
Citation: Drzazga, B.; Krzywiecki, Ł.

Review of Chosen Isogeny-Based

Cryptographic Schemes.

Cryptography 2022, 6, 27.

https://doi.org/10.3390/

cryptography6020027

Academic Editor: Josef Pieprzyk

Received: 13 March 2022

Accepted: 24 May 2022

Published: 31 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Review

Review of Chosen Isogeny-Based Cryptographic Schemes
Bartosz Drzazga * and Łukasz Krzywiecki

Faculty of Information and Communication Technology, Wrocław University of Science and Technology,
27 Wybrzeze Wyspianskiego St., 50-370 Wroclaw, Poland; lukasz.krzywiecki@pwr.edu.pl
* Correspondence: bartosz.drzazga@pwr.edu.pl

Abstract: Public-key cryptography provides security for digital systems and communication. Tradi-
tional cryptographic solutions are constantly improved, e.g., to suppress brute-force attacks. However,
Shor’s algorithm suited for quantum computers can break the bedrock of most currently used systems,
i.e., the RSA problem and discrete logarithm problem. Post-quantum cryptography can withstand
attacks carried out by quantum computers. Several families of post-quantum systems exist; one of
them is isogeny-based cryptography. As a main contribution, in this paper, we provide a survey
of chosen, fundamental isogeny-based schemes. The target audience of this review is researchers
interested in practical aspects of this field of cryptography; therefore the survey contains exemplary
implementations. Our goal was not to develop an efficient implementation, but to provide materials
that make it easier to analyze isogeny-based cryptography.

Keywords: cryptography; post-quantum; isogenies; supersingular isogeny diffie–Hellman; SIDH

1. Introduction

Without secure solutions offered by asymmetric cryptography, our digital lives and
digital businesses would be much less advanced than today. Public-key cryptography
nowadays is essentially indispensable and used in almost all devices connected to a network.
Public-key algorithms are a foundation of, e.g., secure and private web browsing over
Transport Layer Security (TLS), encrypted messaging with OpenPGP, or any online service
such as e-government. It is critically important to maintain sufficient security levels; thus, a
lot of attempts have been made. As computational power and cost-efficiency of computers
improve over time, key sizes are increased to suppress brute-force attacks. However, there
are threats to classical asymmetric cryptography security that cannot be held back by a
simple key size increase.

Public-key (asymmetric) cryptography is a system that utilizes a pair of keys. One
of the keys may be known to everyone (public key), while the other key must not be
known to anyone else but the owner (private key). Asymmetric cryptography is based
on mathematical problems known as one-way functions, i.e., a function which is easy to
compute on any input, but it is hard to compute its input given a result. Usually, to generate
such a key pair, the private key is chosen at random, then the public key is computed as the
result of the selected one-way function with the private key as the input. The most popular
asymmetric cryptography systems are based on two hard problems: the RSA problem and
discrete logarithm problem (DLP).

1.1. Problem Statement

In 1994, a groundbreaking algorithm suited for quantum computers was presented.
Shor’s algorithm [1] is a polynomial-time quantum computer algorithm for integer factor-
ization. It means that cryptosystems such as RSA [2] could be broken by constructing a
sufficiently large quantum computer.

Shor’s algorithm is composed of two parts. The first part may be implemented on a
classical computer and is responsible for turning the factorization problem into the problem

Cryptography 2022, 6, 27. https://doi.org/10.3390/cryptography6020027 https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography6020027
https://doi.org/10.3390/cryptography6020027
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0000-0001-9361-3823
https://orcid.org/0000-0002-5326-3627
https://doi.org/10.3390/cryptography6020027
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography6020027?type=check_update&version=1

Cryptography 2022, 6, 27 2 of 39

of finding the period of a function. The second part is a quantum subroutine that finds the
period using the quantum Fourier transform. The period finding algorithm can be also
used to break discrete logarithm problem instances by reduction.

1.2. Post-Quantum Alternatives

Post-quantum cryptography refers to cryptographic algorithms believed to be secure
against attacks by a quantum computer. Initiatives such as NIST Post-Quantum Cryp-
tography Competition [3] are an effort to standardize quantum-resistant schemes. In the
third round out of this competition, six scheme families are still considered: lattice-based,
multivariate, code-based, hash-based, zero-knowledge proofs, and isogeny-based. The
focus of this article is isogeny-based cryptography.

One of the most promising types of post-quantum algorithms is lattice-based schemes
(in the construction or in its security proof). Lattice-based cryptosystems include NTRU [4]
for public-key encryption (PKE) and Falcon [5] for signatures.

Multivariate cryptography is a type of quantum-safe algorithms based on multivariate
polynomials. This includes cryptographic schemes which are based on the difficulty of
solving systems of multivariate equations. An example of this family is Rainbow [6]
signature scheme.

Code-based cryptography involves cryptographic schemes based on error-correcting
codes. Classic McEliece [7] encryption schemes belong to this type.

Hash-based cryptography includes cryptographic systems based on hash functions in
contrast to number-theoretic schemes. SPHINCS+ [8] signature scheme is a representative
of that family.

Zero-knowledge proof systems are based on zero-knowledge proofs and symmetric-
key primitives such as hash functions and block ciphers. Picnic [9] signature scheme is of
this type.

1.3. Contribution

The goal of this article is to introduce to the reader chosen constructions based on
supersingular isogeny Diffie–Hellman (SIDH) [10] and SIDH itself. Our intention is to fa-
miliarize the reader with fundamental schemes based on isogenies: supersingular isogeny
Diffie–Hellman key exchange (SIDH) [10], isogeny-based digital signature (IBDS) [11],
strong designated verifier signature (SDVS) [12], undeniable signatures [13], and supersin-
gular isogeny oblivious transfer (SIOT) [14]. Moreover, our goal is to illustrate high-level
algorithms with implementations. We assume that such detailed level will help the reader
to fully understand isogeny nuances and allow us to design fresh schemes with new
functionalities. In this article:

• We discuss several fundamental solutions based on supersingular isogenies, provide
summary of high-level mathematical aspects, constructions and algorithms.

• Most of the source publications use similar notations but there are some differences.
We provide unified notation that allows easier comprehension and comparison of
the solutions.

• We provide implementations of the chosen constructions in concise but clear code
developed with easy to understand technologies. We discuss the solutions from the
perspective of a programmer and comment the algorithms in more detail.

We note that implementations described in this article are not meant to assess the
performance of the chosen schemes. Instead, we want to use code snippets as another
tool (next to pseudocode) to describe the reviewed constructions. Pseudocode may not
be clear enough in some cases, especially when complicated mathematical operations
are involved. Instead, the reader can use our implementations to analyze the algorithms.
The source codes can be executed and tweaked. We hope these implementations can
be a helpful resource for every isogeny-based cryptography beginner or even for more
experienced researchers. Some of the publications focused on isogeny-based cryptography
provide low-level, fast implementations. These works are certainly a great feat; however,

Cryptography 2022, 6, 27 3 of 39

the implementations in C, C++, and assembly are much harder to comprehend. We also
provide time measurements of our implementations. These results are only for illustrative
purposes and allow us to compare the chosen schemes. We do not intend to improve
current state-of-the-art isogeny computations methods.

1.4. Organization of the Article

The article is organised into following sections. Section 2 contains characterisation
of supersingular elliptic curve isogeny, mathematical definitions, isogeny algebra, and
definitions of hard problems which provide security for isogeny-based cryptography. It
also describes technologies used in implementations and common building blocks for all
implemented solutions. Security assumptions for isogeny-based cryptography are stated
in Section 3. In Section 4, SIDH, IBDS, SDVS, undeniable signatures, and SIOT schemes
are presented. For each of the constructions, first a high-level description of the solution
and algorithms are given. Then, implementation of the scheme is shown together with
general comments and mappings to specific algorithms. Generic constructions used in the
chosen schemes are presented in Section 5 together with an example of vulnerable applica-
tion. Section 6 contains measurements of execution times of implemented cryptographic
schemes. Finally, Section 7 contains conclusions.

2. Supersingular Elliptic Curve Isogeny Cryptography

Supersingular elliptic curve isogeny cryptography is a family of schemes based on
the properties of supersingular elliptic curves and supersingular isogeny graphs. Isogeny-
based schemes use the mathematics of supersingular elliptic curves to create a Diffie–
Hellman-like key exchange. This means isogeny cryptography provides a straightforward
quantum computing resistant replacement for widely used key exchange methods. Isogeny-
based schemes boast significantly smaller key sizes than most of the popular post-quantum
alternatives. There are two distinct families of systems based on isogeny algebra: su-
persingular isogeny Diffie–Hellman (SIDH) [10] and commutative supersingular isogeny
Diffie–Hellman (CSIDH) [15]. The only scheme of this type still in NIST Post-Quantum
Cryptography Competition is Supersingular Isogeny Key Encapsulation (SIKE) [16] which
is based on SIDH. Many more cryptographic schemes similar to SIDH were proposed in
the literature. We will focus only on the SIDH family.

Apart from public-key cryptography based on isogenies, other isogeny-based cryp-
tographic schemes have been proposed. A recent example is Oblivious Pseudorandom
Functions from Isogenies [17].

2.1. Definitions and Isogeny Algebra

This section contains essential mathematical Definitions related to isogenies. Further
details on the mathematical foundations of isogenies are presented in, e.g., [10,18]. We use
the following notation:

• Variables named n, d, e, `, f represent integers, variables p, q are prime numbers.
• Let φ be an isogeny.

• Let y1, . . . , yn
R←− Y denote each yi is sampled uniformly at random from the set Y.

• Elliptic curves are named E, the j-invariant of the elliptic curve E is denoted as j(E).
• P, Q denote generators of a torsion subgroup.

The group of points on an elliptic curve E over a finite field Fq of cardinality q with a
specified point O is denoted as E(Fq). The group contains a point at infinity and a set of
points (x, y) that satisfy the short Weierstrass form:

E/Fq : y2 = x3 + ax + b, (1)

Cryptography 2022, 6, 27 4 of 39

where a, b, x, y ∈ Fq. The j-invariant of an elliptic curve given by the Weierstrass equation
is given by the formula:

j(E) = 1728
4a3

4a3 + 27b2 . (2)

Two elliptic curves E1 and E2 are isomorphic to each other if and only if they have the
same j-invariant, i.e., j(E1) = j(E2).

Isogeny-based cryptography does not use elliptic curve’s abelian group over point
addition. Instead, it uses a map between curves called isogenies. An isogeny φ : E1 → E2
over Fq is a non-constant rational map from E1 to E2, which is a group homomorphism
with a finite kernel. It follows that φ(OE1) = OE2 , where O denotes the identity element
on an elliptic curve. An isogeny φ can be written as:

φ =

(
f1(x, y)
g1(x, y)

,
f2(x, y)
g2(x, y)

)
, (3)

where f1, f2, g1, g2 are polynomials in variables x, y with coefficients in Fq. The degree
of φ is its degree as an algebraic map, deg(φ) = max{deg(f1), deg(f2)}. If the isogeny
is separable, the degree of the isogeny is equal to the cardinality of its kernel. In this
work, only separable isogenies are considered. An isogeny of degree ` is referred to as an
`-isogeny. Two elliptic curves are `-isogenous if there exists an `-isogeny between them.
Each `-isogeny φ : E1 → E2 has a dual isogeny φ̂ : E2 → E1 such that φ ◦ φ̂ = φ̂ ◦ φ = [`]
where [`] is the multiplication by ` map. Isogeny φ̂ is also an `-isogeny.

For any natural ` we define `-torsion group E[`] as the kernel of the multiplication by
` map over the algebraic closure F̄q of Fq, i.e.,

E[`] = {P ∈ E(F̄q) : `P = O}. (4)

The endomorphism ring End(E) under the operations of point-wise addition and
functional composition is defined as the set of all isogenies from E to itself, defined over
the algebraic closure F̄q of Fq. If dim(End(E)) = 4 then E is supersingular otherwise E is
ordinary. Two isogenous curves are always both ordinary or both supersingular.

The kernel K of φ uniquely defines φ up to isomorphism so the codomain E2 of the
isogeny φ : E1 → E2 can be denoted as E1/K. Any generator of the kernel will produce a
unique isogeny up to isomorphism.

An isogeny graph is a graph in which nodes are j-invariants (representing isomor-
phism classes of elliptic curves), and in which edges are isogenies between them. The
isogeny graph is undirected since each isogeny has a dual isogeny. It is hard to find a path
of a given length between two random nodes in the isogeny graph. This hardness is the
basis of isogeny-based cryptosystems.

2.2. Implementation Outline

For each of the chosen implemented schemes we include listings of code, correspond-
ing comments, and mappings to algorithms. For each scheme, an exemplary execution is
presented with one-run time measurements for order of magnitude reference, these were
run on a single core of Intel Core i7-9750H processor. The following implementations
are designated to be proof-of-concept implementations that help to understand the ideas
behind the constructions and do not represent industrial grade level of security. Their
main goal is to allow easy, fast modifications and experiments; thus, they use interpreted
programming language and prioritize readability over execution speed and security. The
implementations are not hardened against, e.g., timing attacks.

2.2.1. Common Building Blocks

All of the chosen schemes are implemented similarly, each implementation uses Python
in version 3.9.5 and SageMath version 9.3. The implemented schemes are SIDH-based;

Cryptography 2022, 6, 27 5 of 39

thus, common code related to parameters of SIDH is presented in this subsection. When
not stated otherwise, implementations will use these shared parameters and functions.

For better performance, a different set of programming languages and libraries can be
used. Microsoft’s SIDH Library is a fast and portable library written in C that implements
supersingular isogeny cryptographic schemes. Cloudflare provides SIDH library written in
Go that ports portions of Microsoft’s library. Those libraries make use of arithmetic written
in assembly and allow us to compile the source code for a specific platform. Compared to
SageMath, Microsoft’s and Cloudflare’s libraries are much better suited for a production-
ready implementation; however, implementations written in Python and SageMath are
easier to understand and experiment with.

2.2.2. SIDH Public Parameters

Public parameters that are common for most of the schemes described in Section 4
are a prime p = `eA

A `eB
B · f ± 1, a field Fp2 , a supersingular elliptic curve E(Fp2), and

PA, QA, PB, QB. This section contains listings with their definitions.

Comment (Listing 1): The above code creates a prime p = `eA
A `eB

B · f ± 1 using SIKEp434 [16]
parameters, i.e., p = 22163137 − 1. Then, a finite field Fp is created together with its
quadratic extension Fp2, i.e., Fp2 = Fp(i) with i2 + 1 = 0. Finally, a starting curve E
over that quadratic extension is created, defined by y2 = x3 + x. Integer p must be prime
and the starting elliptic curve must be supersingular, both these properties are tested in
the assertions.

