, 729 × 15 × 0.6 = 10.6 days per counter on a single ZCU102.

A third set of experiments were run that possessed these same run time characteristics
but using only the set of 340 faults that leak key and plaintext information, which we refer
to as severe faults here and in previous work [9]. The smaller fault set size reduced run
times to one hour for each fault. The total run time of all experiments using 2 copies of the
ZCU102 is 51 days + 25.3 days + 7 days ≈ 84 days.

3.8. Active and Benign Faults

The counters provide high resolution observation over the impact of the faults across
the entire Rocket internal architecture. The fault detection capabilities of the counters
is herein referred to as fault coverage, a metric similar to the same term used within the
manufacturing test community. The counters provide observation of internal node behavior,
in contrast to the more limited observability typically available at the primary outputs (or
scan FF inputs) in microprocessors instrumented with design-for-testability features.

Although our analysis is focused on severe faults, we also want to report on the
collateral coverage provided by the selected counters for all of the faults. However, a large
fraction of the 342,856 faults are masked, and hence are benign, i.e., they do not introduce
anomalous behavior in the execution of the AES algorithm, and should be excluded from
the analysis. Active or unmasked faults, on the other hand, are defined as faults that
introduce significant changes, i.e., cause Rocket to lock-up, or result in corrupted ciphertext
output. Active and benign faults can be distinguished by comparing the counter values
from the fault-free emulation with those obtained when the fault is enabled. For simple
cases in which all 85,714 counters store the same counts in both emulations, the fault can be
classified as benign or masked.

A second simple benign case which can be easily identified involves faults that impact
only the counter value at the location of the fault site. For example, activating a stuck at 1 fault
on some node, where the fault-free value of the node remains at 0 for the entire execution,
will cause the counter to increment by 1 at that location in the FI experiment. This fault can
also be classified as benign under the condition that the remaining 85,713 counters match the
fault-free counts. The total number of faults classified as benign under these conditions is
given as follows for each fault class:

Stuck-at-0: Masked: 43,868
Stuck-at-1: Masked: 40,160
Delay: Masked: 61,046
Invert: Masked: 22,69

The strict conditions associated with the criteria described above represent a conserva-
tive measure of masked faults. A second source of information that can be used to help
identify masked faults is to compare the serial output and address bus behavior as Rocket
executes with that produced from the fault-free emulation, identical to the approach taken
in previous work [9]). The number of faults classified as benign under these conditions are
given as follows:

Stuck-at-0: Masked: 64,540
Stuck-at-1: Masked: 63,230
Delay: Masked: 71,407
Invert: Masked: 56,295

From these two sets of results, it is clear that there are a large number of faults that
are neither active or benign, and instead fall into a ‘indeterminate’ category as it relates
to classifying Rocket execution behavior. For example, there are 64,540 − 43,868 = 20,672
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indeterminate Stuck-at-0 faults. It is possible to partition these indeterminate faults into
masked and active by relaxing the strict constraints described above, and additionally
classify faults as benign if more than one counter value in the FI experiment is different
than the fault-free values but the remaining counters match the fault-free values and the
AES serial output and address behavior remain identical to the fault-free emulation values.
The relaxed constraints handle a common scenario in which the output of the activated
fault drives combinational logic gate inputs downstream that cause the associated counters
to increment by 1, but are blocked by internal state from further interactions with Rocket’s
execution. The following table gives the final number of faults classified as active and
benign in our experiments:

Stuck-at-0: Active: 24,655 Masked: 61,059
Stuck-at-1: Active: 26,132 Masked: 59,582
Delay: Active: 16,546 Masked: 69,168
Invert: Active: 34,396 Masked: 51,318

We recognize that many of the faults classified as benign in these sets would in
fact introduce anomalies in Rocket given a different work load, e.g., program to execute.
However, our goal here is to determine the number of required counters needed to detect
all severe faults and to evaluate the collateral coverage of the active faults using a frequently
used program that can serve as an estimate of the overhead and effectiveness for this type of
countermeasure approach. As we discuss later, future work will focus on using automatic
test pattern generation (ATPG) and an engineered executable to minimize the number of
required counters while maximizing the coverage.

3.9. Severe Faults

In previous work, we identified a total of 340 severe faults, partitioned as follows
based on the fault type introduced [9]. Note that the severe faults are by definition also
classified as active, and are included in the active subset.

