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Abstract: In this paper, we propose and present secure multiparty computation (SMC) protocols for
single-source shortest distance (SSSD) and all-pairs shortest distance (APSD) in sparse and dense
graphs. Our protocols follow the structure of classical algorithms—Bellman–Ford and Dijkstra for
SSSD; Johnson, Floyd–Warshall, and transitive closure for APSD. As the computational platforms
offered by SMC protocol sets have performance profiles that differ from typical processors, we had to
perform extensive changes to the structure (including their control flow and memory accesses) and
the details of these algorithms in order to obtain good performance. We implemented our protocols
on top of the secret sharing based protocol set offered by the Sharemind SMC platform, using single-
instruction-multiple-data (SIMD) operations as much as possible to reduce the round complexity.
We benchmarked our protocols under several different parameters for network performance and
compared our performance figures against each other and with ones reported previously.

Keywords: single-source shortest distance (SSSD); all-pairs shortest distance (APSD); multi-party
computation (MPC); Single-Instruction-Multiple-Data (SIMD); oblivious memory access; Sharemind

1. Introduction

A path from one vertex to another vertex in an edge-weighted directed graph is a
sequence of edges, where the starting vertex of each edge is the ending vertex of the
previous edge; the first edge starts at the first vertex, and the last edge ends at the second
vertex. The length of a path is the sum of the weights of the edges in it. A path from one
vertex to another one is shortest if its length is the minimum over all paths between these
vertices. The all-pairs shortest distance (APSD) task for a graph is to find the lengths of the
shortest paths from any vertex to any other vertex of this graph. The task of Single-Source
Shortest Distances (SSSD) for a graph, and a vertex in it is to find the lengths of the shortest
paths from the given vertex to all vertices. The shortest path algorithms in graphs are widely
used in various fields in computer networks, traffic simulations, bioinformatics, and other
computations. They have also been researched in settings where privacy constraints are
important [1], typically with different parties holding the descriptions of different parts of
the graph.

Secure multiparty computation (SMC) [2–4] is a well-known privacy-enhancing tech-
nology. Given the description of a function with n inputs and outputs, a SMC protocol for n
parties allows each of these parties to supply one input to the function, and learn one of the
outputs, such that no party or a tolerated coalition of parties learns anything besides their
own outputs. SMC is a universal method, supporting any computable function; hence, the
SMC protocols are expensive computationally and/or in their bandwidth usage.

SMC protocols typically expect the function to be represented as an arithmetic or a
boolean circuit. This contrasts with the typical representations of programs (algorithms),
which have control flow, and use memory, which is read and written at addresses computed
during the algorithm execution. All of these features can be translated to circuits, but with
significant overheads [5]. Moreover, secret sharing [6] based SMC protocol sets [3], which
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can be the most efficient ones for large-scale privacy-preserving computations, have sig-
nificant latency for each operation due to the required interaction between parties (except
for homomorphic operations concerning the used secret-sharing scheme). Hence, this
efficiency only materializes for highly parallel tasks.

The usual approach to privacy-preserving SSSD and APSD is the implementation of
“standard” algorithms [7] on top of some SMC protocol set, with the partition of input data
among several parties handled through the standard means of this protocol set. However,
such approach for privacy-preserving SSSD is made more complex by several aspects of
both the problem itself, as well as the typical algorithms one might want to adapt to run
on top of an SMC protocol set. First, the data access patterns and possibly the algorithm’s
control flow heavily depend on the lengths of the edges. Neither of these are natively
protected by any SMC protocol set. To implement the standard algorithms on top of a SMC
protocol set, either the unsupported dependencies have to be removed from the algorithm,
or the computations containing them must be emulated, with significant overheads that
depend on the used protocol set. Second, SSSD algorithms have been proven hard to
parallelize efficiently.

Nevertheless, this approach to privacy-preserving SSSD has been realized by
Aly et al. [8,9], who gave implementations of Bellman–Ford and Dijkstra algorithms
following this paradigm. After expanding the underlying SMC protocol set with sub-
routines for oblivious RAM [10], thereby obtaining support for private data dependent
memory access, the same paradigm was followed by Keller and Scholl [11] for the
Bellman–Ford algorithm and Liu et al. [12] for Dijkstra’s algorithm, albeit with the
overheads associated with SMC protocols for oblivious RAM.

Our hypothesis is that privacy-preserving SSSD and APSD algorithms may indeed be
constructed using this paradigm of implementing standard SSSD and APSD algorithms
on top of some SMC protocol set. However, in order to maximize performance, the imple-
mentation cannot be a simple composition of free-standing privacy-preserving subroutines
for common tasks. Rather, the combinations have to be carefully crafted, and privacy-
preserving functionalities with best-fitting input–output behavior and performance profile
selected. In order to check this hypothesis, we carefully designed privacy-preserving imple-
mentations of common SSSD and APSD algorithms for sparse and dense representations of
graphs. We do not completely side-step the complexity-increasing aspects, but by choosing
the correct privacy-preserving protocols and subroutines, and carefully combining them,
we will reduce their impact.

The purpose of the research presented in this paper is to identify a suitable set of
privacy-preserving subroutines and the manners of their combination, resulting in, ar-
guably, as efficient as possible privacy-preserving implementations of common SSSD and
APSD algorithms. We make the following contributions:

• We present a privacy-preserving implementation of the Bellman–Ford SSSD algo-
rithm [13] for sparse graphs, where the number of vertices and number of edges is
public, but the endpoints and lengths of edges are private. An implementation with
this set of features was presented before by Keller [11], using heavyweight construc-
tions for oblivious RAM (ORAM) on top of SMC protocols. Our implementation uses
the parallel oblivious reading subroutine by Laud [14], which is an excellent fit for the
Bellman–Ford algorithm.

– We also present a novel method for a necessary privacy-preserving subroutine of
the Bellman–Ford algorithm—computing the minima of several lists of private
values, where the lengths of individual lists are private, and only their total length
is public.

• We present a privacy-preserving implementation of Dijkstra’s SSSD algorithm [15] for
dense graphs, where the number of vertices (and edges) is public, but the lengths of
edges are private. While an implementation with this set of features has been given
before [9], we make use of state-of-the-art subroutines for all parts of the algorithm,
thereby learning its actual performance.
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• By combining both algorithms, we present the privacy-preserving implementation
of the Johnson APSD algorithm, converting the graph from a sparse one to a dense
one in the process. We compare the performance of this algorithm with the privacy-
preserving implementation of the Floyd–Warshall APSD algorithm and with the
private computation of the transitive closure of the graph.

• We perform an extensive benchmarking of our algorithms and their parts on graphs
with different sizes, thereby obtaining a reasonable estimate for their performance
in larger applications, including those where specific shortcuts (e.g., not running the
whole number of iterations) are justified.

Our privacy-preserving implementations build upon the state-of-the-art Sharemind
three-party passively secure SMC protocol set [16]. We used the Sharemind MPC plat-
form [17], thereby exploring the limits of performance of privacy-preserving shortest path
computations. The protocol set and the platform allow the inputs to be given and outputs
to be received in secret-shared form, either by the parties owning parts of the graph or
coming from (and going to) other private computations in a composed system; hence, our
results are generalizable to many settings where the shortest distances have to be found in a
privacy-preserving manner. The comparisons between different algorithms that we derive
from our benchmarking results also apply for other secret-sharing-based SMC protocol sets,
both passively and actively secure, because they support similar sets of secure operations.

2. Materials and Methods

In this section, we review the cryptographic techniques underlying our constructions
of privacy-preserving SSSD and APSD algorithms. Besides the techniques themselves,
we discuss the principles of proving the security of constructions built on top of these
techniques. We also discuss existing work in privacy-preserving SSSD and APSD in more
detail, including the approaches that diverge from the paradigm we discussed in the
previous section.

2.1. Secure Multiparty Computation

Secure multiparty computation (SMC) is a cryptographic protocol that allows n parties
to compute a function (y1, . . . , yn) = f (x1, . . . , xn), with the party Pi submitting xi and
learning yi. Moreover, the i-th party does not learn anything beyond xi and yi, and whatever
can be deduced from them, considering the public description of the function f . More
generally, there is a downwards closed set of subsets of {1, . . . , n}, such that for any element
I of this set, the coalition of parties {Pi}i∈I learns nothing beyond their inputs (xi)i∈I and
their outputs (yi)i∈I during the protocol computing f .

Generic protocols for secure multiparty computation translate a computation repre-
sented as a boolean or arithmetic circuit into a cryptographic protocol [2–4]. There exist a
number of different approaches to executing the circuit or program of the function f in a
privacy-preserving manner, including garbled circuits [2], homomorphic encryption [18],
or secret sharing [19], and offering security either against passive or active adversaries.
Recently, research on privacy-preserving computation has focused on finding efficient
privacy-preserving algorithms for a specific problem in different issues such as privacy-
preserving data mining [20–22], genotype analysis [23], privacy-preserving set matching
and intersection [24,25], auctions, mechanism design [26], set operations [27], and mini-
mum spanning trees [28].

