
Citation: Azzolini, D.; Riguzzi, F.

Probabilistic Logic Models for the

Lightning Network. Cryptography

2022, 6, 29. https://doi.org/10.3390/

cryptography6020029

Academic Editor: Kentaroh Toyoda

Received: 14 April 2022

Accepted: 10 June 2022

Published: 15 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Article

Probabilistic Logic Models for the Lightning Network
Damiano Azzolini * and Fabrizio Riguzzi

Dipartimento di Matematica e Informatica, Università di Ferrara, Via Saragat 1, 44122 Ferrara, Italy;
fabrizio.riguzzi@unife.it
* Correspondence: damiano.azzolini@unife.it

Abstract: The Lightning Network (LN) has emerged as one of the prominent solutions to overcome
the biggest limit of blockchain based on PoW: scalability. LN allows for creating a layer on top
of an existing blockchain where users can send payments and micro-payments without waiting
long confirmation times. One of the key features of LN is that payments can also be sent towards
nodes that are not directly connected. From the routing perspective, the balance of an edge that
connects two nodes is known, but the distribution between the two involved ends is unknown. Thus,
the process of sending payments is based on a trial and error approach, and the routing can be
considered probabilistic. Probabilistic Logic Programming (PLP) is a powerful formalism that allows
the representation of complex relational domains characterized by uncertainty. In this paper, we
study the problem of reasoning about the existence of a path between two nodes that can route a
payment of a given size leveraging multiple models based on PLP. We adopt some recently proposed
extensions of PLP and develop several models that can be adapted to represent multiple scenarios.

Keywords: probabilistic logic programming; Lightning Network; probabilistic modeling

1. Introduction

Since the publication of Nakamoto’s paper in 2008 [1], the blockchain has attracted
increasing interest, both in industry and academia. Defined as a distributed ledger shared
between peers, the blockchain is now one of the most discussed topics in many research
areas, such as telecommunications, economics, and cryptography. Bitcoin was one of the
first protocols leveraging the blockchain to allow theoretically secure transactions between
nodes. These transactions are included into blocks and, to append a block to the blockchain,
a user needs to solve a computationally intensive task called Proof of Work (PoW) that
consists of finding a hash for the desired block that satisfies some constraints. Blocks are
chained together by inserting into these a reference to the previous one. The difficulty of
the PoW increases over time and is dynamically adjusted to have approximately 1 block
appended to the blockchain every 10 minutes. This, on the one hand, is a mechanism that
reduces the probability of tampering since, to modify the content of a block, a user needs to
provide a new PoW for all the blocks between the modified one and the last discovered
block. On the other hand, the PoW is one of the main bottlenecks for the scalability of
Bitcoin (and, in general, blockchains based on PoW). To handle an increasing number
of transactions, several solutions have been proposed, such as the adoption of different
mechanisms not based on PoW [2]. One of these alternative approaches is the Lightning
Network (LN) [3]: with LN, users create a new layer on top of an existing blockchain
where payments can be quickly executed by opening payment channels, locking some
funds in and utilizing these funds for the transactions. One of the key features of LN
channels is that, from the outside, only the total balance of a channel is known, and not the
balance available at the two ends. This is a feature introduced to increase the security of
the network. Payments can also travel from two nodes not directly connected by edges,
through multi-hop payments. The unknown distribution of a channel’s funds makes the

Cryptography 2022, 6, 29. https://doi.org/10.3390/cryptography6020029 https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography6020029
https://doi.org/10.3390/cryptography6020029
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0000-0002-7133-2673
https://orcid.org/0000-0003-1654-9703
https://doi.org/10.3390/cryptography6020029
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography6020029?type=check_update&version=3

Cryptography 2022, 6, 29 2 of 21

problem of path finding probabilistic: the presence of a path between two nodes does not
imply that a payment of a certain size can be successfully routed through it.

Probabilistic Logic Programming (PLP) [4,5] is a powerful formalism to represent
domains with uncertain relations while retaining all the expressive power of LP, and it has
been already applied to solve many different tasks, also in the context of the blockchain [6].
The structure induced by the LN can be considered as a graph. Logic-based languages
are particularly effective in representing relational data and graph structures in general.
Moreover, PLP it is a well studied research field with a lot of different available inference
algorithms whose correctness has been deeply analysed [7]. For this reason, PLP is a perfect
candidate to model the LN.

In this paper, we show how to leverage PLP and its recently published extensions
to model the LN to compute several properties (all the models are available at: https://
bitbucket.org/machinelearningunife/ln_plp_models/src/master/, accessed 1 June 2022).
With PLP it is possible, with a simple representation, to compute the probability that
a payment came from a certain path or to select the optimal node placement and fund
distributions to maximize the routing probability. All these models can also provide
considerations regarding the security and the anonymity of the payments. The main goal
of the paper is to introduce different models and discuss how they can be applied in the
context of LN, and not to provide considerations on its overall structure and topology, as
this has already been considered in related works [8–10]. To test our approaches, we run
some experiments on synthetic datasets that mimic the LN structure with the capacity of
the channels chosen from a snapshot of the real LN.

The paper is structured as follows: Section 2 discusses related work and Section 3 in-
troduces the basic concepts regarding the blockchain and the Lightning Network. Section 4
provides an overview of Logic Programming, Probabilistic Logic Programming, and its
extensions, which are applied to develop the models discussed in Section 5. We tested the
models and discuss some obtainable information in Section 6. Section 7 provides some
final remarks and concludes the paper.

2. Related Work

There are several related works in the context of Lightning Network analysis. In [8], the
authors provide a topological analysis of the LN, identify some features such as the average
shortest path between two nodes and the degree distribution, and study its robustness in
case of edges or node removal. Similar considerations can be found in [9,10].

Several attack vectors driven by nodes and edges configurations have been analysed:
in [11], the authors studied a Denial of Service attack based on the LN routing mechanism;
in [12], the authors show the vulnerability of the LN in the case of balance lockdown
(“lockdown attack”), where the funds in some edges are blocked in multi hop payments,
completely freezing some nodes.

In [13], the authors discuss how nodes anonymity is affected by the routing mechanism,
and, in [14], the authors analyse how multiple payment attempts can disclose the balance
distribution of an edge.

The authors of [15] propose a probabilistic model of the LN where each edge has an
associated probability and discuss the path success probability associated with a payment.
Here, we extend this model by considering, differently from [15], multiple models to
compute the probability that at least one path exists between two nodes.

Logic Programming and Probabilistic Logic Programming have already been adopted
to model the LN. In [16], the authors introduced a deterministic model, so not considering
uncertainty on the nodes. This model has been extended in [17], where the authors
introduced uncertainty on the distribution of funds. The authors of [16,17] propose a Logic
and a Probabilistic Logic model of the LN: we extend these models, also by applying new
formalism, such as PRLP, POLP, and PALP, to handle an extended class of queries and tasks.

In [18], the authors represent the LN with a percolation process [19] and discuss the
possible parameters that may influence its structure. They mainly focus on the structure

https://bitbucket.org/machinelearningunife/ln_plp_models/src/master/
https://bitbucket.org/machinelearningunife/ln_plp_models/src/master/

Cryptography 2022, 6, 29 3 of 21

of the network to describe whether a new edge will be added between two nodes, and
consider deterministic connections (i.e., two nodes are connected if there is a path). We differ
from this work because our focus is on the routing process and we consider probabilistic
paths (with a probability dependent on the payment size). In [20], the authors study LN
transaction fees (fee base and fee rate) and suppose that the sender always selects the
cheapest route. We do not include transaction fees in our models, but we consider multiple
paths in our simulations. Moreover, our focus is on routing while their focus is on the
study of the transaction fees and the economic incentives for the nodes. Finally, the authors
of [21] develop different mathematical models to study routing process and propose a
novel routing algorithm. We differ from this work because we leverage existing tools to
study the routing and do not propose new algorithms. Rather, our goal is to provide tools
to extract possible information from the network.

3. Blockchain and Lightning Network

The blockchain can be considered as a distributed ledger composed of blocks chained
by cryptographic functions. Every user controls one or more address, each one associated
with a public-private key pair, needed to sign transactions and collect funds. Each address
can store funds in the form of bitcoin (or fraction of it). Users can send transactions to other
users. These typically involve a movement of funds from one or more source addresses to
one or more destination addresses. Transactions are gathered by miners and inserted into a
block. Each transaction has an associated fee that is collected as a reward by the miner that
includes it into a block successfully appended to the blockchain. Every block also contains
a reference to the previous one. In the case of Bitcoin, to append a block to the blockchain,
a user must provide a solution to a computationally intensive task called Proof of Work
(PoW). To solve the PoW, a user must provide a hash for a block that is smaller than a
target value. Currently, this problem can only be solved through brute forcing, i.e., trying
all possible hashes until a valid one is found, so it is a very challenging task. However, the
effective validity of a hash is easy to check. Thanks to the chain of blocks that is created by
adding blocks to the blockchain, if a malicious user wants to rewrite the content of a block,
he/she needs to provide a PoW for all the next blocks up to the last discovered.