Severe Stuck-at-0 (SA0): 76
Severe Stuck-at-1 (SA1): 49
Severe Delay: 129
Severe Invert: 86

Delay faults represent the largest class of severe fault types, and as discussed earlier,
are also more likely to occur before hard faults over normal wear out periods of operation.

4. Experimental Results

The fault detection and latency results for the counter-based CM are presented in the
following sub-sections. An analysis that includes all 101,729 active faults, referred to as
the All-faults class, is presented in Section 4.1. A separate analysis of the 340 severe faults,
referred to as the Severe-faults class, is presented in Section 4.2. The latency analysis of the
two fault classes as well as the latency associated with key and/or plaintext leakage on the
serial port is presented in Section 4.3. A summary of the results obtained for the Potato
µP are given in Section 4.4, followed by a discussion of overhead and on-going work in
Sections 4.5 and 4.6.

4.1. All-Faults Analysis

As discussed in Section 3.8, the data collected for all 85,714 counters in the initial set
of experiments are used to classify the 85,714 faults as active and benign. In this section, a
small subset of five counters are identified as providing the highest coverage of all active
faults, which are later compared with the results obtained for severe faults.

An important first result is the number of active faults that each counter is able to detect.
A fault is counted as detected if one or more counter values under the FI experiment with
the fault enabled is different than the value measured under the fault-free FI experiment.
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The results are presented as color-coded points in Figure 5, with the counters partitioned
along the x-axis according to the functional unit in which they are placed. The total number
of active faults detected by the most sensitive counter for each fault type, as well as the
fraction detected by the top three most sensitive counters is given in the following.

Top counter: Stuck-at-0: 22,938 Top 3 counters: 94.14%
Top counter: Stuck-at-1: 23,975 Top 3 counters: 93.07%
Top counter: Delay: 15,131 Top 3 counters: 93.88%
Top counter: Invert: 31,623 Top 3 counters: 93.43%

These results indicate that a large fraction of the active faults in each fault class are
detected by small number of counters. More importantly, the top three counters are the
same for stuck at 0 (SA0), stuck at 1 (SA1) and invert analyses. The top three most sensitive
counters for the delay faults are distinct but the top three counters for SA0, SA1 and invert
are in the top six most sensitive counters for delay. This suggests a stronger result that only
a set of six counters are needed to detect a large fraction of all the faults. Lastly, this same
set of counters also detects all severe faults.

Figure 5. The number of faults detected by each counter. The counter number is plotted along the
x-axis against the number of faults detected along the y-axis. The points are color-coded according to
the fault type, with black, blue, green and red showing SA0, SA1, delay and invert fault detections, resp.

The counters associated with these maximum detection percentages are located in the
ALU and register file categories, and in particular, on different bits within the execution
control unit to the by-pass MUX of the register file, as given by Table 2. The faults detected
by these counters overlap significantly (as implied by the detection percentages presented
above) and therefore, any one of them is sufficient to serve as a monitor for detecting the
faults with only a small decrease in fault coverage (later we show that each counter fails to
detect approx. 9% of the faults).
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Table 2. Top 5 All-Fault Counter Mapping.

Counter ID Counter Number Location

AFC0 32,968 Ex Ctrl to By-pass MUX of Reg. File

AFC1 33,997 Ex Ctrl to By-pass MUX of Reg. File

AFC2 33,442 Ex Ctrl to By-pass MUX of Reg. File

AFC3 29,596 Ex Ctrl to By-pass MUX of Reg. File

AFC4 29,600 Ex Ctrl to By-pass MUX of Reg. File

AFC5 33,213 Ex Ctrl to By-pass MUX of Reg. File

Figure 6 plots the cumulative detections for a subset of the counters which are needed
to detect all active faults. The counters are sorted by the maximum number of faults that
each detects, i.e., most sensitive to least sensitive. The number of counters needed to detect
all of the faults in the All-faults class is given as 167, 188, 121, 172, but as indicated above,
most of the faults are detected by the first three counters.

The presence of the fault changes the counts by different amounts depending on the
location of the counter. Faults that occur within frequently used functional units impact
counts more dramatically. Figure 7 plots the sum of the counter differences for counters
with counts larger than those measured in the fault-free emulations across all active faults.
The large positive sums associated with the Txxx, alu, ex_ctrl and io & mem regions indicate
that significant switching activity occurs in these counter regions and the faults that occur
there dramatically impact the switching activity. Although not shown, similar behavior
is observed in the counter sums associated with nodes with counts smaller than those
measured in the fault-free emulation.

