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Abstract: To prevent eavesdropping and tampering, network security protocols take advantage of
asymmetric ciphers to establish session-specific shared keys with which further communication is
encrypted using symmetric ciphers. Commonly used asymmetric algorithms include public key
encryption, key exchange, and identity-based encryption (IBE). However, network security protocols
based on classic identity-based encryption schemes do not have perfect forward secrecy. To solve this
problem, we construct the first quantum IBE (QIBE) scheme based on the learning with errors (LWE)
problem, which is also the first cryptographic scheme that applies the LWE problem to quantum
encryption. We prove that our scheme is fully secure under the random oracle model and highlight
the following advantages: (1) Network security protocols with our QIBE scheme provide perfect
forward secrecy. The ciphertext is transmitted in the form of a quantum state unknown to the
adversary and cannot be copied and stored. Thus, in network security protocols based on QIBE
construction, the adversary does not have any previous quantum ciphertext to decrypt for obtaining
the previous session key, even if the private identity key is threatened. (2) Classic key generation
centre (KGC) systems can still be used in the QIBE scheme to generate and distribute private identity
keys, reducing the cost when implementing this scheme. The classic KGC systems can be used
because the master public and secret keys of our scheme are both in the form of classic bits. Finally,
we present quantum circuits to implement this QIBE scheme and analyse its required quantum
resources for given numbers of qubits, Hadamard gates, phase gates, T gates, and CNOT (controlled-
NOT) gates. One of our main findings is that the quantum resources required by our scheme increase
linearly with the number of plaintext bits to be encrypted.

Keywords: quantum IBE (identity-based encryption); LWE (learning with errors); forward secrecy;
quantum circuits

1. Introduction

Identity-based encryption (IBE) is an advanced form of public key encryption, and
the notion of IBE was first proposed by Shamir in 1984 [1]. In the IBE scheme, the public
key is directly calculated from the receiver’s identity idR, which may be a phone number,
email address, or network address, and the corresponding private identity key skidR is
generated by a trusted key generation centre (KGC), which owns the master public key
mpk and the master secret key msk. When the sender wants to send a message m to the
receiver, the sender encrypts the message to obtain a ciphertext ct = Encrypt(mpk, idR, m; r),
where r is a random number. After receiving the ciphertext ct, the receiver can decrypt it
and obtain the message m = Decrypt(skR, ct). Compared with a public key infrastructure
(PKI)-based cryptographic system, an identity-based cryptographic system avoids the
high cost of storing and managing public key certificates, simplifies the process of public
key management, and reduces the pressure on the system. Therefore, identity-based
cryptosystems have been widely developed and applied.
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The first practical IBE scheme was proposed by Boneh et al. in 2001 [2], and it
was followed by numerous other classic IBE schemes. These classic IBE schemes can be
divided into three categories: based on elliptic curve bilinear pairings [2–4], based on
quadratic residue [5–8], and based on lattices [9–13]. With the development of quantum
computers and quantum algorithms, especially the Shor algorithm [14], the security of
IBE schemes based on elliptic curve bilinear pairings and quadratic residue has been
seriously threatened. As there is currently no quantum algorithm that can solve lattice-
based problems, the construction of lattice-based IBE schemes has become a major research
area for cryptographers.

One of the main applications of IBE is the construction of network security protocols,
such as the Chinese SSL VPN technology specification [15]. In the IBE-based security
protocol, the receiver sends its identity idR and mpk to the sender, and the sender chooses a
sessionKey and sends its ciphertext to the receiver. The receiver decrypts the ciphertext to
obtain the sessionKey. Subsequently, both the sender and the receiver can own this secret
session key sessionKey with which further communication is encrypted using a symmetric
cipher. The entire procedure is briefly described in Figure 1. A security protocol is said
to provide perfect forward secrecy [16] if the compromise of long-term keys does not
compromise past session keys that were established before the compromise of the long-
term key. In security protocols based on classic IBE, all session keys and their ciphertexts
are in the form of classic bits. A patient attacker can capture the conversations and store
the ciphertexts of the session keys, whose confidentiality is protected by a private identity
key (which is the long-term key of the network security protocol based on IBEs) and wait
until the long-term key is threatened. Once the patient attacker obtains the long-term
key, the attacker can decrypt the ciphertexts of all previous session keys. Ultimately, all
encrypted communications and sessions recorded in the past can be retrieved. Therefore,
the security protocols based on the classic IBE scheme do not have perfect forward secrecy.
This naturally leads to the following question:

Can we construct a fully secure IBE scheme with which the network security protocol can
provide perfect forward secrecy?

Sender Receiver
Hello

(idR,mpk)

sessionKey $← {0, 1}∗

r $← {0, 1}∗

ct = Encrypt(mpk, idR, sessionKey; r)

ct
sessionKey = Decrypt(skidR , ct)

Secure communications

Figure 1. Security protocols based on IBE. The “Hello” message means that the sender wants to
communicate with the receiver.

1.1. Our Contributions

To solve this problem, considering that an adversary cannot replicate an unknown
quantum state [17], we propose the notion of quantum identity-based encryption (QIBE)
and construct the first QIBE scheme based on the learning with errors (LWE) problem. Then,
we prove that our scheme is fully secure under the random oracle model. Our scheme
possesses the following advantages:

• Network security protocols with our QIBE scheme provide perfect forward secrecy.
The ciphertext is transmitted in the form of a quantum state that is unknown to the
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adversary, who cannot duplicate the ciphertext. Thus, in security protocols based on
QIBE construction, even if the private identity key is threatened, the adversary does
not possess the previous ciphertexts of session keys to decrypt, and therefore cannot
threaten the security of the previous session keys. Therefore, security protocols based
on QIBE construction have perfect forward secrecy.

• The classic KGC system can still be used for QIBE schemes to generate and distribute
private identity keys, reducing the cost of implementing this scheme. The classic KGC
system can be used because the Setup, KeyGen algorithms of our scheme are classic,
and the master public and secret keys of our scheme are both in the form of classic
bits.

Finally, we present quantum circuits to implement this QIBE scheme and establish its
required quantum resource estimates for given numbers of qubits, Hadamard gates, phase
gates, T gates, and CNOT gates. One of our primary findings is that the quantum resources
required by our scheme increase linearly with the number of plaintext bits to be encrypted.

1.2. Outline of the Paper

The remainder of this paper is organised as follows: In Section 2, we present the
necessary background for the paper, including quantum computation, lattices, and classic
IBE. In Section 3, we first present the definition of QIBE; then, we describe the concrete
construction of the scheme and analyse its correctness, and finally, prove the security
of the scheme and discuss its advantages. In Section 4, we discuss the specific quantum
circuit implementation for the QIBE scheme and estimate the quantum resources needed.
In Section 5, we summarise our work, discuss the drawbacks of our scheme, and suggest
directions for future work.

