
Citation: Riggs, B.; Partridge, M.;

Cambou, B.; Burke, I.; Rios, M.A.;

Heynssens, J.; Ghanaimiandoab, D.

Multi-Wavelength Quantum Key

Distribution Emulation with Physical

Unclonable Function. Cryptography

2022, 6, 36. https://doi.org/

10.3390/cryptography6030036

Academic Editors: Christoforos

Ntantogian, Emmanouil Magkos and

Josef Pieprzyk

Received: 7 June 2022

Accepted: 4 July 2022

Published: 6 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Article

Multi-Wavelength Quantum Key Distribution Emulation with
Physical Unclonable Function
Brit Riggs *,†, Michael Partridge *,†, Bertrand Cambou , Ian Burke, Manuel Aguilar Rios, Julie Heynssens
and Dina Ghanaimiandoab

Cybersecurity Research Lab, Northern Arizona University, Flagstaff, AZ 86011, USA;
bertrand.cambou@nau.edu (B.C.); ian.burke@nau.edu (I.B.); maa778@nau.edu (M.A.R.);
julie.heynssens@nau.edu (J.H.); dg856@nau.edu (D.G.)
* Correspondence: bmr298@nau.edu (B.R.); mcp292@nau.edu (M.P.)
† These authors contributed equally to this work.

Abstract: This work details the theory and implementation of a multi-wavelength quantum key
distribution (QKD) emulation system with a physical unclonable function (PUF). Multi-wavelength
QKD can eliminate the need to share a subsection of the final key for eavesdropper detection and
allow for ternary and quaternary data transmission. The inclusion of the PUF adds an additional
layer of security. We provide preliminary error analysis of our emulation system. To support this
work, we introduce a bitwise transform operator that enables binary output of the PUF to satisfy the
ternary and quaternary input requirements of the QKD system.

Keywords: quantum key distribution (QKD); multi-wavelength QKD; physical unclonable functions
(PUFs); bitwise transform; quantum-resistant cryptography; cryptographic systems

1. Background Information
1.1. Motivation

Quantum computers threaten modern security standards, and new quantum computer-
resistant protocols are needed. The two main areas of cryptography include symmetric
and asymmetric cryptography. In symmetric cryptography, two parties use the same secret
key for encryption and decryption, and both parties must establish the secret key ahead of
time. In asymmetric cryptography, participants use mathematically related public–private
key pairs to encrypt and decrypt. The sender encrypts the message with the receiver’s
public key, and the receiver decrypts with their own private key. Examples of asymmetric
encryption methods include Rivest–Shamir–Adleman (RSA) and Elliptic Curve Cryptog-
raphy (ECC). The security of RSA and ECC rely on the difficulty of prime factorization
for large numbers and solving the elliptic curve discrete logarithm problem, respectively.
With current computing power, both these problems take many years to brute force, so
they remain secure; however, quantum computers promise to factor large integers and
solve discrete logarithms quickly, rendering RSA and ECC insecure in key exchange proto-
cols [1,2]. Because quantum computers threaten modern security, there is an urgent need
for post-quantum key exchange protocols.

One such key exchange method includes Quantum Key Distribution (QKD), a key
distribution method that relies on quantum mechanical properties as opposed to compu-
tational assumptions [3]. While offering unconditional security in theory, practical imple-
mentation is difficult, leading to issues that hackers can exploit. Additionally, hardware
limitations reduce throughput. Furthermore, many QKD protocols require a subsection
of the final cryptographic key to be sacrificed to test for eavesdroppers, thus reducing
the final key length. To address practical issues and improve efficiency, traditional QKD
protocols have been modified in a variety of ways. In this paper, we present and implement

Cryptography 2022, 6, 36. https://doi.org/10.3390/cryptography6030036 https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography6030036
https://doi.org/10.3390/cryptography6030036
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0000-0001-9272-6527
https://doi.org/10.3390/cryptography6030036
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography6030036?type=check_update&version=3

Cryptography 2022, 6, 36 2 of 25

multi-wavelength QKD protocols with a physical unclonable function (PUF) to increase
security and improve data throughput.

1.2. QKD Overview

A field of cryptography called QKD is thought to be unconditionally secure, even with
the commercialization of quantum computers [2,4]. QKD describes a family of secure com-
munication protocols that use quantum states to generate a cryptographic key between two
parties, Alice and Bob, which can then be used for encryption [5]. While traditional secure
communication protocols may be subject to eavesdroppers, QKD ensures eavesdropper
detection, making it more secure than other methods [5,6].

Security Based on Quantum Mechanics

QKD relies on quantum mechanical properties to ensure security; for instance, quan-
tum state collapse during measurement, irreversibility of measurement, the Heisenberg
uncertainty principle, the no cloning theorem, and entanglement [5,7]. When a quantum
state is measured, the state collapses into one of the possible states and cannot be reversed.
For security purposes, this can mean that the act of measuring results in permanent changes
that can be used to detect changes that an eavesdropper may make on the QKD system.
Additionally, when two properties are related by the Heisenberg uncertainty principle,
certainty in one of the properties results in uncertainty in the other, and vice versa. For
example, knowing a photon’s polarization in the rectilinear basis results in uncertainty of
the photon’s diagonal polarization state [8–10]. For security, this can mean that random,
uncontrollable changes may be introduced into the QKD system by eavesdropper presence.
For quantum entanglement, when two particles are entangled, they are linked in such a
way that measuring one particle will instantaneously affect the state of the other particle,
regardless of distance. Furthermore, the state of either particle cannot be predicted prior
to measurement [7]. Entangled particles follow the property that if the measurement of
each particle is performed in the same basis, then their results will be anti-correlated.
For different bases, there is no correlation between the result. Eavesdropper detection
can be performed using the Bell Inequality [11]. Such properties are the foundations of
QKD security.

1.3. QKD Protocols

A number of QKD protocols exist, each with their own strengths and weaknesses.
BB84 is a notable protocol with many other variations similar to it, including B92, SARG04,
SSP99, and some error correction and throughput increasing modifications. E91 is another
notable QKD protocol based on quantum entanglement. In this section, we provide a
review of the protocols.

1.3.1. BB84

Named after creators, Charles Bennett and Gilles Brassard in 1984, BB84 encodes data
in single-photon polarization states, such that Alice and Bob can communicate limited
information and generate identical, secret cryptographic keys [9,12].

A linearly polarized photon at angle θ in the x–y plane is represented by |θ〉 =
cos(θ) |0〉+ sin(θ) |1〉, where the |1〉 and |0〉 represent the vertical and horizontal polariza-
tion states, respectively [13]. A single photon polarization is measured with respect to a
certain direction. BB84 uses two bases: rectilinear and diagonal. The rectilinear basis can be
thought of as 0◦ (horizontal) and 90◦ (vertical); the states can be written as |0+〉 , |1+〉. The
diagonal basis can be thought of as a superposition of the horizontal and vertical states,
or more simply, 45◦ and 135◦. These states can be written as |0×〉 , |1×〉. Using these four
states, Alice and Bob can communicate by encoding data in photon polarization.

The BB84 protocol works as follows: first, Alice randomly generates a stream of bits
and a random sequence of polarization bases, either rectilinear or diagonal. Next, Alice
encodes her random bits in photon polarization states by polarizing the photons according

Cryptography 2022, 6, 36 3 of 25

to a pre-specified encoding scheme. For example, in traditional BB84, she will send a binary
0 with a 0◦ (rectilinear) or 45◦ (diagonal) polarized photon; and she will send a binary 1 with
a 90◦ (rectilinear) or 135◦ (diagonal) polarized photon. She sends the polarized photons to
Bob via the quantum channel (e.g., fiber optic or free space). For each photon he receives,
Bob randomly chooses one of the bases to measure the photon and interprets the resulting
bit based on the same encoding chart Alice used. Next, Alice and Bob communicate their
bases choices via the classical channel (e.g., internet), and they discard all bits in positions
where mismatching bases were used. If Eve did not interfere, their keys should contain low
error and in theory, should be identical. To confirm, Alice and Bob share a subsection of
their keys and compare to check for low error. If the error is low, the remaining bits are
used as the final cryptographic key; otherwise, they conclude that Eve interfered, discard
their keys, and try again. Note, in BB84, a portion of the key must be sacrificed and exposed
in order to estimate the presence of interference.