In this paper, we build on top of the Sharemind protocol set [16,17], based on additive
secret sharing over arbitrary rings, making use of three computing parties, and providing
security against the adversary passively corrupting one party. In Sharemind’s model of
computation [29], one distinguishes between three kinds (which may overlap) of parties—
input parties, computation parties, and result parties. As mentioned before, the number of
computation parties is three. An arbitrary number of input parties may provide inputs
to the computation by secret-sharing them among the computation parties. The shares
of the computation results may be received by an arbitrary number of result parties that



Cryptography 2021, 5, 27 4 of 29

recombine them. Due to this split, when constructing privacy-preserving applications
on top of Sharemind, one typically assumes that the private inputs have already been
secret-shared. Similarly, the application should finish by constructing the secret shares of
the results.

2.2. Abstractions and Notations for SMC

Abstractions are needed in order to build upon as complex cryptographic protocols
as SMC, and to deduce the functional and non-functional properties of the result. A good
abstraction of secure multiparty computation is the arithmetic black box (ABB) [30], which
allows more complex privacy-preserving computations to be described without delving
into the details of protocols for primitive operations with private data. The ABB is an
ideal functionality in the sense of universal composability [31], its corresponding real
functionality consists of the implementations of the protocols for the single operations
supported on private data [32]. Its internal state consists of private values entered into it or
computed by it; these values cannot be accessed directly by the protocol parties. Instead,
the protocol parties may instruct to take some values stored in it (pointing to them through
handles), perform an operation with them, and return a new handle pointing to the result.
The set of available operations depends on the SMC protocol set used to implement the
ABB. The operations may be randomized, e.g., there may be an operation to generate a
new, random private value. The ABB also supports instructions for an input party to give
an input value (making it accessible to the computing parties through a handle), for a value
to be given to a result party (referred by the handle known to the computing parties; the
result party obtains the actual value), and for a value to be declassified to the computing
parties (they learn the true value behind the handle). The ABB only acts if it receives the
same instruction from all computing parties.

In order to show that an application built on top of ABB preserves privacy, it is
sufficient to show that the declassified values do not give any novel information to the
computing parties [30]. We show this by constructing a simulator that samples from
the distribution of these declassified values while using only public information for our
implementations of protocols for the shortest distances. The kind of adversary against
which protection is obtained is the same as for the underlying SMC protocol set. Note
that if an application built on top of an ABB never calls the declassification operation, it is
trivially privacy-preserving.

We present our protocols as algorithms making use of the ABB. The notation JvK
denotes that the value v is stored in the ABB and accessed by the rest of the algorithm only
through a handle, e.g., J~vK is a vector of private values; the data type of the values shall be
clear from the context. This notation resembles some programming languages [33] used to
express privacy-preserving computations; these have the information-flow types public
and private to denote that a value is known to the computation parties resp. that a value
is stored inside the ABB.

A value stored in the ABB can be made available to the rest of the algorithm as
the outcome of the operation declassify(JvK), which corresponds to the invocation of a
declassification protocol. We denote the invocations of other primitive protocols working
on values stored in the ABB by overloading the notations for the operations that these
protocols implement—writing JuK+ JvK, or c · JvK, or JuK · JvK denotes calls to the addition,
or constant multiplication, or multiplication protocol, respectively. Sharemind’s protocol
set also gives us access to comparison protocols (equality and less-than) and two protocols
for operations with boolean values stored in the ABB. Combining them, we get the protocol
for the operation choose(JbK, JxK, JyK). The result of this operation is JxK, if JbK contains true,
and JyK, if JbK contains false. The value of JbK is not leaked by the choose-operation.

All operations listed above can be applied to lists (and matrices) of values stored in the
ABB. The (private) arguments to the operation must have the same length, and they result
in a vector (or matrix) of equal length. As mentioned before, performing many operations
in parallel is essential for reducing the round complexity of our algorithms. Besides the
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SIMD notation, we also use forall-loops in our algorithms to denote that all iterations of
that loop may be performed in parallel. This contrasts with the for-loops, which have to be
performed sequentially.

Besides integers and booleans, our algorithms also use permutations JσK as primitive
private values. Our protocols support the operation randPerm(n) of generating a random
private permutation with public length n, the application of the permutation of length n
to a vector of private values of length n, resulting in a new vector, where the elements
have been permuted according to the permutation, and the application of the inverse of
the permutation to a vector of private values (again, with the same length). The last two
operations are denoted apply, and unApply. They may also be applied to public vectors,
but the result is still a private vector.

As data structures, we use pairs, lists, and matrices to present our algorithms. A pair of
x and y is denoted (x, y), functions first, and second take the respective components of a pair.
A list/vector is denoted by~v, its i-th element is denoted either by vi or v[i]. The construction
of a vector from the elements x1, . . . , xn is denoted by [x1, . . . , xn]. An empty list or vector
is denoted by NIL, and the concatenation of two lists by @. The notation ~v[i : j] denotes the
slice [vi, vi+1, . . . , vj] of the vector ~v. Matrices are denoted by boldface letters; the element
at the i-th row and j-th column of a matrix G is denoted by G[i, j], and the entire row and
column vectors are denoted by G[i, ?] and G[?, j], respectively.

2.3. Sharemind Protocol Set

In this paper, we assume that the ABB functionality is implemented through the
Sharemind protocol set [16]. We hence assume that the operations available in the ABB
include the arithmetic operations on private n-bit integers for various values of n, log-
ical operations on private booleans, conversions between them, and classifications and
declassifications between public and private values. These operations can be performed
in the single instruction multiple data (SIMD) manner. Similar operations are available in
other protocol implementations, e.g., the SPDZ protocol set with security against active
adversaries [34].

When designing applications on top of ABB, we have to keep in mind the cost of
operations in implementing the ABB via cryptographic protocols. The addition of pri-
vate integers and the multiplication of a private integer with a public one are assumed
to have zero costs because these require no communication between the computation
parties. All other operations have significant latency; hence, operating in a SIMD manner
is highly desired.

The Sharemind protocol set also has efficient protocols for privately permuting vectors
of private values [35]; we let the ABB give us access to these protocols. There exist
protocols to generate a private permutation of n elements (zero cost), and for applying this
permutation or its inverse to a private vector (cost: O(kn) bandwidth, O(1) rounds, where
k is the bit-length of vector elements). Protocols of a similar cost may be given for the SPDZ
protocol set [36].

One can implement useful subroutines, e.g., the sorting of a vector of private val-
ues [37] on top of the ABB. Later, this subroutine can be called by other applications, effec-
tively making it a part of the ABB [30]. Another useful subroutine is reading from a vector
by a private index. A straightforward memory access by a private address cannot be done;
hence, more complex protocols, often with significant overhead are necessary. Laud [14]
has proposed the subroutines prepareRead and performRead, such that if J~vK is a vector of
length n, and J~zK is a vector of integers of length m, all elements of which are between
0 and (n− 1), then J~wK = performRead(J~vK, prepareRead(n, J~zK)) is a vector of m elements
satisfying wi = vzi for each i. The subroutine prepareRead requires O((m + n) log(m + n))
bandwidth and O(log(m + n)) communication rounds, while performRead only requires
O(m + n) bandwidth in O(1) communication rounds. There exist similar subroutines for
writing [14], with performWrite(J~vK, J~wK, prepareWrite(n, J~zK)) writing the element wi into
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the zi-th position of ~v. Moreover, the communication and round complexities of the two
writing routines are the same as the corresponding reading routines.

2.4. Graphs

A directed graph is a pair G = (V, E), where V and E are the set of vertices and the
set of edges of G, respectively. Each edge e is determined by its start and end vertices
u ∈ V and v ∈ V. In shortest path algorithms, multiple edges between same vertices do
not have to be considered, hence we think of E as a subset of V ×V and write e = (u, v).
Each edge e has an integer weight denoted as w(e) or w(u, v). If there is no edge from
u to v, then we take w(u, v) = ∞. The path P among any two non-neighbor vertices u
and v is a sequences of edges (u0, u1), (u1, u2), . . . , (un−1, un), where u = u0, v = un,
and (ui−1, ui) ∈ E. The length of P is w(P) = ∑n

i=1 w(ui−1, ui). Given two vertices u, v ∈ V,
we are interested in finding the shortest path between them, or perhaps only their distance—
the length of the shortest path.

The well-known shortest path algorithms [7] either find the shortest paths from one
vertex to all other vertices or between all pairs of vertices. In this paper, we present
privacy-preserving implementations of them. We focus on computing shortest distances;
the computation of paths would require some minor changes in our algorithms.

A graph G = (V, E) with weighted edges, and with V identified with the set
{0, . . . , |V| − 1}, can be represented in computer memory in different ways. The adja-
cency matrix of G is a |V| × |V| matrix over Z ∪ {∞}, where the entry at u-th row and
v-th column is w(u, v). Such representation has |V|2 entries, and we call it the dense repre-
sentation. On the other hand, the adjacency list representation gives for each vertex u ∈ V
the list of pairs (v1, w1), . . . , (vk, wk), where (u, v1), . . . , (u, vk) are all edges in G that start
in u, and wi = w(u, vi). Such representation has O(|E|) entries, and we call it the sparse
representation. If |E| is significantly smaller than |V|2, then sparse representation takes up
less space than dense representation, and the algorithms working on sparse representation
may be faster.

