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Abstract: The progression of cyber-attacks on the cyber-physical system is analyzed by the Proba-
bilistic, Learning Attacker, and Dynamic Defender (PLADD) model. Although our research does
apply to all cyber-physical systems, we focus on power grid infrastructure. The PLADD model
evaluates the effectiveness of moving target defense (MTD) techniques. We consider the power
grid attack scenarios in the AND configurations and OR configurations. In addition, we consider,
for the first time ever, power grid attack scenarios involving both AND configurations and OR
configurations simultaneously. Cyber-security managers can use the strategy introduced in this
manuscript to optimize their defense strategies. Specifically, our research provides insight into
when to reset access controls (such as passwords, internet protocol addresses, and session keys), to
minimize the probability of a successful attack. Our mathematical proof for the OR configuration
of multiple PLADD games shows that it is best if all access controls are reset simultaneously. For
the AND configuration, our mathematical proof shows that it is best (in terms of minimizing the
attacker’s average probability of success) that the resets are equally spaced apart. We introduce a
novel concept called hierarchical parallel PLADD system to cover additional attack scenarios that
require combinations of AND and OR configurations.

Keywords: periodic reset; attack graph; cyber-physical systems; cyber-physical security; moving
target defenses

1. Introduction

One set of mitigation techniques that defenders can use to shift their systems’ attack
surfaces is moving target defenses (MTDs). Moving target defenses can increase the attacker’s
costs and reduce the attacker’s probability of success in performing attacks. The objective
of moving target defenses (MTDs) is to increase uncertainty and complexity for attackers.
Periodically resetting secret information is a crucial strategy of MTD. A cyber-physical system
usually has implemented multiple MTDs by keeping secret information hidden.

Our previous work has shown that it is possible to decrease the attacker’s probability
of success by scheduling the periodic reset of MTDs in the cyber-physical system in a
coordinated manner [1]. We expand on this previous work by adding additional examples
to clarify key concepts and experiment results to validate our findings. We also introduce a
novel concept called hierarchical parallel Probabilistic, Learning Attacker, and Dynamic
Defender (PLADD) system to cover additional attack scenarios.

Critical infrastructure such as the power grid is a known target for adversaries that
want to inflict damage on opposing nations. According to a U.S. Department of Energy
report [2], cyber vulnerabilities remain a high-risk profile relative to grid reliability. Indi-
vidual field cyber-components or the communications network can be potential targets
in a cyber-physical attack. Therefore, it is crucial to strengthen the cyber-security of the
power grid. Ukraine’s power grid attack in December 2015 [3] is the first publicly known
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successful cyber-attack on the power grid and resulted in a blackout that affected hundreds
of thousands of people. Microsoft Office documents with embedded malware were used to
steal credentials, providing access to the Ukraine power grid’s industrial control system
(ICS) network. Experts found that the Ukraine power grid’s attackers were able to use the
stolen credentials to access the ICS network from June 2015 to December 2015 [4]. This may
imply that the credentials to the Ukraine power grid’s ICS network were not changed for at
least six months. One example of MTD is periodic credential reset. Periodically changing
the internet protocol (IP) addresses of remote terminal units (RTUs) in the power grid is
also an example of moving target defense. With the knowledge of an RTU’s IP address, the
adversary may be able to inject fake data to the control center by spoofing the IP address [5],
perform malicious commands, etc. The motivation of this research is to understand how
MTDs can be improved by making sure that MTDs in a cyber-physical system are working
together to lower the attacker’s probability of success.

2. Terminology

This section provides definitions used throughout the paper and includes basic con-
cepts of probability for completeness and game theory for clarity.

2.1. Basic Definitions in Probability Theory

Definition 1. The cumulative distribution function (CDF) of a real-valued random variable X, or
just distribution function of X, is evaluated at x. It is the probability that X will take a value less
than or equal to x [6]. The cumulative distributive distribution function of a real-valued random
variable X is the function given by

FX(x) = P(X ≤ x)

where the right-hand side represents the probability that the random variable X takes on a value
less than or equal to x. The probability that X lies in the semi-closed interval (a, b], where a < b is
therefore

P(a < X ≤ b) = FX(b)− FX(a)

Definition 2. The exponential distribution is the probability distribution of the time between events
in a Poisson point process, i.e., a process in which events occur continuously and independently at a
constant average rate.