Eavesdropper Detection

For an eavesdropper, Eve, to intercept Alice and Bob’s communication, Eve must
measure the photon, thus collapsing the photon polarization state in an irreversible, uncon-
trollable way that Alice and Bob can detect. Eve will randomly choose a basis, interpret
the bit, and send a new photon in the same measured polarization state to Bob. She has a
50/50 chance of guessing the same basis as Alice. If she guesses correctly, then she should
not produce detectable errors 50% of the time; however, if she guesses incorrectly, she
introduces errors 50% of the time, reducing Bob’s percentage of correct bits to 25%. If
enough bits are sent, Alice and Bob can detect this error when they compare a subsection of
their key. Eve may also try cloning the photon and, instead, measuring the cloned photon
state; however, Eve is unable to create a copy due to the no cloning theorem [14].

Practical Implementation, Attacks, and Decoy States

In theory, BB84 seemingly offers unconditional security, but in practice, weaknesses
exist due to hardware limitations. Components such as the single photon detectors intro-
duce problems, and attempts to solve these problems exist ([15]), but the most notable
limitations stem from imperfect single photon sources. In order for the protocol to work,
Alice must have a perfect single photon source that emits one photon per pulse. However,
in practice, single photon sources are imperfect and may emit more than one photon per
pulse and sometimes zero photons per pulse. An eavesdropper, Eve, can exploit this issue
through a photon number splitting (PNS) attack where she “splits” the extra photons on
multi-photon pulses, and allows the remaining photons to continue transmission to Bob.
This way, Eve can measure the extra photons without alerting Alice and Bob. Eve may
also block all single photons from reaching Bob to ensure only the multi-photon pulses are
used [7]. One method of combatting this attack includes using decoy states that Eve cannot
easily distinguish from the real states, so she will make detectable changes to the decoy
state yield [16–18]. While this method and other modifications to decoy state protocols
help mitigate information obtained by Eve, the imperfections of the practical BB84 system
remains a major weakness.

1.3.2. B92, SARG04, SSP99, and QKD Protocols after BB84

Many QKD protocols exist, including B92, SARG04, SSP99, and others that slightly
modify existing protocols. The B92 protocol, developed by Charles Bennett in 1992, uses
two non-orthogonal states as opposed to the four polarization states from two orthogonal
bases in BB84 [19,20]. Bob is able to deterministically obtain information on certain bits,
allowing Alice and Bob to calculate matching cryptographic keys [21]. While simpler, the
throughput in B92 is halved and is not as efficient as BB84. Another protocol similar to
BB84 is SARG04 [21–23]. Described by Scarani, Acin, Ribordy, and Gisin in 2004, SARG04 is
essentially the same as BB84, except the classical communication phase differs significantly.
Instead of communicating basis choices, Alice announces one of her pairs of non-orthogonal

Cryptography 2022, 6, 36 4 of 25

states, allowing Alice and Bob to determine specific bits with certainty. While less efficient
than BB84, SARG04 has the advantage of countering PNS attacks. Another protocol created
by Pasquinucci and Gisin in 1999 is called the Six-State Protocol (SSP99) and uses six
polarization states on three orthogonal bases [20,24]. With three bases to choose from,
Eve has a less likely chance of choosing correctly; thus, she is more likely to introduce
detectable error. In another modification, Lo et al. assign probabilities for basis selection,
thus reducing the number of discarded bits [25,26]. Other protocols aim to correct errors
in the final key; in 2003, Buttler et al. developed Winnow, which uses Hamming code to
correct errors in the key reconciliation phase, but shares more information on the public
channel [27,28]. Reconciliation algorithms have been applied to QKD protocols to increase
efficiency during the reconciliation phase [29]. Another protocol that uses the advantage
distillation technology in combination with decoy states has been shown to improve
transmission distance and maximal error rate tolerance [30]. Finally, some methods of
combining QKD with post-quantum cryptography have also been discussed [3]. These QKD
protocols and modifications attempt to reduce errors and increase throughput, without
sacrificing security.

1.3.3. E91

E91 is an entanglement-based QKD protocol introduced by Artur Ekert in 1991. The
protocol is similar to BB84, except E91 utilizes a source that emits pairs of spin- 1

2 particles
in a singlet state in order to generate a secret cryptographic key [31]. Because the particle
pairs are entangled with one another, measuring one of the particles will instantaneously
affect the other particle regardless of distance. Before measurement, the particles will
be in a superposition of spin up and spin down states. If Alice and Bob measure in the
same basis, then their results will be anti-correlated (e.g., if Alice measures spin up, then
Bob’s particle must be spin down, and vice versa) [31]. They can use similar steps in
the BB84 protocol to generate matching cryptographic keys by randomly selecting bases,
communicating bases, and so on, as described in BB84. However, the main difference in
E91 is that entangled particles are used. To check for eavesdroppers, Alice and Bob use
the Bell Inequality, which can be used to indicate whether the source or transmission has
been intercepted or compromised [11,31]. A major advantage of E91 is not being limited
to physical distance, as in BB84, making E91 more ideal in applications such as satellite
communications. A number of entanglement-based QKD protocols exist and offer an
alternative to the previously mentioned QKD methods.

2. Multi-Wavelength QKD with a PUF

Like the protocols mentioned previously in Section 1.3.2, we propose a unique QKD
setup that could be applied to different QKD protocols. Our work includes adding
more than one wavelength and including a physical unclonable function (PUF). Multi-
wavelength QKD has not been used with a PUF to create the encoding schemes in our
work, to our knowledge. The additional wavelength enables different protocols using
ternary and quaternary data. In a ternary protocol, Alice and Bob no longer need to use
a subsection of their key to detect eavesdroppers, enabling longer key lengths. Similar
to previous work, we also address the security issues introduced by practical limitations.
Our method includes adding a PUF as an additional layer of security, since adversaries
must have access to the PUF to intercept the data transmission. This is useful against QKD
attacks since an eavesdropper cannot obtain the final key without access to the PUF or
PUF data.

In Section 2.1, we describe the encoding schemes allowed by multi-wavelength QKD.
In Section 2.2, we discuss the entire multi-wavelength protocol with a PUF included.

2.1. Multi-Wavelength QKD

Multi-wavelength QKD involves adding multiple wavelengths, allowing for different
protocols and data to be sent. With the traditional single wavelength, Alice only has four

Cryptography 2022, 6, 36 5 of 25

polarization states to encode bits with (two per basis). Adding a second wavelength doubles
the amount of polarization options that Alice can encode data with, since Alice can choose
from four states per wavelength for a total of eight possible states. These additional states
allow for different encoding schemes based on ternary or quaternary state input stream
values (as opposed to binary for bits). Just as binary means we have two states to send
data with, using ternary or quaternary data means that we have three or four states to send
data with. Figure 1a,b show two potential encoding schemes for a ternary or quaternary
protocol, respectively [6].

Figure 1. Ternary (a) and quaternary (b) encoding schemes [6]. The red font represents wavelength
one, and the green font wavelength two.

2.1.1. Ternary Protocol

The ternary scheme introduces unused states and can be applied to traditional QKD
protocols; one advantage of unused states is that their presence can indicate eavesdropper
interference without Alice and Bob sacrificing a portion of the key, as is necessary in some
QKD protocols such as BB84. Our modified ternary protocol chart (Figure 1a) has three
data states: −, +, and zero. Notice that two states—135◦ for wavelength 1 and 90◦ for
wavelength 2—were not used. These unused states will not be sent intentionally and act
as “unused states”; in theory, they should not show up unless an eavesdropper is present.
However, in practice, the unused states may show up due to various error sources. If the
number of unused state cases is significantly large, then we conclude that an eavesdropper
is present.

Problems and Improvements to the Ternary Protocol

One weakness of the ternary encoding scheme is that if the eavesdropper measures the
wavelength, then she can obtain information about the key, thus reducing security. How-
ever, we can solve this by changing the unused states to reduce the amount of information
an eavesdropper can obtain. The main issue with the ternary protocol as described above is
that in the + basis, the green wavelength is only used when sending a zero state. Similarly,

Cryptography 2022, 6, 36 6 of 25

in the × basis, the red wavelength is only used when sending a zero state. This means that
by knowing the bases choices (which becomes public information) and the wavelength
of each photon, Eve can deduce the zero trits in the final key. To help reduce this security
issue, the unused states can be used 50% of the time [6]. For example, we can use the red
wavelength 90◦ to send a + trit in the + basis 50% of the time, and we can use the green
wavelength 90◦ to send a + trit in the + basis the other 50% of the time. This means that
an eavesdropper cannot assume that the green wavelength in the + basis signifies a 0 trit
because sometimes the green wavelength can indicate a + trit. Similarly, we can do the
same for the × basis + trit using the red and green wavelength 135◦ 50% of the time. By
changing the unused states, we can reduce the amount of information an eavesdropper can
obtain and thus strengthen the protocol.