2.5. Privacy-Preserving SSSD and APSD

The study of privacy-preserving shortest distance algorithms started with Brickell and
Shmatikov [1], who proposed protocols for privacy-preserving computation of APSD and
SSSD. Their protocols are built on top of protocols for privacy-preserving set union, which
they also proposed. Their SSSD algorithm requires O(|V|2 log |V|) oblivious transfers,
where V is the set of vertices of the graph. They presented their algorithm sequentially; it
can be parallelized to a certain extent.

We already mentioned the use of the techniques of oblivious RAM [10] in imple-
menting the Bellman–Ford algorithm on top of an SMC protocol set [11]. Oblivious RAM
has also been used for privacy-preserving implementation of Dijkstra’s algorithm [12],
achieving good bandwidth usage, but having O(|E|) round complexity, where E is the set
of edges of the graph. Aly and Cleemput [9] give another implementation of Dijkstra’s
algorithm, this time for dense graphs, and with O(|V|) round complexity.

In [38], an efficient parallel privacy-preserving shortest path protocol is proposed
using the Radius-stepping algorithm [39], also using the Sharemind platform. The radius-
stepping algorithm is an optimized version of the Delta-stepping algorithm [40] for finding
the shortest path. The algorithms have been carefully vectorized to support their imple-
mentation on top of a secret-sharing based SMC protocol set. Their performance has been
evaluated on graphs of various sizes and densities.

An efficient protocol for privacy-preserving shortest paths computation for navigation
is proposed in [41]. They formulated the problem of compressing the next-hop matrices
for road networks. This compressing method they developed enabled an efficient crypto-
graphic protocol for fully private shortest-path computation in real-time navigation on city
streets. The work generally uses sparse graphs as the input data modeling road network
(where a node has at most four outgoing edges). The work does not follow the general
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paradigm of implementing graph algorithms on top of general-purpose SMC protocol sets,
and it is specific for this application, as real-time navigation apps deal with a limited range
of graph sparsity. It does not claim to offer general-purpose privacy-preserving shortest
path algorithms.

Ramezanian et al. [42] proposed the Extended Floyd Warshall Algorithm and used
it in a novel protocol that enables privacy-preserving path queries on directed graphs.
The goal of extending the Floyd–Warshall algorithm is to generate a matrix that holds the
penultimate vertices of the shortest paths between each pair of vertices. This matrix is then
queried using the techniques of private information retrieval. Again, the method is heavily
adapted for the application.

2.6. Parallel SSSD and APSD

Besides existing works on privacy-preserving shortest path computation, we also
consider the implementations of shortest path algorithms on parallel architectures, be-
cause they tackle similar issues in reducing the dependencies between different parts of
the algorithm. A blocked united algorithm for the APSD problem on Hybrid CPU–GPU
systems is proposed by Matsumoto et al. [43]. This algorithm computes both the shortest-
path distance matrix and the shortest-path construction matrix for a graph simultaneously.
The computing in this algorithm is by using a hybrid CPU-GPU platform. Floyd–Warshall
algorithm is used for the APSD problem, and the algorithm is designed to reduce the
amount of data communication between CPU and GPU. The method is efficient, but it is
not suitable for the Sharemind SMC platform that we use.

Nepomniaschaya et al. [44] proposed a new efficient implementation of the Dijkstra
algorithm for finding the shortest path in a directed graph using a STAR machine. The algo-
rithm allows simultaneously finding the shortest path and the distance between the source
vertex and all other vertices.

Han et al. [45] proposed a vectorized version of the Floyd–Warshall algorithm for
finding the shortest path to improve the performance. Single instruction multiple data
approaches were used to reduce the time complexity. The result shows that the speed-
up reaches between 2.3 and 5.2 times. In general, the efficient exploitation of the SIMD
gives speed-up more than what is implemented in their work, and there is no optimal
exploitation for the SIMD.

An FPGA-based accelerator with SIMD architecture for the Dijkstra algorithm, for
finding the shortest path, is proposed in [46]. The implementation shows that processing of
the Dijkstra’s algorithm is done with a high degree of parallelism while reducing memory
usage. The proposed architecture is suitable for sparse graphs only.

In [47], two different CPU platforms (Intel Core and 2x Intel Xeon) are used with
different components (GPUs) to implement Floyd–Warshall and Dijkstra algorithms. In the
case of the Floyd–Warshall algorithm, the result shows that GPU CUDA is the fastest one
in both hardware, with different sizes of vertices in the graph. The SIMD version of the
algorithm is faster than a standard case, but the CUDA version is still faster. Three different
versions are implemented in the CPU platform for the Dijkstra algorithm—serial, parallel,
and parallel with queue. The fastest one is the parallel with queue version for both variants
of Intel hardware.

There exist parallel algorithms for SSSD with lower time complexity than any sequen-
tial algorithm [48–50]. However, the creation and joining of threads in these algorithms
is again dependent on private data. The emulation of pools of private threads, possibly
similar to garbled RAM [51], will likely introduce its own overheads, which overwhelm
any gains in efficiency obtained from the more complex algorithm.

3. Results

In this section, we present our privacy-preserving algorithms for SSSD and APSD.
After describing the algorithms, we also describe the benchmarking process and report
its results.
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The novelty of our results lies in the identification of privacy-preserving subroutines
that are highly suitable for privacy-preserving implementations of well-known SSSD
and APSD algorithms. We used these subroutines to give efficient privacy-preserving
implementations of these algorithms. We identified the likely manner of executing the
SSSD and APSD algorithms in an optimized manner, where computations are made only if
the surrounding context indicates that they are necessary. We devised and performed the
benchmarking of our implementations of privacy-preserving SSSD and APSD algorithms in
a manner that is both comprehensible and comprehensive—it is possible to clearly identify
how the implementations behave in various relevant contexts.

3.1. Single-Source Shortest Distances Algorithms

In SSSD algorithms, the fundamental step is the relaxing an edge. All of these algorithms
maintain a mapping D from vertices to currently found upper bounds of their distances
from the source vertex s (initialized to D[s] = 0 and D[v] = ∞ for v 6= s). To relax an edge
(u, v) means to update D[v] with the minimum of its current value and D[u] + w(u, v).
Different SSSD algorithms differ in the order in which they choose to relax edges.

3.1.1. Bellman–Ford Algorithm for Sparse Graphs (Version 1)

The Bellman–Ford algorithm repeatedly relaxes all edges in parallel until the map-
ping D changes no more. In the worst case, there may be |V| − 1 iterations. We show
how to run the Bellman–Ford algorithm in a privacy-preserving manner, on top of the
Sharemind-inspired ABB described above, applying it to graphs represented sparsely.
The representation that we consider consists of two public numbers n and m of vertices
and edges, and three private vectors J~SK, J~TK, and J~WK of length m, where the elements
of the first two vectors belong to the set {0, . . . , n− 1}. In this setting, the i-th edge of the
graph has the start and end vertices JS[i]K and JT[i]K, and the weight JW[i]K. We see that
our representation hides the entire structure of the graph (besides its size given by n and
m), such that even the degrees of vertices remain private. The algorithm for computing dis-
tances from the s-th vertex is given in Algorithm 1, with subroutines in Algorithms 2 and 3.
Suppose the requirements stated at the beginning of Algorithm 1 are not satisfied. In that
case, this can be remedied easily and in a privacy-preserving manner by adding extra edges
to the graph (increasing the length of the vectors J~SK, J~TK, and J~WK), and then sorting the
inputs according to J~TK.

The chosen setting brings with it a number of challenges when relaxing edges. To relax
the i-th edge, the algorithm must locate D(S[i]). However, S[i] is private. Fortunately, as we
relax all edges in parallel, the parallel reading subroutine is applicable. Moreover, as the
indices S[i] stay the same over the iterations of the algorithm, we can invoke the (relatively)
expensive prepareRead-routine only once and use the linear-time performRead-routine in
each iteration. This can be seen in Algorithm 1, where we call prepareRead on J~SK at the
beginning, and then do a performRead at the beginning of each iteration. We will then
compute J~bK as the sum of the current distance of the start vertex of an edge and the length
of that edge.

After computing the sums b[i] = D[S[i]] + W[i], the value D[T[i]] has to be updated
with it, if it is smaller than any other b[j] where T[i] = T[j]. Due to the loop edge of
length 0 at the starting vertex, we simplified our computations by eliminating the need to
consider the old value of D[T[i]] when updating it. Such updates map straightforwardly
to parallel writing. In parallel writing, concurrent writes to the same location have to be
resolved somehow. Currently, we want the smallest value to take precedence over others,
i.e., the value is the precedence. The available parallel writing routines [14] support such
precedences. However, these precedences, which change each round, are part of the inputs
to prepareWrite and, hence, would introduce significant overhead to each iteration.

We show in this work how to reduce the updates in parallel reading according to
indices that stay the same for each iteration. It requires us first to compute the minimum
distances for all vertices while being oblivious to each edge’s end vertex. Thanks to J~TK
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being sorted, the edges ending at the same vertex form a single segment in the vector J~bK.
For each such segment, we will compute its minimum, which will be stored in vector J~cK,
at the index corresponding to the last vertex of that segment. That element can be read
out using another performRead. The indices, from where to read, have been stored in the
vector J~ZK.

