
����������
�������

Citation: Serrano, R.; Duran, C.;

Sarmiento, M.; Pham, C.-K.; Hoang,

T.-T. ChaCha20–Poly1305

Authenticated Encryption with

Additional Data for Transport Layer

Security 1.3. Cryptography 2022, 6, 30.

https://doi.org/10.3390/

cryptography6020030

Academic Editor: Jim Plusquellic

Received: 6 May 2022

Accepted: 14 June 2022

Published: 17 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Article

ChaCha20–Poly1305 Authenticated Encryption with Additional
Data for Transport Layer Security 1.3 †

Ronaldo Serrano * , Ckristian Duran , Marco Sarmiento , Cong-Kha Pham and Trong-Thuc Hoang

Department of Computer and Network Engineering, The University of Electro-Communications (UEC),
Tokyo 182-8585, Japan; duran@vlsilab.ee.uec.ac.jp (C.D.); marco@vlsilab.ee.uec.ac.jp (M.S.);
phamck@uec.ac.jp (C.-K.P.); hoangtt@uec.ac.jp (T.-T.H.)
* Correspondence: ronaldo@vlsilab.ee.uec.ac.jp
† This paper is an extended version of our paper published in 18th International SoC Design Conference in Korea

(ISOCC 2021), Jeju, Korea, 6–9 October 2021.

Abstract: Transport Layer Security (TLS) provides a secure channel for end-to-end communications in
computer networks. The ChaCha20–Poly1305 cipher suite is introduced in TLS 1.3, mitigating the side-
channel attacks in the cipher suites based on the Advanced Encryption Standard (AES). However, the
few implementations cannot provide sufficient speed compared to other encryption standards with
Authenticated Encryption with Associated Data (AEAD). This paper shows ChaCha20 and Poly1305
primitives. In addition, a compatible ChaCha20–Poly1305 AEAD with TLS 1.3 is implemented
with a fault detector to reduce the problems in fragmented blocks. The AEAD implementation
reaches 1.4-cycles-per-byte in a standalone core. Additionally, the system implementation presents
11.56-cycles-per-byte in an RISC-V environment using a TileLink bus. The implementation in Xilinx
Virtex-7 XC7VX485T Field-Programmable Gate-Array (FPGA) denotes 10,808 Look-Up Tables (LUT)
and 3731 Flip-Flops (FFs), represented in 23% and 48% of ChaCha20 and Poly1305, respectively.
Finally, the hardware implementation of ChaCha20–Poly1305 AEAD demonstrates the viability of
using a different option from the conventional cipher suite based on AES for TLS 1.3.

Keywords: ChaCha20; Poly1305; TLS; RISC-V

1. Introduction

The cryptography algorithms are used in secure end-to-end communications, encrypt-
ing the data to reduce attacks on vital information. Currently, the cipher suite most used in
communications is based on Advanced Encryption Standard (AES). However, Transport
Layer Security (TLS) added the ChaCha20 cipher suite, generating another options that are
different from the AES algorithm with more bit rate [1,2] and side-channel resistance [3] in
software implementation. Additionally, TLS defines the new Authenticated Encryption
with Associated Data (AEAD) using the ChaCha20 cipher with Poly1305 for a message
authentication code [4].

The software implementations of ChaCha20 and Poly1305 primitives are optimized for
the high performance and protection of side-channel attacks [5–11]. However, the software
implementation generates a limitation in terms of bit rate in the TLS application. As such,
some approaches have been explored to increase the bit rate of the AEAD implementation.
For example, the in-memory implementations of ChaCha20 improve the bit rate and the
security for side-channel attacks [12]. Finally, the hardware implementations provide a high
bit rate compared to other implementations. However, the few hardware implementations
cannot provide a full implementation of the AEAD compatible with TLS 1.3.

The state-of-the-art of hardware implementations of ChaCha20–Poly1305 AEAD is
divided into two parts. First, the academic implementations provide different topologies
for the ChaCha20–Poly1305 AEAD and the primitives in FPGA and ASIC implementation.

Cryptography 2022, 6, 30. https://doi.org/10.3390/cryptography6020030 https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography6020030
https://doi.org/10.3390/cryptography6020030
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0000-0002-5501-0914
https://orcid.org/0000-0003-3746-8320
https://orcid.org/0000-0002-3544-8839
https://orcid.org/0000-0001-5255-4919
https://orcid.org/0000-0002-4078-0836
https://doi.org/10.3390/cryptography6020030
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography6020030?type=check_update&version=1

Cryptography 2022, 6, 30 2 of 12

Pfau et al. [13] propose a scalable ChaChaX implementation in FPGA, using register, mem-
ory, and pipeline implementations in the quarter round (QR). Henzen et al. [14] presented
the Very Large Scale Integration (VLSI) implementation of Salsa20 and ChaCha stream
cipher. Kermani et al. [15] implemented a ChaCha20 and proposed hardware for detect-
ing faults in the cipher. Kanda et al. [16] reported low-area high-throughput ChaCha20
and Poly1305 primitives and the AEAD construction in FPGA and ASIC implementation.
Second, different intellectual properties (IPs) of the primitives and AEAD construction are
provided for the industry. For example, Rambus [17,18] provides a hardware solution for
ChaCha20 and Poly1305 with the possibility of compatibility with TLS 1.3. Silex Insight [19]
offers a ChaCha20–Poly1305 AEAD crypto-accelerator with Direct Memory Access (DMA).