2.1.2. Quaternary Protocol

Unlike the ternary scheme, the quaternary scheme (Figure 1b) uses all eight states
and sends quatrits instead of trits. One strength of the quaternary protocol is that because
all states are used, an eavesdropper cannot infer information about the key, as mentioned
in the previous section for the ternary protocol. The quaternary protocol is similar to
the ternary protocol, but now Alice and Bob will send quatrits (e.g., Ψ1, Ψ2, Ψ3, or Ψ4)
as opposed to trits. Because of the additional states, throughput is also increased, and
the quaternary protocol is a promising multi-wavelength protocol applicable to other
traditional QKD protocols.

2.2. QKD with PUF
2.2.1. PUF Background

Another modification to traditional QKD is the inclusion of a physical unclonable
function (PUF). A PUF is a hardware device that generates a random output value (called
the response) based on an input (called the challenge) [32–34]. Together, the input and
output are called a “challenge-response pair”. PUFs utilize random manufacturing defects,
such as variations in length and doping concentration, gate oxide in integrated circuit
chips. As a result of these random variations, the PUF response to a given challenge
will be random, unique to the device, and consistent [33]. The PUF’s unique response is
analogous to a “fingerprint” that can identify the device [35]. The “fingerprint” can be
used to authenticate devices and generate cryptographic keys. Since the randomness is a
product of manufacturing defects, manufacturers cannot produce a clone device, because,
by definition, those defects are outside of their control. Furthermore, hackers require
physical access to the device in order to complete the protocol, adding a layer of security to
the system. This is advantageous in QKD protocols, since an eavesdropper cannot obtain
the final cryptographic key without access to the PUF.

2.2.2. Ternary Protocol with a PUF

We use a resistive random-access memory (ReRAM) PUF, in combination with random
bits, to generate the input stream of incomplete trits for the QKD system, which Alice
encodes with polarized photons [34]. Figure 2 shows a protocol diagram for ternary input
and output streams using a ReRAM PUF. First, Alice (server) will generate a random
stream of bits and convert this stream to incomplete trits (e.g., zero becomes − and one
becomes +, and no zero trits are present, hence the name “incomplete trits”). Next, she
obtains a ternary message from the image of the PUF. The image of the PUF is the stored
PUF responses on the server, while the PUF is the client’s real-time response readings.
Ideally, these two response values should be identical, but in practice, differences in the
server and client PUF responses may occur and are considered to be “errors”. Next, Alice
will use addition modulo 3 (ADD3) to combine the incomplete trits with the PUF ternary
message. The function of this step is to obscure the incomplete trit input. Alice will use
the result of the ADD3 as the input for the QKD system, where it will then be encoded in
the photons. She will use the chart in Figure 1a to encode her input in photon polarization

Cryptography 2022, 6, 36 7 of 25

states, then Bob (client) will choose a random basis for each photon and use the same chart
to decode the ternary information. The second half of the diagram, after the QKD output,
essentially undoes the first half, and should result in the same input bits. Because we start
with incomplete trits, we expect, theoretically, only two of the three states to be present
after unobscuring the QKD output. The unobscured QKD output is represented by the
arrow directly after the right most ADD3 in Figure 2. This unobscuring process is described
in Section 2.2.3. If we observe three of the three states are present, we can determine
eavesdropper presence (ignoring typical error sources such as noise, and assuming no error
from the PUF). See Table 1 for a summary of what was described in this section.

Figure 2. Implementation of a ReRAM PUF with QKD using ternary data.

Table 1. Multi-Wavelength QKD Protocol with PUF.

1. Alice generates a random stream of bits.
2. She converts these bits to incomplete trits (e.g., 110001. → ++–-+)
3. She gets the ternary response from the image of the PUF.
4. She performs ADD3 with her incomplete trits and the PUF ternary message
5. QKD.

(a) For each trit in her resulting stream, she randomly chooses between rectilinear (+)
and diagonal (×) basis.

(b) She encodes each trit by polarizing the photon according to a pre-specified scheme
(see Figure 1a,b).

(c) She sends the photon stream to Bob via the quantum channel (e.g., fiber optic or free
space).

(d) For each trit, Bob randomly chooses a basis.
(e) He measures each photon and decodes each trit based on the same encoding chart

that Alice used.
(f) Alice and Bob communicate via a classical channel (e.g., internet) which basis they

used for each trit.

6. Bob calculates the PUF ternary message ADD3 with itself.
7. Bob performs ADD3 with his final key and the PUF ternary message ternary ADD3 with

itself (from the previous step).
8. Alice and Bob discard all trits in positions with mismatching basis choices.
9. Bob converts the resulting trits to bits.
10. Alice’s stream of bits should match Bob’s stream of bits, assuming no eavesdropper or error.

2.2.3. Obscuring and Unobscuring Bitstreams with Addition

This section provides clarification of the use of addition for obscurement and later re-
trieval of the original input, as described in Section 2.2.2, and gives working examples thereof.

To obscure the input bitstream (B1), simply add another random bitstream to it, then
modulo the output by the base of those streams. To then retrieve that input bitstream,
perform addition modulo base with the second bitstream (B2) a total of base times: in
base 2, we add modulo 2 (ADD2, +2) with the second bitstream two times to get back to the
original bitstream, and in base 3, we add modulo 3 (ADD3, +3) with the second bitstream

Cryptography 2022, 6, 36 8 of 25

three times to get back to the original bitstream. This concept is illustrated below in base 2
on the left, and base 3 on the right, and accompanied by a respective truth table:

B1 : 01010101

+2 B2 : 00100100

O : 01110001

+2 B2 : 00100100

B1 : 01010101

B1 : 01201201

+3 B2 : 21011012

O1 : 22212210

+3 B2 : 21011012

O2 : 10220222

+3 B2 : 21011012

B1 : 01201201

(1)

B1 B2 B1 +2 B2
0 0 0

0 1 1

1 0 1

1 1 0

B1 B2 B1 +3 B2
0 0 0

0 1 1

0 2 2

1 0 1

1 1 2

1 2 0

2 0 2

2 1 0

2 2 1

(2)

Returning to the original bitstream can also be achieved by ADD3ing the second
bitstream with itself after obscurement, and using the output thereof in the final, retrieving
ADD3 (this is the method used in Figure 2):

B1 : 01201201

+3 B2 : 21011012

O : 22212210

B2 : 21011012

+3 B2 : 21011012

B2′ : 12022021

O : 22212210

+3 B2′ : 12022021

B1 : 01201201

(3)

2.2.4. Quaternary Protocol with a PUF

The quaternary protocol is similar to that shown in the ternary diagram, except
everything is one base higher (i.e., bits become trits and trits become quatrits). Figure 3
shows the quaternary protocol diagram. Now, Alice will start with a random stream of
trits (instead of bits), convert them into incomplete quatrits, ADD4 with a quaternary
PUF message, and send quatrits into the QKD system. Alice and Bob will use the chart
in Figure 1b to send the quatrits. Bob will take his received output and ADD4 with the
quaternary PUF message to unobscure, eliminate mismatching bases positions, convert
back to trits, and obtain the final message. Like the ternary protocol, the second half of the
diagram in Figure 3, after the QKD output, essentially undoes the first half, and should
also result in the same input trits. Because we start with incomplete quatrits, we expect
only three of the four states to be present after unobscuring with ADD4. If we have four of
four states, then we can detect eavesdropper presence (again ignoring typical error sources
such as noise). Overall, adding a second wavelength and employing a ReRAM PUF are
changes applicable to traditional QKD protocols.

Cryptography 2022, 6, 36 9 of 25

Figure 3. Implementation of a ReRAM PUF with QKD using quaternary data.

3. Bitwise Transform

The QKD system requires higher base input streams, but our current PUF implemen-
tations output binary streams [34,36,37]. Bitwise transform presents a scalable, consistent
means to increase state of otherwise binary data, and satisfy the requirements of the QKD
system. This work introduces the bitwise transform operator (T©) for base 3 (T©3), base
4 (T©4), and base 8 (T©8), and details patterns for further expansion. This section walks
the reader through the mechanisms of bitwise transform using working examples with
deliberate inputs that aim to illustrate all the possible input combinations.

3.1. TAPKI System

In order to discuss bitwise transform, we first must discuss the TAPKI system. TAPKI
(Ternary Addressable Public Key Infrastructure) is the system by which we leverage the
inherent entropy of physical devices, PUFs, to generate cryptographic keys. In short, the
TAPKI system provides a consistent, repeatable, and secure means of PUF key generation
by identifying the inconsistencies of each device and using that knowledge to purify the
final key.