Algorithm 1: SIMD-Bellman–Ford, main program
Data: Numbers of vertices and edges n and m
Data: starting vertex s
Data: Sources, targets, and weights J~SK, J~TK, and J~WK
Requires: J~TK is sorted
Requires: The in-degree of each vertex is at least 1
Requires: There is a loop edge of length 0 at vertex s
Result: Private distances from vertex s

1 begin
2 J~ZK← GenIndicesVector(J~TK)
3 JRSK← prepareRead(n, J~SK)
4 JRZK← prepareRead(m, J~ZK)
5 J~DK← ∞
6 JD[s]K← 0
7 for i = 0 to n− 1 do
8 J~aK← performRead(J~DK, JRSK)
9 J~bK← J~aK+ J~WK

10 J~cK← prefixMin2(J~bK, J~TK)
11 J~DK← performRead(J~cK, JRZK)

12 return J~DK

Algorithm 2: GenIndicesVector
Data: Sorted vector J~vK
Result: Private vector of indices of last occurrence of each value in ~v

1 begin
2 m← length(J~vK)
3 J~bK←

(
J~v[0 : m− 2]K = J~v[1 : m− 1]K

)
@ [true]

4 JσK← randPerm(m)

5 ~c← declassify(apply(JσK, J~bK))
6 J~kK← apply(JσK, [0, 1, . . . , (m− 1)])
7 J~lK← NIL
8 for i = 0 to m− 1 do
9 if c[i] then

10 J~lK← [Jk[i]K] @ J~lK

11 return sort(J~lK) // Use oblivious quicksort [37]

We compute the minima for segments with private starting and ending points through
prefix computation, where the applied associative operation is similar to the minimum.
Consider the following operation:

min2((x, y), (x′, y′)) =

{
(x′, min(y, y′)), if x = x′

(x′, y′), if x 6= x′
(1)
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Algorithm 3: prefixMin2 (version 1)

Data: Vector of values J~bK, vector of ranges J~TK
Result: Prefix minimum for elements of~b, separately for each range of ~T

1 Function min2(JxK, Jx′K, JyK, Jy′K) is
2 JqK← min(JyK, Jy′K)
3 return choose(JxK = Jx′K, JqK, Jy′K)

4 begin
5 n← length(J~bK)
6 if n = 1 then return J~bK
7 forall i ∈ {0, . . . , bn/2c − 1} do
8 JUiK← JT2i+1K
9 JdiK← min2(JT2iK, JT2i+1K, Jb2iK, Jb2i+1K)

10 J~eK← prefixMin2(J~dK, J~UK)
11 Jr0K← Jb0K
12 forall i ∈ {1, . . . , n− 1} do
13 if i is odd then
14 JriK← Je(i−1)/2K
15 else
16 JriK← min2(JTi−1K, JTiK, Je(i−2)/2K, JbiK)

17 return J~rK

Suppose we zip the vectors ~T and~b (obtaining a vector of pairs), and then compute
the prefix-min2 of it. We end up with a vector of pairs, whose first components give us back
the vector ~T, and whose second components are the prefix-minima of the segments of~b
corresponding to the segments of equal elements in ~T. The second case of (1) ensures that
prefix minimum computation is “broken” at the end of segments. It is easy to verify that
min2 is associative.

We use the Ladner–Fisher parallel prefix computation method [52] to compute privacy-
preserving prefix-min2 in a round- and work-efficient manner. The computation is given
in Algorithm 3. The write-up of the computation is simplified by the ~T-component not
changing during the prefix computation. Hence prefixMin2 returns only the list of the
second components of pairs. Similarly, the subroutine min2 returns only a single value. All
operations in Algorithm 3 are supported by our ABB.

The computation of the vector J~ZK of the indices of the ends of the segments of equal
elements in J~TK in Algorithm 2 uses standard techniques. We first compute the index vector
J~bK of the end positions. The length of that vector is m, and exactly n of its elements are
true. We randomly permute J~bK using apply-routine, each element of the private vector J~bK
located in the same content as the index i of the original sorted vector J~vK, then convert the
data type of the result from private to public locations using declassify-routine. The result
of declassification is a random boolean vector of length m, where exactly n elements are
true. The distribution of this result can be sampled by knowing n and m; there is no further
dependence on J~bK. Hence this declassification does not break the privacy of our SSSD
algorithm. We permute the identity vector in the same way, resulting in the private vector
J~kK. Now, the indices we are looking for are located in these elements Jk[i]K, where c[i] is
true. Hence, we pick them out by applying cons-routine. They have been shuffled by JσK;
this has to be undone by sorting them.

If the graph contains negative-length cycles, there are generally no shortest paths
because any path can be made cheaper by one more walk around the negative cycle. We
could amend Algorithm 1 to detect these negative cycles in the standard manner by doing
one more iteration of its main loop and checking whether there were any changes to J~DK.
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3.1.2. Bellman–Ford Algorithm for Sparse Graphs (Version 2)

The computation of prefixMin2 is the most complex step in the main loop of Algorithm 1.
The Ladner–Fisher method [52] for its computation is communication- and round-efficient—
the number of rounds is logarithmic (assuming each arithmetic operation takes a constant
number of rounds), and the total number of operations is only a constant times larger
than a sequential implementation would have had. Still, different trade-offs between
communication and round complexity are possible. To study these trade-offs, we also
implemented prefixMin2 based on the Hillis–Steele parallel prefix computation method [53].
This alternative implementation is given in Algorithm 4. Replacing its call in Algorithm 1
gives us our second version of the Bellman–Ford algorithm.

Algorithm 4: prefixMin2 (version 2)

Data: Vector of values J~bK, vector of ranges J~TK
Result: Prefix minimum for elements of~b, separately for each range of ~T

1 begin
2 n← length(J~bK)
3 for j = 1 to blog nc do
4 J~d[0 : 2j − 1]K← J~b[0 : 2j − 1]K
5 J~U[0 : 2j − 1]K← J~T[0 : 2j − 1]K
6 J~d[2j : n− 1]K← J~b[0 : n− 2j − 1]K
7 J~U[2j : n− 1]K← J~T[0 : n− 2j − 1]K
8 J~eK← min(J~bK, J~dK) //elementwise minimum of two vectors

J~bK← choose(J~TK = J~UK, J~eK, J~bK)

9 return J~bK

Algorithm 4 has a single loop that is executed log n times. The round complexity of
each iteration is equal to the sum of round complexities of finding the minimum and an
oblivious choice. The first of these dominates, as the oblivious choice only requires a single
round of communication. Compared to Algorithm 3, we reduced the round complexity to
around two times. On the other hand, we increased the usage of the bandwidth by ca. log n
times. In Section 3.5.2, we show this choice’s effect on performance in various settings.

3.1.3. Dijkstra’s Algorithm for Dense Graphs

Dijkstra’s algorithm relaxes each edge only once, in the order of the distance of its start
vertex from the source vertex. The edges with the same starting vertex can be relaxed in
parallel. The algorithm cannot handle edges with negative weights. As Dijkstra’s algorithm
only handles a few edges in parallel, Laud’s parallel reading and writing subroutines will
be of little use here. Instead, we opt to use the dense representation of the graph, giving
the weights of the edges in the adjacency matrix (weight “∞” is used to denote the lack of
an edge). Our privacy-preserving implementation of Dijkstra’s algorithm is presented in
Algorithm 5.

The main body of the algorithm is its last loop. It starts by finding the unhandled
vertex that is closest to the source vertex. The mask vector ~M indicates which vertices
are still unhandled. The index of this vertex is found by the function minLs given in
Algorithm 6, which, when applied to a list of pairs, returns the pair with the minimal first
component. We call minLs with a list where the first components are current distances,
and the second components are the indices of vertices. In non-privacy-preserving imple-
mentations, priority queues can be used to find the next vertex for relaxing its outgoing
edges quickly. In privacy-preserving implementations, the queues are challenging to im-
plement efficiently due to their complex control flow. Hence, the next vertex is found by
computing the minimum over the current distances for all vertices not yet handled.
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Algorithm 5: Dijkstra’s algorithm
Data: Number of vertices n, starting vertex s
Data: Lengths of edges JGK ∈ (N∪ {∞})n×n

Result: Private distances from the starting vertex
1 begin
2 JσK← randPerm(n)
3 forall u ∈ {0, . . . , n− 1} do
4 JG′[u, ?]K← apply(JσK, JG[u, ?]K)

5 forall v ∈ {0, . . . , n− 1} do
6 JG′[?, v]K← apply(JσK, JG′[?, v]K)

7 s′ ← declassify((unApply(JσK, [0, 1, .., n− 1]))[s])
8 J~DK← ∞
9 JD[s′]K← 0

10 ~M← true // length of ~M is n
11 for idx = 0 to n− 1 do
12 J~LK← NIL
13 for i = 0 to n− 1 do
14 if M[i] then J~LK← [(JD[i]K, JiK)] @ J~LK

15 u′ ← declassify(second(minLs(J~LK)))
16 M[u′]← false

17 J~EK← JG′[u′, ?]K+ JD[u′]K
18 J~DK← choose( ~M ∧ (J~EK < J~DK), J~EK, J~DK)

19 return unApply(JσK, J~DK)

Algorithm 6: minLs: computing the pair with the minimal first component
Data: List of pairs of private values J~pK
Result: The element of J~pK with the minimal first component

1 begin
2 m← length(J~pK)−−− 1
3 if m = 0 then return Jp[0]K
4 In parallel do
5 (JeK, JiK)← minLs(J~p[0 : bm/2c]K)
6 (J f K, JjK)← minLs(J~p[bm/2c+ 1 : m]K)

7 return if JeK ≤ J f K then (JeK, JiK) else (J f K, JjK)

Algorithm 5 declassifies the index of the unhandled vertex closest to the source vertex.
This declassification greatly simplifies the computation of J~EK, where the current distance
of u′ is added to the length of all edges starting at u′. Without declassification, one would
need to use techniques for private reading here, which would be expensive. Note that
both the computations of J~EK and J~DK take place in a SIMD manner, applying the same
operations to JE[i]K, JG[u′, i]K, JD[i]K, and M[i] for each i ∈ {0, . . . , n− 1}.