Listing 1. Public parameters.
1 f = 1

lA = 2
lB = 3
eA = 216

5 eB = 137

p = f * lA**eA * lB ** eB - 1
assert p.is_prime()

10 Fp = GF(p)
Fp2 = GF(p ** 2, 'i', modulus=x**2 + 1)

E = EllipticCurve(Fp2, [1, 0])

15 assert E.is_supersingular()

Comment (Listing 2): Generators (PA, QA), (PB, QB) of E[`eA
A] and E[`eB

B], respectively, are
generated dynamically with functions defined above. Function get_rand_point_ord returns
a random point of order order on an elliptic curve E by first selecting a random point and
then decreasing its order to the target value. This approach succeeds with high probability
on the first try. Function get_random_base finds two points, P and Q, that are independent
of each other. For that, the Weil pairing is computed and its order must be equal to the
order of points. Generators for Alice and Bob are computed in the following way.

Listing 2. Basis points functions.

1 def get_rand_point_ord(order, E, ord_oth):
P = E.random_point()
P_prime = ord_oth ** 2 * P
while P_prime.order() != order:

5 P = E.random_point()
P_prime = ord_oth ** 2 * P

return P_prime

10 def get_random_base(order, E, ord_oth):
P = get_rand_point_ord(order, E, ord_oth)
Q = get_rand_point_ord(order, E, ord_oth)
while P.weil_pairing(Q, order).multiplicative_order() != order:

Q = get_rand_point_ord(order, E, ord_oth)
15 return P, Q

Cryptography 2022, 6, 27 6 of 39

Comment (Listing 3): The above code introduces a Python dictionary params and a function
get_other that allow us to conveniently store and access parameters of Alice (dictionary
key A) and Bob (dictionary key B).

Listing 3. Public basis points.

1 PA, QA = get_random_base(lA**eA, E, f * lB ** eB)
PB, QB = get_random_base(lB**eB, E, f * lA ** eA)

params = {}
5 params['A'] = [PA, QA, lA, eA]

params['B'] = [PB, QB, lB, eB]

def get_other(name):
10 if name == 'A':

return params['B']
elif name == 'B':

return params['A']

2.2.3. Isogeny Computation

SageMath allows to compute an isogeny using a library function, but that approach is
inefficient for large parameters.

Comment (Listing 4): A better approach to computing `e-isogeny is to compute a composi-
tion of e individual `-isogenies. The function isogeny_graph_walk computes an isogeny,
which is defined by a point P, from a curve E to a curve E_prime. It can also move points
P_oth and Q_oth through that isogeny. The loop in line 5 in the above listing computes
e individual `-isogenies. The function returns a tuple matching SIDH public key, i.e., the
final curve E_prime and the images of other party’s public basis points.

Listing 4. Isogeny function.

1 def isogeny_graph_walk(E, P, l, e, P_oth = None, Q_oth = None):
E_prime = E
P_prime = P

5 for i in range(e):
R = l ** (e - (i + 1)) * P_prime
phi = E_prime.isogeny(R)
P_prime = phi(P_prime)
assert P_prime.order() == l ** (e - (i + 1))

10 if (P_oth != None and Q_oth != None):
P_oth = phi(P_oth)
Q_oth = phi(Q_oth)

E_prime = phi.codomain()

15 return (E_prime, P_oth, Q_oth)

3. Security of the Chosen Schemes

In this article, we do not repeat security proofs of the schemes we survey. We advise the
readers interested in detailed security analysis of the schemes to refer to the corresponding
original publications for security analysis and proofs.

The security of SIDH, IBDS, SDVS, undeniable signatures, and SIOT is provable and
has been proven by reduction in which an adversary breaking each of the schemes could
be used to break assumptions for isogeny-based cryptography. The following problems
(from [10]) are believed to be intractable even for quantum computers and are the basis of
security of isogeny-based cryptosystems.

Definition 1 (Decisional Supersingular Isogeny (DSSI) problem). Let E, EA be supersingular
curves defined over Fp2 . Decide whether EA is `eA

A -isogenous to E.

Definition 2 (Computational Supersingular Isogeny (CSSI) problem). Let φA : E →
EA be an isogeny whose kernel is 〈SA〉, where SA is a random point with order `eA

A . Given
EA, φA(PB), φA(QB), find a generator of 〈SA〉.

Cryptography 2022, 6, 27 7 of 39

Definition 3 (Supersingular Computational Diffie–Hellman (SSCDH) problem). Let φA :
E → EA be an isogeny whose kernel is 〈SA〉, where SA is a random point with order `eA

A , let
φB : E → EB be an isogeny whose kernel is 〈SB〉, where SB is a random point with order `eB

B .
Given the curves EA, EB and the points φA(PB), φA(QB), φB(PA), φB(QA) find the j-invariant of
E/〈SA, SB〉.

Definition 4 (Supersingular Decision Diffie–Hellman (SSDDH) problem). Given a tuple
sampled with probability 1/2 from one of the following two distributions, determine from which
distribution the tuple is sampled:

• (EA, EB, φA(PB), φA(QB), φB(PA), φB(QA), EAB), where EA, EB, φA(PB), φA(QB),
φB(PA), φB(QA) are as in the SSCDH problem and EAB = E/〈SA, SB〉,

• (EA, EB, φA(PB), φA(QB), φB(PA), φB(QA), EC), where EA, EB, φA(PB), φA(QB),
φB(PA), φB(QA) are as in the SSCDH problem and EC = E/〈S′A, S′B〉, where S′A and S′B are
random points with order `eA

A and `eB
B , respectively.

Definition 5 (Decisional Supersingular Product (DSSP) problem). Let φ : E → E3 be an
isogeny of degree `eA

A . Given (E1, E2, φ′) sampled with probability 1/2 from one of the following
distributions, determine which distribution it is from.

• A random point R of order `eB
B is chosen and E1 = E/〈R〉, E2 = E3/〈φ(R)〉, and φ′ : E1 →

E2 is an isogeny of degree `eA
A .

• E1 is chosen randomly among curves of the same cardinality as E, and φ′ : E1 → E2 is a
random isogeny of degree `eA

A .

On top of that, the undeniable signatures from [13] also use modified assumptions
related to supersingular isogenies. Additionally, the schemes based on SIDH include
security proofs of modifications and extensions that provide new functionalities.

The security of the chosen isogeny-based schemes is based on the problem of searching
for an isogeny between elliptic curves having all information that a passive adversary could
gather listening to the protocols’ executions. To break these cryptosystems, one needs to
find the secret isogeny between the starting elliptic curve E and the elliptic curve in the
public key, e.g., EA. The adversary knows not only the preimage and image curves of the
secret isogeny but also the public parameters, i.e., basis points and their images in public
keys. One of the main assumption in the chosen schemes is that the additional information
does not give any advantage to a passive adversary in solving the problem of computing
the isogeny. This assumption remains valid; no known passive attacks use auxiliary points.

The authors of [19] show that an active adversary can reconstruct the secret if parties
reuse their secret keys for many protocol executions. A malicious party can send to an
honest party a public key with a modified auxiliary point and learn the secret key bit by
bit. Currently, there is no known method for an honest party to check if the other public
key is malicious. It is required that all parties use ephemeral secret keys or that a generic
transformation is used, which allows one party to reuse their secret. SIKE applies such a
transformation to SIDH.

The following approaches can be used for finding the secret isogeny.

• Brute-force attack: finding a path from the starting curve E until reaching the curve in
the public key, e.g., EA. In brute-force attacks the number of isogeny computations is
estimated to be linear to the size of the isogeny graph. It is not the best method for
solving the isogeny problem because it does not take advantage of the fact that the
secret isogeny has fixed and known degree. The task is in fact easier than a general
problem of finding a path among all nodes. The parties take only eA or eB steps in an
isogeny graph walk which is much shorter than the diameter of the graph.

• Meet in the middle: to depict the method let us use SIDH as an example, and fix
p = 22163137 − 1. We are searching for Alice’s secret isogeny φA : E → EA of degree
2216. Instead of trying to find one path, two walks of 108 steps are performed starting
from both E and EA. At some point, these walks meet in the middle, and with high

Cryptography 2022, 6, 27 8 of 39

probability, these connected two paths form the walk that Alice took. To implement
this attack one builds a table of all 2108-isogenous elliptic curves to EA. Then, each
2108-isogeny is computed from E until a match is found in the table. If p = `eA

A `eB
B ·

f ± 1 with `eA
A ≈ `eB

B is used, then `eA/2
A ≈ p1/4 so the attack runs in O(p1/4) time

and requires O(p1/4) memory. The complexity remains the same if the other party
is targeted.

• The authors of [20] argue that the generic meet in the middle algorithm also is not the
best attack. They provide an nalysis showing that the van Oorschot-Wiener golden
collision search is the best attack for finding the secret isogeny.

The hypothesis that these classical approaches cannot be improved using quantum
computers is based on the following reasoning shown in [21]. To compute a walk of e
isogenies it is necessary to compute each isogeny successively. These computations cannot
be parallelized because in each step the j-invariant changes. It also applies to quantum
computers. Indeed, the author of [22] compares the best classical and quantum attacks and
shows that “quantum computers don’t really help”.

4. Chosen Schemes

This article reviews by far the most popular isogeny-based protocol, i.e., SIDH. SIDH
attracted almost the entire focus of isogeny-based cryptography in recent years. We also
review a family of schemes based on SIDH. The main principle that determined which
protocol is included in the review was the similarity to SIDH, e.g., in the form of public
keys, and the flow of exchanged messages. In each of the reviewed protocols, it is clear
how they build on top of SIDH. For this reason, e.g., commutative SIDH (CSIDH) was not
included in the review since it differs greatly from SIDH, i.e., there are no auxiliary points
exchanged, and it is possible to verify if the other party’s key was generated honestly.

Since IBDS, SDVS, undeniable signatures, and SIOT are very much based on SIDH,
we shall start the review with that scheme. It is the least complicated and we use it to also
show how isogeny operations work in general.

4.1. Supersingular Isogeny Diffie–Hellman Key Exchange (SIDH)
4.1.1. Construction and Algorithms

The Diffie–Hellman key exchange [23] is one of the earliest, practical, cryptographic
key exchange protocols. It is also the first publicly known work that proposed the idea of a
private key and a corresponding public key. In the traditional Diffie–Hellman, exponents
commute to produce a shared secret gab = (ga)b = (gb)a where g is a generator of a
multiplicative group G of prime order q such that discrete logarithm problem and compu-
tational Diffie–Hellman problem hold, and a, b are private keys of two parties. An efficient
algorithm to solve the DLP would make DH key exchange insecure; thus, quantum-secure
alternatives are needed.

The scheme that started an increased interest in isogeny based cryptography is super-
singular isogeny Diffie–Hellman (SIDH) protocol [10] due to Jao and De Feo. More isogeny
systems are based on SIDH so the initial setting is very often the same. SIDH works in the
quadratic extensions of large prime fields Fp, typically Fp2 = Fp(i) with i2 + 1 = 0; thus,
elements can be represented as a + bi where a, b ∈ Fp. SIDH takes primes of the form

p = `eA
A `eB

B · f ± 1, (5)

where `A, `B are small primes (commonly 2 and 3) with `eA
A ≈ `eB

B and a small cofactor f to
ensure p is prime (usually f = 1). The public parameters are a prime p, a supersingular
curve E(Fp2) of order (`eA

A `eB
B · f)2, generators PA, QA of the `eA

A -torsion subgroup E[`eA
A],

and generators PB, QB of the `eB
B -torsion subgroup E[`eB

B].
SIDH is similar to the classical Diffie–Hellman protocol. Two parties, named Alice

and Bob, together compute a shared secret key. Alice creates her private key by choosing

mA, nA
R←− Z/`eA

A Z, not both divisible by `A, and computes an isogeny φA : E→ EA with

Cryptography 2022, 6, 27 9 of 39

kernel 〈mAPA + nAQA〉. With almost no loss in generality, private keys with m = 1 can
be used [24]. That convention is used throughout this work; thus, Alice selects skA ∈
{0, 1, . . . , `eA

A − 1} and computes

SA = PA + skA QA. (6)

Then, she computes her secret isogeny φA : E → EA, where EA = E/〈SA〉. This can
be done as a composition of eA isogenies of degree `A (taking eA steps defined by SA in
`A-isogeny graph). Alice’s public key is the image curve EA and the images of Bob’s public
basis points:

pkA = (EA, P′B, Q′B) = (EA, φA(PB), φA(QB)). (7)

Bob creates his private key by choosing skB ∈ {0, 1, . . . , `eB
B − 1} and computing

SB = PB + skB QB. (8)

Then, he computes his secret isogeny φB : E → EB, where EB = E/〈SB〉. This can
be done as a composition of eB isogenies of degree `B (taking eB steps defined by SB in
`B-isogeny graph). Bob’s public key is the image curve EB and the images of Alice’s public
basis points:

pkB = (EB, P′A, Q′A) = (EB, φB(PA), φB(QA)). (9)

Alice, having her secret integer skA and Bob’s public key, computes the secret subgroup
S′A = P′A + skA Q′A on EB. Then, she computes another secret isogeny φ′A : EB → EAB,
EAB = EB/〈S′A〉. The shared secret is jAB = j(EAB).

Bob computes the secret subgroup S′B = P′B + skB Q′B on EA, then computes secret
isogeny φ′B : EA → EBA, EBA = EA/〈S′B〉. The shared secret is jBA = j(EBA).

Computations carried out by Alice and Bob are an isogeny graph walk. Both parties
start from the initial curve E, then Alice and Bob use their secret values and move to
EA with φA and EB with φB, respectively. After exchanging their public keys, they can
continue their walks. Alice starts from EB and moves to EAB with φ′A, Bob proceeds mutatis
mutandis and arrives in EBA. Both parties end up in the same node of the isogeny graph so
they can use j(EAB) = j(EBA) as their shared secret value. The isogeny graph walk of Alice
and Bob is shown in Figure 1. A short description of SIDH is given in Table 1.

E E/〈SA〉

E/〈SB〉 E/〈SA, SB〉

φA

φB φ′B
φ′A

Figure 1. Isogeny graph walk of Alice and Bob.

Remark 1. Both parties need to include images of each other’s basis points through their secret
isogenies. A composition of isogenies φA and φB does not make sense because of domain and
codomain mismatch. Alice needs to start the second part of shared key computations from EB, and
Bob needs to start from EA. This problem is solved by moving each other’s basis points through
the secret isogeny during key generation. In the end, they arrive at the same j-invariant. Except
for that one difference, SIDH and classical DH share many common properties, like: both parties
compute shared value, having a public key it is infeasible to compute the corresponding secret key,
and knowing the secret key it is easy to compute the shared value.