Figure 6. The cumulative number of newly detected faults detected by each of the counters.
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Figure 7. Sum of the positive counter differences with each fault enabled, one-at-a-time, for each
counter (x-axis), indicating regions with additional switching activity when the faults are activated.
The fault-free counts are subtracted from the counts obtained in each FI experiment.

4.2. Severe Faults

The number of faults detected by the counters using only faults from the Severe-fault
class is shown in Figure 8. The numbers given along the right side of the figure list the
maximum number of severe faults of each type. The results illustrate first that delay faults
dominate the leakage faults in contrast to the results from the all-fault analysis which show
invert faults as the dominant fault class. Second, there are a large number of counters that
detect all of the severe faults of each type. The implication here is that a single counter
is sufficient as a countermeasure to detect all severe faults and that there exists a wide
range of counters (and regions) that can be selected for the location of the monitor. Equally
important is the illustration that a large fraction of the counters that detect all faults of each
type overlap with each other. In total, 28,767 counters detect all 340 severe faults.

Figure 8. The number of severe faults detected by each counter. Annotations are identical to those
given in Figure 5. The total number of severe faults per fault class is given along the right side.
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4.3. Latency Analysis

In this section, we analyze the latency of the counters in detecting the 340 faults in the
Severe-faults class, and present an analysis showing the trade-off between the number of
counters and the worst case latency for detecting these faults. Latency refers to the number
of clock cycles that are required before the fault creates an anomaly in the internal state of
Rocket and changes the counter value from that measured under fault-free conditions. We
also carry out a latency analysis for the severe faults using the top six counters identified
for the All-faults class to determine if targeting severe faults reduces latency and improves
the results.

The process used to determine fault detection latency involves first measuring the
fault-free counts at a series of incrementally increasing run times of Rocket, referred to as
stop points. The run times are expressed in clock cycles. Once the fault-free counts are
available, the FIM reads the fault-free data file and carries out a binary search to find the
minimum latency of each fault. Two counter groups are considered. The first set is the
group of six counters identified in the All-faults analysis. The second set is the group of
28,767 counters identified earlier as detecting all 340 severe faults.

A linear sweep algorithm is used to record the toggle counts for each of the counters
at a series of stop points in a fault-free emulation of Rocket, with the stop points defined as
incremental multiples of 128 clock cycles. The number of clock cycles required in the fault-
free emulation of the AES algorithm is upper bounded at 1,705,344 clock cycles. However,
a subset of the faults increase the execution time of the algorithm. In order to capture the
results of these run-away executions, we run Rocket for 222 or 4,194,304 clock cycles, and
collect toggle counts at each of the 32,768 stop points that occur over this longer interval.
The latency for each of the faults is found using the fault-free data and a binary search
process, that proceeds as follows for each counter and for each fault.

• The PL side is dynamically reprogrammed (DR) with the FI bitstream to ensure fault
effects do not propagate across re-executions of Rocket.

• The fault is inserted using the scan chain.
• Rocket is run and then halted after 2,097,152 clock cycles, exactly half the maxi-

mum number.
• The count value stored in the target counter is compared with the fault-free value. If

the count value does not equal the fault free value, the search continues using a stop
point equal to 1,048,576 clock cycles (1/2 the previous value). If it is equal, the search
continues using 3,145,728 clock cycles as the stop point (1.5X the previous value).

• Continue the search until two consecutive stop points are found, one in which the
counter value matches the fault-free value and the next where a mismatch occurs.

Each search takes 15 iterations to find the point at which the fault effect creates the
anomaly, within the tolerance window of 128 cycles. Each iteration takes ≈600 milliseconds,
yielding a search time of ≈9 s per fault. Note that it is possible to reduce the run time to
≈5.8 s per fault by eliminating DR but unfortunately, asserting reset between runs is not
sufficient to restore the fault-free state of Rocket for a large fraction of the faults.

4.3.1. Latency Analysis of the All-Faults Class

The curves in Figure 9 show the count behavior as a function of the number of clock
cycles plotted along the x-axis for the six counters identified earlier as the most sensitive
in Table 2. As noted, there are 32,768 data points associated with each curve. Except for
two brief stall points, the counter values continuously increase as the number of run cycles
increases. This characteristic is somewhat intuitive for counters that are the best candidates
for monitoring and detecting fault effects. The count values for counters AFC1 and AFC0
are nearly identical. This occurs because the counters are located in the same logic cone
of the design. Therefore, counter AFC0 is not considered further in our analysis. It is
noteworthy that the second stall point is in the region associated with the completion of
the AES encryption algorithm.
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Figure 9. Fault-free counts as a function of stop point for the six most sensitive counters from the
All-faults analysis.