To keep the focus within scope, and on QKD, we concern ourselves with only the
relevant outputs of TAPKI. If a deeper understanding of the details and mechanics of the
TAPKI system is desired, see [38–41].

The three TAPKI outputs to consider are the stream (S), mask (M), and consequent
key (K). The stream is the raw bitstream extracted from the addressed cells of the PUF. The
mask denotes the fuzzy bits of the stream (mnemonic: “mask marks”); “fuzzy” meaning
the bit’s state fluctuates non-deterministically between 0 and 1. To get a key (K), you
apply the mask to the stream using the mask operator (M©). The mask operator is reductive:
S M© M = K such that K < S. Any fuzzy bit, marked with a 1 in the mask, is removed from
the stream (“masked”), and we are left with a consequent key:

S : 01010101
M© M : 00100100

K : 01 10 01

7−→
S : 01010101

M© M : 00100100

K : 011001

(4)

Normally, the key is 256 bits long and is the result of applying a 512 bit mask to a
512 bit stream. All of these parameters can be adjusted, but the mask must be the same size
as the stream. Note that the longer the stream is than the key, the more selective you can be,
and the more stable the output key becomes. With a 256 bit key and a 256 bit stream, you
have no buffer and must proceed with all selected 256 bits. With a 256 bit key and a 512 bit
stream, you have a 256 bit buffer and can cherry pick the best 256 bits to make up your key.

3.2. Ternary Transform

To suit the input requirements of the QKD system, we allow the inherent fuzzy bits of
the stream to introduce the ternary state. We visualize this state through “expanded key

Cryptography 2022, 6, 36 10 of 25

notation.” An expanded key (KE) “expands” to preserve the location of the masked bits,
represented by an X:

S : 01010101
M© M : 00100100

KE : 01X10X01

(5)

S M S M© M
0 0 0

0 1 X

1 0 1

1 1 X

(6)

Although we are using unstable bits to define the third state, we consistently mark
those bits as inconsistent, thereby making the output stable.

The states of the expanded key map to the final states of the ternary key (K3) by
adopting the form of a balanced ternary system (-1, 0, +1) and forgoing the postfix 1s:

Expanded Key (KE) 0 X 1

Ternary Key (K3) - 0 +
(7)

In practice, there is no intermediate expanded key. Instead, we go from stream to
ternary key directly, by applying the mask with the ternary transform operator:

S : 01010101
T©3 M : 00100100

K3 : -+0+-0-+

(8)

S M S T©3 M
0 0 -
0 1 0

1 0 +
1 1 0

(9)

3.3. Quaternary Transform

The quaternary protocol described in Section 2.2.4 requires quaternary input. Achiev-
ing the fourth state at this point is straightforward. The third state was simply a reduction
of the fourth state. With this in mind, we dive into the mechanisms of quaternary transform.

To re-iterate: the reason the output of ternary transform is stable, despite the use of
fuzzy bits, is that whether the fuzzy bit is a 0 or 1, we mark that position with X. This is
where quaternary transform differs:

S M S T©3 M
0 0 -
0 1 0

1 0 +
1 1 0

7−→

S M S T©4 M
0 0 0

0 1 1

1 0 2

1 1 3

(10)

Note that the output is now dependent on whether the masked bit is a 0 or a 1.
This means, as is, the ephemeral state of the fuzzy bit determines the output, effectively
propagating its inconsistency to the output.

In some cases, namely true random number generation, we leverage this property [42–44].
Other cases, such as TAPKI, require stability.

Cryptography 2022, 6, 36 11 of 25

When stability is the priority, we cannot let the inconsistencies contaminate the output;
thus, we must first expel the inconsistencies before use. Instead of using the raw stream,
we exercise the mask operator as a means of processing, and feed the resulting key into
the subsequent quaternary transform operation. The following example works under the
assumption that the mask is configured to remove 50% of the bits: S M© M = K such that
|K| = |S|

2 , where |K| is the cardinality of K.
We begin by cleaning up the stream:

S : 01010101 01010101
M© M : 00110011 10011001

K : 01011010

(11)

In order to trim the mask for re-use with the key in the next and final stage, we can do
just that, or add more entropy to the system by splitting and XORing the mask to make it
the right size:

M : 00110011 10011001 7−→
M1 : 00110011

⊕M2 : 10011001

M : 10101010

(12)

Using this new mask, we perform quaternary transform:

K : 01011010
T©4 M : 10101010

K4 : 12123030

(13)

S M S T©4 M
0 0 0

0 1 1

1 0 2

1 1 3

(14)

The output conveniently takes the form of the binary interpretation, where order of
the inputs matter. This form lends itself nicely to programming.

Thus, you can see how we had a means to achieve the fourth state all along, but simply
did not use it. Using this concept of reduction and expansion, we will explore the octal
base and the lesser states we get for free in between.

3.4. Octal Transform

When expanding the QKD system by adding more wavelengths, higher input will be
required. Understanding quaternary transform, and operating under the same assumption—
that the mask is configured to remove 50% of the stream—you will find that octal transform
takes a very similar form, with only a minor alteration in the process.

The octal transform sequence is as follows: mask the stream to remove the fuzzy bits:

S : 01010101 01010101
M© M : 00110011 10011001

K : 01011010

(15)

Cryptography 2022, 6, 36 12 of 25

split the mask into two chunks:

M : 00110011 10011001 7−→
M1 : 00110011

M2 : 10011001
(16)

and apply those two chunks through the octal transform operator:

K : 01011010

M1 : 00110011
T©8 M2 : 10011001

K8 : 14275063

(17)

S M1 M2 S T©8 M1 T©8 M2
0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7

(18)

Instead of XORing the mask after splitting, as in quaternary transform, we use both
halves of the mask to attain the three needed inputs of octal transform. Of course, this is
not the only way; see Section 3.6 for more options.

Remaining consistent, the output takes the form of the binary interpretation, where
order of the inputs matter.

The eight states can be mapped as desired, and per application. The next section will
explore how to utilize the lesser states that come with the octal base.

3.5. Restricting States

Which states you use and which ones you do not use is an implementation-dependent
design decision. In the following truth tables, we took the liberty of generalizing to
bitstream inputs of index i (Ii).

Restriction can be achieved through elimination of states, represented by X:

I1 I2 I3 I1 T©8 I2 T©8 I3
0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 X

1 1 0 X

1 1 1 X

Total states 5

I1 I2 I3 I1 T©8 I2 T©8 I3
0 0 0 0

0 0 1 1

0 1 0 X

0 1 1 3

1 0 0 X

1 0 1 5

1 1 0 X

1 1 1 7

Total states 5

(19)

Cryptography 2022, 6, 36 13 of 25

or through assigning the same value to different states:

I1 I2 I3 I1 T©8 I2 T©8 I3
0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 4

1 1 0 4

1 1 1 4

Total states 5

I1 I2 I3 I1 T©8 I2 T©8 I3
0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 3

1 0 0 3

1 0 1 5

1 1 0 5

1 1 1 7

Total states 5

(20)

With this concept, an octal system can be deployed for a two-state system, ready to
scale at a moment’s notice:

I1 I2 I3 I1 T©8 I2 T©8 I3
0 0 0 0

0 0 1 1

0 1 0 X

0 1 1 X

1 0 0 X

1 0 1 X

1 1 0 X

1 1 1 X

Total states 2

I1 I2 I3 I1 T©8 I2 T©8 I3
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Total states 2

(21)

Restricting states can be leveraged in cryptographic systems to increase confusion
and to cleverly detect tampering, among other things. Future work will aim to connect
restricting states to QKD unused states.

3.6. Alternative Mask Options

In the examples thus far, when needed, we have simply split the mask to create
multiple inputs of shorter length, and XORed the splits to achieve a single, new input of
shorter length. This approach is well suited for prototyping, yet further customization
could be achieved by manipulating this step. The protocol architect is not limited here; the
possibilities are nearly endless. Some alternate options to include in future work are:

1. Shift mask before re-use.
2. Hash mask before re-use.
3. Generate a new mask for random addresses.
4. Generate a new mask using the same addresses, but different parameters (e.g., combi-

nations of current and temperature for memristor PUFs).
5. Generate key as demonstrated, then recursively “XOR-AND-Tumble” the key and

mask, feeding the outputs back into the system and repeating a defined, or random,
number of times. To illustrate this novel XOR-AND-Tumble sequence in a manner
that is easy to follow, we have labeled the initial inputs Ii, and the corresponding
outputs Oi, indexed in the order in which they first appear:

Cryptography 2022, 6, 36 14 of 25

I1 : 01010101

⊕ I2 : 00110011

O1 : 01100110

& I1 : 01010101

O2 : 01000100

⊕ I2 : 00110011

O3 : 01110111

& O1 : 01100110

O4 : 01100110

⊕O2 : 01000100

O5 : 00100010

(22)

3.7. Relationships of Expansion

This section points out two mathematical relationships of the work presented.
The binary logarithm of the base gives the number of bitwise transform inputs required

to achieve that base:
base 4 7→ log2(22) = 2 inputs

base 8 7→ log2(23) = 3 inputs

base 16 7→ log2(24) = 4 inputs

(23)

In other terms, the base doubles with every added input:

I1 T©4 I2

I1 T©8 I2 T©8 I3

I1 T©16 I2 T©16 I3 T©16 I4

I1 · · · T©2N · · · IN

(24)

4. Building a QKD Emulation System to Test Protocols

In order to study the error rates of multi-wavelength protocols with a PUF, we cus-
tomized and automated an educational QKD emulation kit from Thorlabs. The first section
will discuss the operation and components of the original kit, and the second section will
detail our modifications.