This declassification constitutes a leak. Effectively, the last loop declassifies in which
order the vertices are handled, i.e., how are the vertices ordered concerning their distance
from the source vertex. Such leakage can be neutralized by randomly permuting the
vertices of the graph before that last loop [9]. In this way, the indices of the vertices, when
they are declassified, are random. The declassification would output a random permutation
of the set {0, . . . , n− 1}, one element at each iteration.

The computation of this random permutation takes place at the beginning of Algorithm 5.
We first generate a private random permutation JσK for n elements. We will then apply it to
each row of JGK; the application takes place in parallel for all rows. Similarly, we apply it to
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each column. Such permutation also changes the index of the source vertex, and we have
to find it. We find it by taking the identity vector of length n, applying to it the inverse of
σ, and then reading the position s of the resulting vector. Note that we declassify only the
position s at this time, not the entire vector. At the end of the computation, we have to apply
the inverse of σ to the computed vector of distances.

Dijkstra’s algorithm is used as a subroutine in certain APSD algorithms (Section 3.2.1).
Hence, we have also implemented a vectorized version of Algorithm 5 that can compute
the SSSD for several n-vertex graphs simultaneously. Below, we call this version of the
algorithm nDijkstra. Obviously, Dijkstra and nDijkstra have the same round complexity.
In contrast, the bandwidth usage of the latter is n times of the former (when finding SSSD
for n graphs at the same time). In our empirical evaluation, we have benchmarked both
versions of the algorithm.

3.1.4. Complexity of Algorithms

Two kinds of communication-related complexities matter for secure multiparty com-
putation applications in the sense that these may become bottlenecks in deployments.
First, we are interested in the bandwidth required by the algorithm, i.e., the number of bits
exchanged by the computation parties. Second, we are interested in the round complexity
of the algorithm, i.e., the number of round-trips that have to be made in the protocol
implementing that algorithm.

Let n denote the number of vertices and m the number of edges of the graph. We
assume that m is between n and O(n2), meaning that n + m is O(m) and log m is O(log n).
We also consider the size of a single integer (used as the length of an edge or a path or as an
index) to be a constant. In this case, the steps of the Bellman–Ford algorithm (Algorithm 1)
before the main loop require O(m log n) bandwidth and O(log n) rounds. Indeed, both
prepareRead-statements have this complexity, while the complexity of GenIndicesVector is
dominated by the sorting of n private values.

Each iteration of the main loop of Algorithm 1 requires O(m) bandwidth and O(log n)
rounds, with prefixMin2 (Version 1) being the only operation working in non-constant
rounds. The number of iterations is (n − 1); hence, the total bandwidth use is O(mn),
in O(n log n) rounds. However, the number of iterations reflects the worst case, which
has to be taken only if no further information is available. If we know that the SSSD
algorithm will be called in a context, where the shortest path(s) we’re interested in consist
of at most k < n edges, then the iterating can be cut short, such that the algorithm only
uses O(m(k + log n)) bandwidth in O(k log n) rounds.

One iteration of the main loop of Dijkstra’s algorithm (Algorithm 5) requires O(n)
bandwidth and O(log n) rounds, with minLs being the only operation working in non-
constant rounds. The entire loop thus requires O(n2) bandwidth and O(n log n) rounds.
The shuffling of rows and columns before that loop also requires O(n2) bandwidth, but only
constant rounds.

We see that Dijkstra’s algorithm requires less bandwidth than Bellman–Ford’s. Indeed,
our benchmarking results (Section 3.6) confirm that. The Bellman–Ford algorithm should
still be considered attractive if we can limit the number of iterations it makes. Such
limitations may stem from the side information that we may have about the graph, implying
that shortest paths do not have many edges. A limited number of iterations is also possible
if, at the end of each iteration, we compare the current vector of distances J~DK with its value
at the previous iteration, and stop if it has not changed. This leaks the maximum number of
edges on the shortest path from the given vertex; perhaps this leak can be tolerated in some
scenarios. The running time of Dijkstra’s algorithm cannot be limited in such a manner.

3.1.5. Security of Algorithms

As we explained in Section 2.2, an algorithm built on top of a universally composable
ABB is trivially privacy-preserving (and inherits the same security against various kinds of
adversaries from the underlying secure computation protocol set) if it does not contain any
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declassification statements. If there are any declassifications, then we have to explain how
the declassified values can be simulated based on public information only; this simulation
must match the distribution of the declassified values together with private inputs. Our
implementations of both SSSD algorithms have declassifications. For both of them, we
have shown that the declassified values are computed by masking some private values
with some randomness generated during the protocol. The result no longer depends on
private values. Hence our implementations are privacy-preserving.

3.2. All-Pairs Shortest Path Algorithms
3.2.1. Johnson Algorithm

Johnson’s APSD algorithm applies Dijkstra’s algorithm at each vertex. To deal with
the negative-weight edges, it will first change the weights in a manner that does not change
the shortest paths. For this purpose, an extra vertex is added to the graph, with 0-weight
edges from it to all existing vertices, and shortest distances h(v) from the new vertex
to all existing vertices v are found. The weight of an edge w(u, v) is then updated to
w̃(u, v) = w(u, v) + h(u)− h(v), causing the lengths of all paths from u to v to change by
h(u)− h(v). Thus the shortest distances found in the modified graph, together with h, give
us the shortest distances in the original graph. The shortest distances from the extra vertex
are found with the Bellman–Ford algorithm.

Having the privacy-preserving implementations of both Bellman–Ford and Dijkstra
algorithms, we have combined them as in Johnson’s algorithm. As our Bellman–Ford
implementation expects the graph to be represented sparsely, our implementation of
Johnson’s algorithm does the same. Our implementation of Dijkstra’s algorithm expects
the graph to be represented in a dense manner; hence, we have to perform the conversion
in the middle. Our privacy-preserving implementation of Johnson’s algorithm is given in
Algorithm 7.

Algorithm 7: Johnson’s Algorithm

1 [!ht] Data: Number of vertices n and edges m
Data: Sources, targets, and weights of edges J~SK, J~TK, and J~WK
Result: Private distances of all pairs of vertices

2 begin
3 J~SQK← J~SK @ [JnK, . . . , JnK]
4 J~TQK← J~TK @ [J0K, . . . , Jn− 1K]
5 J~WQK← J~WK @ [J0K, . . . , J0K]
6 J~hK← Bellman–Ford(n + 1, m + n, n, J~SQK, J~TQK, J~WQK)
7 J~hsK← performRead(J~hK, prepareRead(n, J~SK))
8 J~htK← performRead(J~hK, prepareRead(n, J~TK))
9 J~W ′K← J~WK+ J~hsK−−− J~htK

10 JGK← ∞ // size of G is n× n
JGK← performWrite(JGK, J~W ′K, prepareWrite(n2, n · J~SK+ J~TK))

11 for i = 0 to n− 1 do
12 JD′[i, ?]K← Dijkstra(n, i, JGK)
13 forall j ∈ {0, . . . , n− 1} do
14 JD[i, j]K← JD′[i, j]K− J~h[i]K+ J~h[j]K

15 return JDK

The steps of Algorithm 7 closely follow the description above. We see that we augment
the original representation of the graph with an extra vertex and edges; the index of the
added vertex being n, as an example J~SQK ← J~SK @ [JnK, . . . , JnK], where @ represent the
augment operation. After finding the shortest paths from this vertex to all other vertices,
we use the parallel reading subroutines to find the updates for edge lengths. We then use
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the parallel writing subroutines to convert from sparse to a dense representation of the
graph. We store the all-pairs shortest distances in the modified graph inside the matrix D′,
and then remove the updates to the lengths of edges (and paths).

We see that the last loop in Algorithm 7 can be performed in parallel, as there are no
data dependencies between the iterations. At this point, we can use the nDijkstra procedure,
discussed in Section 3.1.3. We use this procedure to fill in the entire matrix D′ at once and
then compute D in a SIMD manner. We call the algorithm in Algorithm 7 the “Version 1” of
the implementation of Johnson’s algorithm, while the version using the nDijkstra procedure
is called “Version 2”. We present benchmark results for both versions.

3.2.2. Floyd–Warshall Algorithm

We implemented the Floyd–Warshall algorithm on top of the Sharemind-based ABB
to compare our implementations with the previous approaches. Our implementation is
standard [1,54], attempting to parallelize as many operations as possible. It uses the dense
representation of the graph.