To keep the number of discovered blocks approximately constant over time, the target
value is dynamically adjusted. This is a hardcoded specification, and it is one of the
main limitations to scalability. Moreover, users need to wait some time before seeing
their transactions included into a block since it is not guaranteed that the last executed
transactions are the ones that will be included in the next block. Furthermore, due to the
possibility of double spending attacks [22], users wait for some confirmation blocks built
on top of the one containing the transaction of interest.

Another factor that limits the number of manageable transactions per second is the
maximum block size, set to 1Mb (https://en.bitcoin.it/wiki/Scalability_FAQ, accessed 1
June 2022). In addition, this is a value hardcoded into the software running the Bitcoin
blockchain, so it is unlikely that it will be changed in the future since it will require a
backward incompatible update, and the effective benefits are still not truly clear (https:
//en.bitcoin.it/wiki/Block_size_limit_controversy, accessed 1 June 2022).

Several solutions have been proposed during the years to alleviate the scalability
problem: the first was Segregated Witnesses, which moved some of the information stored
into a transaction out of it and introduced the concept of Virtual Size and block weight
associated with a transaction. Another proposal, currently under discussion, is the adoption
of Schnorr signatures [23,24] that will allow for aggregating the signatures required for
transactions with multiple inputs controlled by the same user.

An alternative approach is given by “Layer 2” solutions, such as the Lightning Network.

Lightning Network

The Lightning Network (LN) [3] is a “Layer 2” solution that allows for the creation
of a network of peers above an underlying blockchain that supports the processing of

https://en.bitcoin.it/wiki/Scalability_FAQ
https://en.bitcoin.it/wiki/Block_size_limit_controversy
https://en.bitcoin.it/wiki/Block_size_limit_controversy

Cryptography 2022, 6, 29 4 of 21

quick payments between users. It can be theoretically implemented on top of every
blockchain, but here we focus on Bitcoin. The LN works as follows: a couple of users
open a bidirectional payment channel between them, through a “commitment transaction”
published on the blockchain. Every channel has a certain amount of funds locked in, and
this value determines its capacity. The amount of funds in a channel constitutes its balance.
In the LN, we consider balances associated with edges, not nodes. Once the channel is
created, users can send payments to other users without interacting with the blockchain. In
this way, payments can quickly be sent between nodes, and transaction fees are not needed
(however, in some cases, small fees are still required to forward a payment in the LN). Once
users terminate their operations, they can close the payment channel through a “closing
transaction” on the underlying blockchain that updates the balances of the two involved
parties to reflect the state of the channel. The LN provides several mechanisms, such
as Hashed Timelock Contracts (HTLCs) (https://en.bitcoin.it/wiki/Hash_Time_Locked_
Contracts, accessed 1 June 2022) to manage uncooperative parties.

A key property of the LN is that it allows routing payments between nodes not
directly connected by a payment channel. If a node A is connected to a node B, and node B
is connected to node C, A can send a multi-hop payment to C, with B forwarding to C the
payment received from A. In this case, B collects some fees, composed of a fixed part (base
fee) and a variable part (fee rate) that depends on the size of the payment. Thus, the more
payments a node routes, the higher will be its earnings. There can be an arbitrary number
of intermediate nodes. In addition, here HTLCs manage scenarios where an intermediate
node refuses to forward a payment.

Another feature, introduced to increase the security and the anonymity of the users, is
that the distribution of funds in a channel is unknown. That is, from the outside, only the
total capacity of a channel is available, and not the distribution of funds at the two ends.
Consider the following scenario: a user A opens a channel with B and A locks in 5 and B 2
satoshi, where 1 satoshi = 10−8 bitcoin (These are very small quantities that are unlikely to
be realistic but are used here only to explain the process); the total capacity of the channel
visible from the outside is 5 + 2 = 7, but, from A, we can route towards B at most 5 satoshi,
while from B we can route at most 2 satoshi towards A. After, for example, a payment of
size 4 from A to B, the total capacity of the channel is unchanged, but the funds distribution
is updated: A has 1 satoshi left while B has 6.

The uncertainty of the balance distribution of the channels makes the routing of
multi-hop payments difficult since a user needs to try different paths until it succeeds.
However, this trial and error process may leak information about the channel distributions,
weakening the anonymity property and leading to possible attacks [14]. For these reasons,
the routing problem in the LN can be considered as a probabilistic problem. In the next
sections, we discuss how the LN can be encoded using (Probabilistic) Logic Programming
models, and we apply several techniques to study the routing process, to compute different
probability values, and to reason about possible privacy and security issues.

4. Logic Programming Languages

Here, we introduce the basic concepts needed to understand the models we propose
in the next section.

4.1. Logic Programming

Logic Programming (LP), initially proposed in 1974 [25], is a powerful formalism to
represent domains characterized by complex relationships among the involved entities.
Prolog [26] is one of the most famous languages. The basic elements of a Prolog program
are atoms, terms, and clauses. Each clause is composed by a head (an atom) and a body
(a conjunction of atoms or negated atoms, called literals) separated by the neck operator
(denoted with :-). The meaning of a clause is: if the body is true, the head is also true.
Variables start with uppercase letters while constants start with lowercase letters. With the
symbol _, we denote the anonymous variable, i.e., a variable with no name. If a term or

https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts
https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts

Cryptography 2022, 6, 29 5 of 21

clause does not contain variables, we call it ground. The operation that consists of replacing
variables with terms is called substitution and it is usually indicated with the Greek letter
θ. A substitution that makes a term ground is called grounding. If we consider a term
t(A,B), and a substitution θ = A/a,B/b indicating that we replace A with a and B with b,
the result of the application of θ to t(A,B), denoted with tθ, is tθ = t(a,b). In this case,
the substitution θ is also grounding since the term, after applying the substitution, does not
contain variables.

To clarify the previously introduced concepts, consider the program

1 f(a,b).
2 q(A):- f(A,b).

The first line contains the atom f(a,b), where a and b are terms. Here, f(a,b) can be
considered as a fact since it indicates what is known to be true. The second line represents
a clause where the head is q(A) and the body is f(A,b). The number of arguments of a
term is called arity. The functor of a term is the combination of the name and the number of
arguments, often compactly indicated with the notation name/arity. For this example, the
two terms can be indicated with f/2 and q/1. A predicate is a set of clauses with the same
functor.

To check whether a formula is true or false, we can ask a Prolog interpreter a goal that
we also call query. In the previous example, we can ask the Prolog interpreter whether q(A)
is true. The answer will be yes with the substitution A = a. The basic mechanism adopted in
Prolog to answer queries is called SLD resolution.

We touched here only the surface of LP; for a complete treatment of the field, see [27,28].
Consider now a more involved scenario, as described in Example 1.

Example 1 (Deterministic Path). We can represent a network (graph) using a set of edge/2 facts,
as shown in Figure 1a. The first rule of Figure 1a (line 5) states that there is certainly a path between
X and X (the source and destination nodes coincide). The second rule (line 6) states that there is a
path between X and Z if there is an edge between X and an intermediate node Y and there is a path
between Y and Z. For this example, the graph does not contain closed loops and edges are directed. We
can ask whether there is a path between node a and node e with the query path(a,e). The answer
will be yes twice: the first path passes from node c and the second from node d. Alternatively, we
can collect all the possible reachable nodes starting from a by asking path(a,X). In this case, the
solutions will be X = a, X = b, X = c, X = e, X = d, X = e. Node e is present twice since it can
be reachable from two different paths, as previously shown.

1 edge(a,b). edge(b,c).
2 edge(b,d). edge(c,e).
3 edge(d,e).
4
5 path(X,X).
6 path(X,Z):-
7 edge(X,Y),
8 path(Y,Z).

(a)

a b

c

d

e

(b)

Figure 1. Program and represented graph for Example 1. (a) Program for deterministic path finding;
(b) graph representation.

Logic Programming, despite its expressive power, cannot deal with uncertain data. In
this case, we need to adopt Probabilistic Logic Programming (PLP) that we discuss next.

Cryptography 2022, 6, 29 6 of 21

4.2. Probabilistic Logic Programming

Probabilistic Logic Programming (PLP) [4,5] extends Logic Programming by consid-
ering uncertain information represented as probabilistic facts. There are several existing
languages such as ProbLog [29], LPAD [30], and PRISM [31].

A probabilistic fact f can be represented using either one of the two following syntaxes:

Π :: f . or f : Π.

where f is an atom and Π ∈]0, 1] represents its probability. The notation Π :: f is the one
adopted in ProbLog [29] while f : Π is used in LPADs [30]. For example, the program
shown in Figure 2a contains two probabilistic facts: sunny, which is true with probability
0.7, and cloudy, which is true with probability 0.4.