Remark 2. Since SIDH and classical DH are so similar it seems natural we should be able to
construct a lot of isogeny-based schemes based on SIDH just like in classical cryptography. DH is a
foundation for many more constructions with a broad set of functionalities and security properties.
However, this is not the case in isogeny-based cryptography. In classical cryptography we can
use two operations, namely: exponentiation and addition of exponents. So far there is no second

Cryptography 2022, 6, 27 10 of 39

operation in isogeny-based cryptography. It seems to be the main difficulty in developing new
isogeny-based schemes.

Table 1. SIDH scheme.

Setup:
prime p = `eA

A `eB
B · f ± 1

supersingular curve E(Fp2)

generators PA, QA of E[`eA
A]

generators PB, QB of E[`eB
B]

Key generation:
Alice Bob

1. skA
R←− Z/`eA

A Z 1. skB
R←− Z/`eB

B Z
2. SA = PA + skA QA 2. SB = PB + skB QB
3. φA : E→ EA = E/〈SA〉 3. φB : E→ EB = E/〈SB〉
4. pkA = (EA, φA(PB), φA(QB)) 4. pkB = (EB, φB(PA), φB(QA))

pkA−−→
pkB←−−

Secret generation:
1. S′A = φB(PA) + skA φB(QA) 1. S′B = φA(PB) + skB φA(QB)
2. φ′A : EB → EAB = E/〈S′A〉 2. φ′B : EA → EBA = E/〈S′B〉
3. jAB = j(EAB) 3. jBA = j(EBA)

4.1.2. Implementation

SIDH is an interactive protocol between two parties, namely Alice and Bob. They both
execute similar operations but using different parameters. Each party is implemented as an
object of class Entity; however, objects representing Alice and Bob are created with different
sets of parameters.

Comment (Listing 5): In the above listing, the object constructor __init__ corresponds to
the key generation algorithm in Table 1. In line 9, a secret key sk is generated. In line 10, a
generator S of a secret isogeny kernel is created. In the end, a call to isogeny_graph_walk
with the secret key and other party’s basis points produce the public key.

Listing 5. Class definition.
1 class Entity:

def __init__(self, name):
self.name = name
self.P = params[name][0]

5 self.Q = params[name][1]
self.l = params[name][2]
self.e = params[name][3]

self.sk = random.randrange(self.l ** self.e)
10 self.S = self.P + self.sk * self.Q

assert self.l ** self.e == self.S.order()
self.pk = self.gen_pub_key(get_other(self.name))

15 def gen_pub_key(self, other):
return isogeny_graph_walk(E, self.S, self.l, self.e, other[0], other[1])

def gen_shared_key(self, peer):
20 S = peer.pk[1] + self.sk * peer.pk[2]

shared_curve, _, _ = isogeny_graph_walk(peer.pk[0], S, self.l, self.e)
return shared_curve.j_invariant()

A shared secret value is computed in the gen_shared_key method, which implements
secret generation algorithm in Table 1. In line 20, a new generator S of a secret isogeny
kernel is created. That generator is a point on the other party’s public key curve. With that
value, it is possible to compute the next isogeny in an isogeny graph. The target curves of
both parties are in the same node of the graph; thus, its j-invariant is returned as a secret.

Cryptography 2022, 6, 27 11 of 39

Comment (Listing 6): The above listing shows an example code that executes SIDH. First,
an Entity A is created for Alice, then an Entity B for Bob. Alice can generate her shared
value with Bob by passing object B as an argument to the gen_shared_key method in line
10. Bob computes his shared key with Alice in line 13 by passing object A as an argument
to the gen_shared_key method. Both Alice and Bob must compute the same value, that
condition is asserted in line 16.

Listing 6. SIDH key agreement.

1 t0 = time.perf_counter()

print('Started generation of PKA')
A = Entity('A')

5

print('Started generation of PKB')
B = Entity('B')

print('Started generation of secA')
10 secA = A.gen_shared_key(B)

print('Started generation of secB')
secB = B.gen_shared_key(A)

15 t1 = time.perf_counter()
assert secA == secB
print("Time elapsed (s):", t1 - t0)

Comment (Listing 7): The output of the above program shows that the assertion succeeded.

Listing 7. SIDH execution.

1 Started generation of PKA
Started generation of PKB
Started generation of secA
Started generation of secB

5 Time elapsed (s): 7.953178946001572

4.2. Isogeny-Based Digital Signature (IBDS)
4.2.1. Construction and Algorithms

The scheme published in [11] by Yoo, Azarderakhsh, Jalali, Jao, and Soukharev is the
first general-purpose digital signature scheme secure against quantum adversaries based
on supersingular elliptic curve isogenies. The scheme uses Unruh’s construction [25] of
non-interactive zero-knowledge (NIZK) proofs applied to an interactive zero-knowledge
proof presented in the same paper as SIDH [10]. This is similar to applying the Fiat–Shamir
transform to an interactive zero-knowledge proof to build a secure signature scheme in
classical cryptography. The Fiat–Shamir transform is only known to be secure against
classical adversaries, as [26,27] show this construction is not secure against quantum
computers. The Unruh’s construction is secure against quantum adversaries.

The public parameters of the isogeny-based digital signature (IBDS) are similar to
the parameters of SIDH with one difference: only generators PB and QB must be known
publicly. IBDS simulates interactions in a sigma protocol using hashes. Parties run the
protocol 2λ times, where λ is the security parameter and the challenge domain is {0, 1}.
Let G, H be quantum random oracles, G has the same domain and range, while H outputs
2λ bits for challenges. A classical random oracle is modeled as a random hash function
O : {0, 1}∗ → {0, 1}∗, it is possible to learn a value O(x) by querying the classical state x.
A quantum(-accessible) random oracle can be evaluated in superposition by submitting a
quantum state. An attacker can query a random oracle with a superposition of many states,
and the oracle must be evaluated at all points in the superposition. Unlike in Fiat–Shamir
transform, H will not be evaluated only on the commitments. The parameters for the
hash function also include hashes from G of the responses to each possible challenge for
each commitment. The signature consists of the commitments, all possible challenges,
hashed responses, and responses to the challenges given by H. The verifier gets the same

Cryptography 2022, 6, 27 12 of 39

challenge bits from H and verifies the responses in each round. The scheme consists of
three algorithms: KeyGen,Sign, and Verify.

To implement KeyGen algorithm, shown in Algorithm 1, it suffices to use an imple-
mentation of Alice’s key generation procedure from the SIDH protocol.

To generate keys, sample a random point S of order `eA
A , compute the isogeny φ : E→

E/〈S〉 and calculate images of public points PB and QB. Sampling S can be implemented
as S = PA + sk QA for some sk ∈ Z/`eA

A Z. The public key is composed of the target curve
E/〈S〉 and public generators PB, QB moved through φ, i.e., φ(PB), φ(QB).

The signing procedure uses Unruh’s construction and emulates the execution of an
interactive zero-knowledge proof of knowledge.

For each of 2λ rounds of the sigma protocol, a signer chooses a random point R of
order `eB

B (this corresponds to Bob’s key generation from SIDH) and continues with all
computations in the sigma protocol. Then, the signer hashes all the responses. In the
last step, data from all rounds is hashed with the message m to obtain the challenge bits
J1|| . . . ||J2λ. All of the operations until the very last hash function call can be precomputed
in parallel even before the message is known.

Algorithm 1: KeyGen()

Sample sk
R←− Z/`eA

A Z
Compute S = PA + sk QA
Compute the isogeny φ : E→ E/〈S〉
pk← (E/〈S〉, φ(PB), φ(QB))
return (pk, sk)

Each round of the signing procedure is an independent isogeny graph walk. Figure 2
shows a walk computed in one round of the simulation. The upper part in the isogeny
graph is fixed during signing, i.e., the starting point E, the private isogeny φ, and a part of
the signer’s public key E/〈S〉. The lower part of the figure is random and changes in each
round. This simulates the interactions of Alice with different parties.

E E/〈S〉

E/〈R〉 E/〈R, S〉

φ

ψ ψ′

φ′

Figure 2. Isogeny graph walk in one round of the signing algorithm.

The signature verification corresponds to the verification of data (commitments, chal-
lenges, and responses) in each round of the simulated sigma protocol.

First, a verifier computes the same hash value J1|| · · · ||J2λ and checks each ZKP round
based on data in the signature. The verification starts with checking the challenge bit for
this round, then the hash value for the response selected by the challenge bit is verified.
Depending on the challenge bit, properties of the corresponding response are tested. If all
checks succeed, then the signature is correct.

4.2.2. Implementation

Before implementations of algorithms are given, it is important to define scheme-
specific functions used in those algorithms.

Comment (Listing 8): In the listing, functions G and H correspond to the quantum random
oracles G, H of the scheme, respectively.

Cryptography 2022, 6, 27 13 of 39

Listing 8. Random oracles functions.

1 def G(x):
h_obj = SHA3_256.new()
h_obj.update(f'{x}'.encode())
return h_obj.hexdigest()

5

def H(x, len):
h_obj = SHA3_256.new()
h_obj.update(x.encode())

10 h = h_obj.digest()
bytes_as_bits = ''.join(format(byte, '08b') for byte in h)
return [int(c) for c in bytes_as_bits][:len]

Both functions are based on a SHA3-256 hash function output. In case of function G, the
result is just a SHA3-256 output. This does not influence a proof-of-concept implementation,
although random oracle G has the same domain and range according to the scheme. That
property of G is used only in the proof that this construction is secure in the quantum
oracle model. The proof exploits the fact that the random oracle G is indistinguishable
from a random permutation, and replaces G with an efficiently invertible function, which
is unnoticeable by any quantum PPT adversary. That modification allows the hashes to
be inverted to obtain the hidden responses in the adversary’s forged proof. Function H
returns an array of integers in {0, 1} of length len, i.e., 2λ. These values correspond to
the challenge bits J1|| . . . ||J2λ. Usage of SHA3-256 in function H sets the limit of security
parameter to λ = 128. The exact definitions of functions G and H can be easily modified to
achieve higher security levels.

Comment (Listing 9): Helper functions used in the verification procedure are also defined.
Function generates_kernel checks if a point P generates a kernel of the `e-isogeny from E1
to E2 by checking if E2 is the same node as E1/〈P〉 in an isogeny graph. Despite the fact
that SageMath provides a method to calculate a point’s order, it is too expensive to use it
in the testing if the point is of the correct order. Instead, function has_order is defined to
test if a point P has order `e by checking if e multiplications by scalar l bring the point to a
point at infinity.

Listing 9. Property testing functions.

1 def generates_kernel(P, E1, E2, l, e):
E2_prime, _, _ = isogeny_graph_walk(E1, P, l, e)
return E2.j_invariant() == E2_prime.j_invariant()

5

def has_order(P, l, e):
for _ in range(e):

if P.is_zero():
return False

10 P *= l
if P.is_zero():

return True
return False

A signer role is implemented similarly to the class Entity from Listing 5, a secret
and a public keys are generated with exactly the same code. A scheme specific method
gen_shared_key is replaced with a sign method.

Comment (Listing 10): The above method implements Algorithm 2 and signs a message m
with a signer’s secret key self.sk. The loop in line 8 executes 2λ simulations, in each round
a new random point R is selected. Then, an isogeny graph walk is computed together
with isogenies, auxiliary points, and elliptic curves. Starting from line 18, all values are
packed into structures for commitments, challenges, and corresponding responses. At
the end of each round, in line 25, every response is hashed. In line 26, challenge bits J
are computed. A signature consists of commitments, challenges, and responses’ hashes
computed in simulations, together with responses selected by the challenge bits.

Cryptography 2022, 6, 27 14 of 39

Listing 10. Definition of signing method.

1 def sign(self, m):
other = get_other(self.name)
P_oth, Q_oth, l_oth, e_oth = other[0], other[1], other[2], other[3]
com = [0] * 2*lamb

5 ch = [0] * 2*lamb
resp = [0] * 2*lamb
h = [0] * 2*lamb
for i in range(2*lamb):

r = random.randrange(l_oth**e_oth)
10 R = P_oth + r*Q_oth

ER, psi_S1, psi_S2 = isogeny_graph_walk(E, R, l_oth, e_oth, self.P, self.Q)
psi_S = psi_S1 + self.sk*psi_S2

15 phi_R = self.pk[1] + r*self.pk[2]
ERS, _, _ = isogeny_graph_walk(self.pk[0], phi_R, l_oth, e_oth)

com[i] = (ER, ERS)
c0 = random.randint(0, 1)

20 c1 = 1 - c0
ch[i] = (c0, c1)
resp[i] = ((R, phi_R), psi_S)
if ch[i][0] == 1:

resp[i] = (resp[i][1], resp[i][0])
25 h[i] = (G(resp[i][0]), G(resp[i][1]))

J = H(f'{self.pk}{m}{com}{ch}{h}', 2*lamb)

ret_resp = []
for i in range(2*lamb):

30 ret_resp.append(resp[i][J[i]])
return (com, ch, h, ret_resp)

Algorithm 2: Sign(sk, m)

for i = 1 to 2λ do

Pick a random point R of order `eB
B (sample r R←− Z/`eB

B Z, then R = PB + rQB)
Compute the isogeny ψ : E→ E/〈R〉 Compute either φ′ : E/〈R〉 → E/〈R, S〉
or ψ′ : E/〈S〉 → E/〈R, S〉

(E1, E2)← (E/〈R〉, E/〈R, S〉)
comi ← (E1, E2)

chi,0
R←− {0, 1}

(respi,0, respi,1)← ((R, φ(R)), ψ(S))
if chi,0 = 1 then

swap(respi,0, respi,1)
end
hi,j ← G(respi,j)

end
J1|| . . . ||J2λ ← H(pk, m, (comi)i, (chi,j)i,j, (hi,j)i,j)
return σ← ((comi)i, (chi,j)i,j, (hi,j)i,j, (respi,Ji)i)

Comment (Listing 11): The verification Algorithm 3 is implemented in a form of a stan-
dalone function as the verification procedure is universal. The verification of a signature
sigma for a message m, allegedly signed by a signer signer, starts with unpacking the
signature in line 4. With those values, together with the signer’s public key, challenge bits J
are computed in line 6. The loop in line 8 tests each round of simulation embedded into
the signature. Depending on a challenge bit, the response is verified against the correct
hash value in line 9. Then, the commitment and the response are unpacked. Next, the
properties of each element are tested with helper functions. In case all the checks succeed,
the signature is accepted as valid.

Cryptography 2022, 6, 27 15 of 39

Listing 11. Verification function.