Our implementation of the SIMD-Floyd–Warshall algorithm is presented in Algorithm 8.
The input data of the Floyd–Warshall algorithm is a private matrix JGK, which contains the
weights of the edges. The output of the algorithm is a private matrix JDK, which has the
lengths of shortest paths among all vertices in V. The algorithm has three nested loops, but the
two inner ones are only used to rearrange the already computed private values and can be
executed in parallel. The actual computations (addition and minimum) are made in a SIMD
manner for all entries of T resp. D.

Algorithm 8: Floyd–Warshall algorithm
Data: Number of vertices n
Data: Lengths of edges JGK ∈ (Z∪ {∞})n×n

Result: Private distances of all pairs of vertices
1 JDK← JGK
2 for k = 0 to n− 1 do
3 forall i = 0 to n− 1 do
4 forall j = 0 to n− 1 do
5 JT[i, j]K← JD[i, k]K+ JD[k, j]K

6 JDK← min(JDK, JTK)

7 return JDK

3.2.3. Transitive Closure Algorithm

In the given directed graph, checking if there is a path from vertex i to j for all
vertex pairs (i, j), that means vertex j is reachable. The reachability matrix is called the
transitive closure of a given directed graph. We have implemented the transitive closure
on top of Sharemind-based ABB to compare it with our new approach in Johnson’s APSD
algorithms and with the Floyd–Warshall algorithm because the computation of transitive
closure presents yet another trade-off in communication and round complexity. Our
implementation of privacy-preserving APSD through transitive closure is presented in
Algorithm 9. The only sequentially-run loop of the computation has a logarithmic number
of iterations, so this algorithm has low round complexity in comparison with the Floyd–
Warshall algorithm.

3.2.4. Complexity of Algorithms

Let us again consider the asymptotic bandwidth consumption and round complexity
of our implementations. The bandwidth consumption of Johnson’s algorithm is dominated
by n instances of Dijkstra’s algorithm, hence being O(n3) in total. Trivially, this is also the
asymptotic bandwidth consumption of the Floyd–Warshall algorithm, but, as we see in
Section 3.7, the constant hidden in the O-notation is smaller. However, Johnson’s algorithm
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is more versatile: if we are not interested in all-pairs shortest distances, but only in shortest
distances from k < n vertices, then the bandwidth consumption of Johnson’s algorithm
is only O(mn + n2(k + log n)), with O(mn) being the bandwidth use of the Bellman–Ford
algorithm and O(n2 log n) the bandwidth use of the private writing into an array of size n2.
The bandwidth consumption of the transitive closure is O(n3 log n).

Algorithm 9: Transitive closure algorithm
Data: Number of vertices n
Data: Lengths of edges JGK ∈ (Z∪ {∞})n×n

Result: Private distances of all pairs of vertices
1 J
−→
D K← JGK

2 for l = 1 to log n do
3 forall i ∈ {0, . . . , n− 1} do
4 forall j ∈ {0, . . . , n− 1} do
5 forall k ∈ {0, . . . , n− 1} do
6 JTi,j[k]K← JD[i, k]K+ JD[k, j]K

7 JD[i, j]K← min(J
−→
Ti,jK) // minimum element of a vector

8 return JDK

The round complexity of Johnson’s algorithm is O(n log n), this being the complexity
of both the Bellman–Ford and Dijkstra’s algorithms. The private reading and writing
operations between them only require O(log n) rounds. Trivially, the round complexity
of the Floyd–Warshall algorithm is O(n). The round complexity of transitive closure is
O(log2 n) because the outer loop makes log n iterations. At each iteration, the minimal
elements of vectors of length n can be found in O(log n) rounds.

3.2.5. Security of Algorithms

Following the discussion in Sections 2.2 and 3.1.5, we conclude that Algorithms 7–9
are all privacy-preserving, as none of them contain any declassification statements.

3.3. Benchmarking Results in Previous Work

Extensive benchmarking results for privacy-preserving shortest path algorithms have
not been reported so far. Aly et al. [8] benchmarked their implementations of Dijkstra’s
and Bellman–Ford algorithms (implemented on top of VIFF [55] with BGW protocol [56]
used for multiplication and Toft’s protocol [57] for comparison) on dense representations of
small graphs. For Dijkstra’s algorithm on 128 vertices, they report a runtime of somewhat
over an hour, while for the Bellman–Ford algorithm on 64 vertices, their running time is
over 8 h. Aly and Cleemput [9] benchmark their implementation of Dijkstra’s algorithm on
graphs of up to 64 vertices, reporting running times in a range of 20 s. Keller and Scholl [11]
have implemented the operations of oblivious RAM (ORAM) on top of the SPDZ protocol
set [34] and used them to implement a privacy-preserving version of Dijkstra’s algorithm.
For cycle graphs of ca. 2000 vertices, where the graph is represented sparsely, they report
the running times in a couple of minutes. For general graphs, represented densely, their
implementation requires a couple of hours for graphs with 500 vertices. Carter et al. [58] use
garbled circuits (hence removing considerations about round complexity but consuming
more bandwidth) to evaluate Dijkstra’s algorithm privately. They report running times
of ca. 15 min for 100-vertex graphs (their parallel implementation handles 32 circuits
simultaneously on a 32-core server). Similarly, Liu et al. [59] make use of garbled circuits to
evaluate Dijkstra’s algorithm on sparse graphs, employing oblivious priority queues [60]
to increase efficiency. The estimate is that together with JustGarble [61], their running time
on a 1000-vertex, 3000-edge graph is maybe 20 min. No evaluation is reported in [62].
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3.4. Setup for Our Experiments

We implemented all algorithms described above on top of Sharemind’s three-party
protocol set secure against one passively corrupted party [16,17], making use of the Se-
creC high-level language [33] and other development tools included with the Sharemind
platform. We have used 32-bit integers for all weights and indices. We benchmarked our im-
plementations on a cluster of three servers with 12-core 3 GHz CPUs with Hyper-Threading
running Linux and 48 GB of RAM, connected by an Ethernet local area network with a
link speed of 1 Gbps. However, note that Sharemind’s implementation is single-threaded;
hence, we have not taken advantage of multiple cores performing local operations, nor the
possibility of doing computations and communications simultaneously.

As our protocols cover a vast space of trade-offs between bandwidth consumption
and round complexity, their relative performance over different networks may be different.
For characterizing the variation in performance, we have benchmarked our protocols in
three different environments, throttling the connection between the servers in our cluster.
In the “high-bandwidth” setting, the link speeds between servers are 1 Gbps, while in the
“low-bandwidth” setting, the speeds are 100 Mbps. In the “low-latency” setting, we have not
delayed the messages between the servers, while in the “high-latency” setting, the messages
are delayed by 40ms. We have run our experiments in “high-bandwidth low-latency”
(HBLL) environment (i.e., in our local area network), as well as in “high-bandwidth high-
latency” (HBHL) and “low-bandwidth high-latency” (LBHL) environments, simulating
wide-area networks with different characteristics.

3.5. Bellman–Ford Algorithm Experiments
3.5.1. Bellman–Ford Algorithm in the HBLL Environment

The execution time of our privacy-preserving Bellman–Ford algorithm depends only
on its public inputs, i.e., the number of vertices n and the number of edges m of the graph.
We report the running times in Table 1 for various sizes of the input graph. Suffixes “k” and
“M” mean multiplication by 1000 and 1,000,000, respectively. “Version 1” of the algorithm
uses the implementation of prefixMin2 shown in Algorithm 3, while “Version 2” uses the
implementation shown in Algorithm 4. The executions of the algorithm are made in the
“high-bandwidth low-latency” environment.

The execution of the Bellman–Ford algorithm consists of preparatory steps for sub-
sequent array accesses according to private indices, followed by the main loop of the
algorithm executed at most (n− 1) times. In Table 1, we report separately the time it took
to run the preparatory steps of Algorithm 1 (everything up to the main loop), as well as the
main loop (all (n− 1) iterations).

As part of some larger applications, we may want to execute the Bellman–Ford
algorithm for less than (n− 1) iterations. Perhaps we know from the context that a smaller
number of iterations is sufficient, or perhaps it is acceptable to leak either the precise
number of iterations or some padded version of it. Given the number of vertices and edges,
as well as the expected number of iterations, Table 1 can be used to find the expected
running time. Indeed, one has to take the running time of the preprocessing and add to it a
fraction of the running time for the main loop, where the fraction is equal to the proportion
of the number of iterations to the number of vertices.

In benchmarking, we attempted to consider both dense and sparse graphs. An inter-
esting class among sparse graphs are planar graphs, which are expected to show up in
various applications. Hence, ca. half of our tests were run with graphs whose number of
edges matches that of typical planar graphs having mostly triangles as faces—we let the
number of edges be thrice its number of vertices.
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Table 1. Running times (in seconds) of privacy-preserving Bellman–Ford Algorithm.