4.1. Original Thorlabs Emulation Kit

The original kit from Thorlabs is a free space emulation system with a single wave-
length, designed for educational purposes, and thus does not use single photons. Alice is
represented by a 635 nm laser and a half-wave plate. Bob is represented by a half-wave
plate, a beamsplitter cube, and two photodetectors. Eve is represented by another polariz-
ing beamsplitter cube, two more photodetectors, another 635 nm laser, and two half-wave
plates.

4.1.1. Operation
Setting Up the Polarization Rotators

First, Alice generates a random stream of bits externally. Prior to sending the laser
pulse, the half-wave plates must be rotated so that the laser can be polarized and measured
accordingly. The user manually rotates Alice’s half-wave plate. A half-wave plate works
by rotating the polarization of linearly polarized light so that the resulting polarization
is two times the angle of the optical axis and incident polarized light. Therefore, to

Cryptography 2022, 6, 36 15 of 25

rotate the polarization in 45◦ degree increments, we must rotate the half-wave plate in
one of four positions, where each position is half of 45◦ or 22.5◦ apart. Each position
represents polarizing the photon at 0◦, 90◦, 45◦, or 135◦. The user also manually rotates
Bob’s half-wave plate. Bob’s half-wave plate can be rotated in one of two positions—22.5◦

apart—corresponding to the rectilinear and diagonal bases.

Data Transmission

Next, the user can manually press a button to pulse the laser or hold the button
down for a couple of seconds to generate a continuous beam. The laser beam is polarized
through Alice’s half-wave plate, then travels to Bob’s half-wave plate. Bob’s half-wave plate
represents “measurement” of the beam. At this stage, if Alice and Bob used “matching
bases”, the laser beam should be either purely vertically or horizontally polarized. To
illustrate this, the eight possible combinations for Alice and Bob’s basis choices are shown
in Figure 4. Scenarios 1 through 4 represent Bob measuring in the rectilinear bases, and
scenarios 5 through 8 represent Bob measuring in the diagonal basis. Notice that when
they use mismatching bases (scenarios 3, 4, 5, 6), the resulting polarization is diagonal,
and contains both horizontal and vertical components. This is important because at the
polarizing beamsplitter cube, the horizontally polarized light is transmitted, while the
vertically polarized light is reflected. If Alice and Bob use matching bases and have only
vertically or horizontally polarized light, then only one of the photodetectors should
receive the full intensity of the beam, and one of the LEDs on the photodetectors should
light up. If they use mismatching bases, and the beam is diagonally polarized, then both
photodetectors should receive part of the beam’s intensity. The kit includes additional
electronics that light up the LED on one of the detectors randomly to simulate a random
result due to mismatching bases. The user must manually interpret the results of the LED
indicator. The remaining steps are identical to BB84. To incorporate Eve, Eve’s hardware
can be placed between Alice and Bob.

Figure 4. The eight possible basis combinations for Alice and Bob’s half-wave plates. The dotted
gray line represents 0 rotation of the half-wave plate. The pink axis represents the alignment of Bob’s
half-wave plate. The pink axis will either match the dotted gray line when in the rectilinear basis,
or will be rotated 22.5◦ when in the diagonal basis. The black arrows in each scenario labeled “in”
represent the polarization of the incident light before passing through the plate. The blue arrows
labeled “out” represent the resulting polarization after passing through the plate. Rotating Bob’s
half-wave plate represents the “measurement” stage. In scenario 1, the input is horizontally polarized
and Bob is using the rectilinear basis, so the resulting light is still horizontally polarized. In scenario
5, the input is horizontally polarized, but Bob measures in the diagonal basis, so the resulting light is
diagonally polarized at 135◦.

Cryptography 2022, 6, 36 16 of 25

4.2. Modifications to Include Two Wavelengths
4.2.1. Hardware

We worked with Thorlabs to add a second wavelength to their existing kit and then
made a few other modifications for automation. Thorlabs featured our customized version
on their website (www.thorlabs.com; search for “Quantum cryptography analogy demon-
stration kit” and see the “User Application” tab). They generated the graphics shown in
Figure 5, which compare the original kit with our modification. Figure 6 shows this physical
kit with our custom modifications, before automation. We doubled all components, but
used a 520 nm laser for the second laser. We also included dichroic mirrors to combine and
split the beams so that only one quantum channel is necessary between Alice and Bob. A
dichroic mirror functions by transmitting wavelengths above a threshold and reflecting
wavelengths below the same threshold. The customized kit components play the same role
as the original single wavelength kit, except with the additional wavelength, we are able
to implement ternary and quaternary protocols to test the error rates. We also automated
the custom kit with stepper motors, gears, and an Arduino Mega microcontroller. By
mounting a 3D printed gear on the face of each half-wave plate and a gear on the shaft of
each stepper motor (see Figure 7 for an image of the design), we are able to accurately turn
the half-wave plates and automate the polarizing rotation process. We also directly connect
the photodetectors to the Arduino to automate the read process.

Figure 5. The original kit and our custom version with two wave plates (generated by Thorlabs). The
half wave plate (HWP) is the same as the polarization rotator in the original diagram. PBS stands for
polarizing beamsplitter. See their website (www.thorlabs.com).

www.thorlabs.com

Cryptography 2022, 6, 36 17 of 25

Figure 6. Two-wavelength emulation system showing Alice, Bob, and Eve prior to automating the kit.

Figure 7. Automating polarization rotation design.

4.2.2. Software

The software for the automated emulation will rotate Alice and Bob’s half-wave plates
for each wavelength and interpret the resulting trit based on the detector analog read
values. To accomplish this, we require a function to rotate each stepper motor (connected to
a half-wave plate) accordingly. This includes a function to rotate Alice’s 635 nm (red) laser
half-wave plate in the position corresponding to polarizing the beam in 0◦, 90◦, 45◦, or 135◦

(a total of four separate functions). The functions are duplicated for Alice’s 520 nm (green)
laser half-wave plate (a total of four more functions). We also have a function to rotate each
of Bob’s stepper motors (connected to a half-wave plate) in the position corresponding
to the rectilinear or diagonal basis choice, for a total of four more functions (2 for 635 nm
and 2 for 520 nm). Prior to starting the protocol, we perform a calibration stage where we
run through each scenario of Alice and Bob’s basis choices ten times and store an average
expected detector analog read value for each detector. This helps reduce errors because the
photodetectors are extremely sensitive to light and equipment alignment. By storing the
expected analog read values in recent lighting and alignment conditions, we know what
value to expect for each basis scenario. When interpreting the photodetector value, we
calculate the difference between the actual analog read value and each of the stored analog
read values from the calibration stage for both detectors. We add the two differences for
each detector to get a total difference and find which stored analog read value scenario
results in the minimum total difference. We interpret the bit according to which scenario
is closest to our current reading values. All of these functions allow us to emulate the
protocols for error rate testing purposes.

Cryptography 2022, 6, 36 18 of 25

4.3. PUF Implementation

Our ReRAM PUF shield allows for an addressable PUF driven by CrossBar Inc., Santa
Clara, CA, USA ReRAM chip(s). Multiple protocols for key extraction are supported, and
using this shield, we are able to extract the PUF ternary and quaternary message for the
QKD protocols in Section 2.2 using the methods from Section 3.

The ReRAM PUF was implemented on a low-power client device using a custom-built
printed circuit board (PCB) and various integrated circuit (IC) devices. The low-power
client device we used is the commercially available developer kit, the Chipkit Wi-FIRE
(Figure 8).

Figure 8. Chipkit Wi-FIRE developer kit.