The latency results for AFC1 are plotted in Figure 10 showing the cumulative fault
coverage of All-faults in black and Severe-faults in red as the number of clock cycles
increases along the x-axis. The jump to nearly 5000 by the black curve on the left side of the
graph indicates that ≈28% of the faults from the All-faults class are detected very early in
the run of the algorithm, i.e., in less than 128 clock cycles. Approximately 90% of them are
detected within the execution time of the AES algorithm (≈1.7 million cycles) and ≈9% are
not detected at all by this counter. The cumulative coverage for the 129 severe delay faults
plotted in red shows ≈5% are detected in less than 128 clock cycles while detection of the
full set takes ≈1.7 million clock cycles.

Figure 10. Delay fault cumulative fault detection results for Cnter AFC1 with run cycles plotted
along the x-axis and number of fault detections along the y-axis.

The cumulative delay fault coverages associated with all five All-faults counters from
Table 2 are shown in Figure 11. The behaviors are strikingly similar for both the All-faults
and Severe-faults classes, despite the fact that the increasing count rates shown in Figure 9
differ. A key consideration here is determining whether the severe faults detected in
the region of 1.7 million clock cycle are detected before the serial output begins to leak
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information, and whether there exist counters that provide lower latencies in the set of
28,724 counters that detect all severe faults.

Figure 11. Delay fault cumulative fault detection results for all five of the most sensitive counters
with run cycles plotted along the x-axis and number of fault detections along the y-axis.

4.3.2. Latency Analysis of the Severe-Faults Class

The goal of the All-faults analysis is to select a small set of counters that detect the
largest possible fraction of all active faults. Therefore, the counters selected may not be
optimal for minimizing the detection latency of the severe faults. In this section, we focus
on identifying the set of counters that provide the smallest possible severe fault latency,
and compare the results with the top five All-fault counter latencies. We conclude that
although there exists a set of severe fault counters that can reduce latency significantly, the
number required is large and impractical. Moreover, down-selecting to a small set of the
best Severe-fault counters provides no significant benefit in latency over any of the top five
counters identified from the All-fault analysis. Lastly, the top five All-fault counters detect
all severe faults before any leakage occurs on the serial port output, and therefore, any one
of them meets the goals of our proposed reliability monitoring scheme.

As indicated earlier, a total of 28,767 counters detect all severe faults. We carried out a
set of fault emulation experiments using this large group of counters to determine which
subset of counters provides the smallest possible latency for each of the 340 severe faults.
Note that the binary search process allows the latency of only one counter to be determined
in each fault emulation experiment, in particular, we always select the counter that provides
the minimal latency for the emulated fault. Given the counters are partitioned across a
set of 43 different bitstreams, the results of this analysis identified a set of 1840 unique
counters, each of which identified 1 of 340 faults at minimum latency. Further processing
reduced this set to 168 counters, each of which provided the lowest overall latency across
all bitstream results.

The smallest latencies associated with this set of counters is shown in Figure 12, with
the 340 severe faults numbered along the x-axis against their minimum latencies along the y-
axis. These results represent the best case for the proposed counter-based detection method.
The worst case latency is 667,136 clock cycles, which is associated with a delay fault. Given
the total number of clock cycles for the AES encryption operation is ≈1.7 million, these
best case latencies indicate that all severe faults are detected in less than 40% of the total
execution time. However, as we will show, some severe faults start leaking information
on the serial port early (well before encryption finishes), and therefore, deciding whether
leakage occurs needs to be determined on a fault-by-fault basis.
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Figure 12. Best case latency in clock cycles for one of the counters in a set of 28,767 counters to detect
each of the 340 severe faults. Each of the counters in this set detects all severe faults.

A second set of fault emulation experiments is then carried out using only the 168 smallest
latency counters. In these experiments, each of the 340 severe faults are emulated with only a
single counter considered in the binary search process, which allows the latencies for each fault
and for each counter to be determined. The analysis of minimum latency using this complete
data set reveals that some counters provide the same minimum latency for some faults, and
therefore, only 99 counters are required to provide complete coverage at minimum latency.