2. Preliminaries
2.1. Quantum Computation

In this section, we briefly discuss the basic concepts used in this work. Please refer
to [18] for a more detailed introduction to quantum computing. “(·)” is defined as the
bit-flip of “(·)”, such as

∣∣0〉 = |1〉, ∣∣1〉 = |0〉, and
∣∣101

〉
= |010〉. We begin by introducing

some quantum gates.
Fundamental gates. The fundamental gate set we use comprises the NOT gate, the

CNOT gate, the CNOT variant gate, the Toffoli (two-controlled NOT) gate, and the Fredkin
gate. These four gates are shown in Figure 2. One CNOT variant gate can be obtained by a
CNOT gate and two NOT gates. The Fredkin gate is also known as a three-qubit controlled
swap gate, that is, if the control qubit is in state|1〉, the two target qubits swap their states;
otherwise, they remain in their initial states if the control qubit is in state |0〉. One Fredkin
gate can be constructed from one Toffoli gate and two CNOT gates.

（�）

|�1 |�1 

|�1 ⊕ �1 |�1 

|�1 

 |�1 |�1 ⊕ �1�2 
|�2 |�2 

|�1 

（�）

（�）

|�1 |�1 

|�1 ⊕ �1 |�1 

（�）

|�1 

 |�2 
|�1�1 + �1�2  |�1 

|�1 

|�1�2 + �1�1  

Figure 2. Fundamental gates. The CNOT gate is shown in (a); the CNOT variant gate is shown in (b);
the Toffoli gate is shown in (c); and the Fredkin gate is shown in (d).
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Complex Gates. We use four complex gates (Figure 3): the first gate is the `-controlled-
NOT gate, which can be decomposed into (2`− 3) Toffoli gates, the second gate is the
variant of the `-controlled-NOT gate, which can also be decomposed into (2`− 3) Toffoli
gates, the third gate is the `-combination-CNOT gate, which is a combination of ` CNOT
gates, and the last gate is the `-Fredkin gate, which can be constructed from ` Toffoli gates
and 2` CNOT gates.

|�1 

...

|�1 |�1 
|�2 |�2 ...

（�）

= |� |� 

|�1 

ℓ

...
|�1 |�1 
|�2 |�2 

（�）

= |� |� 

|� |�� ⊕ �� (� = 1, . . . . ℓ)

ℓ

ℓ
|�1 |�1 ⊕ �1 
|�2 |�2 ⊕ �2 

......
... ... ...

|�1 |�1 

（�）

=
|�1 

... ... ...

|�ℓ 
′  

|�1′  
|�1�1 + �1�1′  

|�1�ℓ  + �1�ℓ 
′  

|�1 |�1 

|� ℓ

|�1��′ + �1�� (� = 1, …, ℓ)ℓ|�ℓ 
′  

|�1 

...

|�1 |�1 
|�2 |�2 ...

（�）

= |� |� 

|�1 

ℓ

|�1�1′ + �1�1 

|�1�ℓ 
′ + �1�ℓ  

|�1�� + �1��′ (� = 1, …, ℓ)

|�1 ⊕ �1 ∙∙∙ �ℓ  |�1 ⊕ �1 ∙∙∙ �ℓ  
|�ℓ  |�ℓ  

|�1 ⊕ �1 ∙∙∙ �ℓ  
|�1 ⊕ �1 ∙∙∙ �ℓ  

|�ℓ  |�ℓ  

|�ℓ  |�ℓ  

|�ℓ  |�ℓ  ⊕ �ℓ  

|�ℓ  

Figure 3. Complex gates. The `-controlled-NOT gate is shown in (a); the variant of the `-controlled-
NOT gate is shown in (b); the `-combination-CNOT gate is shown in (c); and the `-Fredkin gate is
shown in (d).

Quantum Basic Circuits. Figure 4f depicts the controlled copy circuit in which copy-
ing the integer d into the quantum register is controlled by |ctrl〉. If the controlled bit
|ctrl〉 = |0〉, the output of the controlled copy circuit is (|ctrl〉, |0〉). Otherwise, the output
is (|ctrl〉, |d〉). The output of the controlled copy circuit is (|ctrl〉, |ctrl · d〉). We denote the
controlled copy circuit by CCopy(|ctrl〉, d) when this algorithm takes a qubit |ctrl〉 and an
`-bit number d as input. According to the conclusion in [19], copying an integer uses only
NOT gates so that a controlled copy circuit only uses CNOT gates. Suppose that d is a
uniform integer in {0, 1, · · · , 2` − 1}; then, the controlled copy circuit uses approximately
`/2 CNOT gates, where ` = blog dc+ 1.

Quantum Arithmetic Circuits. We introduce some quantum arithmetic circuits, in-
cluding addition, subtraction, modular addition, modular subtraction, and comparison,
and describe the corresponding quantum resources required, including the number of
qubits and the number of CNOT gates and Toffoli gates. To simplify the description, we
only show the simplified form of these quantum arithmetic circuits.
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(a)

|� |� 

|� 

AddM
od  |(� + �) mod � 

(c)

(e)

|� 

|0 |0 

|� 

|� |� 

or |1 

 
Com

p

|� |� + � 

|� |� Add

|b 

|� |� 

|(� − �) mod � 

SubM
od 

(d)

|� 

|� |� Sub 
(b)

|� − � ,   if � ≥ �

|ctrl 

ℓ|0 � |�   for ctrl = 1
|0   for ctrl = 0

|ctrl 

(f)

|2ℓ  − (� − �) ,  if � < �

Figure 4. Some quantum basic and arithmetic circuits. In the Figure, (a) shows the addition circuit
while (b) shows the subtraction circuit; (c) depicts the modular addition circuit while (d) depicts the
modular subtraction circuit; (e) illustrates the comparison circuit; and the controlled copy circuit is
shown in (f).

• Addition and subtraction: Cuccaro et al. [20] proposed a quantum addition circuit.
The quantum addition achieves the addition of two registers, that is,

|a, b〉 → |a, a + b〉.

To prevent overflows caused by the carry, the second register (initially loaded in state
|b〉) should be sufficiently large, i.e., if both a and b are encoded on ` qubits, the
second register should be of size `+ 1. In the addition circuit, the last carry is the
most significant bit of the result and is written in the ` + 1-th qubit of the second
register. As a result of the reversibility of unitary operations, by reversing the addition
circuit, i.e., applying each gate of the circuit in the reversed order, the subtraction
circuit is obtained. The addition and subtraction circuits are shown in (a) and (b) of
Figure 4, respectively. In this paper, a circuit with a bar on the left side represents the
reversed sequence of elementary gates embedded in the same circuit with the bar on
the right side.
In the subtraction circuit, with the input (|a〉, |b〉), the output produces (|a〉, |a− b〉)
when a ≥ b. When a < b, the output is (|2` − (b− a)〉), where the size of the second
register is `+ 1. i.e., {

|a, b〉 → |a, a− b〉, for a ≥ b.
|a, b〉 → |a, 2` − (b− a)〉, for a < b.

When a < b, the significant qubit, that is, the `+ 1-th qubit of the second register,
which indicates whether an overflow occurred in the subtraction, always contains 1.
We denote the addition circuit by Add(|a〉, |b〉) when this algorithm takes two `-qubit
states |a〉 and |b〉 as input. Similarly, we denote the subtraction circuit by Sub(|a〉, |b〉)
when this algorithm takes two `-qubit states |a〉 and |b〉 as input. To calculate the
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addition or subtraction of two `-bit inputs, a total of 2`+ 2 qubits, 2` Toffoli gates, and
4`+ 1 CNOT gates are required.