1 def verify(signer, m, sigma):
other = get_other(signer.name)
l_oth, e_oth = other[2], other[3]
com, ch, h, ret_resp = sigma

5

J = H(f'{signer.pk}{m}{com}{ch}{h}', 2*lamb)

for i in range(2*lamb):
if h[i][J[i]] != G(ret_resp[i]):

10 return False

E1, E2 = com[i][0], com[i][1]
if ch[i][J[i]] == 0:

R, phi_R = ret_resp[i]
15 if not has_order(R, l_oth, e_oth) or not has_order(phi_R ,l_oth, e_oth):

return False
if not generates_kernel(R, E, E1, l_oth, e_oth) or not generates_kernel(phi_R,

signer.pk[0], E2, l_oth, e_oth):↪→
return False

else:
20 psi_S = ret_resp[i]

if not has_order(psi_S, signer.l, signer.e):
return False

if not generates_kernel(psi_S, E1, E2, signer.l, signer.e):
return False

25 return True

Comment (Listing 12): The above listing shows an example code that executes the IBDS
scheme. First, a signer A is created in line 4 using Alice’s parameters from SIDH. The signer
signs a message m by passing it to the sign method in line 10. Verification of a message m
and its signature sigma over the signer’s public key is executed in line 13. The program
also tries to verify the signature for a modified message in line 18.

Listing 12. Test program of IBDS.

1 t0 = time.perf_counter()

print('Started Keygen')
A = Entity('A')

5

lamb = 8
m = 'test'

print('Started Sign')
10 sigma = A.sign(m)

print('Started Verify')
res = verify(A, m, sigma)

15 t1 = time.perf_counter()
print("Time elapsed (s):", t1 - t0)
print('Original message', res)
print('Altered message', verify(A, m+m, sigma))

Cryptography 2022, 6, 27 16 of 39

Algorithm 3: Verify(pk, m, σ)

J1|| . . . ||J2λ ← H(pk, m, (comi)i, (chi,j)i,j, (hi,j)i,j)

for i = 1 to 2λ do
check hi,Jj = G(respi,Ji)

if chi,Ji = 0 then
Parse (R, φ(R))← respi,Ji
check R, φ(R) have order `eB

B
check R generates the kernel of the isogeny E→ E1
check φ(R) generates the kernel of the isogeny E/〈S〉 → E2

else
Parse ψ(S)← respi,Ji
check ψ(S) have order `eA

A
check ψ(S) generates the kernel of the isogeny E1 → E2

end
end
if all checks succeed then

return 1
else

return 0
end

Comment (Listing 13): This listing shows that the correct signer-message-signature triple
is valid, while modifications of the message are detected.

Listing 13. IBDS scheme execution.

1 Started Keygen
Started Sign
Started Verify
Time elapsed (s): 110.57361834400001

5 Original message True
Altered message False

4.3. Strong Designated Verifier Signature (SDVS)
4.3.1. Construction and Algorithms

The scheme proposed in [12] by Sun, Tian, and Wang is the first strong designated
verifier signature scheme that may be secure against a quantum computer. The scheme
combines two ideas, the first one is a method of constructing an SDVS based on Diffie–
Hellman key exchange, and the second concept used in the proposed construction is SIDH
instead of classical key exchange. The public parameters and assumptions of the SDVS
scheme are almost the same as in SIDH. Let p = `eA

A `eB
B · f ± 1, E(Fp2), PA, QA, PB, QB be

defined exactly as in SIDH. Let H : {0, 1}∗ → {0, 1}k be a secure hash function, where k is
a security parameter.

The key generation Algorithm 4 executes similarly to the SIDH key generation. A
signer follows the computations of Alice while a verifier computes as Bob.

The signing algorithm is based on the secret generation steps of Alice from SIDH
in Table 1 and introduces operations based on a value shared between a signer and a
designated verifier.

To sign a message m for a designated verifier, a signer follows SIDH secret generation
and obtains a j-invariant jAB of the final node in an isogeny graph walk of the signer
with the designated verifier’s public key. The designation part of the signature creation is
achieved through the use of the designated verifier’s public key in the computations. The
signature is created as σ = H(m||jAB), where || denotes bits concatenation.

In this SDVS scheme, the signature is an HMAC of a message with a shared secret as
the key, and the key is established in the execution of SIDH protocol. Both a signer and
a designated verifier follow computations of Alice and Bob, respectively, and calculate

Cryptography 2022, 6, 27 17 of 39

the shared j-invariant. This value is then concatenated with a message, and the final bits
are hashed.

The verification algorithm is also based on the secret generation steps from SIDH but
follows computations of Bob in Table 1.

A signature σ for a message m can be verified by a designated verifier as follows:
using the verifier’s secret key and the signer’s public key compute an isogeny graph walk
similarly to Bob’s computations in SIDH, compute a j-invariant jBA of the final curve, then
σ′ = H(m||jBA). The signature is correct if and only if σ = σ′. The designated verifier can
simulate a correct signature for m by outputting σ′ as the signature.

4.3.2. Implementation

The SDVS scheme is a simple extension of SIDH key exchange; thus, its implementa-
tion is heavily based on the SIDH implementation from Section 4.1.2. A signer reuses the
code of Alice, while a designated verifier reuses the code of Bob. Both new methods for
signing and verification use a call to a hash function H, defined as follows.

Comment (Listing 14): Function H is a simple wrapper for SHA3-256 hash function that
returns hash output for a message m concatenated with a j-invariant j. Signing and verifica-
tion algorithms are implemented as new methods of the class Entity from Listing 5, i.e.,
sign and verify, respectively.

Listing 14. Helper functions of SDVS.

1 def H(m, j):
h_obj = SHA3_256.new()
h_obj.update(f'{m}{j}'.encode())
return h_obj.hexdigest()

Comment (Listing 15): The method sign implements Algorithm 5. It takes a message m
and a designated verifier verifier. The function computes a shared secret value of the signer
and the verifier according to SIDH. In line 3, a hash over the message and the shared
value is computed, then the message-hash pair is returned. The verify method implements
Algorithm 6. It takes a signer signer, a message m, and a signature sigma. The verifier
computes a secret key shared with the signer and a new signature sigma_prime. If both
hashes sigma and sigma_prime are equal, then the signature is correct.

Listing 15. Implementation of signing and verification in SDVS.

1 def sign(self, m, verifier):
j = self.gen_shared_key(verifier)
sigma = H(m, j)
return m, sigma

5

def verify(self, signer, m, sigma):
j = self.gen_shared_key(signer)
sigma_prime = H(m, j)

10 return sigma == sigma_prime

Algorithm 4: KeyGen()

Signer Designated verifier

skA
R←− Z/`eA

A Z skB
R←− Z/`eB

B Z
SA = PA + skA QA SB = PB + skB QB
φA : E→ EA = E/〈SA〉 φB : E→ EB = E/〈SB〉
pkA = EA, φA(PB), φA(QB) pkB = EB, φB(PA), φB(QA)

return ((pkA, skA), (pkB, skB))

Cryptography 2022, 6, 27 18 of 39

Algorithm 5: Sign(skA, pkB, m)

S′A = φB(PA) + skA φB(QA)
φ′A : EB → EAB = E/〈S′A〉
jAB = j(EAB)
σ = H(m||jAB)
return σ

Algorithm 6: Verify(skB, pkA, m, σ)

S′B = φA(PB) + skB φA(QB)
φ′B : EA → EBA = E/〈S′B〉
jBA = j(EBA)
σ′ = H(m||jBA)
return σ == σ′

Comment (Listing 16): The above listing shows an example code that executes the SDVS
scheme. A signer A is created in line 4 using the parameters of Alice. In line 7, a designated
verifier is created with the parameters of Bob. The signer signs a message m for the
designated verifier B in line 12. The verifier B checks the signature sig for the message m
from the signer A in line 15. The designated verifier also tries to verify the signature for
an altered message in line 22. In line 25, a verifier C tries to verify a correct message and
signature, but for the verifier B.

Listing 16. Test program of SDVS.

1 t0 = time.perf_counter()

print('Started Keygen A')
A = Entity('A')

5

print('Started Keygen B')
B = Entity('B')

m = "test message"
10

print('Started signing')
m, sig = A.sign(m, B)

print('Started verification')
15 is_correct = B.verify(A, m, sig)

print('Is signature correct?', is_correct)

t1 = time.perf_counter()
20 print("Time elapsed (s):", t1 - t0)

print('Is signature correct for a modified message?', B.verify(A, m+m, sig))

C = Entity('B')
25 print('Verification by party C', C.verify(A, m, sig))

Comment (Listing 17): This listing shows the designated verifier can verify a correct
signature and detect modifications in a message. Another party was unable to verify a
correct message-signature pair.

Listing 17. SDVS scheme execution.

1 Started Keygen A
Started Keygen B
Started signing
Started verification

5 Is signature correct? True
Time elapsed (s): 7.820308166999894
Is signature correct for a modified message? False
Verification by party C False

Cryptography 2022, 6, 27 19 of 39

4.4. Undeniable Signatures
4.4.1. Construction and Algorithms

The scheme presented in [13] by Jao, and Soukharev is an example of isogeny-based un-
deniable signature. It is related to SIDH in assumptions and basic principles but introduces
more changes than previously described schemes. Let p be a prime of the form

p = `eA
A `eM

M `eC
C · f ± 1, (10)

fix a supersingular curve E over Fp2 , such that its order is divisible by (`eA
A `eM

M `eC
C)2, gener-

ators {PA, QA} of E[`eA
A], {PM, QM} of E[`eM

M], and {PC, QC} of E[`eC
C], let H : {0, 1}∗ → Z.

In general, the scheme is designed to use points in 〈PA, QA〉 for keys, points in 〈PM, QM〉
are associated with messages, and points in 〈PC, QC〉 are linked to commitments.

A signer creates a key pair (Algorithm 7) following the steps of Alice’s key generation
in SIDH key exchange. Instead of using Bob’s basis points, {PC, QC} are moved through
the secret isogeny.

To sign a message m (Algorithm 8), a signer computes a final node in an isogeny
graph walk similarly to an isogeny graph in SIDH. The difference is that instead of Bob’s
side, values are based on a hash value over the message. The signature consists of EAM
and auxiliary points φM,AM(φM(PC)), φM,AM(φM(QC)). Isogeny graph walk of signing
procedure is shown in Figure 3.

EA

E

EAM

EM

φA,AM

φA

φM

φM,AM

Figure 3. Isogeny graph walk during signature generation.

Algorithm 7: KeyGen()

Sample skA
R←− Z/`eA

A Z
Compute SA = PA + skA QA
Compute the isogeny φA : E→ EA = E/〈SA〉
pkA ← (E/〈SA〉, φA(PC), φA(QC))
return (pkA, skA)

Algorithm 8: Sign(SA, m)

h = H(m)
SM = PM + hQM
φM : E→ EM = E/〈SM〉
φM,AM : EM → EAM = E/〈φM(SA)〉
φA,AM : EA → EAM = E/〈φA(SM)〉
return σ = (EAM, φM,AM(φM(PC)), φM,AM(φM(QC)))

The signature verification is done in an interactive confirmation of EAM. Isogenies
used to produce EAM must not be revealed; thus, this curve will be blinded with a third
step in an isogeny graph walk. A signer computes commitment as in Algorithm 9.

Cryptography 2022, 6, 27 20 of 39

Algorithm 9: Confirmation-commitment(SA, m, σ)

skC
R←− Z/`eC

C Z,
SC = PC + skC QC,
φC : E→ EC = E/〈SC〉,
φM,MC : EM → EMC = EM/〈φM(SC)〉 = EC/〈φC(SM)〉,
φA,AC : EA → EAC = EA/〈φA(SC)〉 = EC/〈φC(SA)〉,
φMC,AMC : EMC → EAMC = EAM/〈φC,MC(φC(SA))〉,
return comm = (EC, EAC, EMC, EAMC, ker(φC,MC))

A verifier chooses at random b R←− {0, 1}. If b = 0, the signer returns resp = ker(φC), if
b = 1, the signer returns resp = ker(φC,AC) and the verifier can continue with verification
shown in Algorithm 10.

Algorithm 10: Confirmation-verification(comm, b, resp, m, σ)

if b = 0 then
compute φA,AC using the signer’s public key
compute φM,MC using knowledge of ker(φM)
compute φAM,AMC using the auxiliary points in the signature
check if each isogeny maps between the corresponding two curves in comm
compute φC,MC using knowledge of ker(φC)
check if φC,MC matches kernel in comm

end
if b = 1 then

compute φMC,AMC
compute φAC,AMC using knowledge of ker(φM)
check if each of φC,AC, φMC,AMC, φAC,AMC maps between the corresponding
two curves in comm

end
if all checks succeed then

return 1
end

The isogeny graph walk computed during confirmation protocol is shown in Figure 4.
The disavowal protocol is executed when a signer wants to prove that a falsified

signature (EF, FP, FQ) for a message m is invalid. Here, EF, FP, FQ correspond to EAM and
auxiliary points φM,AM(φM(PC)), φM,AM(φM(QC)), respectively. The signer shows that
EF is an invalid signature without revealing correct EAM. Elliptic curve EAM must not be
disclosed because it is a part of a valid signature over m that the signer does not intend
to sign. This can be achieved by blinding EAM once again to obtain EAMC. Additional
information allows the verifier to compute EFC and then verify that EFC 6= EAMC.

EA EAC

E EC

EAM EAMC

EM EMC

φA,AM

φA,AC

φAC,AMC

φA

φM

φC

φC,AC

φC,MC
φAM,AMC

φM,AM

φM,MC

φMC,AMC

Figure 4. Confirmation protocol.

Cryptography 2022, 6, 27 21 of 39

The disavowal protocol begins similarly to confirmation protocol, i.e., the signer sends
EC, EAC, EMC, EAMC, ker(φC,MC) as the commitment, more detailed steps are provided in
Algorithm 9.

A verifier chooses at random b R←− {0, 1}. If b = 0, the signer returns resp = ker(φC), if
b = 1, the signer returns resp = ker(φC,AC) and the verifier checks all properties as given in
Algorithm 11.

Algorithm 11: Disavowal-verification(comm, b, resp, m, σ)

if b = 0 then
compute φC
compute φM,MC using knowledge of ker(φM)
compute φA,AC using the signer’s public key
compute φF : EF → EFC = EF/〈FP + skCFQ〉
check if each isogeny maps between the corresponding two curves in comm
recompute φC,MC using knowledge of ker(φC)
check if φC,MC matches kernel in comm
check that EFC 6= EAMC

end
if b = 1 then

compute φMC,AMC
compute φAC,AMC using knowledge of ker(φM)
check these isogenies map to EAMC

end
if all checks succeed then

return 1
end

The isogeny graph walk computed during disavowal protocol is shown in Figure 5.

EA EAC

E EC

EAM EAMC EF EFC

EM EMC

φA,AM

φA,AC

φAC,AMC

φA

φM

φC

φC,AC

φC,MC
φAM,AMC φF

φM,AM

φM,MC

φMC,AMC

Figure 5. Disavowal protocol.

4.4.2. Implementation

The undeniable signature scheme needs the most changes among all schemes de-
scribed in this work. The implementation of the scheme differs in many aspects compared
to SIDH, including public parameters.