Graph BF Version 2 BF Version 1
n m Pre. Loop Total Loop Total

10 25 0.18 0.27
20 100 0.53 0.70
50 400 2.68 2.70
85 1200 11.3 8.10

170 2500 37.8 25.8
350 1050 9.4 42.7 52.1 27.5 36.9
350 2000 9.4 68.9 78.3 41.6 51.0
500 1500 18.9 87.3 106.2 54.1 73.0
500 5000 19.7 195.0 214.7 121.4 140.7
700 2100 37.3 165.5 202.8 109.5 146.8
700 10 k 38.2 476.1 514.3 291.1 329.3
3000 9 k 663 2541 3204 1545 2208
3000 50 k 676 10,511 11,187 5415 6091
4500 13.5 k 1515 5830 7345 3239 4754
4500 100 k 1.5 k 16.2 k 17.7 k
7000 21 k 3.6 k 7.7 k 11.3 k
7000 200 k 3.6 k 46.6 k 50.2 k
8500 25.5 k 5.2 k 11.2 k 16.4 k
8500 300 k 5.3 k 81.7 k 87 k
9500 28.5 k 6.6 k 12.9 k 19.4 k
9500 500 k 6.6 k 144 k 151 k

3.5.2. Effect of Network Bandwidth and Latency to Bellman–Ford Algorithm

Version 1 of our implementation of the Bellman–Ford algorithm consumes less band-
width, while Version 2 has better round complexity. This difference can be seen in Table 1,
where either implementation may have a smaller running time for certain sizes of inputs.

We benchmarked both versions of the Bellman–Ford algorithm in different network
environments for graphs of various sizes. We give both the running time and bandwidth
consumption in Appendix A. We also depict the running time in Figure 1.

10

100

1000

10k

100k

1M

10M

(50,400) (50,1225) (200,600) (200,19.9k) (700,2100) (700,10k) (700,244k) (1k,3k) (1k,20k) (1k,499k) (3k,9k) (3k,50k)

Figure 1. Bellman-Ford algorithm performance (time in seconds) in different networks for different (n, m) (red: HBLL,
green: HBHL, blue: LBHL, dark: Version 1, light: Version 2)

The timing results clearly show that the two different versions of the algorithm behave
very differently in different network environments. While Version 1 of the algorithm is
always better in the HBLL environment, it depends on the number of edges of the graph for
the environments with high latency. Indeed, the number of edges essentially determines
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the parallelism available for the algorithm; a small number of edges makes Version 2
preferable because of its smaller round complexity.

The timing results also show that for all sizes of the graph shown in Figure 1, the per-
formance of the algorithm is essentially bounded by the latency of the network. Indeed,
for smaller examples, we see very little difference between the HBHL and LBHL environ-
ments. Moreover, even for the largest examples, there is still a very significant difference
between the HBLL and HBHL environments.

3.6. Dijkstra’s Algorithm Experiments
3.6.1. Dijkstra’s Algorithm in the HBLL Environment

The running time of our privacy-preserving Dijkstra’s algorithm depends only on the
number n of the vertices of the input graph. We report the running times in Table 2 for
various values of n. For interest and similarly to [9], for some of the instances, we report
separately the time it takes to permute the vertices and the time it takes to execute the main
loop of Algorithm 5. For most use cases, this split is only informative because all iterations
of the main loop have to be executed to find the shortest distances to all vertices. It may be
useful only if we are interested in the shortest path from the source vertex s to some target
vertex t, and we somehow know that t is one of the closest vertices to s. Again, the running
times are given for the HBLL environment.

Table 2. Running times (in seconds) of privacy-preserving Dijkstra’s algorithm.

Graph Dijkstra

n m Perm. Loop Total

10 25 0.01 0.08 0.09
20 100 0.02 0.016 0.18
50 1225 0.09 0.48 0.57
64 2016 0.12 0.69 0.81
85 3500 0.19 1.02 1.2

150 11 k 0.5 2.5 3.0
300 44.8 k 1.63 6.42 8.1
450 100 k 3.43 13.66 17.1
700 3000 8.2 29.0 37.2
700 244 k 7.94 29.28 37.2
900 244 k 13.3 40.18 53.5
2000 1.9 M 57.5 196.3 253.8
3000 4.4 M 137.9 479.4 617.3
4500 10 M 312.9 1006.4 1319.3
5000 12.4 M 380.9 1196.6 1577.5
7000 24 M 745.6 2266.9 3012.5
10 k 49.9 M 1572.9 4488.7 6061.6
15 K 112 M 3601 9807 13.4 k

Comparing Tables 1 and 2, we see that generally, Dijkstra’s algorithm performs
faster than the Bellman–Ford algorithm. This is expected because the main loop of both
algorithms makes n iterations. Still, the amount of work done in one iteration of the
Bellman–Ford algorithm is O(m), while the amount of work done in one iteration of
Dijkstra’s algorithm is O(n). On the other hand, the Bellman–Ford algorithm works
on the sparse representation of the graph, while Dijkstra’s algorithm requires the dense
representation. Hence the memory consumption of the latter may be significantly higher
for sparse graphs. Dijkstra’s algorithm can be made to work on sparse representation of
the graph, using oblivious RAM and loop coalescing [59]. However, this will increase the
number of iterations to O(m), which is undesirable when the actual performance of the
algorithm is latency-bound.
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In Figures 2 and 3, we present a graphical comparison of the performance of Dijkstra’s
and Bellman–Ford algorithms (in HBLL environment) on certain small and medium-size
graphs. We have evaluated the performance for certain pairs (n, m) of the number of
vertices and edges for sparse graphs. For dense graphs, the horizontal axis shows the
number of vertices n, while the number of edges is n(n − 1)/2. For graphs where the
number of edges is similar to planar graphs, we chose their numbers to be two or three
times the number of vertices. We see that Dijkstra’s algorithm is more efficient in all cases,
but the difference is less pronounced for sparse graphs.
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(25,200) (50,400) (64,250) (100,800) (128,500) (200,1600) (500,5k)
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Figure 2. Performance (in seconds) comparison of Dijkstra’s (blue) and Bellman–Ford (red) algorithms on sparse and
dense graphs.
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Figure 3. Performance (in seconds) comparison of Dijkstra’s (blue) and Bellman–Ford (light red:
m = 3n; dark red: m = 2n) algorithms on planar-like graphs.

3.6.2. Effect of Network Bandwidth and Latency to Dijkstra’s Algorithm

In different network environments, we expect Dijkstra’s algorithm to behave similarly
to the Bellman–Ford algorithm—it will also be latency-bound to an even greater extent.
Considering our privacy-preserving implementations of Johnson’s algorithm, a more
interesting question is about the behavior of Dijkstra’s algorithm when it is executed several
times over graphs of the same size. While the sequential execution will be latency-bound
similarly to a single execution, the parallel execution may use the available bandwidth
more fully.

In Figure 4, we establish the baseline for our experiments, measuring the running
time of Dijkstra’s algorithm on graphs of different sizes in different network environments.
These are the running times for finding the SSSD in a single graph. We see that the
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performance is very much latency-bound, such that the available bandwidth even does not
affect the performance on most graphs in high-latency environments.

0.01

0.1

1

10

100

1k

10k

10 25 50 100 200 500 1000

Figure 4. Performance (in seconds) of Dijkstra’s algorithm on graphs with given numbers of vertices
in different network environments (red: HBLL, green: HBHL, blue: LBHL).

We would like to characterize the performance gains resulting from the parallel
execution on multiple graphs in a meaningful manner that is comparable over a different
number of graphs, graph sizes, and network environments. If t1 is the time it takes
to execute the algorithm on one graph, for a given size of the graph and the network
environment, and tk is the time it takes to execute the algorithm on k graphs, then we
would like to state that the gains are maximal, if tk ≈ t1, and minimal, if tk ≈ k · t1. We
would then map the gains to the segment [0, 1].

Serial fraction [63] is such a measure. In our terms, it is expressed as fk = (tk/t1 −
1)/(k − 1). It characterizes how much of the computation has not benefited from the
parallelization. In Figure 5, we present the measurement of the serial fraction when
running multiple copies of Dijkstra’s algorithm in parallel, for different sizes of graphs,
different numbers of copies, and different network environments. We have not tested the
parallel execution for a number of graphs larger than the number of vertices in a graph
because this case will not be needed in any sensible executions of Johnson’s algorithm.
We see that the largest gains are for the HBHL environment, as expected. Interestingly,
at least for high-latency environments, the largest gains are obtained for graphs with ca.
200 vertices. This may mean that the parallelization possibilities for computations with a
single graph for larger graphs are already significant.

In Appendix A, we present the data underlying Figures 4 and 5: the running times
obtained by benchmarking Dijkstra’s algorithm with various inputs and in various net-
work environments.
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Figure 5. Dijkstra’s algorithm performance (as serial fraction; lower is better) on multiple graphs of
various sizes (number of vertices given on the graph) in different network environments (red: HBLL,
green: HBHL, blue: LBHL)

3.7. All Pairs Shortest Paths EXPERIMENTS
3.7.1. APSD Algorithms in the HBLL Environment.

The execution time of our privacy-preserving Floyd–Warshall algorithm and transitive
closure computation also depends only on the number n of the vertices of the input graph.
We report the running times in Table 3 for various values of n.