This work extends the previous implementation [20] when an approach of ChaCha20–
Poly1305 AEAD compatible with TLS 1.3 specification is shown. The main contribution of
the current work is the complete implementation of the ChaCha20–Poly1305 AEAD in a
system capable of using the TLS 1.3, solving problems in the fragment blocks generated
in the typical application. In addition, the ChaCha20 and Poly1305 primitives used in the
ChaCha20–Poly1305 AEAD construction are explained. The AEAD construction occupies
a 10808-LUT and 3731-FF in an FPGA implementation with 1.4-cycles-per-byte in a stan-
dalone implementation, increasing the throughput 15× with 75% of overhead resources in
comparison with the related work [16]. Additionally, the AEAD is implemented in an RISC-
V environment presenting 11.56-cycles-per-byte using a TileLink bus. The comparison with
a software implementation in an RISC-V environment shows an bit rate increase of 1104%.
Finally, the AEAD implementation is compared with other implementations based on AES
compatible with TLS, demonstrating the viability of the hardware solution.

The remainder of this paper is organized as follows. Section 2 related the importance of
the TLS in secure end-to-end communications and the use of the ChaCha20–Poly1305 AEAD
in the protocol. Sections 3 and 4 show the algorithm and the hardware implementation
of ChaCha20 and Poly1305 primitives, respectively. Section 5 presents the construction of
the AEAD with the fault detector. In addition, the system used to measure the software
and hardware implementation of the ChaCha20–Poly1305 AEAD in TLS 1.3. Section 6
shows the results of the ChaCha20, Poly1305, and the AEAD in an FPGA implementation.
In addition, the results of the hardware implementation are compared with a software
implementation in an RISC-V environment. Finally, Section 7 summarizes the paper.

2. Transport Layer Security

Transport Layer Security (TLS) is the most used protocol for providing end-to-end
secure channels in computer networks [21]. The Internet Engineering Task Force (IETF)
released the standard of TLS. Figure 1 illustrates the TLS percentage of use in websites,
reporting 79.4% in the first quarter of 2022 [22], and showing that TLS 1.2 represents
approximately half of the use in websites during this period. In addition, the use of TLS 1.3
increased by 600% in use compared to the last year, demonstrating the importance of the
new specification in secure end-to-end communications.

In the previous version of TLS, the RC4–MD5, RC4–SHA, and AES–CBC cipher suites
were used [23]. However, in TLS 1.3, the cipher suites based on RC4 were removed. In addi-
tion, the ChaCha20–Poly1305 cipher suite was introduced in the protocol to increase the per-
formance and resistance of side-channel attacks in software implementations. As such, the
cipher suites used in the current version of TLS are AES–GCM [24,25], AES–CCM [26,27],
and ChaCha20–Poly1305 [28]. Figure 2 shows the handshake protocol in TLS 1.3. First, the
client and server interchange the keys and certificates to establish the connection. When the
connection is authenticated, the secure channel is created to exchange information using
the AEAD cipher suite selected in the handshake. The speed of the channel mostly depends
on the bit rate of the AEAD used in the data exchange.

Cryptography 2022, 6, 30 3 of 12

0

5

10

15

20

25

30

35

40

45

50

Pe
rc

en
ta

ge
 o

f u
se

 in
 w

eb
si

te
s

[%
]

2016 2017 2018 2019 2020 2021 2022
Year

TLS 1.2

TLS 1.3

Figure 1. Transport Layer Security percentage of use in websites.

Client Server

- Create private and public key.

- List of cipher suites.
- Client public key (ECDHE).
- Signature of the algorithm.

Execute

Send

- Create private and public key
(key shared) from the private
key.
- Generate a master key.
- Hashed master key.
- Sign the certificate.
- Cipher suites selected.
- Group key shared ECDHE.
- Signature algorithm selected.

- Verify the certificate.
- Generate the master key from
the public server and client
private key

- Data exchange.

- Data exchange.

- Data exchange.

Client hello Server hello

 Data exchange using AES-GCM,
AES-CCM or ChaCha20-Poly1305.

Figure 2. Transport Layer Security 1.3 handshake protocol.

3. ChaCha20
3.1. Algorithm

The ChaCha20 cipher is based on the Salsa20 algorithm [29]. Initially, the algorithm
generates an initial matrix (IM) using a 256-bit key, a 32-bit initial counter, a 96-bit nonce, and
four constants defined in the documentation [28]. The IM has 512 bits and is represented
by a 4x4 matrix wherein each matrix entry is interpreted as a 32-bit unsigned integer.
Furthermore, the organization of IM is in little-endian form. The illustration of the matrix
is as follows (1).

IM =


61707865 3320646e 79622d32 6b206574

Key0 Key1 Key2 Key3
Key4 Key5 Key6 Key7

Counter Nonce0 Nonce1 Nonce2

 (1)

Cryptography 2022, 6, 30 4 of 12

Algorithm 1 shows the ChaCha20 cipher suite. Initially, an operation matrix (OM)
is initialized with the values of IM. The ChaCha20 algorithm applies ten double-rounds
to the internal state OM, wherein each double-round consists of eight applications of the
quarter-round function. The rounds are finalize when all the states are updated in OM.
The result of the QR operation is saved in the same position as the state taken by the
input. Finally, the keystream is obtained by adding the IM and OM. In another way, the
decryption process is an identical encryption operation that uses the same keystream and
cipher stream. Additionally, the counter value is incremented by one per block of plaintext
processed to obtain the next IM.

