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Anca Rădulescu and Marios O. Choudary *

Faculty of Automatic Control and Computer Science, University Politehnica Bucharest,
060042 Bucharest, Romania; anca.radulescu2402@stud.acs.upb.ro
* Correspondence: marios.choudary@cs.pub.ro

Abstract: In this paper, we provide a detailed analysis of CPA and Template Attacks on masked
implementations of bitsliced AES, targeting a 32-bit platform through the ChipWhisperer side-channel
acquisition tool. Our results show that Template Attacks can recover the full AES key successfully
within 300 attack traces even on the masked implementation when using a first-order attack (no
pre-processing). Furthermore, we confirm that the SubBytes operation is overall a better target for
Template Attacks due to its non-linearity, even in the case of bitsliced implementations, where we can
only use two bits per key byte target. However, we also show that targeting the AddRoundKey can
be used to attack bitsliced implementations and that, in some cases, it can be more efficient than the
SubBytes attack.
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1. Introduction

Cryptographic algorithms, such as AES [1], are widely used nowadays to protect our
data, for network communications, cloud data storage, or local computers. In all of these
applications, we desire secure and fast computations. To speed up the AES computation,
an implementation known as bitsliced has been proposed [2], which allows specialised
hardware to perform hundreds of encryptions in parallel [3]. Furthermore, the bitsliced
implementation of AES can protect this algorithm against cache-based timing attacks [4].

However, besides the cache-based timing attacks thwarted by the bitsliced implementa-
tion of AES, we still have other side-channel threats, such as power [5] and electromagnetic
analyses [6]. These attacks have become critical threats to electronic devices, ranging from
simple 8-bit and 16-bit microcontrollers (as used in smart cards) up to complex, full-fledged
32-bit and 64-bit system-on-a-chip devices, as used in the gateway devices in smart homes,
smart cards, smartphones, etc.

To protect against these power or electromagnetic analysis attacks, several counter-
measures have been introduced, among which, masking is very popular, due to its potential
to break the correlation between the power consumption and the secret values processed by
the target device through the use of random shares [7]. Hence, masking implementations
have been developed as well for the bitsliced version of AES [8–10].

In past years, there have been several publications regarding attacks on masked im-
plementations of bitsliced AES [9,11–15], using various attack and evaluation methods,
primarily correlation power analyses [16], Template Attacks [17], and mutual informa-
tion [18].

However, there are some shortcomings of these evaluations, such as the common
use of only one or two key bits with CPA. Furthermore, existing evaluations do not
provide successful results when using CPA with more bits or Template Attacks without
preprocessing the traces.

Hence, in this paper, we take a closer look at the efficacy of side-channel attacks
on bitsliced implementations of AES, both with and without masking protections, when
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targeting a 32-bit architecture. To provide a wider picture of the success of these attacks,
we used Template Attacks as well as two flavors of CPA, targeting the input of the S-BOX
operation (AddRoundKey) and the output of the S-BOX. Furthermore, for CPA, we used
both a direct attack as well as a pre-processing step to defeat the masking protection.

We performed our evaluations of CPA and Template Attacks on real traces obtained
using a ChipWhisperer device. We obtained interesting and unforeseen results using both
of these attacks. Concerning Template Attacks, we were able to successfully determine the
full AES key within 20 attack traces without countermeasures and within 300 attack traces
with first-order masking, without any pre-processing of the traces. As for CPA, contrary
to the expectations, we observed cases where attacking the AddRoundKey could lead to
a successful key recovery, while the common attacks on the SubBytes operation did not
reveal the key, even with a large number of attack traces.

In the following section, we will provide some background on side-channel attacks,
masking, and bitsliced implementations. In Section 3, we detail our attack methods. Our
experimental setup is presented in Section 4. Afterward, in Section 5, we present our results.

2. Background
2.1. Side-Channel Attacks

Side-channel attacks exploit various physical channels that may carry information
about the data processed by an electronic device (e.g., microcontroller). Among these, the
running time, power consumption, and electromagnetic emissions are very popular. In this
paper, we focus on power consumption attacks, also known as power analysis attacks.

Power analysis attacks use the power consumption leakages of devices while running
encryption algorithms. The power consumed is dependent on the processed data, as well
as on the performed operations [5]. Based on the monitored power leakages for a set of
plaintext/ciphertext encryptions, the attacker may recover the key by performing statistical
analyses over hypothetical values of subsets of the key (in the case of AES, a common
approach is to iterate over each byte of the key).

Two main classes of power analysis attacks can be distinguished: unprofiled (model-
based) and profiled. Unprofiled attacks use a leakage model to determine the connection
between the traces and the encryption key. Profiled attacks use a learned model of the target
device in order to determine the secret key bytes as quickly and accurately as possible.
These profiled attacks are split into two stages. First, it is assumed that the attacker has
access to a clone device, which is used to acquire the profiling traces and derive an accurate
leakage model. Afterward, this learned model is used on the traces collected from the
target device to extract the encryption key. Although profiled attacks require access to a
copy of the target device (in contrast to model-based attacks), these attacks are reportedly
more powerful than model-based attacks.