To compute the probability of a query in a probabilistic logic program (a task called
inference), we need to associate a precise meaning to a program, i.e., we need to choose a
semantics for it. One of the most adopted semantics in the context of PLP is the Distribution
Semantics (DS) [32]. Following the DS, an atomic choice indicates whether a grounding f θ
for a probabilistic fact f is selected. It is usually indicated with the triple (f , θ, k), where
k ∈ {0, 1}. If k = 1, the grounding is selected; otherwise, it is not. A consistent set of atomic
choices (i.e., a set that does not contains both atomic choices (f , θ, 0) and (f , θ, 1)) identifies
a composite choice κ whose probability P(κ) can be computed with the formula

P(κ) = ∏
(fi ,θ,1)

Πi · ∏
(fi ,θ,0)

(1−Πi)

because we assume that probabilistic facts are independent. This assumption does not limit
the expressive power [4] of the language.

If a composite choice contains an atomic choice for every grounding of every proba-
bilistic fact, it is called total composite choice or selection. A selection identifies a probabilistic
logic program called world, obtained by including in the program the facts that correspond
to atomic choices with k = 1. The probability of a world is the probability of the corre-
sponding composite choice, and the sum of the probabilities of all the words of a program is
equal to 1, so this way of assigning probabilities to worlds defines a probability distribution.
Finally, the probability of a query q, P(q), can be computed as the sum of the probability of
the worlds w where the query is true. In formula:

P(q) = ∑
w|=q

P(w).

We consider queries composed by conjunctions of ground literals. The program in
Figure 2a has 22 worlds (two probabilistic facts): the first (w1) where both sunny and
cloudy are true, with an associated probability of 0.7× 0.4 = 0.28; the second (w2) where
sunny is true and cloudy is false, with an associated probability of 0.7× (1− 0.4) = 0.42;
the third (w3) where sunny is false and cloudy is true, with an associated probability of
(1− 0.7) × 0.4 = 0.12; the fourth (w4) where both sunny and cloudy are false, with an
associated probability of (1− 0.7)× (1− 0.4) = 0.18. The query dry is true in w1, w2, and
w3, and its probability is 0.28 + 0.42 + 0.12 = 0.82. In general, the computation of the
probability of a query is a #P-complete task [33] since it involves counting all the possible
solutions. To solve inference in practice, a probabilistic logic program can be converted into
a different language, through knowledge compilation [34], in which the inference is easier.
Here, we consider Binary Decision Diagrams (BDDs) as a target for the compilation.

A Binary Decision Diagram (BDD) is a rooted directed graph where each node has
two outgoing edges, one associated with 1 (true, usually represented with a solid line),
and one associated with 0 (false, usually represented with a dashed line). Terminal nodes
can be either 0 or 1. Some BDD packages allow the definition of a third type of edge, the
0-complemented edge, usually represented with a dotted line, with the meaning that the
function represented by the child must be complemented. With this third type of edge,

Cryptography 2022, 6, 29 7 of 21

the 0 terminal is not needed. The BDD associated with the program shown in Figure 2a
is shown in Figure 2b. Starting from a BDD, it is possible to compute the probability of a
query with a recursive algorithm [29].

1 0.7:: sunny.
2 0.4:: cloudy.
3 dry:- sunny.
4 dry:- cloudy.

(a)

dry sunny

cloudy

1

(b)
Figure 2. Probabilistic logic program and correspondent BDD representation. (a) probabilistic logic
program; (b) binary decision diagram.

We can now extend the logic program of Example 1 to a probabilistic logic program
by considering edges with an associated probability.

Example 2 (Probabilistic Path). We can attach probabilities to the edge/2 facts of the program
shown in Figure 1a. For example:

1 0.5:: edge(a,b). 0.4:: edge(b,c).
2 0.6:: edge(b,d). 0.7:: edge(c,e).
3 0.8:: edge(d,e).

The clauses for the predicate path/2 are unchanged. Now, all the edges have an associated
probability, and thus the routing is probabilistic. Note that probabilistic and deterministic edges
may coexist in the same program. We can compute the probability of the query path(a,e) using,
for example, PITA [35], obtaining 0.3128.

With systems like cplint [36], it is possible to define probabilistic clauses, i.e., clauses
with an attached probability, with the syntax:

head : Π : −body.

where, as before, head is an atom and body is a conjunction of literals. Π ∈]0, 1] is the
probability associated with the clause. This can be encoded in ProbLog as:

Π :: f .

head : −body, f .

where f is an atom whose arguments are all the variables appearing in the rule.
Finally, with flexible probabilities [5], it is possible to define facts and clauses whose

probabilities are not fixed but are computed during the program execution and may depend
on input parameters. For example, in

1 q(A):P:- P is A / 2,

the probability P of q/1 depends on the value of the argument A.

4.3. Probabilistic Abductive Logic Programming

Reasoning under incomplete data are a central task in abduction [37]. In Abductive
Logic Programming (ALP), atoms on which we have incomplete information are identified
as abducible. Moreover, an abductive logic program may also contain integrity constraints
(ICs) that limit the possible combination of abducibles. The goal is to find the minimal
subset (here, we consider minimality in terms of set inclusion, but other alternatives are
possible [38]) of abducibles that explains a given query.

Cryptography 2022, 6, 29 8 of 21

ALP inherits the main limitation of LP, namely, the impossibility to reason with
uncertain data. Recently, the authors of [39] introduced Probabilistic Abductive Logic Programs
(PALPs), where PLP is extended with the possibility to define abducible facts with the syntax

abducible a.

where a is an atom, and probabilistic integrity constraints with the syntax

Π : −body.

where body is a conjunction of literals and Π ∈]0, 1] is the associated probability. The goal
is to find the minimal set (in terms of set inclusion) of abducible facts ∆ such that the joint
probability of the query q and ICs IC is maximized. In formula,

least(arg max
∆

P(q, IC | ∆))

where
least(S) = {∆ | ∆ ∈ S,@∆′ ∈ S : ∆′ ⊂ ∆}.

The function least is needed to remove the sets that yield the maximum joint probabil-
ity but are not minimal.

Example 3 (Probabilistic abductive logic program). Consider the following probabilistic abduc-
tive logic program:

1 abducible a.
2 abducible b.
3 0.2:: p0.
4 0.2:: p1.
5 q:- a, p0.
6 q:- b, p1.
7 :- a, b.

The first two lines introduce two abducible facts, a and b. The last line represents a deterministic
integrity constraint (Π = 1) imposing that a and b cannot be both true at the same time. Given the
query q, the two sets ∆1 = {a} and ∆2 = {b} represent the solution of the abductive problem, both
yielding a probability of 0.2 for q. Note that, if we remove the integrity constraint, the set ∆ = {a,b}
would have been the abductive explanation, with P(q | ∆) = 0.36, but is forbidden by the IC.

4.4. Probabilistic Optimizable and Probabilistic Reducible Logic Programs

Two recently proposed extensions of PLP are Probabilistic Optimizable Logic Programs
(POLP) [40] and Probabilistic Reducible Logic Programs (PRLP) [41]. Starting from the
former, POLP extends PLP by adding optimizable facts, with the syntax

optimizable [Πlb, Πub] :: a.

where Πlb and Πub are respectively the lower and the upper bound (Πlb ∈]0, 1], Πub ∈]0, 1],
Πlb < Πub) for the probability for the fact a. The values Πlb and Πub may be omitted: in
this case, they will be 0.001 and 0.999, respectively. The goal is to find the best probability
assignments A∗ to optimizable facts to optimize (minimize) an objective function F under
constraints C, and then compute the probability of a query, in formula

A∗ = arg min
A, subject to C

(F | A).

and then compute P(q | A∗). If we consider the program introduced in Figure 1 with all
the edges defined as optimizable, a possible objective function could be the sum of the

Cryptography 2022, 6, 29 9 of 21

probabilities of all the edges, and a possible constraint could be keeping the probability of
reaching e starting from a above a certain threshold.

Example 4 (Probabilistic Optimizable Logic Program). Consider the following Probabilistic
Optimizable Logic Program:

1 optimizable [0.3 ,0.9]::a.
2 optimizable [0.3 ,0.9]::b.
3 0.2:: p0.
4 0.2:: p1.
5 q:- a, p0.
6 q:- b, p1.

The first two lines introduce two optimizable facts, a and b, each with a probability range
between 0.3 and 0.9. If the goal is to minimize the sum of the probabilities of the two optimizable
facts with the constraint that the probability of q must be greater than 0.3, a possible probability
assignment for both facts is approximately 0.817, yielding a probability of q of 0.3.