Definition 3. Suppose X is exponentially distributed. Then, the CDF of X is given by

FX(x; λ) =

{
1− e−λx x ≥ 0

0 x < 0

where λ is greater than 0 and is the parameter of the distribution, often called the rate parameter.
The mean or expected value of an exponentially distributed random variable X with rate parameter
λ is given by 1

λ . Throughout this manuscript, we use the mean of an exponential distribution (µ)
instead of the rate parameter λ to define an exponentially distributed function. Note that the mean
does not imply the probability is 50% at the mean. The median (m) of an exponential distribution
function is defined as the center of mass of the probability density function. The median (m) is
calculated as shown below:

m = µ× ln(2)

Example 1. If an exponential distribution function has a mean equal to 30, then the plot of the
cumulative distribution function is shown in Figure 1.
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Figure 1. The cumulative distribution function of an exponential distribution with a mean (µk) = 30.
P(X ≤ t) is the probability that a random number is less than or equal to t. By plugging m = 30∗ ln(2),
we can see that the median is 20.79, which is where the probability is approximately 50%.

2.2. Basic Definitions in Game Theory

Game theory is the study of mathematical models of strategic interaction among
rational decision-makers [7]. There are many variations of game theory models and
strategies, but game-theoretic models typically must define the players of the game, the
information and actions available to each player at each decision time, and the payoffs of
each outcome.

Definition 4. A game consists of the following:

• a collection of decision-makers, called players;
• the possible information states of each player at each decision time;
• the collection of feasible moves (decisions, actions, etc.) that each player can choose to make in

each of his possible information states;
• a procedure for determining how the move choices of all the players collectively determine the

possible outcome of the game; and
• preferences of the individual players over these possible outcomes, typically measured by a

utility or payoff function.

Example 2. Figure 2 shows an example attacker and defender interaction involving access to
Computer 1 that controls a power generator. For this example, there are two players, which are
the defender and the attacker. For the current calendar year, the defender is required to change the
computer password periodically, and the attacker can use password-cracking software to gain access
to the computer. Realistically, the defender can employ various cybersecurity measures to protect the
computer, while the attacker can also employ various types of attacks to gain access to the computer.
Therefore, instead of diving into what cybersecurity mechanisms the defender is implementing on
the computer and exactly what the attacker is doing to gain access to the computer, we can derive a
simple model. Specifically, the defender can do a “take” move, which can immediately regain control
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of the computer. In this example, the defender resets passwords every month (30 days), and each
password reset immediately grants the defender control of the computer. The attacker can attack
the computer to gain access, but the attacker only gains access to the computer after some time has
passed (such as 1 month) and with a given probability of success (such as 30%). The information
available to the attacker consists of whether Computer 1 is controlled by the attacker or not. On
the other hand, the defender only knows for sure that Computer 1 is controlled by the defender
immediately after a “take” move. The amount of time each player controls Computer 1 determines
the payoff (see Definition 4) of each player in this example.
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Examples 2 and 3 showcase the following game-theoretic terms. First, there are two 
players in each example. The information available to the attacker is whether the attacker 
controls each computer or not. The defender does not know whether the attacker controls 
the computer or not. The attacker can execute an attack on the computer (e.g., running 
password cracking software [8]). The attack is successful after a delay, and then the at-
tacker controls the computer. The defender can execute a “take” move (e.g., periodic cre-
dential reset), which immediately takes control of the computer. The amount of time each 
player controls the computer determines the payoff for each player. For example, the at-
tacker may control the computer 10% of the time, while the defender may control 90% of 
the time. 

Figure 2. An example attacker and defender interaction involving a computer.

Example 3. Figure 3 describes an example of the attacker and defender interaction involving
access to two computers. For this example, there is one defender and one attacker. There are two
computers, but only Computer 2 can control the generator. Computer 1′s one-time key is required
for Computer 2 to control the generator. In this example, the attacker needs access to both Computer
1 and Computer 2 to execute commands on Computer 2. Likewise, in Example 2, the attacker′s
move is to start an attack (such as executing password cracking software [8]) on a computer, which
gives the attacker control of the computer after some time. The attacker can attack Computer 1 or
Computer 2 independently. The defender′s move is the same as in Example 2, which is called a
“take” move that immediately regains control of a computer. The defender can execute a “take” move
on Computer 1 or Computer 2 independently. The attacker knows if the attacker controls Computer
1 and/or Computer 2. The defender knows that a computer is controlled by the defender immediately
after a “take” move. The amount of time each player can control the generator determines the payoff
of each player.
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Examples 2 and 3 showcase the following game-theoretic terms. First, there are two
players in each example. The information available to the attacker is whether the attacker
controls each computer or not. The defender does not know whether the attacker controls
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the computer or not. The attacker can execute an attack on the computer (e.g., running
password cracking software [8]). The attack is successful after a delay, and then the attacker
controls the computer. The defender can execute a “take” move (e.g., periodic credential
reset), which immediately takes control of the computer. The amount of time each player
controls the computer determines the payoff for each player. For example, the attacker may
control the computer 10% of the time, while the defender may control 90% of the time.