• Addition and subtraction module q: Liu et al. [21] improved Roetteler’s [22] quan-
tum modular addition circuit and reduced the number of quantum gates required.
This quantum circuit produces

|a, b〉 → |a, (a + b) mod q〉,

where 0 ≤ a, b < q. The simplified form of the addition module q circuit is shown
in Figure 4c. The modular subtraction can be obtained by reversing the modular
addition circuit, and its bar is on the left-hand side. We denote the modular addition
circuit by AddMod(|a〉, |b〉) when this algorithm takes two dlog qe-qubit states |a〉 and
|b〉 as input. Similarly, we denote the modular subtraction circuit by SubMod(|a〉, |b〉)
when this algorithm takes two dlog qe-qubit states |a〉 and |b〉 as input. To calculate
the addition or subtraction module q of two dlog qe-bit inputs, a total of 3 · dlog qe+ 3
qubits, 8 · dlog qe Toffoli gates, 13 · dlog qe+ 6 CNOT gates are required.

• Comparison: Markov et al. [23] constructed a quantum comparison circuit by com-
paring |a〉 and |b〉 based on whether the highest bit of |a− b〉 is |0〉 or |1〉. This circuit
is obtained by modifying the previous subtraction circuit so that it outputs only the
highest bit of |a− b〉. The comparison circuit achieves the comparison of two registers,
that is {

|a, b〉|0〉 → |a, b〉|0〉, for a ≥ b.
|a, b〉|0〉 → |a, b〉|1〉, for a < b.

The simplified form of the quantum comparison circuit is shown in Figure 4e. We
denote the comparison circuit by Comp(|a〉, |b〉) when this algorithm takes two `-qubit
states |a〉 and |b〉 as input. To compare two `-bit inputs |a〉 and |b〉, a total of 2`+ 2
qubits, 2` Toffoli gates, and 4`+ 1 CNOT gates are required.

2.2. Lattices

Let X and Y be two random variables over some finite set SX, SY, respectively. The
statistical distance ∆(X, Y) between X and Y is defined as

∆(X, Y) =
1
2 ∑

s∈SX∪SY

|Pr[X = s]− Pr[Y = s]|.

For integer q ≥ 2, Zq denotes the quotient ring of integer modulo q. We use bold
capital letters to denote matrices, such as A, B, and bold lowercase letters to denote column
vectors, such as x, y. The notation A> denotes the transpose of the matrix A.

Let S be a set of vectors, S = {s1, · · · , sn} in Rm̃. We use S̃ = {s̃1, · · · , s̃n} to denote
the Gram–Schmidt orthogonalisation of the vectors s1, · · · , sn in that order and ‖S‖ to
denote the length of the longest vector in S. For positive integers q, n, m̃ with q prime, and
a matrix A ∈ Zn×m̃

q , the m̃-dimensional integer lattices are defined as follows: Λq(A) =

{y : y = A>s for some s ∈ Zn} and Λ⊥q (A) = {y : Ay = 0 mod q}. Moreover, for u ∈ Zn
q ,

the set of syndromes is defined as Λu
q (A) = {y : u = Ay mod q}.

For x ∈ Λ, define the Gaussian function ρs,c(x) over Λ ⊆ Zm̃ centred at c ∈ Rm̃

with parameter s > 0 as ρs,c(x) = exp(−π||x− c||/s2). Let ρs,c(Λ) = ∑x∈Λ ρs,c(x), and
define the discrete Gaussian distribution over Λ as DΛ,s,c(x) =

ρs,c(x)
ρs,c(Λ)

, where x ∈ Λ. For
simplicity, ρs,0 and DΛ,s,0 are abbreviated as ρs and DΛ,s, respectively.

Lemma 1 (Adopted from [9,24,25]). Let q, n, m̃ be positive integers with q ≥ 2 and q prime.
There exist the following PPT (probabilistic polynomial-time) algorithms:
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• TrapGen(m̃, n, q) : a randomised algorithm that, when m̃ ≥ 6ndlog qe, outputs a pair
(A, TA) ∈ Zn×m̃

q × Zm̃×m̃ such that A is 2−Ω(n)−close to uniform in Zn×m̃
q and TA is a

basis of Λ⊥q (A), satisfying ‖T̃A‖ ≤ O(
√

n log q) with overwhelming probability.
• SampleD(A, TA, u, σ) : a randomised algorithm that, given a full rank matrix A ∈ Zn×m̃

q ,a
basis TA of Λ⊥q (A), a vector u ∈ Zn

q and σ ≥ ‖T̃A‖ ·ω(
√

log m̃), outputs a vector r ∈ Zm̃
q

sampled from a distribution 2−Ω(n)−close to DΛu
q (A),σ.

Discrete Gaussian Lemmas. The following lemmas are used to manipulate and ob-
tain meaningful bounds on discrete Gaussian vectors.

Lemma 2 (Adopted from [9], Lemma 5.2). Let n, m̃, q be positive integers such that m̃ ≥
2n log q and q is prime. Let σ be any positive real number such that σ ≥

√
n + log m̃. Then,

for all but a 2−Ω(n) fraction of A ∈ Zn×m̃
q , the distribution of u = Ar mod q for r ← DZm̃ ,σ is

2−Ω(n)-close to uniform distribution over Zn
q . Furthermore, for a fixed u ∈ Zn

q , the conditional
distribution of r← DZm̃ ,σ, given Ar = u mod q is DΛu

q (A),σ.

The Learing with Errors Problem. The security of our construction is based on the
LWE problem. The LWE problem is a hard problem based on lattices defined by Regev [26].
It is stated as follows: given an input (A, d), where A ∈ Zn×m̃

q for any m̃ = poly(n),
integer q ≥ 2 is prime, and d ∈ Zm̃

q is either of the form d = (A>s + e) mod q for s ∈ Zn
q

and e ∈ DZm̃ ,σ or is uniformly random (and independent of A), distinguish which is the
case, with non-negligible advantage. Regev proved that the LWE problem is as hard as
approximating standard lattice problems in the worst case using a quantum algorithm.

2.3. Classic Identity-Based Encryption

A classic identity-based encryption scheme consists of the following four algorithms:

• KeyGen(1λ)→ (mpk,msk). The key generation algorithm takes a security parameter
1λ as input. It outputs a master public key mpk and a master secret key msk.

• Extract(mpk,msk, id)→ skid. The key extraction algorithm takes a master public key
mpk, a master secret key msk, and an identity id as input. It outputs a private identity
key skid. We assume that id is implicitly included in skid.

• Encrypt(mpk, id, m; r)→ ct. The encryption algorithm takes a master public key mpk,
an identity id, and the message m as input. It outputs a ciphertext ct.

• Decrypt(skid, ct)→ m. The decryption algorithm takes the master public key mpk, the
private identity key skid, and the ciphertext ct as input. It outputs the message m.

Correctness. For all (mpk,msk)
$← KeyGen(1λ), all identities id ∈ ID, all messages m,

and all c← Encrypt(mpk, id, m; r), we have

Pr[Decrypt(mpk, skid, ct) = m] = 1− negl(λ).