Similarly to POLP, PRLP extends PLP by adding reducible facts with the syntax

reducible Π :: a.

where a is a fact with associated probability Π ∈]0, 1]. The value Π may be omitted. The
goal is to find the subset with minimal cardinality R∗ of reducible facts R such that the
imposed constraints C are not violated. In the formula:

R∗ = arg min
R⊆R, subject to C

|R|.

If we consider again the program discussed in Example 1 with all the edges defined as
reducible, a possible constraint could be keeping the probability of reaching e starting from
a above a certain threshold while removing as may edge facts as possible.

The difference between POLP and PRLP is that, in the former, the probability of the
probabilistic fact can be set in the specified range, while, in the latter, the probability of the
reducible facts is fixed, but reducible facts can be removed from the program (by setting
their probability to 0).

Example 5 (Probabilistic Reducible Logic Program). Consider the following Probabilistic
Reducible Logic Program:

1 reducible 0.8::a.
2 reducible 0.7::b.
3 0.2:: p0.
4 0.2:: p1.
5 q:- a, p0.
6 q:- b, p1.

The first two lines introduce two reducible facts, a and b, with an associated probability of 0.8
and 0.7, respectively. If the goal is to keep the probability of q above 0.15, the reducible fact b can be
removed from the program: in this case, the probability of q becomes 0.16.

In the next section, we show how to adapt these models to describe and study the LN.

5. Lightning Network Models

The LN can be easily represented as a graph using the Prolog language [16]. We focus
here on a directed graph representation, but the discussed models can be easily extended
to consider an undirected graph. Following [15,17], we consider a uniform distribution
for the funds in a channel (i.e., its capacity) c and define the channel success probability

Cryptography 2022, 6, 29 10 of 21

(denoted as P(c)) as the probability that a payment of size S passes through a channel
of capacity C between two nodes. In formula, P(c) = (C − S)/C if C > 0 and C > S, 0
otherwise. For example, for a payment of size S = 10 and a channel c of capacity C = 100,
the success probability P(c) is P(c) = (100− 10)/100 = 90/100 = 0.9. It is difficult to make
further assumptions on the distribution since; as already discussed in previous sections,
it is unknown. Moreover, a payment can be split across multiple channels. Given a path
that connects two nodes, the path success probability (PSP) [15] is defined as the product
of the channel success probabilities of the involved edges. We will use channel and edge
interchangeably, both to identify a payment channel between two nodes.

Example 6 (Computing the path success probability with a Logic Programming model).
In [16], the authors represent each channel of the LN with a Prolog fact of the form

1 edge(Source ,Dest ,Capacity).

We can leverage this notation and easily adapt the model shown in Figure 1a to compute the
path success probability, by adding an additional argument representing the capacity associated
with the edge/2 facts, as in [16]. To obtain the path success probability for a given path and a given
payment size, the whole program of Figure 1a can be modified as follows:

1 edge(a,b,10). edge(b,c,10).
2 edge(b,d,10). edge(c,e,10).
3 edge(d,e,10).
4
5 channelSuccessProbability(Size ,Capacity ,ChProb):-
6 Capacity >= Size ,
7 ChProb is (Capacity - Size) / Capacity.
8
9 path(Node ,Node ,_,[Node],P,P).

10 path(Source ,Dest ,PaymentSize ,[Source|T],AccProb ,Prob):-
11 edge(Source ,Intermediate ,Cap),
12 channelSuccessProbability(PaymentSize ,Cap ,ChProb),
13 AccProb1 is AccProb * ChProb ,
14 path(Intermediate ,Dest ,PaymentSize ,T,AccProb1 ,Prob).

The network has the structure depicted in Figure 1b and, for simplicity, we set the total
capacity for all the channels to 10. The arguments of path/6 are the following: in path(Source,-
Destination,PaymentSize,NodesInPath,InitialProbability,FinalProbability),
Source is the source node, Destination is the destination node, and PaymentSize is the size of
the payment that should be routed from Source to Destination; NodesInPath is a list containing
the nodes encountered in a path, InitialProbability is an accumulator for the probability (that
starts from 1), and FinalProbability is the computed path success probability. In the first clause
for path/6 (line 9), the source and destination nodes (Node) coincide, the list of nodes contains only
one the current node Node, and the path success probability is the probability P accumulated so far.
Logic programming predicates are often recursive: in this example, the second clause for the path/6
predicate is the general case while the first is the base case (a path is found). The path/6 predicate
works as follows: first, it checks whether there is an edge between the current node Source and an in-
termediate node Intermediate (line 11). The predicate channelSuccessProbability/3 checks
whether the capacity Capacity of the selected channel is sufficient to route a payment of size Size
(line 6) and then computes the channel success probability ChProb. After this, the computed path
probability is updated to account for the current value (line 13). Finally, the predicate is recursively
called to find a path that connects the intermediate node Intermediate and the destination Dest.

If we consider a payment of size 2, there are two possible paths from a to e, with an asso-
ciated probability of ((10− 2)/10)3 = 0.512 each. We can retrieve these by asking the query
path(a,e,2,Path,1,Prob). We can likewise collect all the paths and associated probabilities in a
list using the standard Prolog predicate findall/3:

1 findall ([Path ,Prob],path(a,e,2,Path ,1,Prob),LP).

Cryptography 2022, 6, 29 11 of 21

Moreover, by retrieving all the possible paths, it is easy to find the path that gives the maxi-
mum probability.

The computation of the PSP is straightforward since it considers only one path at the
time, and the probability of a path is the product of the probabilities associated with all the
involved edges. However, if we compute the probability to reach e starting from a, we get
0.69632 since both paths could route the payment.

In this paper, we focus on a different task than the computation of the PSP: the main
goal is to provide models to reason about the probability of existence of a path that we
call path existence probability (PEP), between two nodes. As already discussed, edges in
the LN can be considered as probabilistic, with an associated probability that depends on
the size of the payment: if we consider a uniform distribution for the funds in a channel,
payments with a small size (in terms of transferred funds) have higher probability to pass
through an edge. To better see the difference between PSP and PEP, consider again the
graph shown in Figure 1b: if we fix the payment size such that every edge has an associated
probability of 0.5, the PSP of both paths between a and e is 0.53 = 0.125. However, the
PEP between a and e is 0.21875 (given by, in compact form, 0.5× (0.25 + 0.25− 0.252)) and
thus greater than the PSP of every individual path since both paths may route the same
amount. This may be useful information in the context of Multi Path Payments, where
payments are split and routed through multiple channels or in the case we try to route
multiple times simultaneously the same amount. In these scenarios, the PEP represents the
probability that at least one of the payments succeeds. Overall, the PEP is an upper bound
for the PSP: if there is only one path between two nodes, the PEP coincides with the PSP;
otherwise, it is greater since it considers multiple paths together, and not only one. Finally,
the computation of the PEP is more complex than the computation of the PSP since we
cannot simply multiply the probability of the edges and sum the results. We now show a
possible model to compute the PEP.

To account for the uncertainty distribution of the funds, we extend the previously
discussed facts and predicates. First, we define a new probabilistic predicate connected/3
whose probability is defined using flexible probabilities. Its structure is:

1 connected(Source ,Destination ,Size):P:-
2 edge(Source ,Destination ,Capacity),
3 channelSuccessProbability(Size ,Capacity ,P).

where P is the associated probability computed with the channelSuccessProbability/3
predicate of Example 6. The definition of the path/2 predicate shown in Figure 1a is
modified in:

1 path(X,X,_).
2 path(X,Y,Size):-
3 connected(X,Z,Size),
4 path(Z,Y,Size).

If we consider again the network of Figure 1a where, for simplicity, every edge has an
associated capacity of 10, we can compute with PITA [35] the probability of a path (PEP)
between a and e that can route a payment of size 5 with the query path(a,e,5), obtaining
0.21875. If we try to route instead a payment of size 7, with the query path(a,e,7), we
obtain 0.05157, a smaller value.

We further extend the model to consider intermittent nodes, representing a scenario
where the routing of a payment through multiple edges may fail due to inactive nodes. To
account for this, we can add a probabilistic fact

1 p:: active(_).

where p is a fixed number in]0, 1]. As before, we can adapt this fact to consider different
probabilities for different nodes, by using flexible probabilities. The connected/3 predicate
is further extended as

Cryptography 2022, 6, 29 12 of 21

1 connected(Source ,Destination ,Size):P:-
2 edge(Source ,Destination ,Capacity),
3 active(Destination),
4 channelSuccessProbability(Size ,Capacity ,P).

If we set the probability of active to 0.99, the probability of successful routing reduces:
P(path(a,e,5)) = 0.21255 and P(path(a,e,7)) = 0.05006.