Algorithm 1 ChaCha20 cipher suite algorithm

Require: K∈(0, 1)256,N∈(0, 1)96,C∈(0, 1)32, PT∈(0, 1)∗

Ensure: CT = ChaCha20(K, N, C, PT)
1: IM ← Init(K, N, C) . The Initial matrix is organized as (1).
2: for x ← 0 to ([P/512]− 1) do
3: OM ← IM
4: for y← 0 to 9 do
5: OM[0, 4, 8, 12] ← QR(OM[0, 4, 8, 12])
6: OM[1, 5, 9, 13] ← QR(OM[1, 5, 9, 13])
7: OM[2, 6, 10, 14]← QR(OM[2, 6, 10, 14])
8: OM[3, 7, 11, 15]← QR(OM[3, 7, 11, 15])
9: OM[0, 5, 10, 15]← QR(OM[0, 5, 10, 15])

10: OM[1, 6, 11, 12]← QR(OM[1, 6, 11, 12])
11: OM[2, 7, 8, 13] ← QR(OM[2, 7, 8, 13])
12: OM[3, 4, 9, 14] ← QR(OM[3, 4, 9, 14])
13: end for
14: S← Serialize(OM + IM)
15: for z← 0 to 511 do
16: CT[512x + z]← PT[512x + z]⊕ S[z]
17: end for
18: IM[12]← IM[12] + 1 . Update the value of the counter in the Initial Matrix.
19: end for
20: return CT

The column and diagonal rounds consist of the QR function (A, B, C, D) = QR
(a, b, c, d) which acts on the state as follows (2). The addition denoted in the QR algo-
rithm is a carry-less addition on a 32-bit word.

x = a + b; y = (d⊕ x) ≪ 16;
w = x + y; z = (b⊕ w) ≪ 12;
A = x + f ; D = (y⊕ A) ≪ 8;
C = w + D; B = (z⊕ C) ≪ 7;

 (2)

3.2. Hardware Implementation

Figure 3 shows the implementation of the ChaCha20 primitive. The ChaCha20 im-
plementation is divided into two parts. First, a BlockFunction highlighted in blue takes a
256-bit key, 96-bit nonce, and 32-bit counter to generate an IM in the Initial regs. The states
of the IM are organized in little-endian form. The Operation regs then obtains the initial
states of the Initial regs. All matrices have 16 states, and each state is a 32-bit register. A
Finite State Machine (FSM) highlighted in red runs the 20 rounds using the QR modules.
The ChaCha20 primitive can have 1, 2, and 4 quarter-round operations in parallel to the
round. However, the ChaCha20 algorithm presents the impossibility of paralleling be-
tween the column and diagonal rounds. As such, the maximum number of quarter-round
operations is four. The FSM controls the input of the quarter-round operators in each
column and diagonal round, respectively. Each round only depends on the result of the

Cryptography 2022, 6, 30 5 of 12

previous rounds in OM. In addition, the Init and Next signals indicate the start of the
process and the next 512-bits to processing, respectively. After 20 rounds, the Matrix Adder
obtains the final matrix (FM), adding the Initial regs and Operation regs. Second, a Crypto
Function highlighted in green takes the FM generated in the Block f unction. The 512-bit of
Cipher Text is obtained by the XOR operation between FM and the Plain Text. When the
crypto-function is finished, a Valid signal is triggered.

Figure 4 illustrates the QR operation. The inputs a, b, c, and d correspond to one stage
in Operation regs. The QR operation consists of four Add-Rotate-XOR (ARX) cells [13,14].
The rotate operation highlighted in red is implemented without combinational logic to
reduce the delay in the ARX cell, replacing the operation with a wire permutation.

Initial regs

FSM

Matrix Adder

Serializer

Crypto Function

QR_0 QR_1 QR_2 QR_3

Operation regs

Plain Text
Cipher Text

To
Little

Endian

Key

Nonce

Counter

Init

Next

Ready

FSM

Block Function

96

256

32

512

512

Figure 3. Architecture of the ChaCha20 primitive [20].

a

b

c

d

add

<<<
16

add

<<<
12

add

<<<
8

add

<<<
7

A

B

C

D

ARX cell ARX cell ARX cell ARX cell

Figure 4. Quarter-round operation [20].

4. Poly1305
4.1. Algorithm

The Poly1305 algorithm is a one-time authenticator using a 32-byte one-time key
and an arbitrary-length message to obtain a 16-byte message authentication code (MAC).
Algorithm 2 shows the Poly1305 authenticator algorithm. Initially, the key is partitioned
into two parts denoted s and r, respectively. The pair (s,r) should be unique and un-
predictable for each call of the Poly1305 algorithm. However, the r and s are possible
to generate pseudorandomly. Furthermore, r can possibly have a constant but needs to
be modified [28]. Pad1305 takes the message’s length and divides the arbitrary length
message in q fragments of 16 bytes. The arbitrary-length message is read in little-endian
format, and the r is clamped. Then, the clamp function clears some bits of r, such that
r̄ = r0 + r1 + r2 + r3—where r0 ∈ {0, 1, 2, . . . , 228 − 1}, r1/232 ∈ {0, 4, 8, . . . , 228 − 4},
r1/264 ∈ {0, 4, 8, . . . , 228 − 4}, and r1/296 ∈ {0, 4, 8, . . . , 228 − 4}. The accumulator h is

Cryptography 2022, 6, 30 6 of 12

initialized, adding the result of the polynomial (3). Furthermore, the MAC is truncated in
128 bits.