Comment (Listing 18): The code creates a prime p = `eA
A `eM

M `eC
C · f ± 1 of a suitable form

for the scheme, this implementation uses toy-size parameters. The starting elliptic curve is
created just like in SIDH scheme.

Cryptography 2022, 6, 27 22 of 39

Listing 18. Public parameters.

1 f = 1
lA = 3
lM = 2
lC = 5

5 eA = 3
eM = 4
eC = 2

p = f * lA**eA * lM**eM * lC**eC - 1
10 assert p.is_prime()

Fp = GF(p)
Fp2 = GF(p ** 2, 'i', modulus=x**2 + 1)

15 E = EllipticCurve(Fp2, [1, 0])

assert E.is_supersingular()

Comment (Listing 19): Public base points (PA, QA), (PM, QM), (PC, QC) can be computed
dynamically with appropriate calls to get_random_base function from common code
Section 2.2.1:

Listing 19. Public basis points.

1 PA, QA = get_random_base(lA**eA, E, f * lM**eM * lC**eC)
PM, QM = get_random_base(lM**eM, E, f * lA**eA * lC**eC)
PC, QC = get_random_base(lC**eC, E, f * lA**eA * lM**eM)

Comment (Listing 20): Functions and methods implementing algorithms of the scheme
will use the following helper functions. Function H is a wrapper function for SHA3-256
which returns a hash as an integer value from a correct range. Function generates_kernel is
used for the verification of ker(φC,MC) in a commitment and works exactly the same as the
function with identical name in Listing 9. Function isogeny_graph_walk is similar to the
function with identical name in Section 2.2.3, a method of passing points to move through
a new isogeny is different.

Listing 20. Helper functions.

1 def H(x):
h_obj = SHA3_256.new()
h_obj.update(f'{x}'.encode())
return int.from_bytes(h_obj.digest(), "big") % lC**eC

5

def generates_kernel(P, E1, E2, l, e):
E2_prime, _ = isogeny_graph_walk(E1, P, l, e)
return E2.j_invariant() == E2_prime.j_invariant()

10

def isogeny_graph_walk(E, P, l, e, points=[]):
E_prime = E
P_prime = P

15

for i in range(e):
R = l ** (e - (i + 1)) * P_prime
phi = E_prime.isogeny(R)
P_prime = phi(P_prime)

20 # assert P_prime.order() == l ** (e - (i + 1))
points = [phi(x) for x in points]
E_prime = phi.codomain()

return (E_prime, points)

In the implementation, isogenies are called explicitly only in the isogeny_graph_walk
function. The rest of the code operates on elliptic curves, their j-invariants, and points on
elliptic curves. This is because the schemes use `e-isogenies, while such isogeny never exists

Cryptography 2022, 6, 27 23 of 39

in a running program. An `e-isogeny is always computed as a composition of e individual `-
isogenies. However, the undeniable signatures scheme needs to move a varying number of
points through `e-isogenies; thus, the isogeny_graph_walk function accepts a list of points.

All computations of a signer are grouped as methods of class Signer.

Comment (Listing 21): Object constructor __init__ creates a private key of a signer and
computes a corresponding public key in the gen_pub_key method as a triple of the secret
isogeny’s target curve and images of PC, QC.

Listing 21. Signer class.

1 class Signer:
def __init__(self):

self.sk = random.randrange(lA ** eA)
self.S = PA + self.sk * QA

5 # assert lA ** eA == self.S.order()
self.pk = self.gen_pub_key()

def gen_pub_key(self):
10 EA, points = isogeny_graph_walk(E, self.S, lA, eA, [PC, QC])

return (EA, points[0], points[1])

def sign(self, m):
15 h = H(m)

SM = PM + h*QM
EM, phiM_points = isogeny_graph_walk(E, SM, lM, eM, [PA, QA, PC, QC])
EAM, phiMAM_points = isogeny_graph_walk(EM, phiM_points[0] + self.sk*phiM_points[1], lA, eA,

[*phiM_points[2:]])↪→
return (EAM, *phiMAM_points)

20

def get_commitment_conf(self, m, signature):
new_sig = self.sign(m)
it does not make sense to confirm a signature for m

25 # in case the signer concludes they did not sign m
if new_sig != signature:

raise Exception("Signer: This is not my signature")
return self.get_commitment_disavow(m, signature)

30

def get_commitment_disavow(self, m, signature):
h = H(m)

sk_C = random.randrange(lC**eC)
35 SC = PC + sk_C*QC

EC, phiC_points = isogeny_graph_walk(E, SC, lC, eC, [PM, QM, self.S])
phiC_SM = phiC_points[0] + h*phiC_points[1]
EMC, phiCMC_points = isogeny_graph_walk(EC, phiC_SM, lM, eM, [phiC_points[2]])

40 EAC, phiCAC_points = isogeny_graph_walk(EC, phiC_points[2], lA, eA, [phiC_SM])
EAMC, _ = isogeny_graph_walk(EMC, phiCMC_points[0], lA, eA)

self.response = [[sk_C, phiCAC_points[0]], phiC_points]

45 return (EC, EAC, EMC, EAMC, phiC_SM)

def get_response(self, b):
return self.response[b]

The sign method implements Algorithm 8. A secret integer for a message m together
with a generator SM are computed in lines 15 and 16. The generator is used to calculate an
elliptic curve EM in line 17 and images of basis points. Then, the basis points connected
with commitments are moved from the elliptic curve EM to EAM. These points and the
elliptic curve EAM together are returned as a signature.

Both confirmation and disavowal protocols use commitments of the same form. The
get_commitment_conf methods is used during confirmation protocol. Before a signer proceeds
with its execution, a signature in question is checked. In case a signer concludes this is not a
legitimate signature, an exception is raised in line 27 and no commitment is sent. When a signer
decides to participate in the confirmation protocol, a commitment is returned according to the

Cryptography 2022, 6, 27 24 of 39

scheme. Algorithm 9 is implemented in the get_commitment_disavow method. In line 34, a
random value is generated. Then, elliptic curves EC, EMC, EAC, and EAMC are computed. All
auxiliary points that are needed are also moved through the corresponding isogenies. In line 43,
responses are saved for later use. Curves EC, EMC, EAC, EAMC, and kernel ker(φC,MC) are
returned as a commitment.

The get_response method simply returns a correct response saved before, depending on a
challenge bit b.

The confirmation and disavowal protocols are implemented as methods of the class
Verifier. However, both methods could be plain functions as the scheme does not authenti-
cate a verifier. The above listing presents the confirmation protocol.

Comment (Listing 22): The confirmation method takes a message m, a signature signature,
and a signer Signer as parameters. The verifier asks the signer to execute the confirmation
protocol with a call to the get_commitment_conf method in line 4 with the message and the
signature. In case the signer throws an exception, the execution is aborted. This corresponds to
a situation in which the signer claims the signature is forged. In that scenario, both parties could
engage in the disavowal protocol covered below. Otherwise, a commitment is returned and
stored in comm. In lines 8 and 9, the verifier coins at random a challenge bit b and asks for a
response resp. Starting from line 12, Algorithm 10 is implemented. Depending on the challenge
bit b, the correct response is unpacked. Then, codomains of isogenies are computed according
to the algorithm. Both loops in lines 24 and 41 verify recomputed elliptic curves against the
commitment. In line 29, the kernel from the commitment is also verified.

Listing 22. Confirmation method.

1 def confirmation(self, m, signature, Signer):
for _ in range(lamb):

try:
comm = Signer.get_commitment_conf(m, signature)

5 except Exception as e:
print(e)
return False

b = random.randrange(2)
resp = Signer.get_response(b)

10

h = H(m)
if b == 0:

sk_C = resp[0]
SC = PC + sk_C*QC

15

SM = PM + h*QM
EM, phiM_points = isogeny_graph_walk(E, SM, lM, eM, [SC])
EC, phiC_points = isogeny_graph_walk(E, SC, lC, eC, [SM])

20 EAC, _ = isogeny_graph_walk(Signer.pk[0], Signer.pk[1] + sk_C*Signer.pk[2], lC, eC)
EMC, _ = isogeny_graph_walk(EM, phiM_points[0], lC, eC)
EAMC, _ = isogeny_graph_walk(signature[0], signature[1] + sk_C*signature[2], lC, eC)

for curve_comm, curve_verify in zip(comm, [EC, EAC, EMC, EAMC]):
25 if curve_comm.j_invariant() != curve_verify.j_invariant():

return False

EMC2, _ = isogeny_graph_walk(EC, phiC_points[0], lM, eM)
if EMC2.j_invariant() != EMC.j_invariant() or not generates_kernel(comm[4], EC, EMC2, lM,

eM):↪→
30 return False

else:
phiC_PM, phiC_QM, ker_phiCAC = resp
EAC, phiCAC_points = isogeny_graph_walk(comm[0], ker_phiCAC, lA, eA, [comm[4]])
EMC, phiCMC_points = isogeny_graph_walk(comm[0], phiC_PM + h*phiC_QM, lM, eM,

[ker_phiCAC])↪→
35

EAMC, _ = isogeny_graph_walk(EMC, phiCMC_points[0], lA, eA)
EAMC2, _ = isogeny_graph_walk(comm[1], phiCAC_points[0], lM, eM)

curves_comm = [comm[1], comm[2], comm[3], comm[3]]
40 curves_ver = [EAC, EMC, EAMC, EAMC2]

for curve_comm, curve_verify in zip(curves_comm, curves_ver):
if curve_comm.j_invariant() != curve_verify.j_invariant():

return False
return True

Cryptography 2022, 6, 27 25 of 39

The disavowal protocol is implemented in the disavowal method defined below.

Comment (Listing 23): The disavowal method also takes a message m, a signature signature,
and a signer Signer as parameters. The verifier asks the signer to execute the disavowal
protocol with a call to the get_commitment_disavow method in line 3 with the message
and the signature. This time no exception is expected at that point. In lines 4 and 5, the
verifier coins at random a challenge bit b and asks for a response resp. Starting from line 8,
Algorithm 11 is implemented. The verification in disavowal protocol executes somewhat
similarly, i.e., in one case a different elliptic curve is computed and the verification is
extended. In line 18, the elliptic curve EFC (see Figure 5) is computed, then it is verified
against EAMC in line 31. The else clause in line 33, similarly to the confirmation protocol,
checks that the right face of the cube commutes, i.e., the commitment is correct.

Listing 23. Disavowal method.
1 def disavowal(self, m, signature, Signer):

for _ in range(lamb):
comm = Signer.get_commitment_disavow(m, signature)
b = random.randrange(2)

5 resp = Signer.get_response(b)

h = H(m)
if b == 0:

sk_C = resp[0]
10 SC = PC + sk_C*QC

SM = PM + h*QM
EM, phiM_points = isogeny_graph_walk(E, SM, lM, eM, [SC])
EC, phiC_points = isogeny_graph_walk(E, SC, lC, eC, [SM])

15

EAC, _ = isogeny_graph_walk(Signer.pk[0], Signer.pk[1] + sk_C*Signer.pk[2], lC, eC)
EMC, _ = isogeny_graph_walk(EM, phiM_points[0], lC, eC)
EFC, _ = isogeny_graph_walk(signature[0], signature[1] + sk_C*signature[2], lC, eC)
EMC2, _ = isogeny_graph_walk(EC, phiC_points[0], lM, eM)

20

curves_comm = [comm[0], comm[1], comm[2], comm[2]] # EC, EAC, EMC, EMC
curves_ver = [EC, EAC, EMC, EMC2]
for curve_comm, curve_verify in zip(curves_comm, curves_ver):

if curve_comm.j_invariant() != curve_verify.j_invariant():
25 return False

if EMC2.j_invariant() != EMC.j_invariant() or not generates_kernel(comm[4], EC, EMC2, lM,
eM):↪→
return False

30 EAMC, _ = isogeny_graph_walk(EAC, resp[1], lC, eC)
if EFC.j_invariant() == EAMC.j_invariant():

return False
else:

phiC_PM, phiC_QM, ker_phiCAC = resp
35 EAC, phiCAC_points = isogeny_graph_walk(comm[0], ker_phiCAC, lA, eA, [comm[4]])

EMC, phiCMC_points = isogeny_graph_walk(comm[0], phiC_PM + h*phiC_QM, lM, eM,
[ker_phiCAC])↪→

EAMC, _ = isogeny_graph_walk(EMC, phiCMC_points[0], lA, eA)
EAMC2, _ = isogeny_graph_walk(comm[1], phiCAC_points[0], lM, eM)

40

if EAMC.j_invariant() != comm[3].j_invariant() or EAMC2.j_invariant() !=
comm[3].j_invariant():↪→
return False

return True

Comment (Listing 24): The above listing shows an example code executing the undeniable
signatures scheme. In the first line, the security parameter lamb (or λ) that controls the
number of rounds is set to 128. In lines 5 and 6, two signers S1 and S2 are created. The while
loop in 7 ensures these two signers have different public keys. It is forced by the usage of
such small parameters in the implementation. A verifier V is created in line 9, and both
signers sign the same message m in lines 13 and 14. In line 17, the confirmation protocol is
used with a valid message-signature-signer combination. The confirmation method calls
from lines 18 and 19 test the cases where a signer is presented with a modified message and
someone’s else signature, respectively. In line 25, the disavowal method is called with a

Cryptography 2022, 6, 27 26 of 39

correct message-signature-signer combination. Lines 26 and 27 execute disavowal protocol
for a modified message and different signature cases, respectively.

Listing 24. Test program of undeniable signatures.

1 lamb = 128
t0 = time.perf_counter()

print('Started Keygen')
5 S1 = Signer()

S2 = Signer()
while S1.pk[0].j_invariant() == S2.pk[0].j_invariant():

S2 = Signer()
V = Verifier()

10

m = 'test'
print('Started Sign')
sig1 = S1.sign(m)
sig2 = S2.sign(m)

15

print('Started Confirmation')
res1 = V.confirmation(m, sig1, S1)
res2 = V.confirmation(m+m, sig1, S1)
res3 = V.confirmation(m, sig2, S1)

20 print('Original message', res1)
print('Altered message', res2)
print('Other signature', res3)

print('Started Disavowal')
25 res4 = V.disavowal(m, sig1, S1)

res5 = V.disavowal(m+m, sig1, S1)
res6 = V.disavowal(m, sig2, S1)
print('Original message', res4)
print('Altered message', res5)

30 print('Other signature', res6)

t1 = time.perf_counter()
print("Time elapsed (s):", t1 - t0)

Comment (Listing 25): This listing presents the output of the above program. It shows that
the correct signature was successfully confirmed while an altered message and somebody’s
else signature were detected. The signer refused to proceed with the execution and threw
exceptions. The signer was unable to prove that they did not sign a previously signed
message. However, disavowal succeeded for an altered message and an invalid signature.

Listing 25. Undeniable signatures scheme execution.