The drawback of targeting the minimum latency for each of the 340 severe faults is
the large number of counters required, i.e., 99 as indicated. Moreover, given that leakage
always starts occurring at clock cycles well after these minimum latencies (as we show below),
detecting the severe faults at minimum latency is not required. The curve shown in Figure 13
plots the overall worst case latency as the number of counters is strategically reduced, using
an algorithm that removes counters that have the fewest number of minimum detection
latencies, one at a time. Recall that all of the counters used in this analysis detect all severe
faults. Therefore, when a minimum latency counter is removed, the faults that it detects are
replaced with a counter that does not detect the fault at the minimum latency. The graph
shows that the overall worst case minimum latency increases as counters are removed, up to
worst case latency of ≈1.7 million clock cycles where only one counter is required to detect all
severe faults.

The trade-off between the number of counters utilized and the overall minimum
latency is not a smooth monotonically decreasing curve unfortunately. The precipitous
drop from 55 counters to 1 indicates that a large increase is required in the number of
counters to reduce overall latency from ≈1.7 million to ≈1 million clock cycles.

Detecting severe faults at 1.7 million clock cycles is close to when leakage starts to
occur on the serial port so a closer inspection is required to determine if one or more of
the 168 counters identified in the down-selection process detects all 340 leakage faults
before any leakage occurs (we use the original, larger down-selected counter set here to be
comprehensive). A similar analysis is carried out using the five counters from the All-faults
analysis and the results compared, as a means of determining if targeting severe faults
provides any real benefit over the counters selected in the All-faults analysis.
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Figure 13. Trade-off showing the number of counters needed (y-axis) for a given minimum severe
fault detection latency plotted along the x-axis.

The curves in Figure 14 show the latency results for delay faults where the latencies
of the 168 counters are superimposed on the latency curves for the 5 best counters from
the All-faults analysis. The best case curve is one that rises quickly and remains to the left
and above the other curves, which reflects the scenario where larger numbers of severe
faults are detected at smaller latencies. Although the black curves do not exhibit this ideal
characteristic, they remain close to the best curves among the 168 counters that target the
severe faults (one is identified as SF1 in the figure). This is an important result that states
that targeting severe faults in the counter analysis does not provide any significant benefit
over an analysis that targets all faults. The curves in Figure 15 support this result, where
the cumulative latencies for the All-faults counter AFC1 are plotted against the cumulative
latencies for the best of the severe fault counters, for each of the severe faults of each fault
type. Again, the black curves associated with the All-faults counter are close to the best of
severe faults counters (red curves), and are actually better in some clock cycle regions.

Figure 14. Cumulative detection latency of delay severe faults using top 5 All-faults counters and the
best 168 of the Severe-faults counters.
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Figure 15. Cumulative detection latency using the best All-faults and Severe-fault counters, illus-
trating the best All-fault counter detects all severe faults with latencies similar to the best of the
Severe-fault counters.

4.3.3. Latency Analysis of the Serial Port Leakage

In this last section, we compute the latencies associated with the first leakage event
on the serial port, i.e., the clock cycle in steps of size 128 at which the first plaintext byte
or key byte appears on the output of the serial port. The red points in Figure 16 plot the
serial port latencies for each of the severe faults shown along the x-axis. Superimposed as a
set of black points are the latencies for counter AFC1. In all cases, the black points have
smaller latencies than the red points, and therefore, the leakage event is detected before it
occurs. A subset of the differences between the serial port latencies and the latencies for
counter AFC1 is plotted in Figure 17. Although there are some cases where the difference
latencies are close to zero (the smallest value is 17,536 clock cycles) and the leakage fault is
detected just-in-time, for most cases, the leakage fault is detected well in advance of the
leakage event.

Figure 16. Counter AFC1 latencies are plotted in black for each of the severe faults on the x-axis.
The serial port output latencies are plotted in red and represent the number of clock cycles required
before the first plaintext or key byte appears on the output. Although some detection latencies for the
counter are close to the leakage latency on the serial port, none are larger.
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Figure 17. A subset of the difference latencies given as (SerialPortLatency-AFC1 CnterLatency),
obtained by subtracting the curves in Figure 16 and zooming in on the region close to 0.