The Chipkit Wi-FIRE was chosen because it operates at low power and allows for rapid
development. It has 43 available general purpose input/output (GPIO) pins, 12 analog
input pins, a 12-bit ADC, a 3.3 V and 5 V power supply, 2 MB of flash, and 512 K of RAM.
It has a PIC32 microcontroller that operates at 200 MHz and 3.3 V logic. The Wi-FIRE’s
primary limitations are its operating frequency, its small number of I/O and analog pins,
and its fixed operating voltage.

While the developer kit gave us easy access to pins and other additional circuitry, a
custom PCB with various IC components was needed to communicate with the ReRAM
PUF (Figure 9). This PCB required buffers, logic shifters, GPIO expanders, and a comparator
to execute the required protocols in this paper.

Figure 9. Custom PCB for Wi-FIRE.

Cryptography 2022, 6, 36 19 of 25

Additionally, the ReRAM PUF used in this implementation is the CrossBar Inc.’s 1B
chip. The 1B is a pre-formed ReRAM PUF that is not commercially available and is made
specifically for use as a PUF. It contains 4096 pre-formed resistors capable of creating a
response by applying a voltage or current through the cells. These can be applied to the
bottom or top pads of the cell for forward or reverse reading. The applied voltages range
from 0.15 V to 1.5 V, and the currents range from 79 nA to 15 uA.

To generate a stream from the PUF, we select a current and generate random pairs
of addresses. We read the resistances at each address of the pair and compare. If the first
resistance is greater than the second, the output is 1; otherwise, the output is 0. We actively
filter out pairs whose resistances are close or equal. We then apply the methods from
Section 3 to achieve higher base output.

4.4. System Setup
4.4.1. Overview

The QKD system is triggered by Alice’s computer, which sends control codes and
QKD input over serial communication to the Arduino-based microcontroller driving the
emulation kit. The microcontroller sends the proper control codes to the kit and feeds the
QKD input, the stream, through the system. Bob’s computer is connected to a microcon-
troller on the receiving end of the emulation kit, which communicates the observed output,
the stream, back to Bob’s computer.

4.4.2. PUF Integration

As shown in Figure 2, we first obscure the stream before sending it through the
quantum channel. To do this, we use a PUF and modular addition to add the PUF stream
to the initial input stream.

In order to retrieve the initial stream unchanged, Bob needs to unobscure the stream
using the same PUF stream Alice used to obscure. Since PUFs are, by definition, unclonable,
one party will use a real PUF and the other party will use an image of that same PUF (a
static read of the device).

Alice will use an image of Bob’s PUF and Bob will use the real, physical device. This
requires that Alice’s computer have the image on file, and that Bob’s computer add a serial
connection to the PUF.

4.4.3. Prototyping Setup (Test Bench)

To facilitate debugging and analysis, we simplified our prototype for this initial phase,
reducing the system to one computer that acts as both Alice and Bob. This single computer
has both the image of the PUF and a physical connection to the PUF. It sends a stream into
the quantum channel and receives the output on the other end. By configuring our testing
environment in this manner, we effectively reduce the sources of error and simultaneously
allow for direct comparison of input and outputs; thus permitting a clear breakdown of the
error introduced into the system, and the parts of the system responsible. Changing code is
better supported and components are more easily isolated for deeper analysis.

5. Preliminary Results and Validation of QKD Emulation with PUF

In this section, we provide preliminary error rate results of our emulation system that
validate the functionality and correctness of the system. We considered three tests:

1. Transmitting 75 trits for a constant basis and input trit combination.
2. Transmitting 75 trits by cycling through different basis and input trit combinations.
3. Transmitting a sample key of length 75 trits.

We used 75 trits to allow the output to fit the terminal which facilitates manual analysis
and verification.

The first test aimed to verify that we consistently obtained matching input and output
for matching basis combinations and approximately 50% matching input and output for
mismatching basis combinations. We held the combination constant and transmitted 75

Cryptography 2022, 6, 36 20 of 25

trits to eliminate errors that might have been introduced by polarization rotation hardware
and alignment.

The second test aimed to observe potentially added error introduced by changing
polarization states. This test changed the basis combination after each transmitted trit,
allowing for observation of potential error.

The third test simulated real-world quantum key distribution, where the basis and
inputs are randomly generated. This test allowed us to observe the behavior of the system,
when all the components were changing state at random, potentially revealing the effect a
previous state may have on the next.

5.1. Holding Input Combinations Constant

To verify each of the seven input combinations, given the expected output, we hard
coded each input combination and checked whether the output matches the input for
matching bases, or whether the output matches the input approximately 50% of the time for
mismatching bases. We held each combination constant and transmitted a total of 75 trits
for each of the seven input combinations, for a total transmission of 525 trits.

Table 2 shows that we obtained matching input and output for all six of the matching
bases input combinations (zero errors) and non-matching input and output for 34 out
of 75 trits for the mismatching basis input combination (34 errors). Thirty-four out of
seventy-five is approximately 50%, which is what we expect for the mismatching input
combination.

Table 2. Testing error with fixed polarizer.

Alice Basis + + + x x x x

Bob Basis + + + x x x +

Input - + 0 - + 0 -

No. of Errors 0 0 0 0 0 0 34

Total No. Trits Sent 75 75 75 75 75 75 75

These preliminary results validate the theory and mechanisms presented in this work
by demonstrating the input matches the output for all matching bases combinations and
that the input matches the output 50% of the time when bases do not match.

5.2. Changing Input Combinations

To study the effects of polarizer rotation, we checked the error when iterating through
the input combinations, changing the combination after each transmission, for a total
transmission of 75 trits. Table 3 shows the first 21 trits of this test, shortened to fit the
page. Notice that the input and output match for all input combinations except for the one
mismatching base input combination, where the output trit does not match the input trit.
This behaves as expected and is acceptable, since we will ultimately discard positions with
mismatching bases, as defined by the protocol in Section 2.2.2.

Table 3. Testing error with changing polarizer. (Truncated to 21 trits to fit page.)

Alice Basis + + x x x + x + + x x x + x + + x x x + x

Bob Basis + + + x x + x + + + x x + x + + + x x + x

Input - + - - + 0 0 - + - - + 0 0 - + - - + 0 0

Output - + - - + 0 0 - + - - + 0 0 - + 0 - + 0 0

This test validated our work by confirming what we expect: matching input–outputs
for matching bases and mismatching input–output for mismatching bases 50% of the time.

Cryptography 2022, 6, 36 21 of 25

This demonstrated that despite the changing of polarization, the sensors read correctly,
withstanding inevitable minor misalignments that result from rotation and use.

5.3. Generating a Sample Key

Finally, we tested a 75 trit long sample key with randomly generated bases and input
trits. Table 4 shows the first 22 trits of the 75 trit long key. The sifted key is the final key
after keeping only matching bases positions. We observed zero errors in our sifted key.

Table 4. Sample key. (Truncated to 22 trits to fit page.)

Alice Basis + x + x x + + + + x + x + x x + x x x x + x

Bob Basis x x x + x x x x + + + + x x + + + x + x x +

Alice Input - + + - - + - - + + - - - + + + + - + - + +

Bob Output + + - + - 0 - 0 + 0 - 0 0 + - + - - 0 - 0 -

Sifted Key + - + - + + - -

This is a real world test, where nothing is hard-coded. Instead, bases and trans-
mitted trits are generated at random. This tests different combinations of polarization,
input, and preceding polarization and input. The preceding polarization and input is of
interest because it demonstrates the system’s ability to remain accurate regardless of its
preceding configuration. The preceding polarization state can affect the error rate since the
polarization rotator (half-wave plate) must rotate different amounts for different states.

Again, we observe that matching bases give matching input–output, and mismatching
bases do not about 50% of the time. Once mismatching bases are removed, and the sifted
key remains, we observe zero error, meaning all inputs and outputs match when bases are
the same.

5.4. PUF Error

The previous sections showed the sample error from test keys (75 trits in length)
and describe the error of the emulation system, isolated from the PUF. To observe error
introduced by the PUF to the emulation system we can look at longer test keys. PUF
error results from variations in the real-time client device measurements that cause the
measurement to be different from the stored measurements on the server. These client
devices are described in Section 4.3.

To check for PUF error, we generated 3825 trits using the ternary protocol in Section 2.2.2
and compared the client and server PUF ternary messages to identify errors introduced
by the PUF. Out of the 3825 trits transmitted using the PUF, only 10 of those trits were
erroneous, in that the input–output did not match, despite the bases matching. This means
that in the unobscuring process, described in Sections 2.2.2 and 2.2.3, the client PUF message
did not match the server PUF message, resulting in a different output trit when unobscured.