1 Started Keygen
Started Sign
Started Confirmation
Signer: This is not my signature

5 Signer: This is not my signature
Original message True
Altered message False
Other signature False
Started Disavowal

10 Original message False
Altered message True
Other signature True
Time elapsed (s): 19.333842884999967

4.5. Supersingular Isogeny Oblivious Transfer (SIOT)
4.5.1. Construction and Algorithms

The scheme due to Barreto, Oliveira, and Benits proposed in [14] is Oblivious Transfer
(OT) protocol based on supersingular isogenies. This construction is a combination of the
OT scheme of Chou and Orlandi [28], and SIDH. Once again, the public parameters of SIOT
are based on SIDH. In OT scheme the sender (Alice) has two messages x0, x1 and wants to
send one of them to the receiver (Bob). Bob can choose which message he will receive and
will never learn the other message. The choice of Bob is unknown to Alice. LetM be a set
of all messages with binary strings of fixed length and (x0, x1) ∈ M. Let C be a set of all

Cryptography 2022, 6, 27 27 of 39

ciphertexts with binary strings of fixed length and (c1, c2) ∈ C. Alice and Bob agree to use
a symmetric encryption scheme Enc(j, x) taking a shared key j and a message x to encrypt.
The shared key j is a j-invariant of a shared supersingular elliptic curve.

The scheme needs a secure coin-flipping subprotocol so Alice and Bob can agree on
an ephemeral, uniformly random bit string w. That part of the scheme is not covered in
this article, the authors of SIOT suggest to use, e.g., Wagner’s bit commitment protocol [29].
Alice and Bob also need to agree on a deterministic algorithm that maps w into a pair of
points U, V ∈ EB[`

eA
A].

The key generation algorithm for Alice executes just like in SIDH. However, Bob
on top of SIDH computations will also modify his key depending on his choice b of the
message to receive.

Alice, upon receiving Bob’s public key, is able to generate the same points U, V. Now
Alice needs to encrypt her two messages. To do so securely, she first computes two keys
(j-invariants) by taking isogeny graph walks.

Bob can follow SIDH steps to compute the elliptic curve shared with Alice-but only
the one that corresponds to his choice b.

4.5.2. Implementation

Although SIOT is heavily based on SIDH, it introduces a lot of modifications in the
middle of computations. On top of that, computations of Alice and Bob are not symmetrical.
Those properties make it difficult to reuse previous implementations for SIOT. Most of
helper functions (e.g., isogeny walk) and global parameters of SIDH can be reused. The
following listing presents new and modified helper functions for SIOT.

Comment (Listing 26): The get_key function is a wrapper for the SHA3-256 hash function
that returns 16 byte long keys for any input j. The get_u_v function is used by Alice and
Bob to obtain the shared points U, V. Both parties hash the bit string w to compute the
coefficients α and β. Bob computes U = αGB + βHB and V = − α

β V. The coefficients α, β

are computed as SHA3-256 hashes of w with appended bitstring alpha in line 10 and beta
in line 14, respectively. Alice can use exactly the same computations to obtain the correct
points. She will use ĜB and ĤB instead of GB and HB. It will work in both possible values
of blinded public key of Bob. After obtaining coefficients, U is computed in line 15, and V
in line 18. Note that α, β ∈ Z/`eA

A Z, and inversion of β is also calculated modulo `eA
A .

Listing 26. Helper function for SIOT.
1 def get_key(j):

h_obj = SHA3_256.new()
h_obj.update(f'{j}'.encode())
return h_obj.digest()[:16]

5

def get_u_v(w, Gb, Hb):
h_obj = SHA3_256.new()
h_obj.update(w + b"alpha")

10 alpha = int.from_bytes(h_obj.digest(), "big") % lA**eA

h_obj = SHA3_256.new()
h_obj.update(w + b"beta")
beta = int.from_bytes(h_obj.digest(), "big") % lA**eA

15 U = alpha*Gb + beta*Hb

beta_inv = inverse_mod(beta, lA**eA)
V = - alpha * beta_inv * U
return U, V

The following listing contains the modified definition of SIDH’s Entity class which
will be a base class for Alice and Bob.

Comment (Listing 27): The only difference between SIDH and SIOT in the definition of
class Entity is that the method gen_shared_key takes an elliptic curve and two points
instead of the other party’s object. It is because Bob works on the public key of Alice, but
Alice works on the blinded public key of Bob.

Cryptography 2022, 6, 27 28 of 39

Listing 27. Entity class for SIOT.
1 class Entity:

def __init__(self, name):
self.name = name
self.P = params[name][0]

5 self.Q = params[name][1]
self.l = params[name][2]
self.e = params[name][3]

self.sk = random.randrange(self.l ** self.e)
10 self.S = self.P + self.sk * self.Q

assert self.l ** self.e == self.S.order()
self.pk = self.gen_pub_key(get_other(self.name))

15 def gen_pub_key(self, other):
return isogeny_graph_walk(E, self.S, self.l, self.e, other[0], other[1])

def gen_shared_key(self, E, P, Q):
20 S = P + self.sk * Q

shared_curve, _, _ = isogeny_graph_walk(E, S, self.l, self.e)
return shared_curve.j_invariant()

Comment (Listing 28): The class Alice inherits from the Entity class and is a container for
computations of Alice. In this case an object representing Alice is initiated with a given
bitstring w. In practice, Alice and Bob would use a secure coin-flipping protocol to agree on
a uniformly random bit string. We did not implement it as it is not relevant to isogenies.

Listing 28. Alice class for SIOT.
1 class Alice(Entity):

def __init__(self, w):
super().__init__('A')
self.w = w

5 self.x = [os.urandom(16) for _ in range(2)]

def produce_response(self, pk_hat_B):
self.U, self.V = get_u_v(self.w, pk_hat_B[1], pk_hat_B[2])

10 c = []
for i in [0, 1]:

j = self.gen_shared_key(pk_hat_B[0], pk_hat_B[1] + i * self.U, pk_hat_B[2] + i * self.V)
cipher = AES.new(get_key(j), AES.MODE_EAX)
c.append({

15 'ciphertext': cipher.encrypt_and_digest(self.x[i]),
'nonce': cipher.nonce

})
return c

In line 5, Alice creates two random messages x. Those messages are encrypted accord-
ing to Algorithm 12 in the produce_response function that takes the blinded public key
of Bob pk_hat_B. She computes two j-invariants in line 12 and encrypts the ith message
in line 15. The key used for encryption is derived from the corresponding j-invariant in
line 13.

Algorithm 12: Encrypt(skA, x0, x1, p̂kB)

U, V R←− EB[`
eA
A]

∀i ∈ {0, 1}
S′Ai

= (ĜB + iU) + skA(ĤB + iV)

φ′Ai
: EB → EBAi = E/〈S′Ai

〉
ji = j(EBAi)
ci = Enc(ji, xi)
return c0, c1

Comment (Listing 29): The class Bob inherits from the Entity class and is a container for
computations of Bob. Since the focus is on isogeny-based cryptography, Bob is given the

Cryptography 2022, 6, 27 29 of 39

same w just like Alice. In line 5, Bob chooses the message b and in lines 7–10 blinds his
public key according to Algorithm 13. The function get_result is used to decrypt the chosen
message according to Algorithm 14. The shared j-invariant is computed in line 14, which is
then used to derive the correct AES key in line 15. The bth message is decrypted in line 16.

Listing 29. Bob class for SIOT.

1 class Bob(Entity):
def __init__(self, w):

super().__init__('B')
self.w = w

5 self.b = random.randint(0, 1)

self.U, self.V = get_u_v(self.w, self.pk[1], self.pk[2])
self.G_hat_B = self.pk[1] - self.b * self.U
self.H_hat_B = self.pk[2] - self.b * self.V

10 self.pk_hat = (self.pk[0], self.G_hat_B, self.H_hat_B)

def get_result(self, c, pk_A):
j = self.gen_shared_key(*pk_A)

15 cipher = AES.new(get_key(j), AES.MODE_EAX, nonce=c[self.b]['nonce'])
return cipher.decrypt(c[self.b]['ciphertext'][0])

Algorithm 13: KeyGen()

Sender Receiver
x0, x1 ∈ M b ∈ {0, 1}
skA

R←− Z/`eA
A Z skB

R←− Z/`eB
B Z

SA = PA + skA QA SB = PB + skB QB
φA : E→ EA = E/〈SA〉 φB : E→ EB = E/〈SB〉
GA = φA(PB), HA = φA(QB) GB = φB(PA), HB = φB(QA)
pkA = (EA, GA, HA)

U, V R←− EB[`
eA
A]

ĜB = GB − bU
ĤB = HB − bV
p̂kB = (EB, ĜB, ĤB)

return ((pkA, skA), (p̂kB, skB))

Algorithm 14: Decrypt(skB, c0, c1, pkA)

S′B = GA + skB HA
φ′B : EA → EAB = E/〈S′B〉
jb = j(EAB)
xb = Enc−1(jb, cb)
return c0, c1

Comment (Listing 30): The listing shows an example code that executes SIOT. First, a
bitstring w is created. Note that in practice Alice and Bob would use a secure coin-flipping
protocol to compute that value. Then, objects for Alice A and Bob B are created. In line 13,
the method produce_response of Alice is used to compute ciphertexts c. The blinded key
of Bob pk_hat is used as the input. The get_result method of Bob with public key of Alice
is used in line 16 to decrypt the chosen message xb. Bob must obtain the same value as the
one in possession of Alice. The assertion in line 19 checks that condition.

Cryptography 2022, 6, 27 30 of 39

Listing 30. Test program of SIOT.

1 # Alice and Bob need to use a secure coin-flipping protocol to agree on a uniformly random bit string
w that is unique for each session↪→

w = bytes.fromhex('ef60425e20f1493a51850443f0175acb')

t0 = time.perf_counter()
5

print('Started generation of PKA')
A = Alice(w)

print('Started generation of PK_hat_B')
10 B = Bob(w)

print('Started generation of encrypted messages c')
c = A.produce_response(B.pk_hat)

15 print('Started decryption of xb')
xb = B.get_result(c, A.pk)

t1 = time.perf_counter()
assert xb == A.x[B.b]

20 print("Time elapsed (s):", t1 - t0)

Comment (Listing 31): The output of the above program is presented in the listing, it shows
that the assertion succeeded.

Listing 31. SIOT execution.

1 Started generation of PKA
Started generation of PK_hat_B
Started generation of encrypted messages c
Started decryption of xb

5 Time elapsed (s): 11.224710386002698

5. Error-Prone Applications

The last 10 years have seen a rapid development of isogeny-based cryptography.
Many new constructions and protocols are based on the SIDH key exchange from 2011.
The increased interest in cryptographic systems based on isogenies was caused, among
others, by similarities of SIDH to classical cryptography key exchange. New solutions
are searched for in order to bring more functionalities from classical cryptography to
post-quantum. Some techniques can be used: Unruh’s construction, SDVS from HMAC,
and PAKE using encryption. However, usage of such generic methods does not make
automatically the resulting scheme secure. New construction can be vulnerable, PAKE
scheme from Section 5.2 is an example. Even though the scheme is based on secure SIDH
protocol and correct construction from Section 5.1 it is vulnerable. The attack [30] on that
scheme is presented in Section 5.3.

All of the schemes described in Section 4, except SIDH, are based on the SIDH key
exchange. The chosen schemes show specific constructions, that can turn a key exchange
protocol into different types of cryptographic primitives. Some of these constructions
are described in this section. Most of them are similar to constructions used in classical
cryptography or present the same, generic approach.

5.1. Generic Constructions

Unruh’s construction: As the Fiat–Shamir transform might not be secure against
quantum computers, it would be very practical to have an analogous construction that is
proven to be quantum-safe. The scheme described in Section 4.2 uses a quantum-resistant
alternative to the Fiat–Shamir transform, known as Unruh’s construction. Since the scheme
is closely linked to that concept, its more detailed description is also provided in Section 4.2.

Unruh’s construction transforms an interactive zero-knowledge proof system into a
non-interactive one. It follows that Unruh’s construction can be used to build signature
schemes similarly to classical cryptography, i.e., based on previous constructions. It is a

Cryptography 2022, 6, 27 31 of 39

crucial property of cryptography as it is easier to build new schemes and analyze their
security if some well-studied building blocks are reused.

Unruh’s construction applies to any interactive zero-knowledge proof system, not only
isogeny-based ones. Thus, it is a very important building block of all post-quantum cryptography.

SDVS from HMAC: In the literature, several classical strong designated verifier signa-
ture schemes based on HMAC have been proposed, e.g., [31–33]. The general construction
used in the verification algorithm of message-signature pair (m, σ) uses the verification
equation like:

σ = H(m, k), (11)

where H is some public and secure hash function, and k is a key. The key k can be
computed as k = yxB

A (mod p) = yxA
B (mod p), where values x are secret keys, and y are

corresponding public keys of parties A and B. Any key exchange protocol can be used to
compute a key for HMAC, including more advanced variants such as a pairing-based key
exchange. An isogeny-based example of an SDVS scheme is described in Section 4.3.

It is sometimes argued, e.g., [34], that this construction is not a signature scheme. Most
of the SDVS schemes do not have the undeniability property. Such SDVS schemes are
more like a message authentication code rather than a digital signature, and that could
be problematic.

PAKE using encryption: In classical cryptography, the Diffie–Hellman key exchange
can be tweaked in many straightforward ways to construct PAKE schemes, e.g., EKE [35],
SPEKE [36], PAK [37]. Encrypted Key Exchange (EKE) is general construction, that can add
mutual authentication on top of any existing key exchange protocol. At least one party
encrypts an ephemeral public key using a password, and only then sends it to a second
party. The second party first decrypts the message with the same password, then continues
with computation of a shared key according to the underlying protocol.

EKE-like encryption is a popular method of constructing PAKEs. This approach is
used in EAP-EKE [38], and there is an isogeny-based SIDH-EKE scheme.

5.2. Problematic Password-Authenticated Key Establishment (PAKE) SIDH-EKE
5.2.1. Construction and Algorithms

The first password-authenticated key agreement methods are Encrypted Key Exchange
(EKE) methods [35]. The scheme is based on the Diffie–Hellman key exchange and intro-
duces one modification. Instead of exchanging public keys in a clear form, the messages are
encrypted with a shared password. The scheme SIDH-EKE due to Terada, and Yoneyama
presented in [39] is a straightforward construction based on SIDH instead of classical DH.

All parameters of SIDH-EKE are defined as in SIDH. Let (Enc,Dec) be a symmetric key
encryption scheme where Enc is an encryption algorithm and Dec is a decryption algorithm.
Alice and Bob have a password pw.

In SIDH-EKE, public keys are generated as in SIDH but the keys are never published in
a clear form. Alice and Bob both encrypt their keys with symmetric cipher and a password
known only to them.