Among the unprofiled attacks, correlation power analysis (CPA) [16] is one of the most
common and powerful attacks, if we use a suitable leakage model, such as the Hamming
weight or Hamming distance, which usually work well on many target devices. Among
profiled attacks, Template Attacks [17,19] are known to be very efficient, since they use all
of the information from a side-channel trace, both signal and noise in the detection of the
target key. Hence, in this paper, we used these two attacks for our evaluations.

2.1.1. Correlation Power Analysis (CPA)

This kind of attack is part of the unprofiled group of side-channel attacks and relies on
assuming a leakage model, such as the commonly observed Hamming weight or Hamming
distance [16]. The procedure is composed of the following steps:

1. Traces acquisition: Power consumption traces are acquired for a large set of input
plaintexts, encrypted with the same key, generating a set of output ciphertext. Sup-
pose we have n traces available t1, . . . , tn, corresponding to plaintext p1, . . . , pn and
ciphertexts c1, . . . , cn. All of these are associated with the input key k. Each trace is a
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vector composed of a number of samples m. We will later refer to sample j of trace i
as tij .

2. Intermediate value selection and computation: Sensitive variables v depend on both
the key and the plaintext/ciphertext. The selection is dependent on the encryption
algorithm as well. In the current analysis, two scenarios were used: the output of the
first key addition (ARK) and the output of the first S-BOX.

3. Attack leakage model selection and running: In this paper, we focus on correla-
tion power analysis (CPA) attacks, which rely on generating a hypothetical power
consumption. A typical leakage model is based on the Hamming weight, defined
as follows:

HW(x) =
n

∑
i=1

x[i], (1)

where x ∈ Fn
2 [20] (i.e., the total number of bits set to 1 of the value x).

A second model relies on the Hamming distance between two variables, defined as:

HD(x, y) = HW(x⊕ y). (2)

We are interested in the correlation between the actual power consumption (recorded
in the trace) and the hypothetical power values, which are computed considering
all sample points of interest (where the intermediate values should occur). The
correlation is computed using Pearson’s correlation coefficient:

ρx,y =
cov(x, y)

σxσy
. (3)

Essentially, considering that the sensitive variable leaks between samples j1 and j2
(j1 ≤ j2) and considering a hypothetical consumption h of the variable, then, for each
sample j (j1 ≤ j ≤ j2), we compute the correlation between h and the vector comprised
of each trace sample j: ρvj ,h, where vj=(t1j , t1j ..., tnj ). However, h does depend on
the key.
In particular, if we define the subkey k[byte] (byte ∈ (0, 16)) as a byte of the entire
key (k), then we would compute the correlations for each k[byte] = value, where
value ∈ (0, 256).

4. Identify the correct subkey: the correct key byte (k[byte]) value should correspond to
the highest correlation value.

2.1.2. Template Attack

This kind of attack is representative of the profiled attacks and is known as one of
the strongest side-channel attacks. It includes two stages: A profiling stage and the actual
attack stage [17]. These are outlined in the following steps:

1. Traces acquisition on training device: The attacker acquires large datasets of power
traces using different plaintext inputs and keys to build a sound model of the power
consumption for the target computations [21]. Typical target computations are those
operations that combine known input, such as plaintext bytes, with the unknown
target key bytes of cryptographic algorithms. A canonical example is the output of
the S-BOX in AES, where the power consumption depends on one plaintext byte and
one key byte.

2. Template generation: The datasets are used to derive a statistical model of the device,
eventually applying a compression (or sample selection) [19]. This typically results
in a set of mean vectors (one per candidate key byte value) and covariance matrices,
known as the template parameters.

3. Traces acquisition on victim device: The attacker acquires a relatively small number
of power traces on the target device, using different input plaintexts. For the attack to
be effective, the training and victim devices should be of the same kind. In a practical
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attack scenario, the attacker will perform the profiling step in one device (where he
can run extensive data acquisition and experimentation), and the attack step on the
victim device. However, for evaluation purposes, it is also possible to use the same
device in order to attest to the leakage of a particular implementation or to compare
different methods of attack or protection.

4. Attack setup: The model is applied to the attack traces. The output consists of a list of
scores or probabilities for each possible candidate value in the subkey space.

5. Identify the correct subkey: The correct subkey value is considered as the one corre-
sponding to the highest probability in the list of scores (or probabilities).

2.2. Masking

A typical countermeasure to thwart side-channel attacks is to mask the sensitive
variables [5,9]. Essentially, masking implies generating random values for each sensitive
variable, which is then concealed by applying an operation between these values. This
implies the splitting of the sensitive variables (v) into (d + 1) shares vm, m1, ..., md, such
that [5]:

vm = v ∗m1 ∗m2 ∗ ... ∗md, (4)

where vm is the resulting masked value and ∗ is dependent on the operations employed in
the cryptographic algorithm. In particular, three operations are extensively discussed: XOR
function (⊕), modular addition (+), and multiplication (×). The first one lies at the core of
Boolean masking, while the last two define the arithmetic masking. These operations are
central to several masking algorithms. The splitting into (d + 1) shares ensures a d-th order
masking construction.

The d masks are generated randomly, while one of the shares (vm) is computed using
relation 4. The subsequent computations to be performed are done separately for each share.

The concept of masking was first introduced in [7,22]. Ever since, this topic has been
subject to extensive research and various schemes have been proposed. The differences
between the masking schemes concern mostly the methods to perform the splitting. The
encryption algorithms themselves play a key role, as well, since the operations used within
masking are compatible with the operations performed in the algorithms. For further
reference, we point to [23–27].