Our results showed a total of 10 errors from the PUF for the 3825 test trits, which is an
error rate of about 0.26%. These initial results are promising and show relatively low error
introduced by the PUF.

5.5. Summary of Results

The results of this section show that in different configurations, our system reliably
outputs matching input–outputs when the bases are matching, and about 50% of the time,
mismatching input–outputs when the bases are mismatching.

The addition of the PUF proved to introduce minimal error, with an error rate of 0.26%
in these preliminary tests.

Cryptography 2022, 6, 36 22 of 25

6. Future Work
6.1. Studying the Emulation System Error Rates

With the emulation system built, the next steps include further testing the ternary
protocol and implementing the quaternary protocol in order to study the error rates. The
next steps also include implementing an eavesdropper. Running the ternary and quaternary
protocols allows us to measure throughput, statistical changes from eavesdropper presence,
and overall efficiency. We can also study the error rates. Two potential sources of error
include: (1) error from the emulation hardware and physical components (e.g., alignment,
lighting issues/read noise); (2) error from the PUF (e.g., inconsistencies between the image
of the PUF and PUF). To isolate the error introduced by the emulation physical components,
we can hardcode identical PUF ternary and quaternary messages for the server and client,
which eliminates error from the PUF. To isolate the PUF error, we can study the differences
between the server and client independent of the emulation QKD protocol. Future work also
includes modifying the ternary protocol to switch the unused states’ different probabilities,
as mentioned earlier in Section 2. We also aim to write the software for quaternary (and
higher) protocols and repeat the error studies. Adding a third wavelength is also a possible
direction for future work.

6.2. Bitwise Transform

So far, we have proposed the theory of bitwise transform and validated its mechanisms
with preliminary tests and results (see Section 5). Future work will aim to refine these
theoretical mechanisms of expansion and reduction of states in both presented senses:
using higher bases, and restricting states. Emphasis will be placed on situating the concept
of restricting states into the world of unused states. After that, the next phase will be
developing physical implementations of different facets of this work and performing
analysis thereof. All the while, we will make a point of considering the adaptation of these
concepts to different fields and applications.

Further exploration of transforming and chaining inputs of different bases will be had.
In one form: a transform operation that takes a binary and quaternary stream as inputs,
and gets those inputs as the result of previous transform operations (chaining). In another:
an octal mask used as QKD bases.

7. Conclusions

QKD is a secure communication method that is unconditionally so due to quantum
mechanical properties. A multi-wavelength QKD system with a PUF increases the amount
of polarization states that can be used to encode data. The additional states can eliminate
the need for Alice and Bob to share a subset of their final key to check for eavesdropper
presence. We can also add a PUF for enhanced security, since any hackers must possess
the physical PUF device to complete the protocol. To implement the protocol, extracting
ternary and quaternary messages from a PUF was necessary. We proposed several methods
to accomplish and support this, including the concept of bitwise transform and addition
modulo 3 and modulo 4. To test the protocols, we worked with Thorlabs to build a custom,
two-wavelength version of their QKD emulation educational kit, and presented our work
on automating the kit and integrating the PUF and full protocol. We tested the emulation
system errors for the ternary protocol (without changing unused states) with only Alice
and Bob implemented. Finally, we outlined the next steps of this research effort.

Author Contributions: Conceptualization, B.C. and J.H.; methodology, B.R. and M.P.; emulation
hardware, B.R. and I.B.; emulation software, B.R., M.P. and D.G.; PUF hardware, I.B. and M.A.R.; PUF
software, M.P., I.B. and M.A.R.; validation, B.R. and M.P.; investigation, B.C., J.H. and B.R.; resources,
B.C., J.H., B.R., I.B., M.A.R.; writing—original draft preparation, B.R. and M.P.; writing—review and
editing, B.C.; supervision, B.C. and J.H.; project administration, B.C.; funding acquisition, B.C. All
authors have read and agreed to the published version of the manuscript.

Cryptography 2022, 6, 36 23 of 25

Funding: This research was funded by the Information Directorate under AFRL award number
FA8750-19-2-0503.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

QKD Quantum Key Distribution
PUF Physical Unclonable Function
RSA Rivest–Shamir–Adleman
ECC Elliptic Curve Cryptography
PNS Photon Number Splitting
SSP99 Six-State Protocol 1999
ReRAM Resistive Random-Access Memory
TAPKI Ternary Addressable Public Key Infrastructure
HWP Half-Wave Plate
PCB Printed Circuit Board
IC Integrated Circuit
GPIO General-Purpose Input/Output
ADC Analog-to-Digital Converter
RAM Random Access Memory
I/O Input/Output
Math Symbols
ADD2, +2 Addition Modulo 2
ADD3, +3 Addition Modulo 3
ADD4, +4 Addition Modulo 4
⊕ XOR
M© Mask
T© Bitwise transform
T©3 Ternary transform
T©4 Quaternary transform
T©8 Octal transform

Ψ Quatrit

References
1. McMahon, D. Quantum Computing Explained, 1st ed.; Wiley: New York, NY, USA, 2011.
2. Priyanka, M.; Sinha, U. Study of BB84 QKD protocol: Modifications and attacks. Retrieved August 2020, 8.
3. Yunakovsky, S.E.; Kot, M.; Pozhar, N.; Nabokov, D.; Kudinov, M.; Guglya, A.; Kiktenko, E.O.; Kolycheva, E.; Borisov, A.; Fedorov,

A.K. Towards security recommendations for public-key infrastructures for production environments in the post-quantum era.
EPJ Quantum Technol. 2021, 8, 14. [CrossRef]

4. Bennett, C.H.; Bessette, F.; Brassard, G.; Salvail, L.; Smolin, J. Experimental quantum cryptography. J. Cryptol. 1992, 5, 3–28.
[CrossRef]

5. Fickler, R.; Prabhakar, S. Chapter 8—Quantum communication with structured photons. In Structured Light for Optical Communica-
tion; Al-Amri, M.D., Andrews, D.L., Babiker, M., Eds.; Nanophotonics, Elsevier: Amsterdam, The Netherlands, 2021; pp. 205–236.
[CrossRef]

6. Cambou, B.F.; Montano, I.; Behunin, R.; Rodriguez, V. Secure Multi-State Quantum Key Distribution with Wavelength Division
Multiplexing. US Patent App. 16/951,760, 2021.

7. Hong, K.W.; Foong, O.M.; Low, T.J. Challenges in quantum key distribution: A review. In Proceedings of the 4th International
Conference on Information and Network Security, Shanghai, China, 25–26 September 2016; pp. 29–33.

8. Scharitzer, G. Basic Quantum Cryptography, version 0.9; Vienna University of Technology Institute of Automation: Vienna,
Austria, 2003.

http://doi.org/10.1140/epjqt/s40507-021-00104-z
http://dx.doi.org/10.1007/BF00191318
http://dx.doi.org/10.1016/B978-0-12-821510-4.00014-5

Cryptography 2022, 6, 36 24 of 25

9. Bennett, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 2014, 560, 7–11.
[CrossRef]

10. Alshehri, O.; Li, Z.H.; Al-Amri, M. Chapter 1—Basics of quantum communication. In Structured Light for Optical Communication;
Al-Amri, M.D., Andrews, D.L., Babiker, M., Eds.; Nanophotonics, Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–36.
[CrossRef]

11. Kong, P.Y. A review of quantum key distribution protocols in the perspective of smart grid communication security. IEEE Syst. J.
2020, 16, 41–54. [CrossRef]

12. Ch, H.B.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing int. In Proceedings of the Conference on
Computers, Systems and Signal Processing, Bangalore, India, 9–12 December 1984; Volume 175.

13. Rothberg, J. Physics 225/315 Outline: Introduction to Quantum Mechanics Lecture Notes. unpublished.
14. Wootters, W.K.; Zurek, W.H. A single quantum cannot be cloned. Nature 1982, 299, 802–803. [CrossRef]
15. Shu, H. Solving single photon detector problems. arXiv 2022, arXiv:2203.02905.
16. Lo, H.K.; Ma, X.; Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 2005, 94, 230504. [CrossRef]
17. Huang, A.; Sun, S.H.; Liu, Z.; Makarov, V. Quantum key distribution with distinguishable decoy states. Phys. Rev. A 2018,

98, 012330. [CrossRef]
18. Sekar, R. A report on Decoy State Quantum Key Distribution. 2017. Available online: https://ramanans1.github.io/docs/ias_

srfp2017_report.pdf (accessed on 1 May 2022).
19. Bennett, C.H. Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 1992, 68, 3121. [CrossRef]
20. Shukla, M.; Patel, S. Prominent Security of the Quantum Key Distribution Protocol. Int. J. Sci. Res. 2018, 8. Available online:

https://www.ijsr.net/archive/v8i7/ART20199396.pdf (accessed on 1 May 2022).
21. Pirandola, S.; Andersen, U.L.; Banchi, L.; Berta, M.; Bunandar, D.; Colbeck, R.; Englund, D.; Gehring, T.; Lupo, C.; Ottaviani, C.;

et al. Advances in quantum cryptography. Adv. Opt. Photonics 2020, 12, 1012–1236. [CrossRef]
22. Abushgra, A.A. Variations of QKD Protocols Based on Conventional System Measurements: A Literature Review. Cryptography

2022, 6, 12. [CrossRef]
23. Krithika, S. Quantum key distribution (QKD): A review on technology, recent developments and future prospects. Res. J. Eng.