As our implementation of Johnson’s algorithm starts from the sparse representation,
its running time depends both on the number n of vertices and the number m of edges of the
input graph. We report the running times for certain dense graphs in Table 3. The algorithm
consists of three clearly identifiable stages—execution of the Bellman–Ford algorithm,
updating of the lengths of edges, and execution of n copies of Dijkstra’s algorithm. We
report the running time of each stage for two versions of Johnson’s algorithm. Recall that in
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Version 1, n copies of Dijkstra’s algorithm are executed one after another. In Version 2, they
are all executed in parallel. The benchmarking is done in the HBLL environment. We see
that the parallelization gains are smaller for small graphs due to the first, non-parallelizable
steps taking relatively more time. We also see the parallelization gains drop for larger
graphs, similarly to the benchmarking outcomes shown in Figure 5 (HBLL plots, right edge
of the figure).

Table 3. Running time (in seconds) of privacy-preserving APSD algorithms.

Graph Privacy-Preserving Johnson V1 Privacy-Preserving Johnson V2 V1, V2 Floyd- Transitive-

n m BF. upd. Dijk. Total BF. upd. Dijk. Total Speed-Up Warshall Closure

5 10 0.18 0.03 0.10 0.31 0.18 0.03 0.06 0.27 1.2x 0.01 0.02
10 45 0.45 0.45 0.51 1.41 0.45 0.45 0.18 1.08 1.3x 0.03 0.05
20 190 1.04 0.07 2.22 3.33 1.04 0.07 0.55 1.66 2.0x 0.10 0.29
50 1225 5.28 0.23 20.7 26.2 5.28 0.23 6.19 11.7 2.2x 0.92 5.56
100 4950 27.22 1.0 109.9 138.1 27.2 1.0 43.6 71.8 1.9x 6.91 51.1
200 19.9 k 166.3 3.55 583.2 752.9 166.3 3.55 339.0 508.8 1.5x 62.4 460.5
500 124 k 2282 26.9 6644 8954 2282 26.9 5015 7324 1.2x 933.8 7987
1 k 499 k 16,392 117.4 48,582 65477 16,392 117.4 43,599 60,494 1.08x 7268

Table 3 shows that transitive closure is not competitive with Floyd–Warshall, even
though its round complexity is smaller. It also shows Johnson’s algorithm requiring
significantly more time than Floyd–Warshall. However, the latter is not a good comparison,
as Table 3 only presents the worst-case running time for Johnson’s algorithm for graphs with
a given number of vertices. Indeed, the following aspects may improve the running time:

• If the number of edges is smaller, then the execution of the Bellman–Ford step needs
less time.

• The execution time of the Bellman–Ford step may be smaller if it is run for a smaller
number of iterations (see discussion in Section 3.5).

• If the shortest distances have to be found only from a subset of vertices, then a smaller
number of instances of Dijkstra’s algorithm has to be executed.

None of these aspects applies to the Floyd–Warshall algorithm. The consequences on
running time from all of these aspects have been covered in our benchmarks, in Table 1
and Figure 5.

3.7.2. Bandwidth vs. Latency of Privacy-Preserving APSD Algorithms

In Figure 6, we present the comparison of Floyd–Warshall and transitive closure
algorithms for different network environments. We see that despite the lower round
complexity, transitive closure is still slower also in high-latency environments. The running
times that we measured are given in Appendix A.

We did not include Johnson’s algorithm in this comparison due to the significant
number of tunable parameters. The benchmarking results we reported previously allow
one to estimate the performance of different stages of Johnson’s algorithm for various
values of these parameters and in different networking environments.
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Figure 6. Performance (time in seconds) of Floyd–Warshall and transitive closure algorithms on
graphs of different sizes in different network environments (red: HBLL, green: HBHL, blue: LBHL,
dark: Floyd–Warshall, light: transitive closure)

4. Discussion

We demonstrated how to use state-of-the-art algorithmic techniques of private com-
putation to implement privacy-preserving versions of classical SSSD and APSD algorithms.
We implemented and benchmarked these algorithms, giving a good idea of how efficient
they are on top of secure multiparty computation protocols in different deployments.
Significant details in our privacy-preserving algorithms are novel, particularly in the
adaptation of the Bellman–Ford algorithm to privacy-preserving computations and in the
connection. Such compilation and evaluation of privacy-preserving shortest paths have
not been done before. In particular, our evaluation of APSD algorithms is not similar to
any previous work.

We see that the performance of privacy-preserving SSSD and APSD algorithms de-
pends on the size of the input graph. Still, it may be improved by using some side
information publicly available about that graph or about the actual privacy-preserving
task at hand. For example, we see that generally, Dijkstra’s algorithm for dense graphs
is more efficient than Bellman–Ford for sparse graphs, even if the number of edges is
low, the running time of the latter may be significantly decreased if it is known that the
shortest paths only have a number of edges that is much smaller than the total number
of vertices in the graph. Similar considerations apply for APSD and the choice between
Floyd–Warshall and Johnson algorithms. Our benchmarking results can be used to deduce
the likely running times of our algorithms as subroutines for a wide variety of applications
in different network settings. The running times we achieve are orders of magnitude
smaller than those reported in previous work in certain settings.

The future work on privacy-preserving shortest path algorithms may encompass the
search for some more parallelization opportunities. However, the underlying algorithms
may perhaps not be amenable to many more possibilities. The use of oblivious data
structures may bring down the bandwidth requirements of Dijkstra’s algorithm applied to
sparse graphs, but probably not its round complexity.
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Appendix A. Execution Time and Bandwidth Consumption for Privacy-Preserving
Shortest Distance Algorithms in Different Network Environments

Table A1. Benchmarking results (bandwidth for a single computing server) for Bellman–Ford
algorithms in different network environments.

Size of Version 1 (with Algorithm 3) Version 2 (with Algorithm 4)

Graph Band- Running Time (s) Band- Running Time (s)

n m Width HBLL HBHL LBHL Width HBLL HBHL LBHL

50 400 32 MB 2.8 799 799.5 65 MB 2.8 448 451

50 1225 74 MB 5.2 1155 1145 206 MB 7.2 550 559

200 600 165 MB 17.9 3270 3261 465 MB 22.2 1823 1841

200 19.9 k 2900 MB 162 5626 5806 15.8 GB 356.2 3122 4219

700 2100 1570 MB 147 15.4 k 15.4 k 6.3 GB 237.7 7529 7956

700 10 k 5 GB 348 18.5 k 18.7 k 27 GB 661.7 9158 11.1 k

700 244 k 110 GB 5823 35.9 k 42.9 k 810 GB 16.4 k 54.2 k 111 k

1 k 3 k 4 GB 288 22 k 22.2 k 12.7 GB 435.8 10.8 k 13.5 k

1 k 20 k 13 GB 917 25.9 k 26.7 k 90 GB 1879 14.8 k 20.6 k

1 k 499 k 320 GB 16.6 k 63.4 k 81.7 k 2.4 TB 49.8 k 156 k 318 k

3 k 9 k 65 GB 2318 79.6 k 81.1 k 145 GB 3889 39.8 k 49.3 k

3 k 50 k 133 GB 6675 93.3 k 100 k 630 GB 15 k 56.3 k 104 k
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Table A2. Benchmarking results for the parallel execution of Dijkstra’s algorithm on several graphs
of the same size, in different network environments.

Num. of Size of Running Time (s)

Graphs Graph HBLL HBHL LBHL

1 10 0.09 21.6 29.3

10 10 0.2 54.1 54.1

1 25 0.23 73.4 100.7

25 25 1.0 158.4 160.6

1 50 0.53 166.8 228.9

5 50 1.6 326.0 326.8

10 50 2.6 329.8 331.8

25 50 3.9 336.9 341.9

50 50 6.3 371.1 388.4

1 100 1.29 373.8 513.7

10 100 7.5 745.4 755.2

25 100 16.1 764.2 792.2

50 100 28.6 793.5 852.3

75 100 42.6 834.7 920.8

100 100 42.3 898.1 1019

1 200 3.37 828.3 1144

20 200 46.0 1699 1792

50 200 104.8 1800 2075

100 200 189.3 2138 2787

200 200 337.6 2657 3669

1 500 12.5 2884 4042

100 500 1049 7524 10.8 k

500 500 3715 17.2 k 34.6 k

1 1000 46.1 6356 8933

50 1000 2129 15.7 k 21.0 k

500 1000 21.1 k 62.2 k 125 k

1000 1000 42.5 k 109 k 235 k

1 5000 853.4 40.8 k 61.2 k

100 5000 230 k 390 k 648.9 k
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Table A3. Benchmarking results (bandwidth for a single computing server) for Floyd–Warshall and
transitive closure algorithms in different network environments.

Size Floyd–Warshall Transitive Closure

of Band- Running Time (s) Band- Running Time (s)

Graph Width HBLL HBHL LBHL Width HBLL HBHL LBHL

5 0.08 MB 0.01 2.22 2.22 0.46 MB 0.02 4.01 4.01

10 0.48 MB 0.03 4.44 4.46 1.64 MB 0.05 7.37 7.53

20 3.52 MB 0.1 9.1 9.35 16.4 MB 0.29 12.9 14.2

50 54.1 MB 0.92 23.6 28.6 318 MB 5.56 26.9 66.3

100 402.2 MB 6.91 52.9 90.5 3019 MB 51.1 157.7 426.6

200 3417 MB 62.4 153.6 526 27.3 GB 460.5 1336 2529

500 53.3 GB 934 2753 7469 490 GB 7987 23.5 k

1 k 426 GB 7268 21.5 k 57.4 k
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