Finally, these predicates do not set a limit on the length of the path between two
nodes. In multi-hop routing, every intermediate node between the source and the destina-
tion collects a fee. This implies that longer paths are more expensive than shorter paths.
However, according to [8], the average shortest path between two nodes is less than three
steps. Here, we set the maximum length of a path to 5, to consider multiple non optimal
(in terms of number intermediates nodes) paths. Longer paths have a lower associated
success probability and thus provide a smaller contribution. Moreover, each additional
step requires paying fees to intermediate nodes, so longer paths are also more expensive.
We can easily set a limit on the length of the path by modifying the path/3 predicate, as
shown in Example 7.

Example 7 (Computation of the PEP between two nodes by considering only paths with a
fixed maximum length). With the following program, it is possible to compute the probability
of a path of length at most NMaxSteps that can route a payment of size Size between two nodes X
and Y.

1 channelSuccessProbability(Size ,Capacity ,Probability):-
2 Capacity >= Size ,
3 Probability is (Capacity - Size) / Capacity.
4
5 connected(Source ,Destination ,Size):P:-
6 edge(Source ,Destination ,Capacity),
7 active(Destination),
8 channelSuccessProbability(Size ,Capacity ,P).
9

10 0.99:: active(_).
11
12 path(X,X,_,_,_).
13 path(X,Y,Size ,NMaxSteps ,NSteps):-
14 NSteps < NMaxSteps ,
15 connected(X,Z,Size),
16 N1 is NSteps + 1,
17 path(Z,Y,Size ,NMaxSteps ,N1).

The path/5 predicate counts the number NSteps of encountered edges and compares it
against the maximum number NMaxSteps of allowed steps. For example, if we add the following
edge/3 facts

1 edge(a,b,10). edge(b,c,10). edge(c,e,10).
2 edge(b,d,10). edge(d,f,10). edge(f,e,10).

we can compute the probability of routing a payment of size 5 between a and e by considering
only the paths with length at most 3 with path(a,e,5,3,0), obtaining 0.12128 (one of the two
possible paths is discarded). However, if we set the maximum length to 4, the probability of the
query path(a,e,5,4,0) is 0.166465. For this example, if the maximum length is greater than 4,
the probability does not increase.

5.1. Abductive Model

Abduction is a reasoning strategy applicable in scenarios with incomplete information.
The proposal discussed in Section 4.3 integrates abduction with uncertainty and makes

Cryptography 2022, 6, 29 13 of 21

it suitable to model the LN. For example, during the computation of the PEP, a user can
impose that some edges must not be considered together. Moreover, there can be edges
not publicly advertised. These two situations can be modelled with abducible facts and
integrity constraints.

Let us consider the model shown in Example 7, with active probability set to 1. We
can denote some edges as abducibles and insert an integrity constraint, in this way:

1 abducible edge(a,b,10). edge(b,c,8).
2 abducible edge(c,e,10). edge(b,d,3). edge(d,e,10).
3 :- edge(a,b,10), edge(c,e,10).

The network is the one depicted in Figure 1b. The (deterministic) integrity con-
straint states that the edges between a and b and c and e cannot be selected at the
same time. With this program, the set of abducibles that maximizes the joint proba-
bility of the query path(a,e,2,5,0) and the constraint is {edge(a,b,10)}, which yields
a probability of 0.2133. If we associate a probability of, for example, 0.3, to the con-
straint, indicating that we are unsure about the information it provides, we get the set
{edge(a,b,10),edge(c,e,10)}, yielding a probability of 0.3957. From a user perspective,
identifying the most important edges can be of interest since he/she may decide whether
to insert more connections to provide possible alternatives in case of attacks or nodes that
decide to not forward a payment. From an attacker perspective, he/she can identify the
most important edges for a given target node and try to block them, for example, with
“lockdown attacks” [12].

Note that, with this model, we can insert the constraint :- e(A,B), e(A,C), B \= C,
imposing that there must not be two edges that share the same source node and set all the
edges as abducible to compute the PSP. However, this constraint is computationally very
expensive since it requires the generation of all the possible triples of nodes.

5.2. Optimizable Model

In our models, the funds locked in an edge directly characterize its probability, once
the payment is fixed. Thus, with POLP, we can impose some constraints and consequently
set the probabilities (and thus the funds) of the channels to target an objective function.

We start from the model shown in Example 7, but we set some of the edge/3 facts
related to nodes as optimizable. Consider the following edges:

1 edge(a,b,10). edge(b,c,8). edge(c,e,10).
2 optimizable edge(b,d,3). optimizable edge(d,e,10).

The last two are optimizable and their probability can be set. The probability of
the active/1 facts is set to 1. Suppose that the goal is to optimize the probability of the
query path(a,e,2,5,0). The objective function requires minimizing the sum of the prob-
abilities of edge(b,d,3) and edge(d,e,10) (i.e., the objective function is P(edge(b,d,3))
+ P(edge(d,e,10))). At the same time, the probabilities of the two optimizable facts
must be close (for example, with a difference less than 0.1). Furthermore, the probabil-
ity of the query path(a,e,2,5,0) should be above or equal to 0.5. With all the edge/3
facts deterministic, the probability of the query is 0.565. The solution of the optimizable
problem consists of assigning probability 0.4841 to both optimizable facts. As discussed
before, the channel success probability P(c) is given by P(c) = (C − S)/C, where C
is the capacity of the channel and S is the size of the payment. By considering some
of the edge/3 facts as optimizable, we assign to them a second probability value, call
it P∗(c), that will be computed with the model. We can use this new value to find
the optimal capacity C∗ of a channel by solving the following equation in terms of C∗:
P(c) · P∗(c) = (C∗ − S)/C∗. In this way, we get C∗ = S/(1− P(c) · P∗(c)). For this exam-
ple, the new funds will be 2/(1− ((3− 2)/3)× 0.4841) = 2.3849 for the edge between b
and d and 2/(1− ((10− 2)/10)× 0.4841) = 3.264 for the edge between d and e, obtaining
a probability of 0.5 for the query.

Cryptography 2022, 6, 29 14 of 21

With this model, it is possible to compute the optimal amount of funds to associate to
edges. Moreover, if we consider instead the active/1 facts as optimizable, we can compute
the optimal probability to accept or reject a payment while guaranteeing, at the same time,
some probability bounds for certain paths. From the perspective of a node, this may be
useful to prevent, for example, a possible subsequent imbalance in the distribution of
funds in the involved channels. An imbalance in a channel requires the adoption of some
mechanisms such as “rebalancing” to restore its funds to one of the two ends. Moreover, if
a channel is unbalanced, a node may not be able to route payments through it, possibly
reducing its earnings, and this can be a possible target for an attacker.

5.3. Reducible Model

With PRLPs, as discussed in Section 4.4, some facts are considered “reducible” and
removed from the program. The goal is to minimize the number of reducible facts kept in
the program while ensuring the validity of some constraints. These types of programs can
be used, for example, to spot the nodes and edges that provide a substantial contribution
in the routing, or, on the other hand, nodes that can be ignored. For example, if we want
to perform some analyses on certain nodes, we can first apply this model to identify the
essential edges and then focus on the remaining ones, greatly simplifying and reducing the
size of the considered graph. Moreover, this model can be applied as a pre-processing step
for the routing of a payment or for locating the best position for a possible new connection.
In this last case, we can add some edges to the LN model, with different capacities and
that connect different source destination couples. Then, we can set a target probability of a
successful routing, remove the not needed edges, and create only the identified ones on the
real LN.

To illustrate this, we keep the model shown in Example 7 but we consider all the edges
as reducibles. For example, consider the program

1 reducible edge(a,b,10). reducible edge(b,c,8).
2 reducible edge(c,e,10). reducible edge(b,d,3).
3 reducible edge(d,e,10).

representing Figure 1b. We may impose that the probability of reaching e from a must
be greater than 0.4. With all the facts included, and the probability of the active/1 facts
set to 1, the probability of the query path(a,e,2,5,0) is 0.5653. However, by removing
edge(b,d,3), we obtain a probability for the same query of 0.48, satisfying the constraint.
Thus, the identified edge can be removed. From an attacker perspective, this can be
interesting since he/she can identify the edges that a target user must preserve to route a
payment of a given size, and consequently try to attack them, to disclose, for example, the
balance distribution in the edges.

6. Experiments

We perform multiple experiments on a computer with Intel® Xeon® E5-2630v3 running
at 2.40 GHz to illustrate some possible statistics obtainable with our models.

Following previous results [8,10], the Lightning Network can be considered as a small-
world and scale-free network [42] network since there are a few nodes with a high degree
and many nodes with a low degree. Thus, for every experiment, we generated 50 random
network structures (i.e., random edge/3 facts) using the method scale_free_graph from
the “networkx” Python package [43,44] and averaged the results. We used the default
parameters for the generation of the networks: α, the probability for adding a new node
connected to a randomly existing node according to the in degree distribution, set to
0.41, β, the probability for adding an edge between two existing nodes, set to 0.54, and
γ the probability for adding a new node connected to an existing randomly chosen node
according to the out-degree distribution, set to 0.05. The biases for choosing nodes from
in-degree and out-degree distribution are, respectively, set to 0.2 and 0. We discarded
the edges with the same source and destination. The average number of edges for every
experiment is shown in Tables 1 and 2.