Attacks on Masking

Attacks on the unprotected implementations are called first-order attacks. In principle,
if implemented efficiently (i.e., if the shares are indeed statistically independent), d-th
order masked implementations should thwart a d-order attack but are still vulnerable to
higher-order attacks.

These latter types of attacks exploit joint leakages of the intermediate variables and
require a preprocessing of the traces, using a combining function over distinct pairs of
samples (tij , tjk ) along the leakage trace:

t′ij,k
= f (tij ,tik

), (5)

where i < n (number of traces), j, k ≤ m, and m is the total number of samples. The
preprocessing goal is to catch the pairs where both the masks and the masked variables
leak. Two main preprocessing methods have been proposed and analysed over time [7,28]:

• Absolute difference:
f (x, y) = |x− y| (6)

• Product combining:
f (x, y) = x× y; (7)

In our study, we used the classic absolute difference as the preprocessing function,
which is a commonly used method. Nevertheless, as shown in some publications [20,29],
certain flavours of the product-combining function may also lead to good results.
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2.3. Bitsliced AES

Bitsliced implementations involve decompositions of the algorithms into bit-level
instructions, using logic gate operations. These implementation types offer resistance
against cached timing attacks while failing to withstand other side-channel attacks (such as
power analysis), without proper countermeasures.

We recall the classical 4× 4 byte array representation of the AES state:

s =


s1,1 s1,2 s1,3 s1,4
s2,1 s2,2 s2,3 s2,4
s3,1 s3,2 s3,3 s3,4
s4,1 s4,2 s4,3 s4,4

 (8)

In this particular case, we followed the bitsliced representation in [9], which remaps
two states s and s′ (associated with two plaintexts) into eight 32-bit registers (Ri, 1 ≤ i ≤ 8).
Each register contains the ith bit from each of the 16 bytes of the two plaintexts.

Ri =
(

s1,1i s′1,1i
s1,2i s′1,2i

... s4,4i s′4,4i

)
(9)

This new representation (see Figure 1) brings forth the following tailoring of the
AES operations:

• AddRoundKey: The key is also converted into the bitsliced representation, consider-
ing Equation (9). At this point, in the standard implementation, the state is XORed
with the round key s ← s⊕ kr, where r ∈ (1, 10) is the current round index. Con-
sidering a bitsliced representation, the XOR can be done bit-level-wise, between the
corresponding bits.

• ByteSub: This is the only non-linear step of the algorithm. Whereas in the standard
implementations, each byte of the state is replaced with the corresponding value
mapped by a LUT (S-BOX table), in the bitsliced variant, logic gate operations (XOR,
XNOR, AND) are used to implement the S-BOX. As pointed out in both [4,9], several
solutions have been proposed for implementing the S-BOX, considering aspects such
as performance, throughput, and the architecture targeted. Both articles pinpoint the
compact S-BOX implementation described by Canright [30], which is also the one
considered in the current study, employing multi-level arithmetic representation.

• ShiftRows: In a standard implementation, each row of the 4× 4 byte array is shifted
to the left with a displacement equal to the row index—1.

Shi f tRows(s) =


s1,1 s1,2 s1,3 s1,4
s2,2 s2,3 s2,4 s2,1
s3,3 s3,4 s3,1 s3,2
s4,4 s4,1 s4,2 s4,3


The same convention is valid in the bitsliced approach, by adjusting accordingly the
bits in every register.

• MixColumns: This step is applied at the column level and can be seen as a matrix
multiplication in GF(28). The logic gate described in [4] was implemented in the
current setup.
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Figure 1. Bitsliced AES state representation.

We followed the observation from [9] and wrote the implementation using software
macros for the elementary operations: XOR, AND, NOT, MOV, ROTL. This facilitated the
integration of a protected/masked implementation using shares, requiring only a slight
refactoring of the macros (i.e., to include the second share for straightforward management
of the masks for the masked implementation analyses).

Masked Bitsliced AES

For our evaluations on masked bitsliced AES, we considered the first-order Boolean
masking scheme. In this case, the algorithm structure was slightly adapted to include
mask management.

As mentioned above, the key and input plaintext pair were mapped to the bitsliced
representation, each spread over the eight 32-bit registers. As an additional step, the key
and the plaintext masks were randomly generated, once again, each of them being spread
over the eight 32-bit registers. Next, the masked bitsliced state and the masked bitsliced
key were computed (using the XOR operation).

From this point onward, all AES operations were performed over both the masks
and the masked bitsliced state. AddRoundKey, ShiftRows, and MixColumns could be
straightforwardly applied for each of them independently. However, ByteSub is not linear
and uses AND gates. In this case, the AND scheme in [31] was implemented. Our resulting
implementation is equivalent to that used by Balasch et al. [9].

The attacks on bitsliced implementations (masked or not) follow the same principles
outlined above, with the attack model taking into account the bits remapping table.

3. Attacks

We analysed the implementation resistance against both CPA and Template Attacks,
considering two target operations. In this section, we highlight the key aspects of each attack.