T =

(
q

∑
i=1

mir−q−i+1 mod 2130 − 5

)
+ s mod 2128 (3)

Algorithm 2 Poly1305 authenticator algorithm

Require: K ∈ (0, 1)256, M ∈ (0, 1)L, L ∈ N
Ensure: MAC = Poly1305(K, M, L)

1: (r, s)← K
2: m = (m1, . . . , mq)← Pad1305(L)
3: r̄ ←Clamp(r)
4: h← 0
5: for i← 0 to (q− 1) do
6: h← h + Polynomial (m, r̄, q, i)
7: end for
8: MAC ← h + s mod 2128

9: return MAC

4.2. Hardware Implementation

Figure 5 shows the implementation of the Poly1305 core divided into two parts.
First, a PBlock highlighted in blue generates an initial r and s, using the 256-bit of the
key. The 128-bit of Block is then operated using a Multi-Multiplier and Accumulator
(MulAcc), reproducing the polynomial described in (3). The MulAcc implementation
consists of a 32-bit unsigned multiplier with a 32-bit accumulator. The Poly1305 primitive
has four MulAcc in the architecture, processing the 128-bit of the block in one cycle. The
documentation [28] determines that the length of the message is arbitrary. As such, the
core processes 128 bits in each step. The signal Block len indicates the numbers of bytes in
each Block. Additionally, an FSM highlighted in red controls all Block of the message to
authenticate and the MulAcc interaction. The signal Init and Next indicate the start of the
new message process and another Block of the message, respectively. When the last part of
the message is introduced, the Finish signal is triggered to run the end MulAcc operation.
Consequently, the data are pushed to the Final Block. Second, the Final Block highlighted
in green takes the data accumulation and s, generating the MAC. The MAC is obtained by
adding the s and the data accumulation generated with each MulAcc. Furthermore, the
result of the sum is truncated into 128 bits. Finally, the signal Ready indicates that the MAC
has been generated.

FSM

MulAcc
MulAcc MulAcc

MulAcc

Initial
State

FSM

PBlock
128

256

5

(h,m,r) regs

Final Block
128

Key

Block

Block len

Init

Next

Finish

Ready

MAC

Figure 5. Architecture of Poly1305 primitive [20].

5. System Implementation

In this section, we describe the system used to measure the performance of the imple-
mentation and the ChaCha20–Poly1305 AEAD peripheral. In the AEAD implementation, a
filter is implemented to mitigate the fault in fragmented blocks in the plaintext.

Cryptography 2022, 6, 30 7 of 12

5.1. SoC Implementation

Figure 6 illustrates the overview architecture of the system used to implement the
AEAD construction [30]. The system consists of a Rocket core [31], a 4-KB ROM, an SPI,
and the different interruption platforms. In addition, the system uses a TileLink protocol
for the system (SBUS) and peripheral (PBUS) buses [32]. The system contains 1 GB of a
Double-Data-Rate (DDR) controller. This controller is driven by an Advanced Extensible
Interface 4 (AXI4) bus [33], converted from the memory-channel bus (MBUS).

TILELINK SYSTEM BUS (SBUS)

TILELINK PERIPHERAL BUS (PBUS)

DDR
controller

Sys.
PLIC

SPI (as
MMC)

ROCKET (0)
I$ D$

MBUS

ChaCha20-Poly1305
AEAD

TL to AXI4

Sys.
CLINT

ROM ETHERNET

Figure 6. Block diagram of the RISC-V environment.

5.2. ChaCha20–Poly1305 AEAD

Figure 7 illustrates the implementation of the ChaCha20–Poly1305 AEAD peripheral.
The standard determines an AEAD construction using a 256-bit key, 96-bit nonce, an
arbitrary length of plaintext, and an arbitrary length of Additional Authenticated Data
(AAD) [28]. The AEAD implementation uses a TileLink bus in the RISC-V environment
described in Section 5.1. The peripheral consists of the ChaCha20 and Poly1305 primitives
highlighted in blue and green, respectively.

Additionally, an FSM highlighted in red controls the internal signals of the ChaCha20
and Poly1305 primitives in the peripheral for the correct functionality. Finally, the im-
plementation needs an accumulator and filter to introduce a final block in the Poly1305
primitive and when the plaintext is not a multiple of 512 bits, respectively.

TI
LE

LI
N

K
 P

ER
IP

H
ER

A
L

 B
U

S
(P

BU
S)

Register router

96b W

256b W

512b R

 ChaCha20

5b W/R FSM

Poly1305

Key
Nonce Init NextCounter

Control AEAD

128b R

1b W
Encrypt

128b W
AAD

Block
MAC

Init Next Finish

512b W Plaintext Ciphertext Cipher Text
Register

FSM

Accumulator & Filter

Key

Cipher Text
[0:255]

7b W
Block length

Accumulator &
Filter

Ready

Ready

Plaintext

Figure 7. Architecture of the AEAD construction.