Cryptography 2022, 6, 29 15 of 21

Table 1. Average number of total edges for the path existence probability and abductive experiments.

Size Abductive Size PEP

5 6.6 10 31.68
6 8.5 15 53.96
7 3.22 20 72.84
8 13.12 25 94.12
9 14.02 30 114.96
10 16.44 35 136.08
11 18.64 40 156.44
12 20.44 45 173.12
13 21.64 50 194.36
14 24.58 55 220.2
15 26.88 60 238.4
16 28.52 65 263.72
17 31.34 70 281.68
18 32.58 75 306.04
19 34.16 80 328.04
- - 85 351.2
- - 90 363.84
- - 95 397.44

Table 2. Average number of total edges for the optimizable and reducible experiments.

Size Optimizable Reducible

5 6.62 6.64
6 8.66 8.52
7 10.44 9.9
8 12.2 12.38
9 13.64 14.64
10 16.24 15.74

We can likewise test our approach on the real Lightning Network, by taking a snapshot
of it. However, the LN is in continuous change: results computed on a snapshot can
be obsolete in a few weeks, even days. Moreover, since we select random source and
destination nodes with distance at most 5, we will likely get a lot of disconnected pairs. The
selected source–destination pair changes for every instance and every payment size. Finally,
our models do not aim to perform (even if they can) an analysis of the whole LN; rather,
the goal is to see how the discussed models can be applied to provide some indications
regarding small subsets, since users are usually interested in contacting a small group of
nodes, and it is unlikely that they will interact with all the nodes in the network.

We consider a directed graph where nodes are indexed with whole numbers and, for
each fact of the form edge (A,B,Capacity), B > A, to ensure acyclicity. To associate capaci-
ties to edges, we selected random capacities from a snapshot of the LN from the 12 April
2021 [17] composed of 14,734 nodes and 44,349 channels. In this snapshot, approximately
80% of edges have less than the average capacity (2,837,035 satoshi), 72% have less than
half of the average capacity, and 59% have less than a quarter of the average capacity. We
tested the routing of payments of sizes 4651, 11,629, 22,258, 46,516, and 116,296 satoshi,
which correspond, at the moment of writing, to approximately 2, 5, 10, 20, and 50 dollars,
between 10 random pairs of nodes for every experiment. The paths go from A to B, with B >
A to account for the order imposed in the generation of the edges. Note that, as in the real
LN, there can be nodes connected by multiple edges.

For all the experiments, first we selected two random connected nodes that can route
a payment of a certain size, i.e., connected by a path where all the edges have total capacity
greater than the payment size. Then, we apply the considered model. In this way, we avoid
reasoning on nodes that, even if connected, cannot route the desired amount. We do this

Cryptography 2022, 6, 29 16 of 21

because, if there is not a path between two nodes, clearly the probability is 0, so there is no
reason to attempt a payment.

For the path existence probability experiments, we generated random network struc-
tures with a size (number of nodes) from 10 up to 100 with step 10. We plot how the
PEP varies by increasing the number of nodes (and thus edges) in the networks and by
increasing the payment size. We consider the same networks first with all the nodes always
active (active probability set to 1) and then with an active probability of 0.95. From the
results shown in Figure 3, the PEP increasingly varies when the number of existing nodes
and the size of the payments increases. This may happen because channels with a total
capacity close to the payment size have a small probability to route the payment. The
results on networks where each node has an active probability of 0.95 present a similar
behaviour to the ones obtained with nodes always active, with a difference of at most 10%
in the path existence probability.

20 40 60 80 100

0.75

0.8

0.85

0.9

0.95

1

Number of Nodes

Pr
ob

ab
ili

ty

Amt.
2
5
10
20
50

(a)

20 40 60 80 100

0.7

0.8

0.9

1

Number of Nodes

Pr
ob

ab
ili

ty

Amt.
2
5
10
20
50

(b)
Figure 3. Results for PEP experiment for nodes with active probability 1 and 0.95. Different lines
represent different payment sizes. (a) results for the PEP experiment with active probability set to 1;
(b) results for the PEP experiment with active probability set to 0.95.

For the abductive and optimizable models, we generated random network structures
with a size (number of nodes) from 5 up to 20 with step 1. For reducible models, the
network size varies between 5 and 10.

For the abductive model experiments, we randomly set half of the total edges of the
networks as abducibles and insert a number of constraints equal to one quarter of the
total number of edges. These constraints are deterministic and encode the incompatibility
of a random pair of abducible edges each. The plots of Figure 4a,b show respectively
the variation of the PEP and of the ratio between the selected abducibles and the total
abducibles involved in the computation, with an increasing number of nodes (and thus
of edges) and an increasing payment size. The active probability is set to 1. The variation
of the PEP, as for the previous experiments, increases by increasing the payment size.
However, the number of selected abducibles to maximize the PEP decreases as the number
of nodes and edges increase, meaning that few nodes are involved in the routing process.
This variation is similar for all the five amounts tested. For both this and the previous
experiment, there are several jumps in the computed probability values. These jumps are
more evident for bigger amounts, thus indicating that the choice of the payment size and
the existing connection is crucial.

For the optimizable experiments, we consider all edges as optimizable, with probability
ranges between 0.001 and 0.999. The goal is to minimize the sum of the probabilities of the
edges while, at the same time, keeping the probability of path between two random pairs
above 0.6, 0.7 (Figure 5) 0.8, 0.9 (Figure 6). The source–destination pair is the same for the
four thresholds but changes for every instance and payment size. The figures show, on
the y-axis, the average number of edges involved in the optimization (i.e., with probability
different from the lower bound 0.001), and on the x-axis the number of nodes. In each figure,

Cryptography 2022, 6, 29 17 of 21

there are five plots, representing different payment size. For all, the active probability is
set to 1. Results are similar for all the payment sizes and indicate that usually the average
number of involved edges is between 1.4 and 1.6 and, at most, two edges are needed to
reach the desired probability. When the probability threshold increases, the number of
edges slightly increases but not drastically.

4 6 8 10 12 14 16 18 20

0.75

0.8

0.85

0.9

0.95

1

Number of Nodes

Pr
ob

ab
ili

ty

Amt.
2
5

10
20
50

(a)

4 6 8 10 12 14 16 18 20

0.05

0.1

0.15

0.2

Number of Nodes

Se
le

ct
ed

A
bd

uc
ib

le
s

/
To

ta
lA

bd
uc

ib
le

s

Amt.
2
5

10
20
50

(b)
Figure 4. Results for abductive experiments. Different lines represent different payment sizes Amt.
(a) variation of the PEP by increasing the number of nodes; (b) variation of the ratio between selected
abducibles to maximize the PEP and total abducibles by increasing the number of nodes.

5 6 7 8 9 10
1.2

1.3

1.4

1.5

1.6

1.7

Number of Nodes

A
ve

ra
ge

N
um

be
r

of
O

pt
im

iz
ab

le
Ed

ge
s

Amt.
2
5
10
20

(a)

5 6 7 8 9 10
1.2

1.3

1.4

1.5

1.6

1.7

Number of Nodes

A
ve

ra
ge

N
um

be
r

of
O

pt
im

iz
ab

le
Ed

ge
s

Amt.
2
5
10
20

(b)
Figure 5. Results for optimizable experiments with PEP > 0.6 and PEP > 0.7 for different payment
sizes. (a) results for PEP > 0.6; (b) results for PEP > 0.7.

5 6 7 8 9 10

1.4

1.6

1.8

Number of Nodes

A
ve

ra
ge

N
um

be
r

of
O

pt
im

iz
ab

le
Ed

ge
s

Amt.
2
5
10
20

(a)

5 6 7 8 9 10

1.2

1.4

1.6

1.8

2

2.2

Number of Nodes

A
ve

ra
ge

N
um

be
r

of
O

pt
im

iz
ab

le
Ed

ge
s

Amt.
2
5
10
20

(b)
Figure 6. Results for optimizable experiments with PEP > 0.8 and PEP > 0.9 for different payment
sizes. (a) results for PEP > 0.8; (b) results for PEP > 0.9.

Cryptography 2022, 6, 29 18 of 21

For the reducible experiments, we set all edges as reducible. The goal is to remove as
many edges as possible while keeping the PEP between two random nodes above 0.6, 0.7
(Figure 7) 0.8, 0.9 (Figure 8). As for the optimizable experiment, the source–destination pair
is the same for the four thresholds but changes for every instance and payment size. We
chose the approximate algorithm. The figures show, on the y-axis, the average number of
removed edges and on the x-axis the number of nodes in the network. For all, the active
probability is set to 1. In this case, the number of selected edges is small with respect to the
number of nodes, and it is usually bounded between 1.5 and 3. The results are similar for
all the thresholds, but, in general, smaller payments allow for removing more edges.