3.1. Reference CPA Attacks on Bitsliced AES

Each byte of the plaintext was propagated across the eight registers (R1, R2, ..., R8)
and two plaintexts were encrypted with the same key k; thus, each register contained a
pair of bits corresponding to the same key byte encryption. For example, considering
Figures 1 and 2, the first two bits in R1 (s1,11 and s′1,11

) were encrypted with the same key
byte (k1,1). As proposed in [9], the attack can therefore be mounted using classic CPA, based
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on the sum of the two bits affected by the same byte of the key. This becomes the leakage
model applied in the attack:

(byte 1)hw = s1,1Ridx
+ s′1,1Ridx

(byte 2)hw = s1,2Ridx
+ s′1,2Ridx

. . .

(byte 16)hw = s4,4Ridx
+ s′4,4Ridx

(10)

The attack is summarised in Algorithm 1.

Algorithm 1 CPA attack on first S-BOX.
Input:

measured/simulated n traces t1, . . . , tn, each trace having m samples
n number of pairs of 16-byte plaintext (p1,1, p1,2) . . . , (pn,1, pn,2) generated

with the same key (k)
the register number Rx which we want to target (x ∈ [1, 8])
standard2bitslice is the LUT mapping a byte index (in the standard

representation) to a bit index in a bitsliced register
Output:

16 byte-sized encryption key (k)—of the first round
Steps:
for byte = 1 to 16 do

maxcorr = 0
k∗ = 0
for value = 0 to 255 do

k[byte] = value
bitslicedk ← bitslice representation of k
for i = 1 to n do

state← bitslice representation of (pi,1, pi,2); see Figure 1
ark = state⊕ bitslicedk
sbox = S-BOX(ark)
idx = standard2bitslice(byte)
hk[byte],i = Rx[idx] + Rx[idx + 1]

end
for i = 1 to m do

vi = (t1i , ..., tni )
correlation(k[byte]) = max(ρ(hk[byte],1:n, vi))

end
if correlation(k[byte]) ≥ maxcorr then

maxcorr = correlation(k[byte])
k∗ = k[byte]

end
end
k[byte] = k∗.

end

For the second-order attack (for the masked implementation), the same attack scheme
can be applied, except that the traces are replaced by the preprocessed traces (using the
absolute difference).

3.2. Alternative CPA Attack

Although the CPA attack presented in [9] bears successful results, it limits the attack
to using only two bits. We investigated an alternative attack scheme, which harvests the
information from all bits of a plaintext byte. Instead of attacking the first round S-BOX
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output, we considered the output of the first round key addition (ARK), which is the
input to the aforementioned S-BOX. Instead of targeting a specific register, we defined
new subkeys for which we could target eight bits at a time. Specifically, as suggested in
Figure 2, we identified a subkey (Ki) as the sequence of eight consecutive bits in one register,
associated with one plaintext (remember that two consecutive bits are associated with the
same key byte, but are derived from the two different plaintext bytes). Therefore, we
focused solely on one plaintext and ignored the contribution from the other one. It would
also be possible to consider the contributions from both plaintexts by using a Hamming
weight on 16 bits, which resulted in slightly better results in our experiments. However,
for simplicity, and a more clear presentation of our findings, we omit their presentation in
this paper.

Figure 2. Alternative attack: using eight bits.

Considering Figure 1, the leakage model for each key byte can be summarised below:

(byte 1)hw =
4

∑
i=1

s1,iR1
+

4

∑
i=1

s2,iR1

(byte 2)hw =
4

∑
i=1

s3,iR1
+

4

∑
i=1

s4,iR1

(byte 3)hw =
4

∑
i=1

s1,iR2
+

4

∑
i=1

s2,iR2

. . .

(byte 16)hw =
4

∑
i=1

s1,iR8
+

4

∑
i=1

s2,iR8

(11)

This new scheme shifts the focus from deriving the standard representation key byte
values (ki,j, i, j ≤ 4) to deriving the key byte values in the bitsliced representation (Ki, i ≤ 8),
which will require the additional step of converting the guessed subkey values to the
standard representation. We mounted this attack on both unprotected implementations
(on the acquired traces) and the first-order masked implementation (on the preprocessed
traces). The updated Algorithm 2 is written in pseudocode below.
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Algorithm 2 CPA attack on First ARK.
Input:

measured/simulated n traces t1, . . . , tn, each trace having m samples
n number of pairs of 16-byte plaintext (p1,1, p1,2), . . . , (pn,1, pn,2) generated

with the same key (k)
standard2bitslice is the LUT mapping a byte index (in the standard

representation) to a bit index in a bitsliced register
Output:

16 byte-sized encryption key (k)—of the first round
Steps:
for byte = 1 to 8 do

maxcorr = 0
K∗ = 0
for value = 0 to 255 do

K[byte] = value
for i = 1 to n do

state← bitsliced representation of (pi,1, pi,2)
ark = state⊕ K[byte]
hK[byte],i = HW(ark)

end
for i = 0 to m do

vi = (t1i , ..., tni )
correlation(Kbyte) = max(ρ(hK[byte],1:n, vi))

end
if correlation(K[byte]) ≥ maxcorr then

maxcorr = correlation(K[byte])
K∗ = K[byte]

end
end
K[byte] = k∗.

end
Convert K to standard implementation to extract the key k.