Figure 8 illustrates the functionality of the AEAD peripheral in the RISC-V environ-
ment. Steps 1–7 describe the conventional operation with the system memory. The first step
defines the initial configuration of the AEAD in decryption or encryption depending on the
scenario. In AEAD construction, a one-time key is used in the Poly1305 primitive with two

Cryptography 2022, 6, 30 8 of 12

options for creation in the second step. A pseudo-random number generator creates the
one-time key. In another way, the ChaCha20 primitive is used with the same key and nonce
of the keystream. However, the counter and the plaintext of the ChaCha20 are initialized
by zero. The one-time key is the first 255 bits of ciphertext generated for the ChaCha20
primitive. Additionally, the AAD and length in bytes are introduced and processed in
the Poly1305 primitive and the accumulator, respectively. One bit in the signal Control
AEAD indicates that the AEAD construction is ready for the next block when the block is
processed. Furthermore, the last block of the AAD is indicated with one bit in the signal
Control AEAD in the peripheral. Steps 3–5 describe the AEAD process to generate the
ciphertext or plaintext in the encryption or decryption mode of the implementation. The
mode of the AEAD implementation is defined in the signal Encrypt in the peripheral. The
counter of the ChaCha20 primitive starts in one of the first blocks processed, and the plain-
text length is necessary per each block introduced. When the final block of the plaintext is
not a multiple of 512 bits, the peripheral filter of the response of the ChaCha20 eliminates
the extra bits generated in the rounds of the primitive. In each result of the ChaCha20
primitive, the results are introduced in the Poly1305 primitive in blocks of 128 bits. Step 6
introduces the final block in the Poly1305 primitive. The final block consists of the result of
the accumulator in the peripheral. When the first part is the length of the ADD, and the
second part is the length of the plaintext blocks. Finally, the MAC is generated in step 7.

AEAD
INIT

Plaintext

Stack

Free

AEAD
Crypto
Accel.

System
Main

Memory
(DDR)

AEAD
ChaCha
Auto-Key

AEAD
Process

AEAD
Process

0x64000000

0x80000000

Plaintext

OVERALL
SYSTEM

CTRL
CONFIG

Step 1 Step 2 Step 3 Step 4

 CTRL
INIT

AEAD
FINISH

Nonce

Plaintext

Stack

Free Stack

Ciphertext

Free

AEAD
NEXT

Plaintext

Stack

AEAD
Process

Filter

Step 5

AEAD
FINISH

Plaintext

Stack

512-bits Plaintext

Ciphertext

AEAD
MAC

Process

Step 6

AEAD
WAIT

Plaintext

Stack

Ciphertext

AAD

Key
Nonce
AAD

Plaintext
Key

Nonce
AAD

Key
Nonce
AAD

Plaintext

Nonce
AAD

Nonce
AAD

Key
Nonce
AAD

Plaintext

MAC

Ciphertext

Free

MAC

Key
Nonce
AAD

Plaintext

512-bits

L < 512-bits

512-bits

Key
Nonce
AAD

Plaintext

Free

MAC
L < 512-bits

Free

MAC

AEAD
MAC

Process

Step 7

AEAD
READY

Plaintext

Stack

Ciphertext

Key
Nonce
AAD

Plaintext

Free

MAC

512-bits

Nonce
AAD

Nonce
AAD

Nonce
AAD

Nonce
AAD

MAC MAC

Key

MAC MAC MAC MAC MAC

Key Key Key Key Key Key

Ciphertext Ciphertext Ciphertext Ciphertext Ciphertext Ciphertext Ciphertext

Figure 8. Functionality of the AEAD peripheral into the RISC-V system.

6. Results and Discussion

This section shows the implementation results in Xilinx Virtex-7 XC7VX485T FPGA.
The bit rate of ChaCha20, Poly1305, and the AEAD hardware implementations are com-
pared with the software implementation in an RISC-V environment. Finally, the AEAD
construction is compared with the related works and the cipher suites based on AES
in TLS 1.3.

Figure 9 illustrates the performance comparison between the software and hardware
implementations. The performance of the ChaCha20, Poly1305, and AEAD hardware
implementations increased by 968%, 195%, and 1104% compared to the software imple-
mentation. The software implementation runs in an RISC-V environment using one rocket
core [31]. The AEAD implementation result is compared in encryption mode with 16 bytes
of AAD.

Cryptography 2022, 6, 30 9 of 12

ChaCha20-Poly1305
AEAD

ChaCha20 Poly1305

Ti
m

e
[μ
s]

0

100

200

300

400

500

600
Software
Hardware

Figure 9. Software and hardware comparison in an RISC-V environment.

Table 1 shows the results of the ChaCha20–Poly1305 AEAD implemented in FPGA.
The standalone AEAD presents a 1.4-cycles/byte with 10808-LUT and 3731-FF, using 4-QR
and 4-MulAcc modules in the ChaCha20 and Poly1305 primitives, respectively. In addition,
the performance with the RISC-V environment is 11.56-cycles/byte. The performance of
the AEAD implementation with the system considers the cycles of the process, the control
signals, and the data movement in the TileLink bus in the system implemented. The AEAD
in a standalone implementation increases the performance by 15× with an overhead of
75.08% of resources. The time for the control signals and the movement of the TileLink bus
represents 70.32% of overhead compared to the standalone AEAD implementation. The
performance is obtained by 5 MB of data, using 16 bytes of AAD. The principal differences
of the related work are the Accumulator and Filter sub-modules, removing the errors in
fragmented blocks and the performance of each primitive in the AEAD implementation.