After exchanging the ciphertexts, Alice and Bob can decrypt each other’s public keys
with the same password. That way they achieve mutual authentication. Having public
keys in a clear form, they can proceed with computations just like in the secret generation
of SIDH.

5.2.2. Implementation

The SIDH-EKE scheme is a simple extension of the SIDH scheme; thus, both imple-
mentations are quite similar. The implementation uses AES for public-key encryption and
defines a function to transform a short password into a usable AES key.

Comment (Listing 32): The get_key function is a wrapper for the SHA3-256 hash function
that returns 16 byte long keys for any input pw. Parties Alice and Bob are implemented as
objects of a modified class Entity.

Cryptography 2022, 6, 27 32 of 39

Listing 32. Helper function for SIDH-EKE.

1 def get_key(pw):
h_obj = SHA3_256.new()
h_obj.update(f'{pw}'.encode())
return h_obj.digest()[:16]

Comment (Listing 33): The constructor __init__ now also accepts a password pw. The
method implements Algorithm 15 and generates a secret key as in SIDH. In line 17, the
corresponding public key is computed in a clear form. An encryption key K is generated in
line 18 and used for a new AES cipher in line 19. A Python dictionary with an encrypted key
and a nonce is saved instead of a clear form key. The method gen_shared_key implements
Algorithm 16. The method takes another party, i.e., peer object as a parameter. In line 27,
once again the AES key is generated. If both parties use the same password pw, they will
have the same encryption key. In line 29, the public key of the other party is decrypted.
Starting in line 30, the SIDH secret key generation is executed.

Listing 33. Entity class for SIDH-EKE.

1 lass Entity:
def __init__(self, name, pw):

self.name = name
self.pw = pw

5 self.P = params[name][0]
self.Q = params[name][1]
self.l = params[name][2]
self.e = params[name][3]

10 self.sk = random.randrange(self.l ** self.e)
self.S = self.P + self.sk * self.Q
assert self.l ** self.e == self.S.order()
self.pk = self.gen_pub_key(get_other(self.name))

15

def gen_pub_key(self, other):
pk_to_enc = isogeny_graph_walk(E, self.S, self.l, self.e, other[0], other[1])
K = get_key(self.pw)
cipher = AES.new(K, AES.MODE_EAX)

20 return {
'ciphertext': cipher.encrypt_and_digest(pickle.dumps(pk_to_enc)),
'nonce': cipher.nonce

}

25

def gen_shared_key(self, peer):
K = get_key(self.pw)
cipher = AES.new(K, AES.MODE_EAX, nonce=peer.pk['nonce'])
pk_dec = pickle.loads(cipher.decrypt(peer.pk['ciphertext'][0]))

30 S = pk_dec[1] + self.sk * pk_dec[2]
shared_curve, _, _ = isogeny_graph_walk(pk_dec[0], S, self.l, self.e)
return shared_curve.j_invariant()

Algorithm 15: KeyGen(pw)

Alice Bob

skA
R←− Z/`eA

A Z skB
R←− Z/`eB

B Z
SA = PA + skA QA SB = PB + skB QB
φA : E→ EA = E/〈SA〉 φB : E→ EB = E/〈SB〉
pkA = Encpw(EA, φA(PB), φA(QB)) pkB = Encpw(EB, φB(PA), φB(QA))

return (pkA, pkB)

Cryptography 2022, 6, 27 33 of 39

Algorithm 16: SessionKeyGen(pkA, pkB)

Alice Bob
(EB, φB(PA), φB(QA)) = Decpw(pkB) (EA, φA(PB), φA(QB)) = Decpw(pkA)
S′A = φB(PA) + skA φB(QA) S′B = φA(PB) + skB φA(QB)
φ′A : EB → EAB = E/〈S′A〉 φ′B : EA → EBA = E/〈S′B〉
jAB = j(EAB) jBA = j(EBA)

return (jAB, jBA)

Comment (Listing 34): The above listing shows an example code that executes SIDH-EKE.
First, an Entity A is created for Alice with a simple password 123456, then an Entity B for
Bob with the same password. Alice can generate her shared value with Bob by passing
object B as an argument to the gen_shared_key method in line 10. Bob computes his shared
key with Alice in line 13 by passing object A as an argument to the gen_shared_key method.
Both Alice and Bob must compute the same value, that condition is asserted in line 16.

Listing 34. SIDH-EKE key agreement.

1 t0 = time.perf_counter()

print('Started generation of PKA')
A = Entity('A', 123456)

5

print('Started generation of PKB')
B = Entity('B', 123456)

print('Started generation of secA')
10 secA = A.gen_shared_key(B)

print('Started generation of secB')
secB = B.gen_shared_key(A)

15 t1 = time.perf_counter()
assert secA == secB
print("Time elapsed (s):", t1 - t0)

Comment (Listing 35): The output of the above program is presented in this listing, it
shows that the assertion succeeded.

Listing 35. SIDH-EKE execution.

1 Started generation of PKA
Started generation of PKB
Started generation of secA
Started generation of secB

5 Time elapsed (s): 8.174498736999794

5.3. Attack on SIDH-Eke

Although EKE scheme is secure in a classical setting and EAP-EKE is successfully used
in practice, the isogeny-based straightforward construction SIDH-EKE from Section 5.2 is
susceptible to man-in-the-middle and offline dictionary attacks. The following attack was
presented in [30].

For the SIDH-EKE scheme to be secure, public keys must be indistinguishable from
random bitstrings. This property is necessary to fulfill the offline dictionary attack re-
sistance security requirement of PAKE. However, in practice, public keys of SIDH are
distinguishable from random bitstrings; thus, it is possible to construct an oracle that can
determine if a password guess was correct.

A passive eavesdropper Eve can observe SIDH-EKE execution between Alice and
Bob. After key generation Algorithm 15 finishes, Alice and Bob exchange encrypted public
keys pkA = Encpw(EA, φA(PB), φA(QB)), and pkB = Encpw(EB, φB(PA), φB(QA)). Eve
can perform an offline dictionary attack on Alice’s public key as shown in Algorithm 17,
analogous approach can be applied for public key of Bob.

Cryptography 2022, 6, 27 34 of 39

In SIDH, a public key is a structured data set, a triple of the form (E, φ(P), φ(Q)),
where E is a supersingular elliptic curve, and φ(P), φ(Q) are basis points. The authors of
SIDH-EKE claim the scheme prevents offline dictionary attacks because the attacker cannot
determine if a password guess is valid or not. That is because the encryption scheme is
modeled as an ideal cipher. However, it is simple to check if the decryption of a public
key yields valid values. Eve can observe Alice sending her public key pkA, and then try to
guess a password pw′. For each password, Eve decrypts the key Decpw′(pkA), parses the
values (E′A, φA(PB)

′, φA(QB)
′) and checks all properties according to Algorithm 17. For a

random password, the probability that even some of these criteria are met is extremely low,
so if all checks succeed, pw′ is a correct guess with high probability.

Algorithm 17: SIDH offline dictionary attack
observe pkA
guess pw′ and decrypt (E′A, φA(PB)

′, φA(QB)
′) = Decpw′(pkA)

check E′A is supersingular
check φA(PB)

′, φA(QB)
′ lie on E′A

check φA(PB)
′, φA(QB)

′ have order `eB
B

check the Weil pairing e(φA(PB)
′, φA(QB)

′) is maximal
if all checks succeed then

return pw′

end

The same reasoning applies to optimized practical implementations of SIDH and SIKE.
Even when the public parameters are compressed, e.g., sending the x-coordinates φA(PB),
φA(QB), and φA(QB − PB) instead of directly sending the elliptic curve, enough infor-
mation is sent to recover EA, φA(PB), and φA(QB). Thus, the offline dictionary attack is
still applicable.

The original EKE scheme is based on discrete logarithm; thus, unencrypted public
keys are just very large numbers. A decryption of a public key with a random password
would produce a bitstring that can be interpreted as a number, so it could be a valid public
key. As a result, a password oracle similar to SIDH-EKE does not exist. An elliptic curve
discrete logarithm variant of EKE would be also vulnerable to offline dictionary attacks.

Another isogeny-based PAKE is presented in [40]. The protocol does not use encryption
of public keys, instead, auxiliary points are obfuscated with a reversible algebraic operation.

Remark 3. Some of isogeny-based schemes use exactly the same or very similar, generic con-
structions known in classical cryptography to achieve new security properties from other types of
cryptographic primitives. Analogies between SIDH and DH may suggest that some constructions
should be secure against attacks against quantum computers. However, cryptography is tricky and
it is not always true. Some mistakes may render isogeny-based schemes vulnerable even against
classical computers. SIDH-EKE is an example and a valuable lesson.

6. Computational Complexity and Benchmarks

This section contains time measurements of the implementations. The previous sec-
tions show only executions of the scheme as a whole together with time measurements from
one run. Averaged time measurement in seconds of many runs of each of the algorithms
from Section 4 is also provided. When applicable, different schemes are also compared.
Tests were run on a single core of Intel Core i7-9750H processor.

6.1. Supersingular Isogeny Diffie–Hellman Key Exchange (SIDH)

Table 2 contains measurements of running times of the key generation and secret
generation algorithms. The benchmark was run using SIKEp434 [16] parameters, i.e.,
p = 22163137 − 1.

Cryptography 2022, 6, 27 35 of 39

Table 2. Time measurements of SIDH in seconds.

Key Generation Secret Generation

Alice 2.43 2.11

Bob 2.02 1.74

From Table 2 it is possible to draw two conclusions.

• Bob can generate his key and a shared secret faster than Alice. It follows from the
choice of parameters, Alice has to compute 216 isogenies of degree 2, while Bob
computes 137 isogenies of degree 3. For different parameters from SIKE specification,
Bob always needs to compute a smaller number of isogenies than Alice.

• Although Alice always computes 216 isogenies of degree 2, and Bob computes 137
isogenies of degree 3, for both parties secret value generation is faster than a key
generation. The difference between the key and shared value generation algorithms
is that during secret value generation no auxiliary points need to be moved, thus
allowing shorter running times.

6.2. Isogeny-Based Digital Signature (Ibds)

Table 3 contains measurements of running times of the key generation, signing, and
verification algorithms. The benchmark was run using SIKEp434 [16] parameters, i.e.,
p = 22163137 − 1, and the security parameter λ = 8.

Table 3. Time measurements of IBDS in seconds.

Key Generation Signing Verification

2.40 63.46 44.48

Table 3 shows results matching Table 2. The running time of the IBDS key generation
algorithm is similar to the running time of key generation of Alice in SIDH. It is expected
since those algorithms perform the same computations. The running time of the signing
algorithm also matches the expected time, i.e., it is about 2λ times longer than SIDH Bob’s
key and secret generation. The running time of the verification algorithm matches the
expected time of 2λ · 1.5 times longer than SIDH Bob’s secret generation. The 1.5 cofactor is
a result of the fact that depending on the challenge bit, 2 or 1 values of the response are
validated in each of the 2λ rounds.

6.3. Strong Designated Verifier Signature (SDVS)

Table 4 contains measurements of running times of the key generation, signing, and
verification algorithms. The benchmark was run using SIKEp434 [16] parameters, i.e.,
p = 22163137 − 1.

Table 4. Time measurements of SDVS in seconds.

Key Generation Signing Verification

Signer 2.45 2.02 -

Verifier 1.97 - 1.72

The SDVS scheme is heavily based on the SIDH key exchange. The running times of
the key generation algorithm for a signer and a verifier are similar to the times of SIDH
Alice and Bob, respectively. The time needed for signing matches the time of Alice’s secret
generation, while verification takes as much as Bob’s secret generation. All of these results
are expected.

Cryptography 2022, 6, 27 36 of 39

6.4. Undeniable Signatures

Table 5 contains measurements of running times of the key generation, signing, confir-
mation, and disavowal algorithms. The benchmark was run using toy-size parameters, i.e.,
p = 332452 − 1, and the security parameter λ = 128.

Table 5. Time measurements of undeniable signatures in seconds.

Key Generation Signing Confirmation Disavowal

0.0058 0.014 7.93 6.22

In the case of the undeniable signatures implementation, it is difficult to compare
the results to the previous implementations. The scheme differs the most from the other
schemes and the implementation uses a different set of parameters. Comparing orders of
magnitude of running times of the key generation algorithms across all implementations it
is expected that running times of the confirmation and disavowal protocols will increase
at least a few hundred times if parameters matching SIKEp434 are used. The difference
between times of the confirmation and disavowal protocols in Table 5 is caused by the fact
that in each round of the confirmation protocol a signer checks the validity of a signature
before a commitment is returned. The time needed for the confirmation protocol can be
reduced to time close to the running time of disavowal protocol if each of the λ rounds is
not treated as a completely independent execution, i.e., a signer would check a signature
only once and then return λ commitments.

6.5. Supersingular Isogeny Oblivious Transfer (SIOT)

Table 6 presents running times of algorithms executed in SIOT. The benchmark was
run using SIKEp434 [16] parameters, i.e., p = 22163137 − 1.

Table 6. Time measurements of SIOT in seconds.

Key Generation Encryption Decryption

Alice 2.36 4.17 —

Bob 1.93 — 1.76

Times measured during the key generation algorithm execution are very similar to the
times of corresponding values in Table 2. Both parties in SIOT need to execute additional
steps on top of SIDH computations. Alice chooses two random messages while Bob chooses
bit b and performs some point computations on an elliptic curve. However, all of those
new steps are inexpensive when compared to computational cost of isogeny computations.

The time needed for decryption of the message chosen by Bob matches the time of
Bob’s secret generation in SIDH. It is expected since the only additional step in SIOT is the
decryption of the message with the shared secret as the key. Alice needs about twice as
much time for encryption as Alice needs to compute shared secret in SIDH. That correlation
follows from the fact that in SIOT Alice has to compute two different keys-one for each of
the messages.

7. Conclusions

The goal of this article was a review of the state-of-the-art functionalities provided
by existing isogeny-based cryptosystems. The schemes include key exchange protocol,
oblivious transfer, and several types of digital signatures. For each of the schemes, sim-
ilarities between them and analogies to classical cryptography were highlighted. The
research covers a detailed description of chosen isogeny-based schemes. Software solu-
tions for isogeny-based cryptography were briefly discussed and the chosen schemes were
implemented. The goal of implementations was not maximum performance but clarity
of code that could help to understand the schemes and isogeny-based cryptography in

Cryptography 2022, 6, 27 37 of 39

general. Common blocks of the implementations can be used for fast prototyping of new
cryptosystems. In the end, time benchmarks were provided for comparison.

From the conducted research and implementation work, the following conclusions
can be drawn.

• The properties of SIDH imply it can be a natural candidate to replace commonly used
Diffie–Hellman and elliptic curve Diffie–Hellman key exchange.

• Analogies between SIDH and DH caused rapid development of isogeny-based cryp-
tosystems using constructions analogous to classical cryptography.