3.3. Template Attacks on Bitsliced AES

We implemented and applied Template Attacks [17,19] to our unprotected and masked
datasets. For the implementation, we followed the general approach described in Section 2.1.
To improve the profiling step, we used stochastic models [32], which we combined with
linear discriminant analysis (LDA) for compression [33]. This helped us to reduce the
size of each trace from 5000 samples (which were carefully selected across our regions of
interest, see more details below in Section 4) to eight samples per trace (in the projected
space of LDA). We chose to keep only eight LDA dimensions based on the analysis of
the eigenvalues.

In order to attack the S-BOX, we used the classic attack strategy described in Section 3.1.
That is, we created model parameters for each possible output of the S-BOX when profiling
the device using different plaintexts. While this ignores the bitsliced representation, it turns
out to be very effective since the S-BOX output is computed at some point even in the
bitsliced representation and the Template Attack can capture this.

As for the AddRoundKey context presented in Section 3.2, we targeted one byte at a
time from a particular bitsliced register (see Figure 1), using a single plaintext, ignoring the
second plaintext in each register. That is, we created Template Attack model parameters for
consecutive bytes of the bitsliced representation corresponding to the first plaintext in each
bitsliced register. Hence, the byte chunks we targeted were:
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Byte 1: bit 1 of the first 8 bytes of the first plaintext (first bitsliced reg).
Byte 2: bit 1 of the last 8 bytes of the first plaintext (first bitsliced reg).
Byte 3: bit 2 of the first 8 bytes of the first plaintext (second bitsliced reg).
...
Byte 16: bit 8 of the last 8 bytes of the first plaintext (last bitsliced reg).

To present the success of these attacks, we used the empirical guessing entropy [34];
for the full-key, we employed the estimation algorithm of Glowacz et al. [35].

3.4. Prior Work

Several publications, such as [36–38], have already shown that problems remain with
first-order masking and that it is possible to attack such implementations without any
special preprocessing, due to unexpected interactions in hardware, glitches, transitions,
etc., even when dealing with bitsliced implementations [9,12,15]. However, as we detail
below, some interesting results were not presented in prior publications, particularly when
dealing with bitsliced implementations, as in this present work.

Mangard et al. [36] have shown that first-order DPA attacks can work on first-order
masked AES hardware implementations, without any special preprocessing, if they have
good leakage models. However, in the same paper, they showed that a version of our
AddRoundKey attack did not work, i.e., when they were targeting the AES state stored
in registers. They were only able to successfully attack their implementation when target-
ing the logic gates that implemented some of the AES operations, such as the SubBytes
operation. In contrast, we show here that the AddRoundKey operation can be successfully
attacked in bitsliced masked implementations, at least in software, if we carefully group
the bits of the target values.

Afterward, at CT-RSA 2007, Oswald and Mangard [37] analysed several implemen-
tations of Template Attacks against a software masked implementation of AES. They
considered attacks with and without preprocessing of the traces to break a first-order
masking implementation. However, even for the attacks without preprocessing, they still
performed some additional work by computing the templates of each target value for each
mask value. In contrast, we have shown that standard Template Attacks, without modeling
the mask at all, can also be effective against first-order masked implementations.

As for bitsliced masked implementations, Balasch et al. [9] have shown successful CPA
attacks on a software bitsliced masked implementation of AES, using a large number of
traces when targeting the SubBytes operation. Similarly, Groot et al. [12] attacked a software
bitsliced masked implementation of PRESENT using second-order CPA attacks. More
recently, Han et al. [15] also analysed several bitsliced implementations of cryptographic
algorithms, including AES, but still used CPA on a single bit. In all of these cases, they only
used CPA attacks and a sub-optimal leakage model for the SubBytes state, considering only
two bits of the key at a time. In contrast, we have considered more enhanced attacks (both
against the SubBytes and the AddRoundKey operations) and have evaluated the success of
Template Attacks against both target operations. In a different approach, Journault and
Standaert [13] used leakage-detection tools based on the T-test to verify the existence of
leakage and then the mutual information to quantify the possible leakage available in the
traces. However, they did not perform our kind of attacks. Similarly, Azouaoui et al. [14]
compared several bitsliced masking implementations using the mutual information tool to
quantify the potential leakage available. In contrast, a CPA or Template Attack reveals the
actual leakage extracted by an attacker.

In summary, prior work has indeed already investigated the efficiency of CPA and
Template Attacks against various masking implementations of cryptographic algorithms.
However, there have been several aspects that, to our knowledge, were not researched
at all or not enough. These include: (i) The use of standard Template Attacks to break
first-order masking, without any special preprocessing nor additional modeling of masks;
(ii) The use of more efficient models for attacking bitsliced implementations, targeting
both the AddRoundKey and SubBytes operations. Therefore, in this paper, we performed
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these additional experiments, obtaining interesting results, as we present them in the
following sections.

An overview of these various evaluations, including our work, is given in Table 1. We
identify with a “X” the successful key recovery; with “X” the analysed implementations that
withstood the attacks; and with “-” the analyses that were not performed in a specific study.

Table 1. Various attack implementations: successful key recovery.