Table 1. Performance summary and comparison in FPGA.

Slices Performance
(Cycles/Byte)

Module LUT FF Total Standalone System

This work 10,808 3731 14,539 1.4 11.56 ‡

[16] 3383 4921 8304 21.26 † N/A

[20] 7897 4840 12,737 N/A 21.50 ‡

† Measured with 8 bytes of AAD. ‡ Measured in the same system.

Table 2 shows the comparison in FPGA implementation with the other cipher suites
of TLS 1.3. The AES implementations present a relatively high performance in terms of
resource utilization compared to ChaCha20–Poly1305. However, the high throughput
implementations use a parallel AES core [24,27]. The standalone implementation of AES-
GCM [25] reports an improvement of 324% in cycles-per-byte operation using tower field
optimizations in the AES module. However, the ChaCha20–Poly1305 reports an increase of
166% of cycles-per-byte in the system implementation. The ChaCha20–Poly1305 depicts
0.948 Gpbs in the standalone implementation with 3034 slices, demonstrating competitive
performance resources with the AES-based cipher suites.

Cryptography 2022, 6, 30 10 of 12

Table 2. Summary and comparison results with the others’ cipher suites in TLS 1.3

Module Device

Resources Utilization Standalone
Imp.

System
Imp.

LUT
FF

Slices
BRAM

Max. Freq.
(MHz)

Througput
(Gbps)

Cycles/
Byte

Cycles/
Byte

This
work

ChaCha20
Poly1305

Virtex7
C7VX485T

10,808
3731

3034
0

166 0.948 1.4 11.56

[24] AES-GCM Virtex7
—
—

4194
40

125 ‡ 4 * — —

[25] AES-GCM
Cyclone V

5CSEMA4U23C6
4572
2407

—
0

36.46 0.275 1.058 19.19

[26] AES-CCM
Artix7

XC7A200TL
—
—

554
76

177 0.119 11.89 —

[27] AES-CCM
Virtex4

XC4VLX40
1995

0
1200

18
152 1.951 * 0.635 —

‡ Max. Frequency obtained with synthesis results. * Parallel AES implementation.

7. Conclusions

In this paper, we introduced the implementation of the ChaCha20 and Poly1305
hardware primitives in addition to a compatible ChaCha20–Poly1305 AEAD construc-
tion with TLS 1.3. The proposed AEAD implementation eliminates the faults introduced
by a fragmented block. In addition, the function of the length of the plaintext and the
AAD are supported. The accumulator and filter reduce the number of transactions in the
bus, increasing 85.76% of the performance in the system implemented with a 14.14% area
overhead, using the same system in the previous work. In comparison with the related
works, the performance of the AEAD is 1.4 and 11.56-cycles/byte in standalone and system
implementations, increasing the performance by 1517% in the standalone implementation.
Furthermore, the resources occupied a 10808-LUT and 3731-FF in FPGA implementation
with an overhead of 75.08%. The performance reduction for integrating the AEAD into an
RISC-V environment using a Tile Link bus is 70.32% compared to the standalone implemen-
tation. Finally, the ChaCha20–Poly1305 implementation is compared with another AEAD
used in TLS 1.3, demonstrating the competitive performance resources with the AES-based
cipher suites.

Author Contributions: Supervision, C.-K.P., C.D., and T.-T.H.; methodology, R.S. and M.S.; investi-
gation, R.S.; writing—original draft preparation, R.S.; writing—review and editing, R.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the New Energy and Industrial Technology Development
Organization (NEDO) project JPNP16007.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: This paper is based on results obtained from project JPNP16007, commissioned
by the New Energy and Industrial Technology Development Organization (NEDO).

Conflicts of Interest: The authors declare no conflict of interest.

Cryptography 2022, 6, 30 11 of 12

References
1. Lim, J.P.; Nagarakatte, S. Automatic Equivalence Checking for Assembly Implementations of Cryptography Libraries. In

Proceedings of the IEEE/ACM International Symposium on Code Generation and Optimization (CGO), Washington, DC, USA,
16–20 February 2019; pp. 37–49.

2. Saraiva, D.A.F.; Leithardt, V.R.Q.; de Paula, D.; Mendes, A.S.; González, G.V.; Crocker, P. PRISEC: Comparison of Symmetric Key
Algorithms for IoT Devices. Sensors 2019, 19, 4312. [CrossRef] [PubMed]

3. Najm, Z.; Jap, D.; Jungk, B.; Picek, S.; Bhasin, S. On Comparing Side-channel Properties of AES and ChaCha20 on Microcontrollers.
In Proceedings of the IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Chengdu, China, 26–30 October
2018; pp. 552–555.

4. Rescorla, E. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446, August 2018. Available online: https://datatracker.
ietf.org/doc/html/rfc8446 (accessed on 10 June 2022).