5 6 7 8 9 10

1.5

2

2.5

Number of Nodes

A
ve

ra
ge

N
um

be
r

of
R

em
ov

ed
Ed

ge
s

Amt.
2
5
10
20

(a)

5 6 7 8 9 10

1.5

2

2.5

Number of Nodes

A
ve

ra
ge

N
um

be
r

of
R

em
ov

ed
Ed

ge
s

Amt.
2
5
10
20

(b)
Figure 7. Results for reducible experiments with PEP > 0.6 and PEP > 0.7 for different payment sizes.
(a) results for PEP > 0.6; (b) results for PEP > 0.7.

5 6 7 8 9 10

1.5

2

2.5

Number of Nodes

A
ve

ra
ge

N
um

be
r

of
R

em
ov

ed
Ed

ge
s

Amt.
2
5
10
20

(a)

5 6 7 8 9 10

1.5

2

2.5

Number of Nodes

A
ve

ra
ge

N
um

be
r

of
R

em
ov

ed
Ed

ge
s

Amt.
2
5
10
20

(b)
Figure 8. Results for reducible experiments with PEP > 0.8 and PEP > 0.9 for different payment sizes.
(a) results for PEP > 0.8; (b) results for PEP > 0.9.

7. Conclusions

In this paper, we propose multiple models based on Probabilistic Logic Programming
to study the existence of a path between two random nodes in the Lightning Network.
Starting from a logic model, we extend it to consider an unknown distribution of channels
funds and intermittent nodes. In a second model, we leverage Probabilistic Abductive
Logic Programming to consider incomplete information about the presence of connections.
A third proposed model shows how Probabilistic Optimizable Logic Programs may help to
identify the optimal amount of funds to lock into a channel. Finally, with a fourth model,
we apply Probabilistic Reducible Logic Programs to spot the most crucial edges during a
routing process. We show how users can gather knowledge of some properties from the
models by testing them on random networks with structures similar to the LN.

As future work, we plan to extend the proposed models to consider also more complex
probability distributions and test different routing algorithms.

Cryptography 2022, 6, 29 19 of 21

Author Contributions: Conceptualization, D.A.; methodology, D.A.; software, D.A.; validation, D.A.
and F.R.; formal analysis, D.A.; investigation, D.A.; resources, F.R.; data curation, D.A.; writing—
original draft preparation, D.A.; writing—review and editing, D.A. and F.R.; visualization, D.A. and
F.R.; supervision, F.R.; project administration, F.R.; funding acquisition, F.R. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was partly supported by TAILOR, a project funded by EU Horizon 2020
research and innovation programme under GA No. 952215 and by the “National Group of Computing
Science (GNCS-INDAM)”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Code and datasets used in this paper can be found at https://bitbucket.
org/machinelearningunife/ln_plp_models/src/master/, accessed 1 June 2022.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:
ALP Abductive Logic Programming
BDD Binary Decision Diagram
DS Distribution Semantics
HTLC Hashed Timelock Contract
IC Integrity Constraint
LN Lightning Network
LP Logic Programming
PALP Probabilistic Abductive Logic Program
PEP Path Existence Probability
PLP Probabilistic Logic Programming
POLP Probabilistic Optimizable Logic Programs
PRLP Probabilistic Reducible Logic Programs
PSP Path Success Probability

References
1. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available online: https://bitcoin.org/bitcoin.pdf (accessed

on 20 October 2021).
2. Chaudhry, N.; Yousaf, M. Consensus Algorithms in Blockchain: Comparative Analysis, Challenges and Opportunities. In

Proceedings of the 12th International Conference on Open Source Systems and Technologies (ICOSST), Lahore, Pakistan, 19–21
December 2018; pp. 54–63. [CrossRef]

3. Poon, J.; Dryja, T. The Bitcoin Lightning Network: Scalable Off-Chain Instant Payments. 2016. Available online: https:
//lightning.network/lightning-network-paper.pdf (accessed on 1 June 2022).

4. Riguzzi, F. Foundations of Probabilistic Logic Programming: Languages, Semantics, Inference and Learning; River Publishers: Gistrup,
Denmark, 2018.

5. De Raedt, L.; Kimmig, A. Probabilistic (Logic) Programming Concepts. Mach. Learn. 2015, 100, 5–47. [CrossRef]
6. Azzolini, D.; Riguzzi, F.; Lamma, E. Studying Transaction Fees in the Bitcoin Blockchain with Probabilistic Logic Programming.

Information 2019, 10, 335. [CrossRef]
7. Azzolini, D.; Riguzzi, F.; Lamma, E. A Semantics for Hybrid Probabilistic Logic Programs with Function Symbols. Artif. Intell.

2021, 294, 103452. [CrossRef]
8. Seres, I.; Gulyás, L.; Nagy, D.; Burcsi, P. Topological Analysis of Bitcoin’s Lightning Network. In Mathematical Research for

Blockchain Economy; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–12. [CrossRef]
9. Martinazzi, S. The evolution of Lightning Network’s Topology during its first year and the influence over its core values. arXiv

2019, arXiv:1902.07307.
10. Rohrer, E.; Malliaris, J.; Tschorsch, F. Discharged Payment Channels: Quantifying the Lightning Network’s Resilience to Topology-

Based Attacks. In Proceedings of the 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW),
Stockholm, Sweden, 17–19 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 347–356. [CrossRef]

11. Tochner, S.; Schmid, S.; Zohar, A. Hijacking Routes in Payment Channel Networks: A Predictability Tradeoff. arXiv 2019,
arXiv:1909.06890.

https://bitbucket.org/machinelearningunife/ln_plp_models/src/master/
https://bitbucket.org/machinelearningunife/ln_plp_models/src/master/
https://bitcoin.org/bitcoin.pdf
http://doi.org/10.1109/ICOSST.2018.8632190
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
http://dx.doi.org/10.1007/s10994-015-5494-z
http://dx.doi.org/10.3390/info10110335
http://dx.doi.org/10.1016/j.artint.2021.103452
http://dx.doi.org/10.1007/978-3-030-37110-4_1
http://dx.doi.org/10.1109/EuroSPW.2019.00045

Cryptography 2022, 6, 29 20 of 21

12. Pérez-Solà, C.; Ranchal-Pedrosa, A.; Herrera-Joancomartí, J.; Navarro-Arribas, G.; García-Alfaro, J. LockDown: Balance
Availability Attack Against Lightning Network Channels. In Proceedings of the Financial Cryptography and Data Security—24th
International Conference, FC 2020, Kota Kinabalu, Malaysia, 10–14 February 2020; Bonneau, J., Heninger, N., Eds.; Revised
Selected Papers; Springer: Berlin/Heidelberg, Germany, 2020; Volume 12059, pp. 245–263. [CrossRef]

13. Kumble, S.P.; Epema, D.; Roos, S. How Lightning’s Routing Diminishes Its Anonymity. In Proceedings of the 16th International
Conference on Availability, Reliability and Security, Vienna, Austria, 17–20 August 2021; Association for Computing Machinery:
New York, NY, USA, 2021. [CrossRef]

14. Herrera-Joancomartí, J.; Navarro-Arribas, G.; Ranchal-Pedrosa, A.; Pérez-Solà, C.; Garcia-Alfaro, J. On the Difficulty of Hiding the
Balance of Lightning Network Channels. In Proceedings of the 2019 ACM Asia Conference on Computer and Communications
Security, Auckland, New Zeland, 7–12 July 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 602–612.
[CrossRef]

15. Pickhardt, R.; Tikhomirov, S.; Biryukov, A.; Nowostawski, M. Security and Privacy of Lightning Network Payments with
Uncertain Channel Balances. arXiv 2021, arXiv:2103.08576.

16. Azzolini, D.; Bellodi, E.; Brancaleoni, A.; Riguzzi, F.; Lamma, E. Modeling Bitcoin Lightning Network by Logic Programming.
In Proceedings of the 36th International Conference on Logic Programming (Technical Communications), Rende, Italy, 18–24
September 2020; Ricca, F., Russo, A., Greco, S., Leone, N., Artikis, A., Friedrich, G., Fodor, P., Kimmig, A., Lisi, F., Maratea, M.,
et al., Eds.; Open Publishing Association: Waterloo, Australia, 2020; pp. 258–260. [CrossRef]

17. Azzolini, D.; Riguzzi, F.; Bellodi, E.; Lamma, E. A Probabilistic Logic Model of Lightning Network. In Proceedings of the Business
Information Systems Workshops, Virtual Event, 14–17 June 2021; Abramowicz, W., Auer, S., Stróżyna, M., Eds.; Lecture Notes in
Business Information Processing (LNBIP); Springer: Cham, Switzerland, 2022; pp. 321–333. [CrossRef]

18. Bartolucci, S.; Caccioli, F.; Vivo, P. A percolation model for the emergence of the Bitcoin Lightning Network. Sci. Rep. 2020, 10,
4488. [CrossRef] [PubMed]

19. Callaway, D.S.; Newman, M.E.J.; Strogatz, S.H.; Watts, D.J. Network Robustness and Fragility: Percolation on Random Graphs.
Phys. Rev. Lett. 2000, 85, 5468–5471. [CrossRef] [PubMed]

20. Béres, F.; Seres, I.A.; Benczúr, A.A. A Cryptoeconomic Traffic Analysis of Bitcoins Lightning Network. arXiv 2019,
arXiv:1911.09432.