Technol. 2017, 8, 291–294. [CrossRef]
24. Bechmann-Pasquinucci, H.; Gisin, N. Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography.

Phys. Rev. A 1999, 59, 4238. [CrossRef]
25. Lo, H.K.; Chau, H.F.; Ardehali, M. Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol.

2005, 18, 133–165. [CrossRef]
26. Sharifi, M.; Azizi, H. A simulative comparison of bb84 protocol with its improved version. J. Comput. Sci. Technol. 2007, 7,

204–208.
27. Buttler, W.T.; Lamoreaux, S.K.; Torgerson, J.R.; Nickel, G.; Donahue, C.; Peterson, C.G. Fast, efficient error reconciliation for

quantum cryptography. Phys. Rev. A 2003, 67, 052303. [CrossRef]
28. Yan, H.; Peng, X.; Lin, X.; Jiang, W.; Liu, T.; Guo, H. Efficiency of winnow protocol in secret key reconciliation. In Proceedings of

the 2009 WRI World Congress on Computer Science and Information Engineering, Washington, DC, USA, 31 March 2009–2 April
2009; IEEE: Piscataway, NJ, USA, 2009; Volume 3, pp. 238–242.

29. Zhu, M.; Cui, K.; Li, S.; Kong, L.; Tang, S.; Sun, J. A Code Rate-Compatible High-Throughput Hardware Implementation Scheme
for QKD Information Reconciliation. J. Light. Technol. 2022, 40, 3786–3793. [CrossRef]

30. Li, H.W.; Zhang, C.M.; Jiang, M.S.; Cai, Q.Y. Improving the performance of practical decoy-state quantum key distribution with
advantage distillation technology. Commun. Phys. 2022, 5, 53. [CrossRef]

31. Ekert, A.K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991, 67, 661–663. [CrossRef] [PubMed]
32. Bhunia, S.; Tehranipoor, M. Chapter 12—Hardware Security Primitives. In Hardware Security; Morgan Kaufmann: Burlington,

MA, USA, 2019; pp. 311–345. [CrossRef]
33. Mohanty, S.P.; Sengupta, A. Physical Unclonable Functions (PUFs). In IP Core Protection and Hardware-Assisted Security for

Consumer Electronics; Institution of Engineering and Technology: London, UK, 2019; p. 1.
34. Cambou, B.F.; Quispe, R.C.; Babib, B. Puf with Dissolvable Conductive Paths. US Patent App. 16/493,263, 2020.
35. Bhunia, S.; Tehranipoor, M. Chapter 1—Introduction to Hardware Security. In Hardware Security; Bhunia, S.; Tehranipoor, M.,

Eds.; Morgan Kaufmann: London, UK, 2019; pp. 1–20. [CrossRef]
36. Korenda, A.R.; Afghah, F.; Cambou, B.; Philabaum, C. A Proof of Concept SRAM-based Physically Unclonable Function (PUF)

Key Generation Mechanism for IoT Devices. In Proceedings of the 2019 16th Annual IEEE International Conference on Sensing,
Communication, and Networking (SECON), Boston, MA, USA, 10–13 June 2019; pp. 1–8. [CrossRef]

37. Cambou, B.; Orlowski, M. PUF Designed with Resistive RAM and Ternary States. In Proceedings of the 11th Annual Cyber
and Information Security Research Conference, CISRC’16, Oak Ridge, TN, USA, 5–7 April 2016; Association for Computing
Machinery: New York, NY, USA, 2016. [CrossRef]

38. Habib, B.; Cambou, B.; Booher, D.; Philabaum, C. Public key exchange scheme that is addressable (PKA). In Proceedings of
the 2017 IEEE Conference on Communications and Network Security (CNS), Las Vegas, NV, USA, 9–11 October 2017; IEEE:
Piscataway, NJ, USA, 2017; pp. 392–393.

http://dx.doi.org/10.1016/j.tcs.2014.05.025
http://dx.doi.org/10.1016/B978-0-12-821510-4.00007-8
http://dx.doi.org/10.1109/JSYST.2020.3024956
http://dx.doi.org/10.1038/299802a0
http://dx.doi.org/10.1103/PhysRevLett.94.230504
http://dx.doi.org/10.1103/PhysRevA.98.012330
https://ramanans1.github.io/docs/ias_srfp2017_report.pdf
https://ramanans1.github.io/docs/ias_srfp2017_report.pdf
http://dx.doi.org/10.1103/PhysRevLett.68.3121
https://www.ijsr.net/archive/v8i7/ART20199396.pdf
http://dx.doi.org/10.1364/AOP.361502
http://dx.doi.org/10.3390/cryptography6010012
http://dx.doi.org/10.5958/2321-581X.2017.00049.6
http://dx.doi.org/10.1103/PhysRevA.59.4238
http://dx.doi.org/10.1007/s00145-004-0142-y
http://dx.doi.org/10.1103/PhysRevA.67.052303
http://dx.doi.org/10.1109/JLT.2022.3149567
http://dx.doi.org/10.1038/s42005-022-00831-4
http://dx.doi.org/10.1103/PhysRevLett.67.661
http://www.ncbi.nlm.nih.gov/pubmed/10044956
http://dx.doi.org/10.1016/B978-0-12-812477-2.00017-4
http://dx.doi.org/10.1016/B978-0-12-812477-2.00006-X
http://dx.doi.org/10.1109/ SAHCN.2019.8824887
http://dx.doi.org/10.1145/2897795.2897808

Cryptography 2022, 6, 36 25 of 25

39. Cambou, B.; Telesca, D. Ternary Computing to Strengthen Cybersecurity. In Proceedings of the Intelligent Computing, London,
UK, 16–17 July 2019; Arai, K., Kapoor, S., Bhatia, R., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 898–919.

40. Cambou, B.F. Encryption Schemes with Addressable Elements. US Patent App. 17/499,583, 2022.
41. Cambou, B.F.; Philabaum, C.R.; Telesca, D.A. Key Exchange Schemes with Addressable Elements. US Patent 11,265,151, 2022.
42. Cambou, B.; Telesca, D.; Assiri, S.; Garrett, M.; Jain, S.; Partridge, M. TRNGs from Pre-Formed ReRAM Arrays. Cryptography

2021, 5, 8. [CrossRef]
43. Cambou, B. Random Number Generating Systems and Related Methods. US Patent 9,971,566, 2018.
44. Cambou, B. Physically Unclonable Function Generating Systems and Related Methods. US Patent 9,985,791, 2018.

http://dx.doi.org/10.3390/cryptography5010008

	Background Information
	Motivation
	QKD Overview
	QKD Protocols
	BB84
	B92, SARG04, SSP99, and QKD Protocols after BB84
	E91

	Multi-Wavelength QKD with a PUF
	Multi-Wavelength QKD
	Ternary Protocol
	Quaternary Protocol

	QKD with PUF
	PUF Background
	Ternary Protocol with a PUF
	Obscuring and Unobscuring Bitstreams with Addition
	Quaternary Protocol with a PUF

	Bitwise Transform
	TAPKI System
	Ternary Transform
	Quaternary Transform
	Octal Transform
	Restricting States
	Alternative Mask Options
	Relationships of Expansion

	Building a QKD Emulation System to Test Protocols
	Original Thorlabs Emulation Kit
	Operation

	Modifications to Include Two Wavelengths
	Hardware
	Software

	PUF Implementation
	System Setup
	Overview
	PUF Integration
	Prototyping Setup (Test Bench)

	Preliminary Results and Validation of QKD Emulation with PUF
	Holding Input Combinations Constant
	Changing Input Combinations
	Generating a Sample Key
	PUF Error
	Summary of Results

	Future Work
	Studying the Emulation System Error Rates
	Bitwise Transform

	Conclusions
	References