CPA S-BOX/1-2 Bits CPA ARK/8 Bits TA Simple TA Preprocessing T-Test or MI

Mangard et al. [36] X X - - -

Oswald et al. [37] - - X X -

Balasch et al. [9] X - - - -

Groot et al. [12] X - - - -

Han et al. [15] X - - - -

Journault et al. [13] - - - - X

Azouaoui et al. [14] - - - - X

Current paper X X X - -

4. Experimental Setup

ChipWhisperer [39] provides hardware and software solutions dedicated to side-channel
analyses. In particular, ChipWhisperer-Lite integrates two components: a STM32F303 32-bit
ARM target board and an oscilloscope.

The overall setup is straightforward; the board can be connected directly to the laptop
using a micro-USB cable (USB controller). On the software side, a dedicated API is available to
the user [40] facilitating the interface to the hardware (both the target and the oscilloscope).

The acquisition (see Figure 3) was configured to capture a sufficient, yet practical
number of samples per trace, starting from the first AES round key addition to the
end of the first AES round S-BOX operation (including samples from the subsequent
ShiftRows and MixColumns operations, as a margin). The identification of the operations
processing (in terms of samples) was performed by switching on/off different portions
(rounds) of the algorithm. Considering that ChipWhisperer-Lite can record a maximum of
24,400 samples [40], we used a decimation factor to ensure that the entire range of sam-
ples of interest was captured. Furthermore, as written below, we used sampling rates
of ≈3 Msamples/s, recalling that ChipWhisperer relies on the synchronous sampling tech-
nique [39], thus being optimised for such small sampling rates. The setup was tailored for
each of the two implementations, as follows:

Figure 3. ChipWhisperer-Lite (CW1173) Setup.
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4.1. Unprotected Bitsliced Implementation

The total number of samples for encryption is 54,848; the first round S-BOX processing
ended at samples 3968. We decided to store the first 5000 samples, for each encryption,
covering the operation of interest with a good margin. However, we highlight that we
used a decimation factor of 10 (i.e., we stored every 1 in 10 samples). In this way, the first
S-BOX should leak at samples around 400. Although we could have stored the full traces
(not decimated), we decided to preserve the acquisition setup between the unprotected
implementation and the masked implementation (see the subsection below). The ADC
clock frequency is 29.5 MHz and the sampling rate ≈2.95 Msamples/s. Regarding the
total number of traces, 100,000 traces were acquired, which were stored in the dataset
and associated with the corresponding plaintext and ciphertext. Three files composed the
dataset: a binary file with pairs of 16-byte plaintexts, a binary file with pairs of 16-bytes of
ciphertext, and a binary file with sequences of 5000 32-bit floating-point values.

4.2. Masked Bitsliced Implementation

Due to the extra processing of the masks, the total number of samples for an encryption
increases to 430,340 and the first round of S-BOX processing ends at sample number 41,984.
Therefore, storing all samples up to the first S-BOX is rather infeasible, especially considering
that ChipWhisperer Lite can record up to 24,400 samples per capture [40]. We decided to
limit the capturing to store every 1 in 10 samples, by setting the decimation factor to 10.
Furthermore, we limited the number of samples to 5000. Given that the S-BOX finishes at
≈45,000 samples (for a decimation factor of 1), we are confident that the S-BOX processing
was captured within the first 5000 samples recorded with a decimation factor of 10 (should
have finished at ≈4500 samples, in this case). Similar to the unprotected setup, the ADC
clock frequency was 29.5 MHz and the sampling rate was ≈2.95 Msamples/s. Regarding
the number of datasets, eight data batches were stored, each corresponding to 100,000 en-
cryptions. Each data batch contained: a binary file with pairs of 16 bytes of plaintext, a
binary file with pairs of 16 bytes of ciphertext, a binary file with sequences of 5000 32-bit
floating-point values (power traces), a binary file with 32-byte masks for the plaintext pair
(initial masks), 32-byte masks for the keys (initial masks). We also captured and stored the
randomly generated mask after the S-BOX operation, as well as the corresponding masked
S-BOX values, for checking purposes and for facilitating the second-order attacks mounting
(to faster detect the leaking samples).

The clock cycles for the two implementations are outlined in Table 2. We note that the
target clock frequency is 10 MHz.

Table 2. Clock cycles.

Implementation Clock cycles

Unmasked implementation 360,934.3

Masked implementation 479,084.8

4.3. Evaluator Attack Scenario

For our experiments, we considered the scenario of an evaluator (evaluation lab), i.e.,
we used the same device for all experiments. This includes the Template Attacks, where
the same Chip Whisperer device was used for both profiling and attack steps. While this
might provide better results than what a real adversary can obtain in practice, it allows us
to determine the feasibility of our attacks.

5. Results
5.1. Attacks on Unprotected Bitsliced Implementations of AES

The unprotected implementation is effectively vulnerable to first-order attacks, re-
quiring but a few tens of traces for achieving confident CPA attack success as well as for
successful Template Attacks.
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5.1.1. Classic CPA on SubBytes (Targeting 2 Key Bits)

Figure 4 reveals the successful attack results for the first byte of the key, as an example,
considering two perspectives. First, in Figure 4a, the correlation values associated with each
sample and with each possible byte value (considering the first byte of the key) are depicted.
The green values matching the highest correlation key byte guess value (43) correspond
to the correct value. We further notice that the highest correlation value corresponds to
the sample range where we have identified the S-BOX operation (around samples 4000).
Second, Figure 4b depicts the highest correlation values for each possible value of the first
byte of the key, outlined against an increasing number of traces used in the attack. The
first byte is the easiest to attack and can be recovered confidently starting with a couple of
ten traces.
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Figure 4. CPA 2-bit (SBOX) attack results for byte 1. (a) CPA correlation vs. sample. (b) CPA
correlation vs. number of traces.