Security. The security game is defined by the following experiment, which is played
by a challenger and an adversary A:

• The challenger runs KeyGen to generate (mpk,msk). It gives mpk to the adversary A.
• The adversary A adaptively requests keys for any identity idi of its choice. The

challenger responds with the corresponding secret key skidi
, which it generates by

running Extract(mpk,msk, idi).
• The adversary A submits two messages of equal length, m0 and m1, and a challenge

identity id∗ with the restriction that id∗ is not equal to any identity requested in the

previous phase. The challenger picks β
$← {0, 1}, encrypts mβ under id∗ by running

the encryption algorithm, and sends the ciphertext to the adversary A.
• A continues to issue key queries for any identity idi as in step (2) with the restriction

that idi 6= id∗.
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• The adversary A outputs a guess β′ for β.

The advantage AdvIBE
A (λ) of an adversary A is defined as

AdvIBE
A (λ) =

∣∣Pr[β′ = β]− 1/2
∣∣.

Definition 1. An IBE scheme is fully secure if for all probabilistic polynomial-time adversaries A,
AdvIBE

A (λ) is a negligible function in λ.

3. QIBE and Its Construction
3.1. Definition of QIBE

We begin by defining a primitive for identity-based encryption schemes in which some
elements may belong to a quantum space.

Definition 2. We say that an identity-based encryption scheme IBE is a quantum identity-based
encryption (QIBE) scheme if there exists at least one quantum algorithm in its algorithms that
include KeyGen,Extract,Encrypt, and Decrypt.

Note that the classification of QIBE can be analogous to that of quantum public key
encryption [27] and a quantum symmetric-encryption scheme [28]. Since each algorithm in
the QIBE schemes could be either classic or quantum, there exist only fifteen types of QIBE
schemes in total.

3.2. Our Construction

Then, we design a QIBE scheme by utilising the proposed classic IBE scheme [9] and
prove its security based on the LWE problem.

In our QIBE scheme, KeyGen and Extract are classic algorithms while Encrypt and
Decrypt are quantum algorithms. To make it easier to distinguish between classic IBE
and QIBE, we denote our scheme as QIBE, and our QIBE scheme consists of one tu-
ple (QKeyGen,QExtract,QEncrypt,QDecrypt). Let integer parameters n = O(λ), m̃ =
O(n), σ = O(n0.5), q = O(m̃3.5) as specified in [9], where λ is a security parameter.

• QKeyGen : (1) It runs TrapGen(m̃, n, q) to obtain a uniformly random n× m̃−matric
A ∈ Zn×m̃

q and TA ∈ Zm̃×m̃
q which is a good basis for Λ⊥q (A). (2) Then, it selects a

hash function H : {0, 1}n → Zn
q , which maps an identity to a vector. (3) Finally, it out-

puts mpk = (A, q, m̃, n,H) and msk = (TA). (4) In summary, QKeyGen(λ, q, m̃, n) →
(mpk = (A, q, m̃, n,H),msk = (TA)).

• QExtract: (1) On input mpk, msk and an identity id ∈ {0, 1}n, it computes u = H(id)
and generates skid = r such that r = SampleD(A, TA, u, σ). It is clear that u =
Ar mod q. (2) In summary, QExtract(msk,mpk, id)→ skid = r.

• QEncrypt: (1) On input of an identity id, mpk, and a bit quantum superposition state
|φ〉 = ∑m∈{0,1} αm|m〉, it first computes u = H(id) and chooses a uniformly random
s ← Zn

q , e0 ∈ DZ,σ and e ∈ DZm̃ ,σ. (2) Then, it sets x = (u>s + e0) mod q and
c1 = (A>s + e) mod q. More procedures are performed as follows:

? Step 1: Taking |φ〉 = ∑m∈{0,1} αm|m〉 and b q
2c as input, it runs CCopy(|φ〉, b q

2c)
and gets

∑
m∈{0,1}

αm|m〉|m · b
q
2
c〉.

? Step 2: Taking the second register of the above result and x as input, it runs
AddMod and obtains

∑
m∈{0,1}

αm|m〉|(m · b
q
2
c+ x) mod q〉.
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? Step 3: Finally, taking the two registers of the above result as input, it runs the
unentanglement quantum circuit (which is described in Section 4, and we denote
it by Unentangle) to obtain

|ψ〉 = ∑
m∈{0,1}

αm|(m · b
q
2
c+ x) mod q〉.

(3) In summary, QEncrypt(id, |φ〉)→ (ct = (|ψ〉, c1)).

• QDecrypt: To decrypt a ciphertext (|ψ〉, c1) using an identity secret key skid = r, it
computes y = r>c1 mod q ∈ Zq. Then, more processes are performed as follows:

? Step 1: Taking |ψ〉 = ∑m∈{0,1} αm|(m · b q
2c+ x) mod q〉 and |y〉 as input, it runs

SubMod(|ψ〉, |y〉) to obtain

∑
m∈{0,1}

αm|(m · b
q
2
c+ x− y) mod q〉.

? Step 2: Taking the above result and b q
2c as input, it runs SubAbs (SubAbs is a

quantum circuit, which takes two `-qubit quantum states |a〉 and |b〉 as input and
outputs the absolute value of their subtraction, i.e., |Abs(a− b)〉) to obtain

∑
m∈{0,1}

αm|Abs((m · b
q
2
c+ x− y) mod q− b q

2
c)〉.

Please refer to Section 4.1 for more information about SubAbs.
? Step 3: Taking the above result and b q

4c as input, it runs Comp to obtain

∑
m∈{0,1}

αm|Abs((m · b
q
2
c+ x− y) mod q− b q

2
c)〉|m〉.

Next, the algorithm QDecrypt will unentangle the first and second registers of
this quantum state.

? Step 4: Taking the first register of the above result and b q
2c as input, it runs

InvSubAbs (The InvSubAbs (which is the inverse of SubAbs) is a quantum circuit
which takes in two `-qubit quantum states |Abs(a − b)〉 and |b〉 as input and
outputs one `-qubit quantum state, i.e., |a〉) to obtain

∑
m∈{0,1}

αm|(m · b
q
2
c+ x− y) mod q〉|m〉.

Please refer to Section 4.1 for more information about the inverse of SubAbs.
? Step 5: Taking the first register of the above result and |y〉 as input, it runs AddMod

to obtain
∑

m∈{0,1}
αm|(m · b

q
2
c+ x) mod q〉|m〉.

? Step 6: Taking the second register of the above result and b q
2c as the input, it runs

CCopy to obtain

∑
m∈{0,1}

αm|(m · b
q
2
c+ x) mod q〉|m〉|m · b q

2
c〉.

? Step 7: Taking the first register and the third register of the above result as input,
it runs SubMod to obtain

∑
m∈{0,1}

αm|x mod q〉|m〉|m · b q
2
c〉.
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Finally, the algorithm QDecrypt unentangles the second and third registers of the
above result.

? Step 8: Taking the third register of the above result and b q
2c as input, it performs

the inverse of the controlled copy circuit to obtain

∑
m∈{0,1}

αm|x mod q〉|m〉|0〉.

The quantum state ∑m∈{0,1} αm|m〉 is no longer entangled with other registers
and the decryption procedure is completed. In summary,

QDecrypt(id,mpk, r, (|ψ〉, c1))→ |φ〉 = ∑
m∈{0,1}

αm|m〉.