5. Almeida, J.B.; Barbosa, M.; Barthe, G.; Grégoire, B.; Koutsos, A.; Laporte, V.; Oliveira, T.; Strub, P.-Y. The Last Mile: High-
Assurance and High-Speed Cryptographic Implementations. In Proceedings of the IEEE Symposium on Security and Privacy
(SP), San Francisco, CA, USA, 18–21 May 2020; pp. 965–982.

6. De Santis, F.; Schauer, A.; Sigl, G. ChaCha20-Poly1305 Authenticated Encryption for High-speed Embedded IoT Applications. In
Proceedings of the Design, Automation & Test in Europe Conference Exhibition (DATE), Lausanne, Switzerland, 27–31 March
2017; pp. 692–697.

7. Jungk, B.; Bhasin, S. Do not Fall Into a Trap: Physical Side-channel Analysis of ChaCha20-Poly1305. In Proceedings of the Design,
Automation & Test in Europe Conference Exhibition (DATE), Lausanne, Switzerland, 27–31 March 2017; pp. 1110–1115.

8. Lavaud, A.D.; Fournet, C.; Kohlweiss, M.; Protzenko, J.; Rastogi, A.; Swamy, N.; Beguelin, S.Z.; Bhargavan, K.; Pan, J.;
Zinzindohoue, J.K. Implementing and Proving the TLS 1.3 Record Layer. In Proceedings of the IEEE Symposium on Security and
Privacy (SP), San Jose, CA, USA, 22–26 May 2017; pp. 463–482.

9. Islam, M.M.; Paul, S.; Haque, M.M. Reducing Network Overhead of IoT DTLS Protocol Employing ChaCha20 and Poly1305.
In Proceedings of the International Conference of Computer and Information Technology (ICCIT), Dhaka, Bangladesh,
22–24 December 2017; pp. 1–7.

10. Barthe, G.; Cauligi, S.; Grégoire, B.; Koutsos, A.; Liao, K.; Oliveira, T.; Priya, S.; Rezk, T.; Schwabe, P. High-Assurance
Cryptography in the Spectre Era. In Proceedings of the IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA,
24–27 May 2021; pp. 1884–1901.

11. Sadio, O.; Ngom, I.; Lishou, C. Lightweight Security Scheme for MQTT/MQTT-SN Protocol. In Proceedings of the Interna-
tional Conference on Internet of Things: Systems, Management and Security (IOTSMS), Granada, Spain, 22–25 October 2019;
pp. 119–123.

12. Aamir, M.; Sharma, S.; Grover, A. ChaCha20-in-Memory for Side-Channel Resistance in IoT Edge-Node Devices. IEEE Open J.
Circ. Syst. 2021, 2, 833–842. [CrossRef]

13. Pfau, J.; Reuter, M.; Harbaum, T.; Hofmann, K.; Becker, J. A Hardware Perspective on the ChaCha Ciphers: Scalable
Chacha8/12/20 Implementations Ranging from 476 Slices to Bitrates of 175 Gbit/s. In Proceedings of the IEEE International
System-on-Chip Conference (SOCC), Singapore, 3–6 September 2019; pp. 294–299.

14. Henzen, L.; Carbognani, F.; Felber, N.; Fichtner, W. VLSI Hardware Evaluation of the Stream Ciphers Salsa20 and ChaCha,
and the Compression Function Rumba. In Proceedings of the International Conference on Signals, Circuits and Systems (SCS),
Monastir, Tunisia, 7–9 November 2008; pp. 1–5.

15. Kermani, M.M.; Azarderakhsh, R.; Aghaie, A. Fault Detection Architectures for Post-Quantum Cryptographic Stateless Hash-
Based Secure Signatures Benchmarked on ASIC. ACM Trans. Embed. Comput. Syst. 2017, 16, 1–19. [CrossRef]

16. Kanda, G.; Ryoo, K. High-Throughput Low-Area Hardware Design of Authenticated Encryption with Associated Data Cryp-
tosystem that Uses ChaCha20 and Poly1305. Int. J. Recent Technol. Eng. 2019, 8, 86–94.

17. Rambus Inc. Cipher Accelerators: CHACHA-IP-13 ChaCha20 Accelerators, 2021. Available online: https://www.rambus.com/
security/crypto-accelerator-hardware-cores/basic-crypto-blocks/chacha-ip-13/ (accessed on 10 June 2022).

18. Rambus Inc. Hash Accelerators: POLY-IP-53 Poly1305-based MAC Accelerators, 2021. Available online: https://www.rambus.
com/security/crypto-accelerator-hardware-cores/basic-crypto-blocks/poly-ip-53/ (accessed on 10 June 2022).

19. SilexInsight. ChaCha20-Poly1305 AEAD Crypto Engine, 2021. Available online: https://www.silexinsight.com/products/
security/chacha20-poly1305-ip-core/ (accessed on 10 June 2022).

20. Serrano, R.; Duran, C.; Hoang, T.-T.; Sarmiento, M.; Tsukamoto, A.; Suzaki, K.; Pham, C.-K. ChaCha20-Poly1305 Crypto Core
Compatible with Transport Layer Security 1.3. In Proceedings of the International SoC Design Conference (ISOCC), Jeju Island,
Korea, 6–9 October 2021; pp. 17–18.