5.1.2. CPA Attacks on ARK (Targeting 8 Key Bits)

On a similar note, the attack on the ARK operation was successful; however, it required
more traces than the classic attack on the SubBytes operation (Figure 5b); furthermore, the
correlation gap between the correct and the other byte values was smaller in this case.
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Figure 5. CPA 8-bit (ARK) attack results for byte 1. (a) CPA correlation vs. sample. (b) CPA correlation
vs. number of traces.
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5.1.3. Template Attacks

Template attacks require around 20 traces to recover one key byte when targeting the
SubBytes operation and around 100 traces in the case of ARK (Figure 6a). For the full key,
we see that we only need below 100 traces when targeting the SubBytes operation and
around 1000 traces in the case of ARK (Figure 6b). Furthermore, taking a closer look at
Figure 6a, we notice the attack using one trace is more effective for ARK than the S-BOX.
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Figure 6. Template attack results (unprotected implementation). (a) GE on one byte. (b) Full-
key evaluation.

Both the CPA and Template Attack results show that both the ARK and the SubBytes
can be good targets for conducting the attacks on the unmasked bitsliced implementa-
tion. Nevertheless, for complete key recovery, attacking the SubBytes operation requires
undeniably less attack traces. This is mainly due to fact that the SubBytes operation is
non-linear and helps discriminate the correct key much faster than with the linear ARK
operation. Hence, while these results are expected for Template Attacks, which use the
full information on the trace and intermediate variables, it may not have been obvious in
the case of CPA, where exploiting only two bits of the SubBytes output for the Hamming
weight has been enough to successfully extract the correct key, more efficiently than using
eight bits but on the linear ARK operation.

5.2. Attacks on Masked Bitsliced Implementations of AES

The share splitting of the internal variables in masking bitsliced implementations of
AES breaks the dependency between the data and the power traces, leaving first-order
attacks less efficient. For second-order attacks, the traces were preprocessed using the
differential approach (Equation (6)). For computational expenses reasons, we first set out
to determine the sample points where the mask and the masked values were leaked after
the first ARK and the first S-BOX operations. It was at these points that we later mounted
the second-order attacks.

5.2.1. CPA Attack on Masked SubBytes (Targeting 2 Key Bits)

Regarding the first S-BOX operation, Figure 7a indicates the leakage interval (4000,
4200) for the updated mask, with the highest leakage points around 4128. A similar
extensive leakage range is reported for the masked variables (Figure 7b), the highest
leakage points being at ≈ 4040. We limited the preprocessing ranges to 50 points on each
axis, and the preprocessing results outlined in this section refer to the ranges (4102, 4152)
and (4020, 4070).
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Figure 7. Correlations for the correct key on masked SubBytes (Byte 1).

As seen in Figure 7c, the first byte reveals a strong correlation concerning the unmasked
value. Nonetheless, the remaining 15 bytes reveal very weak correlation values (we show
for example the second byte—Figure 8c, and we note that the subsequent bytes follow the
same pattern), although the mask and the masked variables can be spotted in the traces.
The images are aligned with the results obtained after applying the CPA attacks on each
byte (Figures 9 and 10).
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Figure 8. Correlations for correct key on the masked SubBytes (Byte 2).

The masked implementation significantly increases the algorithm resistance against
CPA attacks, from a few thousand traces to hundreds of thousands of traces. We outline
in Figure 9a the first-order attack correlations of all values against the correct value, for
the first byte, which is the easiest to recover. In contrast, the second-order attack requires
much fewer traces to succeed (Figure 9b). The figures are generated for the best sample,
respectively, the best pair of samples (i.e., the most leaking sample number(s) of the correct
key byte value). For the first byte, for the first-order attack, the sample number is 4273 (see
Figure 7c), while for the second-order attack, the pair of samples is (4030, 4114).
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Figure 9. First S-BOX CPA attack on byte 1 (masked implementation).
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However, as expected, Figures 8c, 10, and 11 further confirm that the second byte is
very difficult to attack (either with a first-order attack or second-order attack), even when
using 400,000 traces (as well as the other 14 bytes). The results suggest that the SubBytes
target is rather difficult to attack, except for the very first byte.
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Figure 10. First SubBytes CPA Attack on Byte 2 (Masked implementation).
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Figure 11. First SubBytes CPA attack on byte 3 (masked implementation).

5.2.2. CPA Attacks on Masked ARK (Targeting 8 Key Bits)

In the case of the first round key addition (ARK), both the mask and the masked
variable leakage intervals reveal a pronounced leakage placed within the first 100 samples
(see Figure 12a,b), confirming the acquisition setup explained in the previous section.
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Figure 12. Correlations for the correct key on the masked ARK implementation (Byte 1).
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Nevertheless, a quick glance at the following bytes correlations reveals a powerful
leakage for the first four bytes (Figures 13c–16c). In fact, bytes 1 and 2 have the strongest
correlations, which are double the ones recorded for bytes 3 and 4.
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Figure 13. Correlations for the correct key on the masked ARK implementation (Byte 2).
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Figure 14. Correlations for the correct key on the masked ARK implementation (Byte 3).
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Figure 15. Correlations for the correct key on the masked ARK implementation (Byte 4).