3. Background and Prior Work

The concept of moving target defense (MTD) has recently emerged as a new paradigm
for strengthening cybersecurity for computer networks and systems. One MTD example
is IP address randomization [9]. IP address randomization is a technique that periodi-
cally randomizes each network packet′s source IP address and destination IP address. A
similar example of an MTD is address space layout randomization (ASLR [10]). If the
randomization of the secret information (e.g., address space position of key data areas of a
process) is not changed periodically, then these MTDs can be vulnerable over time. An-
other MTD example is periodically changing passwords or authentication keys. Multiple
passwords usually protect the security of a system (e.g., the power grid). However, given
enough time and resources, a strong password can be exploited. The attacker may use
password cracking tools such as Openwall [8] and Hashcat [11] to steal passwords. These
password-cracking tools may use a dictionary attack with a key logger to steal the user′s
passwords [12]. Note that a password reset from the user will not affect the password
cracking tool′s current progress because the key logger keeps a list of everything the user
types. The password reset does not invalidate the key logger′s list. Therefore, a password
reset does not impair the password cracking tool′s progress. If field cyber-components in
a system implement MTDs, the security analysts may have the ability to coordinate each
MTD to lower the attacker′s probability of a successful attack.

The Probabilistic, Learning Attacker, and Dynamic Defender (PLADD) model was
developed by Jones et al. to attempt to capture the essence of MTD [13]. They recognized
that during cyber-attacks, (i) there is some information that, when held by the attacker, gives
the attacker a competitive advantage and (ii) the defender can take away the information
from the attacker (at least temporarily). In the PLADD model, an attacker and a defender
contend to control a single resource. The resource in this context is the secret information
that gives the attacker a competitive advantage. A stochastic process is used to model the
evolution of attacks. A random variable models the time required for the attacker to gain
control of the resource. Both the attacker and the defender perform a series of moves in the
PLADD game. Note that an attack does not instantaneously finish because an attack takes
a random amount of time to be successful. The attacker begins an attack on a resource at
time 0 or immediately after losing control of a resource. In short, at any point in time, the
attacker either (i) starts an attack, (ii) is carrying out an ongoing attack, or (iii) has control of
the resource. The defender can regain control of the resource by executing a “take” move.
The defender has no information about attacker progress. The defender decides when to
execute a “take” move. Each PLADD game is defined by two parameters, which are (i)
period (τ) of the defender′s “take” move and (ii) the attacker′s mean time (µ) required for
a successful attack. Additional refinements to PLADD games are possible, but we only
utilize the aforementioned features in this paper. An attacker and a defender contending
to control a single PLADD game over time are illustrated in Figure 4 and Example 4. The
PLADD game′s unit of time can be any time units (seconds, hours, days, months, . . . ,
etc.). However, we will use days as our time unit in our discussion of attack scenarios
and experiments.
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Example 4. Consider a single PLADD game. Figure 4 shows that a resource is initially controlled
by the defender as shown in blue. The attack starts at the very beginning (immediately after the first

“take” move at time zero). The time to successful attack is modeled by f(x), which is an exponential
distribution function with a mean (µ), i.e., rate parameter λ = 1

µ . After some time, the attack is
successful, so the resource is controlled by the attacker as shown in red. The attacker retains control
of the resource until the defender executes a “take” move (e.g., password reset) to regain control
of the resource. Note that the defender’s “take” move does not affect an on-going attack from the
attacker. Therefore, if the defender executes a “take” move while the attacker’s attack is on-going,
the attacker’s ongoing attack is not impaired by the defender’s “take” move.