Similar results are obtained using the remaining 4 All-faults counters. Given the All-
faults counters maximize collateral coverage and are able to detect severe faults at similar
latencies when compared with any of the best Severe-faults counters, we conclude that any
one (or more) of the All-faults counters are the best choice(s) for the countermeasure.

The following serves as a summary of the results presented in this section:

• A set of 5 All-faults counters are identified which detect all 340 severe faults while
also maintaining fault coverages in excess of ≈90% for faults in the All-faults class.

• A large set of more than 28,000 Severe-faults counters are found to detect all 340 severe
faults, while a smaller subset of 99 provide the absolute minimum latencies for faults
in the Severe-faults class.

• The top All-faults counter is able to detect all severe faults with latencies similar to the
best of the Severe-faults counters.

• The top All-faults counter is able to detect all severe faults with latencies less than the
latency of the first leakage event on the serial port and therefore, only one counter is
needed to meet the goals of the proposed countermeasure.

4.4. Potato RISC-V Results

In this section, we summarize the results obtained from the application of the counter-
based CM to a second RISC-V architecture, called Potato [10], as support for the wider
applicability of the method. The Potato µP is described directly in VHDL, i.e., is not auto-
generated from Chisel as is true of Rocket, and therefore, it was possible to more precisely
trace the functionality of the nodes associated with the top counters to a specific pipeline
stage and functional unit within the RISC-V architecture.

Unlike Rocket, the top three most effective counters for detecting all 56,000 active
faults in the All-Faults class of Potato are the same for all four fault types. Similar to Rocket,
the fault coverages of the top counters for both µPs are ≈90%, and only one counter is
needed to detect all severe faults. Moreover, the nodes associated with the top counters in
both the Rocket and Potato analyses are clustered in one region of the design and both are
in the fan-in cone of the forwarding logic to the register file inputs. In Potato, the nodes are
located in the branch comparator module of the execute pipleline stage, and in particular,
within the reduction logic network constructed by the synthesis tool to implement the
comparison operators, e.g., equality, inequality, etc., for branch instructions.

The register file forwarded inputs are used as the inputs to these reduction logic
operators. Moreover, the reduction operations are always performed independent of the
instruction’s opcode, i.e., the instruction does not need to be a branch instruction. Therefore
fault effects that propagate to any bit of these register file inputs will, with high probability,
manifest as a change within the reduction logic networks and on the nodes monitored by
the top counters. This observation suggests that these nodes have architectural significance
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from a fault propagation perspective, and explains why they are being selected as the nodes
associated with the top counters.

4.5. Overhead Comparison

In this section, we compare the performance and area overhead of the proposed
counter-based CM with previous work. Given our focus on leakage sensitive faults, the
comparison with previous techniques, which target complete fault coverage, is challenging
and somewhat unfair, i.e., is apples-to-oranges. Moreover, continuous symptom monitor
(CSM) and periodic built-in self-test (PBST) techniques themselves represent an apple-
to-oranges comparison challenge given the differences in operational characteristics and
whether fault-free data is available to the methods. Table 3 summarizes the area and per-
formance overheads associated with the most closely related techniques, with ‘-’ indicating
that no data was provided.

Table 3. Overhead comparison of proposed CM method with the most closely related methods.

Author, et al. Method Area Overhead Performance
Overhead

Rotenberg [4] CSM - 10–30%

Weaver [15] CSM 4.9% 3.16%

Li [6] CSM ≈0% ≈0%

Constantinides [7] PBST 5.5% 5.8%

Counter (this work) PBST 1.5% 1.7%

The proposed counter-based CM has a small overhead in comparison with most of the ex-
isting methods. The counter circuit is shown within the red rectangle of Figure 3 and consists of
two 24-bit counters. Area overhead is determined by processing a behavioral description of the
counter through the Synopsys Design Compiler [21] using the SAP7 standard cell library [20].
The synthesis report indicates the counter can be constructed using 113 combinational logic
cells and 48 FFs, and has an area of 339 µm2. The results presented in this paper indicate that
no more than five copies of the counter are needed, yielding an overhead of 1695 µm2. In
contrast, the area metrics associated with the Rocket core are 34,196 combinational logic cells
and 5262 FFs, with an area of 336 µm × 334 µm ≈ 112,224 µm2. The fractional area overhead
is given as 1695 ÷ 112,224 × 100 ≈ 1.5%.