21. Varma, S.M.; Maguluri, S.T. Throughput Optimal Routing in Blockchain-Based Payment Systems. IEEE Trans. Control. Netw. Syst.
2021, 8, 1859–1868. [CrossRef]

22. Azzolini, D.; Riguzzi, F.; Lamma, E.; Bellodi, E.; Zese, R. Modeling Bitcoin Protocols with Probabilistic Logic Programming.
In Proceedings of the 5th International Workshop on Probabilistic Logic Programming, PLP 2018, Co-Located with the 28th
International Conference on Inductive Logic Programming (ILP 2018), Ferrara, Italy, 1 September 2018; Volume 2219, pp. 49–61.

23. Schnorr, C.P. Efficient signature generation by smart cards. J. Cryptol. 1991, 4, 161–174. [CrossRef]
24. Maxwell, G.; Poelstra, A.; Seurin, Y.; Wuille, P. Simple Schnorr multi-signatures with applications to Bitcoin. Des. Codes Cryptogr.

2019, 87, 2139–2164. [CrossRef]
25. Kowalski, R.A. Predicate Logic as Programming Language. In Proceedings of the IFIP Congress, Stockholm, Sweden, 5–10

August 1974; pp. 569–574.
26. Colmerauer, A.; Kanoui, H.; Pasero, R.; Roussel, P. Un Systeme de Communication Homme-Machine en Français; Technical Report;

Groupe de Recherche en Intelligence Artificielle, Université d’Aix-Marseille: Marseille, France, 1973.
27. Sterling, L.; Shapiro, E. The Art of Prolog: Advanced Programming Techniques; Logic Programming; MIT Press: Cambridge, MA,

USA, 1994.
28. Lloyd, J.W. Foundations of Logic Programming, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1987.
29. De Raedt, L.; Kimmig, A.; Toivonen, H. ProbLog: A Probabilistic Prolog and Its Application in Link Discovery. In Proceedings of

the 20th International Joint Conference on Artificial Intelligence (IJCAI 2007), Hyderabad, India, 6–12 January 2007; Veloso, M.M.,
Ed.; AAAI Press/IJCAI: Palo Alto, CA, USA, 2007; Volume 7, pp. 2462–2467.

30. Vennekens, J.; Verbaeten, S.; Bruynooghe, M. Logic Programs With Annotated Disjunctions. In Proceedings of the 20th
International Conference on Logic Programming (ICLP 2004), Saint-Malo, France, 6–10 September 2004; Demoen, B., Lifschitz, V.,
Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3131, pp. 431–445. [CrossRef]

31. Sato, T. A Statistical Learning Method for Logic Programs with Distribution Semantics. In Proceedings of the Logic Programming:
Twelfth International Conference on Logic Programming, Tokyo, Japan, 13–16 June 1995; Sterling, L., Ed.; MIT Press: Cambridge,
MA, USA, 1995; pp. 715–729. [CrossRef]

32. Sato, T.; Kameya, Y. PRISM: A language for symbolic-statistical modeling. In Proceedings of the 15th International Joint
Conference on Artificial Intelligence (IJCAI 1997), Aichi, Japan, 23–29 August 1997; Volume 97, pp. 1330–1339.

33. Koller, D.; Friedman, N. Probabilistic Graphical Models: Principles and Techniques; Adaptive Computation and Machine Learning;
MIT Press: Cambridge, MA, USA, 2009.

34. Darwiche, A.; Marquis, P. A Knowledge Compilation Map. J. Artif. Intell. Res. 2002, 17, 229–264. [CrossRef]
35. Riguzzi, F.; Swift, T. The PITA System: Tabling and Answer Subsumption for Reasoning under Uncertainty. Theor. Pract. Log.

Prog. 2011, 11, 433–449. [CrossRef]
36. Riguzzi, F.; Bellodi, E.; Lamma, E.; Zese, R.; Cota, G. Probabilistic Logic Programming on the Web. Softw. Pract. Exper. 2016,

46, 1381–1396. [CrossRef]

http://dx.doi.org/10.1007/978-3-030-51280-4_14
http://dx.doi.org/10.1145/3465481.3465761
http://dx.doi.org/10.1145/3321705.3329812
http://dx.doi.org/10.4204/EPTCS.325
http://dx.doi.org/10.1007/978-3-031-04216-4_28
http://dx.doi.org/10.1038/s41598-020-61137-5
http://www.ncbi.nlm.nih.gov/pubmed/32161323
http://dx.doi.org/10.1103/PhysRevLett.85.5468
http://www.ncbi.nlm.nih.gov/pubmed/11136023
http://dx.doi.org/10.1109/TCNS.2021.3088799
http://dx.doi.org/10.1007/BF00196725
http://dx.doi.org/10.1007/s10623-019-00608-x
http://dx.doi.org/10.1007/978-3-540-27775-0_30
http://dx.doi.org/10.7551/mitpress/4298.003.0069
http://dx.doi.org/10.1613/jair.989
http://dx.doi.org/10.1017/S147106841100010X
http://dx.doi.org/10.1002/spe.2386

Cryptography 2022, 6, 29 21 of 21

37. Kakas, A.C.; Mancarella, P. Abductive logic programming. In Proceedings of the NACLP Workshop on Non-Monotonic
Reasoning and Logic Programming, Austin, TX, USA, 1–2 November 1990.

38. Eiter, T.; Gottlob, G. The Complexity of Logic-based Abduction. J. ACM 1995, 42, 3–42. [CrossRef]
39. Azzolini, D.; Bellodi, E.; Ferilli, S.; Riguzzi, F.; Zese, R. Abduction with probabilistic logic programming under the distribution

semantics. Int. J. Approx. Reason. 2022, 142, 41–63. [CrossRef]
40. Azzolini, D.; Riguzzi, F. Optimizing Probabilities in Probabilistic Logic Programs. Theory Pract. Log. Program. 2021, 21, 543–556.

[CrossRef]
41. Azzolini, D.; Riguzzi, F. Reducing Probabilistic Logic Programs. In Proceedings of the 15th International Rule Challenge, 7th Industry

Track, and 5th Doctoral Consortium at RuleML+RR 2021 Co-Located with 17th Reasoning Web Summer School (RW 2021) and 13th
DecisionCAMP 2021 as Part of Declarative AI 2021; Soylu, A., Nezhad, A.T., Nikolov, N., Toma, I., Fensel, A., Vennekens, J., Eds.;
CEUR Workshop Proceedings; Sun SITE Central Europe: Aachen, Germany, 2021; Volume 2956, pp. 1–13.

42. Humphries, M.D.; Gurney, K. Network ’Small-World-Ness’: A Quantitative Method for Determining Canonical Network
Equivalence. PLoS ONE 2008, 3, e0002051. [CrossRef] [PubMed]

43. Hagberg, A.A.; Schult, D.A.; Swart, P.J. Exploring Network Structure, Dynamics, and Function using NetworkX. In Proceedings
of the 7th Python in Science Conference, Pasadena, CA, USA, 19–24 August 2008; Varoquaux, G., Vaught, T., Millman, J., Eds.,
Los Alamos National Lab.: Los Alamos, NM, USA, 2008; pp. 11–15.

44. Bollobás, B.; Borgs, C.; Chayes, J.T.; Riordan, O. Directed scale-free graphs. In Proceedings of the Proceedings of the Fourteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, Baltimore, MD, USA, 12–14 January 2003; ACM/SIAM: Philadelphia,
PA, USA, 2003; pp. 132–139.

http://dx.doi.org/10.1145/200836.200838
http://dx.doi.org/10.1016/j.ijar.2021.11.003
http://dx.doi.org/10.1017/S1471068421000260
http://dx.doi.org/10.1371/journal.pone.0002051
http://www.ncbi.nlm.nih.gov/pubmed/18446219

	Introduction
	Related Work
	Blockchain and Lightning Network
	Logic Programming Languages
	Logic Programming
	Probabilistic Logic Programming
	Probabilistic Abductive Logic Programming
	Probabilistic Optimizable and Probabilistic Reducible Logic Programs

	Lightning Network Models
	Abductive Model
	Optimizable Model
	Reducible Model

	Experiments
	Conclusions
	References