• SIDH key can be used for symmetric encryption schemes, similarities of SIDH and
DH allow building ElGamal-like public key encryption.

• Isogeny-based cryptography needs a more cautious approach, PAKE that is badly
designed in an obvious way is a valuable lesson.

• Most of the post-quantum isogeny signatures are far from being practical; however,
some more practical signatures exist, e.g., CSI-FiSh [41].

Author Contributions: Conceptualization, Ł.K.; data curation, B.D. and Ł.K.; resources, Ł.K.; soft-
ware, B.D.; writing—original draft, B.D.; writing—review and editing, B.D. and Ł.K. All authors have
read and agreed to the published version of the manuscript.

Funding: The research was partially financed from the Fundamental Research Fund number 8211104160
of the Wrocław University of Science and Technology.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shor, P.W. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM J.

Comput. 1997, 26, 1484–1509. https://doi.org/10.1137/S0036144598347011.
2. Rivest, R.L.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM

1978, 2, 120–126. https://doi.org/10.1145/359340.359342.
3. NIST Post-Quantum Cryptography Competition. Available online: https://csrc.nist.gov/projects/post-quantum-cryptography

(accessed on 26 May 2022).
4. Hoffstein, J.; Pipher, J.; Silverman, J.H. NTRU: A ring-based public key cryptosystem. In Algorithmic Number Theory; Buh-

ler, J.P., Ed.; ANTS 1998; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1998; Volume 1423.
https://doi.org/10.1007/BFb0054868.

5. Fouque, P.; Hoffstein, J.; Kirchner, P.; Lyubashevsky, V.; Pornin, T.; Prest, T.; Ricosset, T.; Seiler, G.; Whyte, W.; Zhang, Z. Falcon:
Fast-Fourier Lattice-Based Compact Signatures over NTRU. 2019. Available online: https://www.di.ens.fr/~prest/Publications/
falcon.pdf (accessed on 26 May 2022).

6. Ding J.; Schmidt D. Rainbow, a New Multivariable Polynomial Signature Scheme. In Applied Cryptography and Network Security
Ioannidis, J., Keromytis, A., Yung, M., Eds.; ACNS 2005; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2005; Volume 3531. https://doi.org/10.1007/1149613712.

7. Robert, J. McEliece. A Public-Key Cryptosystem Based on Algebraic Coding Theory. Available online: https://ipnpr.jpl.nasa.
gov/progress_report2/42-44/44N.PDF (accessed on 26 May 2022).

8. Bernstein, D.J.; Hopwood, D.; Hülsing, A.; Lange, T.; Niederhagen, R.; Papachristodoulou, L.; Wilcox-O’Hearn, Z. SPHINCS:
Practical Stateless Hash-Based Signatures. In Advances in Cryptology-EUROCRYPT 2015; Oswald, E., Fischlin, M., Eds.; Lecture
Notes in Computer Science; Springer: Berlin/Heidelberg, Germany 2015; Volume 9056. https://doi.org/10.1007/978-3-662-
46800-515.

9. Chase, M.; Derler, D.; Goldfeder, S.; Orlandi, C.; Ramacher, S.; Rechberger, C.; Slamanig, D.; Zaverucha, G. Post-Quantum
Zero-Knowledge and Signatures from Symmetric-Key Primitives. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’17), Dallas, TX, USA, 30 October–3 November 2017; Association for Computing
Machinery: New York, NY, USA, 2017; pp. 1825–1842. https://doi.org/10.1145/3133956.3133997.

10. Jao, D.; De Feo, L. Towards Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve Isogenies. In Post-Quantum
Cryptography; Yang, B.Y., Ed.; PQCrypto 2011; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2011;
Volume 7071. https://doi.org/10.1007/978-3-642-25405-52.

11. Yoo, Y.; Azarderakhsh, R.; Jalali, A.; Jao, D.; Soukharev, V. A Post-quantum Digital Signature Scheme Based on Supersingular
Isogenies. In Financial Cryptography and Data Security; Kiayias, A., Ed.; Lecture Notes in Computer Science; Springer: Cham,
Switzerland, 2017; Volume 10322. https://doi.org/10.1007/978-3-319-70972-79.

https://csrc.nist.gov/projects/post-quantum-cryptography
https://www.di.ens.fr/~prest/Publications/falcon.pdf
https://www.di.ens.fr/~prest/Publications/falcon.pdf
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF

Cryptography 2022, 6, 27 38 of 39

12. Sun, X.; Tian, H.; Wang, Y. Toward Quantum-Resistant Strong Designated Verifier Signature from Isogenies. In Proceedings
of the 2012 Fourth International Conference on Intelligent Networking and Collaborative Systems, Bucharest, Romania, 19–21
September 2012; pp. 292–296, https://doi.org/10.1109/iNCoS.2012.70.

13. Jao, D.; Soukharev, V. Isogeny-Based Quantum-Resistant Undeniable Signatures. In Post-Quantum Cryptography; Mosca, M., Ed.;
Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2014; Volume 8772. https://doi.org/10.1007/978-3-319-11659-410.

14. Barreto, P.; Nascimento, A.; Oliveira, G.; Benits, W. Supersingular Isogeny Oblivious Transfer (SIOT). arXiv 2018, arXiv:1805.06589.
15. Castryck, W.; Lange, T.; Martindale, C.; Panny, L.; Renes, J. CSIDH: An Efficient Post-Quantum Commutative Group Action.

Asiacrypt 2018, LNCS 11274, pp. 395–427. Available online: https://cSIDH.isogeny.org/ (accessed on 18 November 2021).
16. SIKE—Supersingular Isogeny Key Encapsulation. Available online: https://sike.org (accessed on 26 May 2022).
17. Boneh, D.; Kogan, D.; Woo, K. Oblivious Pseudorandom Functions from Isogenies. In Advances in Cryptology-ASIACRYPT

2020; Moriai, S., Wang, H., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2020; Volume 12492.
https://doi.org/10.1007/978-3-030-64834-318.

18. Joseph, H. The arithmetic of elliptic curves. In Graduate Texts in Mathematics; Springer: New York, NY, USA, 1992; Volume 106.
https://doi.org/10.1007/978-0-387-09494-6.

19. Galbraith, S.D.; Petit, C.; Shani, B.; Ti, Y.B. On the Security of Supersingular Isogeny Cryptosystems. In Advances in Cryptology—
ASIACRYPT 2016; Cheon, J., Takagi, T., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2016;
Volume 10031. https://doi.org/10.1007/978-3-662-53887-63.

20. Adj, G.; Cervantes-Vázquez, D.; Chi-Domínguez, J.J.; Menezes, A.; Rodríguez-Henríquez, F. On the Cost of Computing Isogenies
Between Supersingular Elliptic Curves. In Selected Areas in Cryptography—SAC 2018; Cid, C., Jacobson, M., Jr., Eds.; Lecture Notes
in Computer Science; Springer: Cham, Switzerland, 2019; Volume 11349. https://doi.org/10.1007/978-3-030-10970-715.

21. Alexander, R.; Anton, S. Public-Key Cryptosystem Based on Isogenies. IACR Cryptol. Eprint Arch. 2006, 2006, 145. Available
online: https://eprint.iacr.org/2006/145.pdf (accessed on 26 May 2022).

22. Costello, C. The Case for SIKE: A Decade of the Supersingular Isogeny Problem. Cryptol. Eprint Arch. 2021. Available online:
https://eprint.iacr.org/2021/543 (accessed on 26 May 2022).

23. Diffie, W.; Hellman, M. New directions in cryptography. IEEE Trans. Inf. Theory 1976, 22, 644–654. https://doi.org/10.1109/TIT.
1976.1055638.

24. Costello, C.; Longa, P.; Naehrig, M. Efficient Algorithms for Supersingular Isogeny Diffie–Hellman. In Proceedings of the 36th
Annual International Cryptology Conference on Advances in Cryptology—CRYPTO 2016, Santa Barbara, CA, USA, 14–18 August
2016; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9814, pp. 572–601. http://doi.org/10.1007/978-3-662-53018-421.

25. Unruh, D. Non-Interactive Zero-Knowledge Proofs in the Quantum Random Oracle Model. In Advances in Cryptology—
EUROCRYPT 2015; Oswald, E., Fischlin, M., Eds.; EUROCRYPT 2015; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2015; Volume 9057. https://doi.org/10.1007/978-3-662-46803-625.

26. Ambainis, A.; Rosmanis, A.; Unruh, D. Quantum Attacks on Classical Proof Systems: The Hardness of Quantum Rewinding. In
Proceedings of the 2014 IEEE 55th Annual Symposium on Foundations of Computer Science (FOCS’14), IEEE Computer Society,
Washington, DC, USA, 18–21 October 2014; pp. 474–483. https://doi.org/10.1109/FOCS.2014.57.

27. Dagdelen, Ö; Fischlin, M.; Gagliardoni, T. The Fiat–Shamir Transformation in a Quantum World. In Advances in Cryptology—
ASIACRYPT 2013; Sako, K., Sarkar, P., Eds.; ASIACRYPT 2013; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2013; Volume 8270. https://doi.org/10.1007/978-3-642-42045-04.

28. Chou, T.; Orlandi, C. The simplest protocol for oblivious transfer. In Proceedings of the International Conference on Cryptology
and Information Security in Latin America, Guadalajara, Mexico, 23–26 August 2015; Springer: Cham, Switzerland, 2015;
pp. 40–58. Available online: https://eprint.iacr.org/2015/267.pdf (accessed on 26 May 2022).

29. Wagner, D. Midterm Solution. 2006. Available online: http://www.cs.berkeley.edu/~daw/teaching/cs276-s06/mtsol.ps
(accessed on 26 May 2022).

30. Reza, A.; David, J.; Brian, K.; Jason, L.; Vladimir, S.; Oleg, T. How Not to Create an Isogeny-Based PAKE; Springer: Rome, Italy, 2020;
https://doi.org/10.1007/978-3-030-57808-4_9.

31. Zhang, J.; Mao, J. A novel ID-based designated verifier signature scheme. Inf. Sci. 2008, 178, 766–773. https://doi.org/10.1016/j.ins.
2007.07.005.

32. Huang, X.; Mu, Y.; Susilo, W.; Zhang, F. Short Designated Verifier Proxy Signature from Pairings. In Embedded and Ubiquitous
Computing—EUC 2005 Workshops; Enokido, T., Yan, L., Xiao, B., Kim, D., Dai, Y., Yang, L.T., Eds.; Lecture Notes in Computer
Science; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3823. https://doi.org/10.1007/1159604286.

33. Laguillaumie, F.; Vergnaud, D. Designated Verifier Signatures: Anonymity and Efficient Construction from Any Bilinear Map. In
Security in Communication Networks; Blundo, C., Cimato, S., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2005; Volume 3352. https://doi.org/10.1007/978-3-540-30598-98.

34. Shao, Z. Strong designated verifier signature scheme: new definition and construction. IACR Cryptol. Eprint Arch. 2010, 490, 1–10.
35. Bellovin, S.M.; Merritt, M. Encrypted key exchange: password-based protocols secure against dictionary attacks. In Proceedings

1992 IEEE Computer Society Symposium on Research in Security and Privacy, Oakland, CA, USA, 4–6 May 1992; pp. 72–84.
https://doi.org/10.1109/RISP.1992.213269.

36. David, P.J. Strong password-only authenticated key exchange. Sigcomm Comput. Commun. Rev. 1996, 26, 5–26. https://doi.org/
10.1145/242896.242897.

https://cSIDH.isogeny.org/
https://sike.org
https://eprint.iacr.org/2006/145.pdf
https://eprint.iacr.org/2021/543
https://eprint.iacr.org/2015/267.pdf
http://www.cs.berkeley.edu/~ daw/teaching/cs276-s06/mtsol.ps

Cryptography 2022, 6, 27 39 of 39

37. Boyko, V.; MacKenzie, P.; Patel, S. Provably Secure Password-Authenticated Key Exchange Using Diffie–Hellman. In Ad-
vances in Cryptology—EUROCRYPT 2000; Preneel, B., Ed.; EUROCRYPT 2000; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2000; Volume 1807. https://doi.org/10.1007/3-540-45539-612.

38. RFC 6124 An EAP Authentication Method Based on the Encrypted Key Exchange (EKE) Protocol. Available online: https:
//tools.ietf.org/html/rfc6124 (accessed on 26 May 2022).

39. Terada, S.; Yoneyama, K. Password-Based Authenticated Key Exchange from Standard Isogeny Assumptions. In Provable Security;
Steinfeld, R., Yuen, T., Eds.; ProvSec 2019; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2019; Volume 11821.
https://doi.org/10.1007/978-3-030-31919-93.

40. Taraskin, O.; Soukharev, V.; Jao, D.; LeGrow, J. Towards Isogeny-Based Password-Authenticated Key Establishment. J. Math.
Cryptol. 2020, 15, 18–30. http://dx.doi.org/10.1515/jmc-2020-0071.

41. Beullens, W.; Kleinjung, T.; Vercauteren, F. CSI-FiSh: Efficient Isogeny Based Signatures Through Class Group Computations. In
Advances in Cryptology-ASIACRYPT 2019; Galbraith, S., Moriai, S., Eds.; Lecture Notes in Computer Science; Springer: Cham,
Switzerland, 2019; Volume 11921. https://doi.org/10.1007/978-3-030-34578-59.

https://tools.ietf.org/html/rfc6124
https://tools.ietf.org/html/rfc6124

	Introduction
	Problem Statement
	Post-Quantum Alternatives
	Contribution
	Organization of the Article

	Supersingular Elliptic Curve Isogeny Cryptography
	Definitions and Isogeny Algebra
	Implementation Outline
	Common Building Blocks
	SIDH Public Parameters
	Isogeny Computation

	Security of the Chosen Schemes
	Chosen Schemes
	Supersingular Isogeny Diffie–Hellman Key Exchange (SIDH)
	Construction and Algorithms
	Implementation

	Isogeny-Based Digital Signature (IBDS)
	Construction and Algorithms
	Implementation

	Strong Designated Verifier Signature (SDVS)
	Construction and Algorithms
	Implementation

	Undeniable Signatures
	Construction and Algorithms
	Implementation

	Supersingular Isogeny Oblivious Transfer (SIOT)
	Construction and Algorithms
	Implementation

	Error-Prone Applications
	Generic Constructions
	Problematic Password-Authenticated Key Establishment (PAKE) SIDH-EKE
	Construction and Algorithms
	Implementation

	Attack on SIDH-Eke

	Computational Complexity and Benchmarks
	Supersingular Isogeny Diffie–Hellman Key Exchange (SIDH)
	Isogeny-Based Digital Signature (Ibds)
	Strong Designated Verifier Signature (SDVS)
	Undeniable Signatures
	Supersingular Isogeny Oblivious Transfer (SIOT)

	Conclusions
	References