We do not show the remaining bytes; however, we should point out that the pattern
recorded for the fifth byte (Figure 16) is applicable to the remaining 11 bytes. Thus, we can
expect an increased difficulty in retrieving these bytes when applying the attacks.
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Figure 16. Correlations for correct key on masked ARK implementation (Byte 5).
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In Figure 17, we show the CPA attack results for the first eight key bits (in bitsliced
format) in the first register, both for the first-order (no preprocessing) attack (left) and the
second-order (absolute-difference) attack (right). We can see in this case that the first-order
attack (Figure 17a) is successful with a very small number of traces (about 200), as confirmed
by the high correlation in Figure 12c, while for the second-order attack, we need more than
500 traces, indicating that perhaps we were not able to find the best combination of points
to obtain a better attack than in the first-order case. Furthermore, these results show that
for this first register we could determine eight bits of the key (in bitsliced format) much
faster than targeting the SubBytes operation, where we needed more than 200,000 traces.
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Figure 17. First ARK CPA attack on byte 1 (masked implementation).

Comparing Figure 18 to Figure 10 and Figure 19 to Figure 11, we notice the masked
implementation ARK attack manages to recover some of the bytes, whereas the SubBytes
attack fails. This observation stands for both the first-order and the second-order variants
of the attacks. Finally, as an additional example, looking at the third byte (Figure 19), we
notice the number of traces required for a successful attack increases (as expected from the
correlation drop in Figure 14c).
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Figure 18. First ARK CPA attack on byte 2 (masked implementation).
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Figure 19. First ARK CPA attack on byte 3 (masked implementation).

5.2.3. Template Attacks

In Figure 20, we show the results of Template Attacks on the masked bitsliced imple-
mentation, without using any pre-processing; that is, performing the first-order attack. We
can see (perhaps not too surprisingly, given the previous CPA results) that the Template
Attacks can extract one key byte (on the first register) with about 200 traces when targeting
either the SubBytes or ARK operations. For the full key, we need about 300 attack traces
when targeting the SubBytes operation: we see in this case that the SubBytes operation is
overall a better target than the ARK operation, due to its non-linearity.
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Figure 20. Template attack results (masked implementation).

In Figure 21, we take a closer look at the transitions occurring over the next three
bytes. For the first two bytes, the ARK and the SubBytes results using Template Attacks
are very close to each other (Figures 20a,b), although Figures 7c indicate much stronger
correlation values for ARK than SubBytes (three times more). Unsurprisingly, the drop in
the correlation values reported in Figures 14–16c brought forth a decrease in the chances to
attack the following bytes, using the first ARK as the target.

These results show that even a masked implementation of bitsliced AES is vulnerable
to Template Attacks. This is mainly due to the fact that a considerable degree of correla-
tion still exists between the leakage samples corresponding to the masked variables and
the masks and (unfortunately) also between the power traces and the unmasked target
value, as shown by the LDA eigenvectors of the attacks on both the SubBytes and ARK
operations (see Figure 22). Both figures show that the LDA eigenvectors detect the peaks
corresponding to the processing of the target variables, i.e., to the maximal peaks observed
in Figures 7 and 12, respectively. The comparison between the CPA results and the Tem-
plate Attack results reconfirms the higher efficiency of Template Attacks, explained by
the extensive processing involved (considering the entire trace, performing a correlation
between traces using LDA and PCA, including a profiling step).
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Figure 21. Template attack results for different bytes (masked implementation).

Figure 22. First eight LDA eigenvectors of Template Attacks (masked implementation).
Left: SubBytes. Right: ARK.

Nevertheless, analysing both CPA and Template Attack results, we may conclude
that the ARK operation can be more difficult to protect (at least for some registers) with
first-order masking, but overall, the SubBytes operation allows a successful first-order
attack on the full AES key even for the masked implementation. Hence, to increase the
security of our target bitsliced AES implementation we might need higher-order masking
and possibly higher noise, as noted by Standaert et al. [29].

6. Conclusions

In this paper, we presented an extensive analysis of CPA and Template Attacks on
unprotected and protected versions of a bitsliced implementation of AES, targeting a 32-bit
device through the ChipWhisperer side-channel attack platform.

We confirm the vulnerability of bitsliced implementations against power analysis
attacks. In particular, our results show that Template attacks can determine the full AES
key within 20 attack traces when targeting an implementation without countermeasures
and within 300 attack traces when targeting first-order masking, without using any pre-
processing of the traces.

Furthermore, we observed that although the SubBytes operation is overall the best
target, there are a few cases where attacking the AddRoundKey operation is better: (i) Tem-
plate attacks using a single trace; (ii) CPA against the masked implementation.

In summary, we can state that, depending on the chosen attack method (CPA or
Template Attacks) and protection level of the implementation, we should choose between
the SubBytes (CPA on unprotected implementations, Template Attacks on many attack
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traces) and AddRoundKey (CPA on protected implementations and Template Attacks
using a single trace) operations.

Our study could be extended by developing more tailored CPA attacks against the masked
implementation, exploiting the analytical equation of the bitsliced S-BOX implementation.
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