3.3. Correctness

Considering a ciphertext

(|ψ〉, c1)

=

 ∑
m∈{0,1}

αm|(m · b
q
2
c+ x) mod q〉, (A>s + e) mod q


of a qubit quantum superposition state |φ〉 = ∑m∈{0,1} αm|m〉, it can be observed that
|ψ〉 = ∑m∈{0,1} αm|c0〉, where c0 = (x + m · b q

2c) mod q = u>s + e0 + m · b q
2c mod q. In

step 2 of QDecrypt, it is clear that

Abs
(((

x + b q
2
c ·m

)
mod q− y

)
mod q− b q

2
c
)

=Abs
(
(c0 − y) mod q− b q

2
c
)

,

which is equal to the absolute value of b in the Decrypt of Theorem A1, i.e., Abs(b). Finally,
in step 3 of QDecrypt, we compare Abs(b) with b q

4c and obtain m. According to Theorem A1,
the decryption algorithm Decrypt with the identity secret key skid = rid can decrypt the
ciphertext (c0, c1) correctly with a probability of 1− negl(λ). Therefore, the decryption
algorithm QDecrypt with the identity secret key skid = rid can decrypt the ciphertext
ct = (|ψ〉, c1) correctly with a probability of 1− negl(λ).

3.4. Security Proof

Theorem 1. The above QIBE scheme is fully secure in the random oracle model under the LWE
assumption, namely, for any classical PPT adversary A making at most QH random oracle queries
to H and QID identity secret key queries, there exists a classical PPT algorithm B such that

AdvQIBE
A (λ) ≤ QH ·AdvLWE

B (λ) + (QH + QID + 1) · 2−Ω(n). (1)

Proof of Theorem 1. Without loss of generality, we make some simplifying assumptions
about A. First, we assume that whenever A queries a secret key or asks for a challenge
ciphertext, the corresponding id has already been queried to the random oracle H. Second,
we assume that Amakes the same query for the same random oracle at most once. Third,
we assume that A does not repeat secret key queries for the same identity more than once.
We show the security of the scheme via the following games. In each game, we define Xi as
the event that the adversary A wins in Gamei.

Game0: This is a real security game. At the beginning, (A, TA)← TrapGen(1n, 1m, q)
is run, and the adversary A is given A. Then, the challenger samples β← {0, 1} and keeps
it secret. During the game, A may make random oracle queries, secret key queries, and the
challenge query. These queries are handled as follows:
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• Hash queries: When A makes a random oracle query to H on id, the challenger chooses
a random vector uid ← Zn

q and locally stores the tuple (id, uid,⊥), and returns uid
to A.

• Identity secret key queries: When A queries an identity secret key for id, the challenger
uses the algorithm SampleD, which takes A, TA, σ, uid as input to compute rid and
returns rid to A.

• Challenge ciphertext: When the adversaryA submits two messages ∑m0∈0,1 αm0 |m0〉 and
∑m1∈0,1 αm1 |m1〉 of equal length and a challenge identity id∗ with the restriction that id∗

is not equal to any identity requested in the previous phase, the challenger picks β
$←

{0, 1}, and encrypts ∑mβ∈{0,1} αmβ
|mβ〉 under id∗ by running the encryption algorithm

QEncrypt to get ct∗ = (|ψ〉, c1), where |ψ〉 = ∑mβ∈{0,1} αmβ
|(mβ · b

q
2c+ x) mod q〉 and

c1 = (A>s + e) mod q and x = u>s + e0 mod q. Then, the ciphertext ct∗ is sent to A.

At the end of the game, A outputs a guess β′ for β. Finally, the challenger outputs β.
By definition, we have

|Pr[X0]−
1
2
| = |Pr[β′ = β]− 1

2
| = AdvQIBE

A (λ). (2)

Game1: In this game, we change the way the random oracle queries to H are answered.

• Hash queries: When A queries the random oracle H on id, the challenger generates a

pair (uid, rid) by first sampling rid
$← DZm̃ ,σ and setting uid = A · rid. Then, it locally

stores the tuple (id, uid,⊥) and returns uid to A.
• Identity secret key queries: When A makes an identity secret key query for id, the

challenger uses the algorithm SampleD, which takes A, TA, σ, uid as input to compute
r′id and returns r′id to A.

• Challenge ciphertext: The same as that in the Game0.

Note that r′id is independent of rid, which was generated in the simulation of the
random oracle H on input id. Due to Lemma 2, the distribution of uid in Game1 is 2−Ω(n)-
close to that of Game0 except for 2−Ω(n) fraction of A as we choose σ >

√
n + log m̃.

Therefore, we have
|Pr[X1]− Pr[X0]| = QH · 2−Ω(n). (3)

Game2: In this game, we change the way identity secret key queries are answered. By
the end of this game, the challenger will no longer require the trapdoor TA to generate the
identity secret keys.

• Hash queries: When A queries the random oracle on id, the challenger generates a
pair (uid, rid) as in the previous game. Then, it locally stores the tuple (id, uid, rid) and
returns uid to A.

• Identity secret key queries: WhenA queries an identity secret key for id, the challenger
retrieves the unique tuple (id, uid, rid) from the local storage and returns rid.

• Challenge ciphertext: The same as that in the Game1.

For any fixed uid, let rid,1 and rid,2 be random variables that are distributed according
to the distributions of skid conditional on H(id) = uid in Game1 and Game2, respectively.
Owing to Lemma 1, we have ∆(rid,1,DΛu

q (A),σ) ≤ 2−Ω(n). Owing to Lemma 2, we have

∆(rid,2,DΛu
q (A),σ) ≤ 2−Ω(n). Then, we obtain ∆(rid,1, rid,2) ≤ 2−Ω(n). Therefore, we have

|Pr[X2]− Pr[X1]| = QID · 2−Ω(n). (4)

Game3: In this game, we change the way the matrix A is generated. Specifically, the

challenger chooses A $← Zn×m̃
q without generating the associated trapdoor TA.

• Hash queries: The same as that in the Game2.
• Identity secret key queries: The same as that in the Game2.
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• Challenge ciphertext: The same as that in the Game2.

By Lemma 1, this makes only 2−Ω(n)-statistical difference. As the challenger can
answer all the secret key queries without the trapdoor owing to the change made in the
previous game, the view of A is altered only by 2−Ω(n). Therefore, we have

|Pr[X3]− Pr[X2]| = 2−Ω(n). (5)

Game4: In this game, we change the way the random oracle queries to H are answered

and the challenge ciphertext is created. The challenger chooses an index i∗ $← [QH] and a
vector u ∈ Zn

q uniformly at random.

• Hash queries: On A’s j−th distinct query idj to H, the challenger does the following:
if j = i∗, then locally stores the tuple (idj, u,⊥) and returns u to A. Otherwise, for
j 6= i∗, the challenger selects ridj

and computes uidj
= Aridj

; then, it locally stores the
tuple (idj, uidj

, ridj
) and returns uidj

to A.
• Identity secret key queries: The same as that in the Game3.
• Challenge ciphertext: When A produces a challenge identity id∗ (distinct from all

its identity secret key queries) and messages ∑m0∈{0,1} αm0 |m0〉, ∑m1∈{0,1} αm1 |m1〉,
assume without loss of generality that A already queried H on id∗. If id∗ 6= idi∗ , i.e., if
the tuple (idi∗ , u,⊥) is not in the local storage, then the challenger ignores the output
of A and aborts the game (we denote this event as abort). Otherwise, i.e., if the abort

does not occur (we denote this event as abort), the challenger picks β
$← {0, 1} and

encrypts ∑mβ∈{0,1} αmβ
|mβ〉 under id∗ by running the encryption algorithm QEncrypt

to obtain ct∗ = (|ψ〉, c1), where |ψ〉 = ∑mβ∈{0,1} αmβ
|(mβ · b

q
2c+ x) mod q〉 and c1 =

(A>s + e) mod q, and x = u>s + e0 mod q. Then, the ciphertext ct∗ is sent to the
adversary A.