21. Li, J.; Chen, R.; Su, J.; Huang, X.; Wang, X. ME-TLS: Middlebox-Enhanced TLS for Internet-of-Things Devices. IEEE Internet
Things J. 2019, 7, 1216–1229. [CrossRef]

22. W3 Techs. Usage Statistics of Default Protocol Https for Websites, May 2022. Available online: https://w3techs.com/technologies/
details/ce-httpsdefault (accessed on 10 June 2022).

23. Rescorla, E.; Dierks, T. The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246, August 2008. Available online:
https://datatracker.ietf.org/doc/html/rfc5246 (accessed on 10 June 2022).

http://doi.org/10.3390/s19194312
http://www.ncbi.nlm.nih.gov/pubmed/31590354
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc8446
http://dx.doi.org/10.1109/OJCAS.2021.3127273
http://dx.doi.org/10.1145/2930664
https://www.rambus.com/ security/crypto-accelerator-hardware-cores/basic-crypto-blocks/chacha-ip-13/
https://www.rambus.com/ security/crypto-accelerator-hardware-cores/basic-crypto-blocks/chacha-ip-13/
https://www.rambus.com/ security/crypto-accelerator-hardware-cores/basic-crypto-blocks/poly-ip-53/
https://www.rambus.com/ security/crypto-accelerator-hardware-cores/basic-crypto-blocks/poly-ip-53/
https://www.silexinsight.com/products/security/ chacha20-poly1305-ip-core/
https://www.silexinsight.com/products/security/ chacha20-poly1305-ip-core/
http://dx.doi.org/10.1109/JIOT.2019.2953715
https://w3techs.com/technologies/ details/ce-httpsdefault
https://w3techs.com/technologies/ details/ce-httpsdefault
https://datatracker.ietf.org/doc/html/rfc5246

Cryptography 2022, 6, 30 12 of 12

24. Rodríguez, M.; Astarloa, A.; Lázaro, J.; Bidarte, U.; Jiménez, J. System-on-Programmable-Chip AES-GCM implementation for
wire-speed cryptography for SAS. In Proceedings of the Conference on Design of Circuits and Integrated Systems (DCIS), Lyon,
France, 14–16 November 2018; pp. 1–6.

25. Koteshwara, S.; Das, A.; Parhi, K.K. Architecture Optimization and Performance Comparison of Nonce-Misuse-Resistant
Authenticated Encryption Algorithms. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019, 27, 1053–1066. [CrossRef]

26. Hoang, V.-P.; Phan, T.-T.-D.; Dao, V.-L.; Pham, C.-K. A compact, ultra-low power AES-CCM IP core for wireless body area networks.
In Proceedings of the International Conference on Very Large Scale Integration (VLSI-SoC), Tallinn, Estonia, 26–28 September
2016; pp. 1–4.

27. Badillo, I.A.; Uribe, C.F.; Cumplido, R.; Sandoval, M.M. FPGA Implementation and Performance Evaluation of AES-CCM Cores
for Wireless Networks. In Proceedings of the International Conference on Reconfigurable Computing and FPGAs (ReConFig),
Cancun, Mexico, 3–5 December 2008; pp. 421–426.

28. Nir, Y.; Langley, A. ChaCha20 and Poly1305 for IETF Protocols. RFC 8439, June 2018. Available online: https://datatracker.ietf.
org/doc/html/rfc8439 (accessed on 10 June 2022).

29. Bernstein, D.J. The Salsa20 Family of Stream Ciphers. In New Stream Cipher Designs: The eSTREAM Finalists; Springer:
Berlin/Heidelberg, Germany, 2008; pp. 84–97.

30. Hoang, T.-T.; Duran, C.; Serrano, R.; Sarmiento, M.; Nguyen, K.-D.; Tsukamoto, A.; Suzaki, K.; Pham, C.-K. Trusted Execution
Environment Hardware by Isolated Heterogeneous Architecture for Key Scheduling. IEEE Access 2022, 10, 46014–46027.
[CrossRef]

31. RISC-V Foundation. Rocket Chip Generator, 2019. Available online: https://github.com/chipsalliance/rocket-chip (accessed on
10 June 2022).

32. SiFive, Inc. SiFive TileLink Specification, August 2019. Available online: https://static.dev.sifive.com/docs/tilelink/tilelink-
spec-1.7-draft.pdf (accessed on 10 June 2022).

33. ARM. AMBA AXI and ACE Protocol Specification; Jan. 2021. Available online: https://developer.arm.com/documentation/ihi0
022/hc?lang=en (accessed on 10 June 2022).

http://dx.doi.org/10.1109/TVLSI.2019.2894656
https://datatracker.ietf.org /doc/html/rfc8439
https://datatracker.ietf.org /doc/html/rfc8439
http://dx.doi.org/10.1109/ACCESS.2022.3169767
https://github.com/chipsalliance/rocket-chip
https://static.dev.sifive.com/docs/tilelink/tilelink-spec-1.7-draft.pdf
https://static.dev.sifive.com/docs/tilelink/tilelink-spec-1.7-draft.pdf
https://developer.arm.com/documentation/ihi0022/ hc?lang=en
https://developer.arm.com/documentation/ihi0022/ hc?lang=en

	Introduction
	Transport Layer Security
	ChaCha20
	Algorithm
	Hardware Implementation

	Poly1305
	Algorithm
	Hardware Implementation

	System Implementation
	SoC Implementation
	ChaCha20–Poly1305 AEAD

	Results and Discussion
	Conclusions
	References