The performance overhead is estimated using a checkpoint interval of 100 million
instructions (similar to the ACE technique reported above). Unlike the ACE methodology,
the number of scan clock cycles is very small (120 with 5 24-bit counters) and nearly all of
the self-test time is attributed to program execution. Using the full run time of the AES
algorithm, the performance overhead is estimated as 1.7 million ÷ 100 million ≈ 1.7%. An
alternative executable test program is proposed in Section 4.6 that is expected to reduce the
number of self-test clock cycles significantly.

4.6. Next Steps

Our longer range goal is to leverage the proposed counter-based CM as a means of
periodically assessing the health of a microprocessor system. The high levels of coverage
obtained from experiments carried out in this paper suggest that it is possible to obtain
significant fault coverage using a small set of strategically placed counters. It follows that
an even better result can be obtained by ‘engineering’ a specialized executable, in contrast
to the AES binary executed in the experiments carried out in this paper. The engineered
executable could be constructed with the assistance of automatic test pattern generation
(ATPG) tools. ATPG is used by the manufacturing test community to derive test vectors for
detecting faults after manufacturing and can be used here for a similar purpose. The goal
of ATPG is to derive a small set of test vectors that provide high levels of fault coverage.
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When applied for the purpose of reliability monitoring of leakage sensitive faults, high-
coverage ATPG vectors can be used to derive a set of instructions that sensitize fault effects
to one or more strategically placed counters. This can be accomplished by coercing the
ATPG vectors into closely matched processor instructions and register file values, with the
goal of creating a small binary program that provides similar levels of fault coverage. The
executable is run at maximum processor speed and is engineered with tests that target delay
faults as a means of maximizing coverage of wear-out related failures. Once constructed,
the fault-free counter values obtained from a fault-free run of this specialized executable
can be stored in a non-volatile memory or shadow registers, along with the engineered
executable. Reliability monitoring can then be carried out periodically by running the
engineered executable at high frequency in the field and comparing the measured counter
values with the stored values. In contrast to the on-line method proposed in [7], this
strategy utilizes existing instructions, requires no scan chain nor major changes to the
microprocessor architecture.

A continuous monitoring, program-independent approach is also possible but requires
the identification of a set of architecture-specific invariants, i.e., a set of fixed relationships
between logic nodes in the architecture. An example would be a node with a specific logic
value in the first pipeline stage that always produces, under fault-free conditions, a specific
value(s) in a down-stream node(s). An instrumented design with simple logic comparators,
or counters if predefined check points are defined, would perform self-assertion-based
consistency checks between these nodes. The methodology can focus on the identification
of invariants that are sensitive to information leakage faults as a means of reducing the
complexity of the analysis and to minimize instrumentation overhead. The nodes in
Potato’s reduction logic networks associated with the branch condition module of the
execute pipeline stage will be evaluated in future work to determine if it is possible to
construct self-asserting consistency checks that can detect leakage sensitive faults while
remaining independent of the executable and input data.

5. Conclusions

This paper investigates a counter-based periodic built-in self-test strategy for detecting
faults in the Rocket RISC-V microprocessor, using an FPGA emulation platform. The Rocket
design is synthesized using a standard cell ASIC CAD tool flow and an instrumented design
is created in which fault-injection and counter circuits are inserted in series with all gate
inputs in the netlist. Fault injection experiments are carried out in which one of four
fault types is activated on each of the 85,714 nodes within Rocket, one-at-a-time, and as
the microprocessor executes the AES algorithm. After each emulation, the count values
associated with the 85,714 counters are scanned out and compared with the fault-free values
to determine the latency-to-detection of the unmasked (active) faults.

The detection and latency capabilities of the counter-based approach are evaluated
on a subset of the active faults referred to as severe faults. The severe faults are defined as
faults that leak sensitive information, e.g., a portion of the plaintext and/or encryption key,
on the serial port output. A set of five counters, identified as providing the highest fault
coverage for the complete set of active (unmasked) faults (called All-faults), are also found
to provide complete coverage of all severe faults. Moreover, these counters, individually
and as a group, detect all severe faults with latencies less than the occurrence of leakage
on the serial port. Although our experiments determined that it is possible to detect the
severe faults at even lower latencies using an optimal set of 99 counters, the overhead is
much larger than utilizing one or more of the five All-fault counters in a practical RISC-
V application. Moreover, each of the five All-faults counters maximizes collateral fault
coverage (more than 90% for each counter) on the complete set of faults in the All-faults
class, providing an additional benefit beyond detecting all severe faults.
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