Conditional on the challenger not aborting, we affirm that the view it provides to A in
Game4 is statistically close to that in Game3. Therefore, we have

Pr[X4 | abort] = Pr[X3 | abort]. (6)

By a standard argument, the probability that the challenger does not abort during the
simulation is 1

QH
(this is proved by considering a game in which the challenger can answer

all identity secret key queries, so that the value of i∗ is perfectly hidden from A). Therefore,
we have

Pr[abort] =
1

QH
. (7)

Game5: In this game, we change the way the challenge ciphertext is created.

• Hash queries: The same as that in the Game4.
• Identity secret key queries: The same as that in the Game4.
• Challenge ciphertext: When A produces a challenge identity id∗ (distinct from all

its identity secret key queries) and messages ∑m0∈{0,1} αm0 |m0〉, ∑m1∈{0,1} αm1 |m1〉,
assume without loss of generality that A already queried H on id∗. If id∗ 6= idi, i.e., if
the tuple (idi, u,⊥) is not in the local storage, then the challenger ignores the output
of A and aborts the game. Otherwise, i.e., if the abort does not occur, the challenger

picks β
$← {0, 1} and encrypts ∑mβ∈{0,1} αmβ

|mβ〉 under id∗ using two random vectors

b′ $← Zq, b $← Zm
q to obtain ct∗ = (|ψ〉, c1), where |ψ〉 = ∑mβ∈{0,1} αmβ

|(mβ · b
q
2c +

x) mod q〉 and c1 = b, and x = b′. Then, the ciphertext ct∗ is sent to the adversary A.
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It can be seen that if (A, u, c1, x) are valid LWE samples (i.e., c1 = (A>s + e) mod q
and x = u>s + e0 mod q), the view of the adversary corresponds to Game4. Otherwise

(i.e., c1
$← Zm̃

q , x $← Zq), it corresponds to Game5. Therefore, we have∣∣Pr[X5 ∧ abort]− Pr[X4 ∧ abort]
∣∣ ≤ AdvLWE

B (λ). (8)

Note that c1, x is statistically close to the uniform distribution over Zm̃
q ×Zq, so that

Pr[X5 | abort] =
1
2

. (9)

According to Equations (6)–(9), we can obtain∣∣∣∣Pr[X3 | abort]−
1
2

∣∣∣∣ ≤ QH ·AdvLWE
B (λ).

Then, because abort is independent of X3, we get∣∣∣∣Pr[X3]−
1
2

∣∣∣∣ ≤ QH ·AdvLWE
B (λ). (10)

Finally, according to Equations (2)–(5) together with Equation (10), we obtain Equation (1).

3.5. Advantages of Our QIBE

The proposed QIBE scheme has two main advantages. One is that the network security
protocol based on our QIBE scheme has perfect forward secrecy, and the other is that the
QIBE scheme can still use the KGC system to generate and distribute private identity keys,
thus reducing the cost when this scheme is implemented.

• A fundamental fact in quantum information theory is that unknown or random quan-
tum states cannot be replicated [17]. The probability amplitude and corresponding
basis state of ciphertext |ψ〉 = ∑m∈{0,1} αm|(m · b q

2c+ x) mod q〉 are unknown to the
adversary, so the ciphertext |ψ〉 is an unknown quantum state and cannot be replicated
during transmission. When attempting to attack our QIBE-based network security
protocol, an attacker cannot copy and store the ciphertext of the session key, which
is encrypted by a private identity key (called a long-term key). Thus, the attacker
does not have the quantum ciphertext of the previous session key to decrypt, and
the security of the previous session key will not be threatened even if the attacker
obtains the long-term key. In other words, all encrypted communications and sessions
recorded in the past cannot be retrieved. Therefore, the security protocol based on our
QIBE has perfect forward secrecy, which cannot be achieved by the security protocol
based on classic IBE.

• In our QIBE scheme, the KGC uses the algorithms QKeyGen and QExtract to generate
the private identity key skid when it takes as input a master public key mpk, a master
secret key msk, and an identity id. The key observation is that both the input (λ, q, m̃, n)
and the output (mpk = (A, q, m̃, n,H),msk = (TA)) of QKeyGen are in the form of
classic bits, and so are the input (msk,mpk, id) and the output (skid = r) of QExtract.
Therefore, the classic KGC system can still be used in our QIBE scheme to generate and
distribute private identity keys, reducing the cost when this scheme is implemented.

4. Quantum Circuit Realisation

The realisation of a quantum scheme requires describing the corresponding quantum
circuit. To analyse the realisability of our QIBE scheme, we begin by providing details for
the quantum circuits of QEncrypt and QDecrypt, and then, we analyse the complexity of
these two quantum circuits.
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4.1. Quantum Circuit

Note that the algorithms QKeyGen and QExtract of QIBE are classic, so there is no need
to construct quantum circuits for these two algorithms.

The Quantum Circuit of QEncrypt. The main part of QEncrypt is the unentangled
quantum circuit Unentangle. Taking an additional quantum state |(b q

2c + x) mod q〉 as
input, Unentangle can transform ∑m∈{0,1} αm|m〉|(m · b q

2c+ x) mod q〉 to a non-entangled
quantum state |ψ〉 = ∑m∈{0,1} αm|(m · b q

2c+ x) mod q〉, as shown in Figure 5a. The correct-
ness of Unentangle can be proven by the following facts.

|(� ∙  �2 + �) mod �⟩|0⟩

|0⟩|�⟩

 �2 

AddM
od 

|�⟩|�⟩

|( �2 + �) mod �⟩ |( �2 + �) mod �⟩

 Unentangle

|�⟩

|( �2 + �) mod �⟩

1           2          3

|(� ∙  �2 + �) mod �⟩

|0⟩

|(� ∙  �2 + �) mod �⟩

|( �2 + �) mod �⟩

Unentangle

(a)

(b)

Figure 5. The quantum circuits of Unentangle and QEncrypt. In this figure, (a) shows the Unentangle

circuit, and (b) depicts the QEncrypt circuit.

• On input |(m · b q
2c+ x) mod q〉, |(b q

2c+ x) mod q〉 and |m〉, the initial output where the
number 1 is located is |((m · b q

2c+ x) mod q)⊕ (b q
2c+ x) mod q)〉, |(b q

2c+ x) mod q〉
and |m〉. This is because only one dlog qe-combination-CNOT operation is performed.

• The output where the number 2 is located is |((m · b q
2c+ x) mod q)⊕ (b q

2c+ x) mod
q)〉, |(b q

2c + x) mod q〉 and |0〉. This is because only one dlog qe-controlled-NOT
variant operation is performed, in which the control bits are |((m · b q

2c+ x) mod q)⊕
(b q

2c+ x) mod q)〉 and the target bit is |m〉. If |m〉 = |1〉, the control bits are dlog qe-
qubit |0〉, and the target qubit |m〉 will change to |0〉. Otherwise, the control bits are
not equal to dlog qe-qubit |0〉, and the target qubit |m〉 is |0〉 all the time.

• The final output where the number 3 is located is |(m · b q
2c + x) mod q〉, |(b q

2c +
x) mod q〉 and |0〉. Only one dlog qe-combination-CNOT operation is performed,
in which the control bits are |(b q

2c + x) mod q〉 and the target bits are |((m · b q
2c +

x) mod q)⊕ (b q
2c+ x) mod q)〉; therefore, it can obtain |(m · b q

2c+ x) mod q〉.
Note that one unentangled quantum circuit is composed of two dlog qe-combination-

CNOT gates and one dlog qe-controlled-NOT variant gate. Thus, one unentangled quantum
circuit is composed of 2 · dlog qe CNOT gates and 2dlog qe − 3 Toffoli gates.
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Using the unentangled quantum circuit Unentangle, we can provide details for the
quantum circuit of QEncrypt, which is depicted in Figure 5b. Note that one QEncrypt is
composed of one controlled copy circuit, one modular addition circuit, and one unentangled
quantum circuit. To encrypt one qubit, a total of 4 · dlog qe+ 4 qubits, 10 · dlog qe − 3 Toffoli
gates and 15.5 · dlog qe+ 6 CNOT gates are required.

The Quantum Circuit of QDecrypt. The main part of QDecrypt is SubAbs and the
inverse of SubAbs. In the SubAbs circuit, with the input (|a〉, |b〉, |0〉), the output will
produce (|a〉, |Abs(a − b)〉, |0〉) when a ≥ b. When a < b, the output is (|b〉, |Abs(a −
b)〉, |1〉). {

|a, b, 0〉 → |a, a− b, 0〉, for a ≥ b.
|a, b, 0〉 → |b, b− a, 1〉, for a < b.

On the inverse of the SubAbs circuit, i.e., InvSubAbs, with the input (|a〉, |a− b〉, |0〉),
the output will produce (|a〉, |b〉, |0〉) when a ≥ b. When a < b, the input is (|b〉, |b− a〉, |1〉)
and the output is (|a〉, |b〉, |0〉).{

|a, a− b, 0〉 → |a, b, 0〉, for a ≥ b.
|b, b− a, 1〉 → |a, b, 0〉, for a < b.

The quantum circuit of SubAbs is depicted in Figure 6, and the correctness of the
quantum circuit SubAbs can be easily verified. As a result of the reversibility of unitary
operations, by reversing the circuit of SubAbs, that is, by applying each gate of the circuit in
the reversed order, the quantum circuit of InvSubAbs can be obtained.

|� 
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|� 
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Sub 

|Abs(� − �) 

|� ,   if � ≥ �
|� ,   if � < �

|0 ,   if � ≥ �
|1 ,   if � < �

|� 

|0 

|� 

SubAbs 

|Abs(� − �) 

|� ,   if � ≥ �
|� ,   if � < �

|0 ,   if � ≥ �
|1 ,   if � < �

=

Figure 6. The quantum circuit of SubAbs.

Note that one SubAbs is composed of one comparison circuit and one subtraction
quantum circuit. To compute the absolute value of the subtraction of two `-bit inputs |a〉
and |b〉, a total of 2`+ 4 qubits, 5` Toffoli gates, and 10`+ 2 CNOT gates are required. The
conclusion is also applicable to the inverse of SubAbs, that is, InvSubAbs.

Using the quantum circuit SubAbs and its reverse InvSubAbs, we can provide partic-
ulars for the quantum circuit of QDecrypt which is depicted in Figure 7. Note that one
QDecrypt is composed of two subtraction modular circuits, one quantum circuit of SubAbs,
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one comparison quantum circuit, one quantum circuit of InvSubAbs, one modular addition
circuit, and two controlled copy quantum circuits. To decrypt one ciphertext that encrypts
one qubit, a total of 6 · dlog qe+ 5 qubits, 36 · dlog qe Toffoli gates, and 64 · dlog qe+ 23
CNOT gates are required.
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|0⟩

Figure 7. The quantum circuit of QDecrypt.

4.2. Complexity Analysis

To measure the complexity of a quantum circuit, we should consider the quantum
resources required by the circuit.

Quantum resources. When analysing the complexity of a quantum circuit, a gate set
that arises frequently and that has been studied often in the literature, but by no means
the only conceivable gate set, is the so-called Clifford+T gate set. This gate set consists of
the Hadamard gate, the phase gate, and the controlled NOT (CNOT) gate, along with the
T gate. The Clifford+T gate set is known to be universal [18]. This comes from that any
unitary operator can be accurately expressed using single-qubit gates and CNOT gates [29],
and Hadamard gates, phase gates, and T gates can used to approximate any single-qubit
gates with arbitrary precision [18]. In conclusion, these four types of quantum gates form a
universal quantum gate group. As a result, when assessing the complexity of a quantum
circuit, we need to compute the number of needed Hadamard gates, phase gates, CNOT
gates, and T gates.

Quantum resources needed by QEncrypt and QDecrypt. In Section 4.1, we have con-
cluded the following:

• QEncrypt : To encrypt one qubit, a total of 4 · dlog qe+ 4 qubits, 10 · dlog qe − 3 Toffoli
gates, and 15.5 · dlog qe+ 6 CNOT gates are required.

• QDecrypt : To decrypt one ciphertext that encrypts one qubit, a total of 6 · dlog qe+ 5
qubits, 36 · dlog qe Toffoli gates, and 64 · dlog qe+ 23 CNOT gates are required.

According to [30], one Toffoli gate can be broken down into two Hadamard gates, one
phase gate, seven T gates, and six CNOT gates. Furthermore, to save quantum resources,
auxiliary bits can be reused according to the sequence of calculations in each circuit [19].
Based on the previous results and analysis, we estimate the quantum resources needed
when encrypting one qubit quantum state ∑m∈{0,1} αm|m〉with the algorithm QEncrypt and
decrypting the corresponding ciphertext with the algorithm QDecrypt in our QIBE scheme,
including the number of qubits and the number of Hadamard, phase, T, and CNOT gates.
The result is shown in Table 1.
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Table 1. Quantum resource.

Quantum Resource QEncrypt QDecrypt

Qubit 4 · dlog qe+ 4 6 · dlog qe+ 5
Hadamard gate 20 · dlog qe − 6 72 · dlog qe
phase gate 10 · dlog qe − 3 36 · dlog qe
T gate 70 · dlog qe − 21 252 · dlog qe
CNOT gate 75.5 · dlog qe − 12 280 · dlog qe+ 23

Note that our QIBE scheme can encrypt one qubit at a time. By integrating our scheme
and the IBE scheme encrypting n-bit message (The IBE scheme is described in Appendix A),
we can easily construct a new QIBE that can encrypt n-qubit at a time. It is evident that the
quantum resources required by this new QIBE scheme increase linearly with the number of
plaintext bits to be encrypted.

5. Conclusions and Future Work

In this paper, we proposed the first QIBE scheme based on the learning with errors
problem. Then, we proved that our scheme is fully secure under the random oracle model.
Furthermore, we explained that our scheme possesses the following advantages:

• The network security protocol with our QIBE scheme provides perfect forward secrecy.
The ciphertext is transmitted in the form of a quantum state that is unknown to the
adversary and cannot be copied and stored. Thus, in network security protocols based
on our QIBE construction, the adversary cannot have access to any previous quantum
ciphertext to decrypt and obtain the previous session key, even if the private identity
key is threatened.

• Classic KGC systems still can be used in our QIBE scheme to generate and distribute
private identity keys, thus reducing the cost when this scheme is implemented. The
classic KGC systems can be used because the master public and secret keys of our
scheme are both in the form of classic bits.

Finally, to analyse the realisability of this QIBE scheme, we provided particulars for
the quantum circuits of QEncrypt and QDecrypt, and we analysed their required quantum
resources for given numbers of qubits, Hadamard gates, phase gates, T gates, and CNOT
gates. We concluded that the quantum resources required by our scheme increase linearly
with the number of plaintext bits to be encrypted.

As aforementioned, network security protocols based on our QIBE scheme have for-
ward secrecy, unlike the classic IBE. However, our QIBE scheme has certain drawbacks.
In terms of quantum circuit realisation, we do not yet have a method to obtain the opti-
mal circuit and find the lower bound of the quantum resources required by this scheme.
Furthermore, this construction is a theoretical achievement, and any practical application
remains a distant goal before the advent of universal quantum computers.

Our scheme is one of fifteen types of QIBE schemes described in Section 3.1, and
the other fourteen types are yet to be studied. Therefore, the focus of our next work is
to study and design the other fourteen types of QIBE schemes and their quantum circuit
implementations, and to explore ways to find the lower bound of the quantum resources
required by these schemes. Moreover, to make our scheme more practical, our next work
includes making an implementation in Q# and providing a Github repository for it.
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Appendix A. Classic IBE Scheme

IBE encrypting one-bit message. In [9], Gentry et al. proposed the first lattice-
based IBE scheme IBE = (KeyGen,Extract,Encrypt,Decrypt) from the learning with errors
problem. In this scheme, let integer parameters n = O(λ), m̃ = O(n), σ = O(n0.5), q =
O(m̃3.5), where λ is a security parameter. This scheme can encrypt one bit once, and it can
also encrypt n bits at a time. At first, we show the scheme which can encrypt one bit.

• KeyGen : (1) It runs TrapGen(m̃, n, q) to obtain a uniformly random n × m̃−matric
A ∈ Zn×m̃

q and TA ∈ Zm̃×m̃
q which is a good basis for Λ⊥q (A). (2) Then, it selects a hash

function H : {0, 1}n → Zn
q which maps an identity to a vector. (3) Finally, it outputs

mpk = (A, q, m̃, n,H) and msk = (TA). (4) In summary, KeyGen(λ, q, m̃, n)→ (mpk =
(A, q, m̃, n,H),msk = (TA)).

• Extract: (1) On input mpk, msk and an identity id ∈ {0, 1}n, it computes u = H(id) and
generates skid = r such that r = SampleD(A, TA, u, σ). It is clear that u = Ar mod q.
(2) In summary, Extract(msk,mpk, id)→ skid = r.

• Encrypt: (1) On input of an identity id, mpk, and a bit message m ∈ {0, 1}, it first com-
putes u = H(id) and chooses a uniformly random s← Zn

q , e0 ∈ DZ,σ and e ∈ DZm̃ ,σ.
(2) Then, it computes x = (u>s + e0) mod q and c1 = (A>s + e) mod q, and sets
ct = (c0, c1), where c0 = x + b q

2c ·m mod q. (3) In summary, Encrypt(id,mpk, m) →
ct = (c0, c1).

• Decrypt: (1) To decrypt a ciphertext ct = (c0, c1) using an identity secret key skid = r,
it computes y = r>c1 mod q. (2) Then, it computes

b = (c0 − y) mod q− b q
2
c.

(3) Furthermore, it treats b as an integer in Z, and sets m = 1 if Abs(b) < b q
4c; otherwise,

m = 0. (4) Finally, it returns the plaintext m. (5) In summary, Decrypt(id,mpk, skid, ct)→
m.

Theorem A1. Let integer parameters n = O(λ), m̃ = O(n), σ = O(n0.5), q = O(m̃3.5).
Consider a cipertext

(c0, c1) =
(

u>s + e0 + b
q
2
c ·m, A>s + e

)
mod q

of one bit message m. Then, the decryption algorithm Decrypt with the identity secret key skid = r
can decrypt the ciphertext ct correctly with a probability 1− negl(λ).

IBE encrypting n-bit message. Then, we show the scheme that can encrypt more than
one bit at a time.

• KeyGen: (1) It runs TrapGen(m̃, n, q) to obtain a uniformly random n × m̃−matric
A ∈ Zn×m̃

q and TA ∈ Zm̃×m̃
q which is a good basis for Λ⊥q (A). (2) Then, it selects a

hash function H : {0, 1}n → Zn×n
q which maps an identity to a matrix. (3) Finally, it

outputs mpk = (A, q, m̃, n,H) and msk = (TA). (4) In summary, KeyGen(λ, q, m̃, n)→
(mpk = (A, q, m̃, n,H),msk = (TA)).

• Extract: (1) On input mpk, msk, and an identity id ∈ {0, 1}n, it computes U = H(id)
which is an n× n-matrix. (2) It takes advantage of the algorithm SampleD to generate
the identity secret key skid = R such that R is composed of ri = SampleD(A, TA, ui, σ)
where ui is the i-th column of U. It is easy to see that U = AR mod q. (3) In a word,
Extract(msk,mpk, id)→ skid = R.
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• Encrypt: (1) On input of an identity id, mpk, and one n-bit message m ∈ {0, 1}n, it
first computes U = H(id) and chooses a uniformly random s ← Zn

q , e0 ∈ DZn ,σ and
e ∈ DZm̃ ,σ. (2) Then, it computes x = U>s + e0 and c1 = (A>s + e) mod q, and sets
ct = (c0, c1), where c0 = x + b q

2c ·m mod q. (3) In summary, Encrypt(id,mpk, m) →
ct = (c0, c1).

• Decrypt: (1) To decrypt a ciphertext ct = (c0, c1) using an identity secret key skid = R,
it computes y = R>c1 mod q. (2) Then, it computes

b = (c0 − y) mod q− b q
2
c · (1, 1, · · · , 1)>.

(3) Furthermore, it treats each coordinate of b = (b1, · · · , bn)> as an integer in Z, and
sets mi = 1 if Abs(bi) < b

q
4c, else mi = 0. (4) Finally, it returns the plaintext m. (5) In a

word, Decrypt(id,mpk, skid, ct)→ m.

Theorem A2. Let integer parameters n = O(λ), m̃ = O(n), σ = O(n0.5), q = O(m̃3.5).
Consider a cipertext

(c0, c1) =
(

U>s + e0 + b
q
2
c ·m, A>s + e

)
mod q

of n-bit message m. Then, the decryption algorithm Decrypt with the identity secret key skid = R
can decrypt the ciphertext ct correctly with a probability 1− negl(λ).
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