4. Attack Scenarios
4.1. Single-Layer Parallel PLADD System

We consider a generic power grid topology shown in Figure 5. We focus on the attack
scenarios in the power grid shown in Figure 6. We assume the attacker’s goal is to have
the ability to open and/or close breakers in the power grid. For simplicity, in Figure 6 we
assume that there are two remote terminal units (RTUs) and two operator computers in the
power grid (but our results apply to any number of RTUs and/or operator computers). A
PLADD game models each credential in Figure 6 (see Section 3). In our experiment, we
assume the period (τ) of the defender “take” move for RTU 1, RTU 2, Operator Computer
1, and Operator Computer 2 is 90 days each. We will also perform parameter sweeps
on the period (τ) of RTU 1, RTU 2, Operator Computer 1, and Operator Computer 2
by setting the period (τ) to 90 days as well as 180 days. For the attacker’s mean time
required for a successful attack (µ), we assume it is 90 days. Our experiment will also do a
parameter sweep by setting the attacker’s mean time required for a successful attack (µ) to
90 days and 180 days. In addition, we assume the attacker’s time to success is modeled
by an exponential distribution. The cumulative distribution function of an exponential
distribution is shown below:

Fk(t) =

{
1− e −

1
µk

t t ≥ 0
0 t < 0

where µk is the mean of the exponential distribution. In the context of our attack scenario,
µk is the attacker′s mean time-to-success of an attack in game k.

From the attacker′s point of view with regard to Figure 5, the attacker needs to control
(i) both RTU 1 and RTU 2, or (ii) either Operator Computer 1 or Operator Computer 2,
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to have the ability to open/close all breakers. We define a single-layer parallel PLADD
system as a system containing at least two PLADD games in a single configuration of AND
or OR. The PLADD games in a parallel PLADD system start at the same time and interact
simultaneously with the same attacker and defender. The attacker and defender can make
moves in each game independently. The topology of two single-layer parallel PLADD
system configurations is shown in Figure 6. If a system is in the AND configuration, then
the attacker is considered to control the system when the attacker controls all resources. If
a system is in the OR configuration, then the attacker is considered to control the system
when the attacker controls at least one resource.
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4.2. Hierarchical Parallel PLADD System

In addition to the two attack scenarios shown in Figure 6 (involving two PLADD
games in a parallel PLADD system), we also consider scenarios involving combinations
of both AND configurations and OR configurations within a hierarchical parallel PLADD
system. For example, consider a generic power grid topology that controls two separate
regions, as shown in Figure 7. Substation 1 and Substation 2 are in Region 1, while
Substation 3 and Substation 4 are in Region 2. The control center communicates with all
substations shown in Figure 7. We also assume the operator computers are in a room that
is accessible by either Operator 1’s keycard or Operator 2’s keycard. In our experiment,
we assume the period (τ) of the defender “take” move for RTU 1, RTU 2, RTU 3, RTU



Cryptography 2021, 5, 12 8 of 29

4, Operator Computer 1, Operator Computer 2, Operator Computer 3, and Operator
Computer 4 is 90 days each. We also assume the attacker’s mean time required for a
successful attack (µ) is 30 days. In addition, we assume the attacker′s time to success is
modeled by an exponential distribution.

From the attacker’s point of view with regard to Figure 7, the attacker needs to control
either (i) both RTU 1 and RTU 2 or (ii) both RTU 3 and RTU 4 to have the ability to
open/close all breakers in a region. We define a parallel PLADD system involving at least
two layers as a hierarchical parallel PLADD system. Figures 8 and 9 show parallel PLADD
systems involving two layers of AND and OR configurations within a single overall parallel
PLADD system.
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Example 5. Consider an attack scenario where the attacker’s goal is to have the ability to open/close
all breakers in a region. In this scenario, we consider the power grid topology as shown in Figure 7.
The attacker needs to control either (i) both RTU 1 and RTU 2 or (ii) both RTU 3 and RTU 4 in
order to have control of all RTUs in a region. Figure 8 shows an illustration of this attack scenario
modeled in the hierarchical parallel PLADD system.

Example 6. Consider an attack scenario where the attacker’s goal is to have the ability to open/close
all breakers in Region 1 and Region 2. In this scenario, we consider the power grid topology as shown
in Figure 7. The attacker needs to control (i) either Operator Computer 1 or Operator Computer
2 in the control center, and (ii) either Employee A’s keycard or Employee B’s keycard, to have the
ability to open/close all breakers in both Region 1 and Region 2.

Example 5 and Example 6 describe two attack scenarios in a hierarchical parallel
PLADD system. Figure 8 illustrates Example 5 and exhibits a hierarchical parallel PLADD
system involving the AND of two subsystems with each subsystem in the OR configuration.
Figure 9 illustrates Example 6 and displays a hierarchical parallel PLADD system involving
the OR of two subsystems with each subsystem in the AND configuration.

5. Mathematical Model Basics

In this section, we introduce mathematical model basics such as notation and defi-
nitions used throughout this manuscript. We then present a mathematical model for the
attacker′s probability of controlling a single PLADD game with respect to time. Next, we
expand the mathematical model for a single PLADD game to model a single-layer parallel
PLADD system with at least two PLADD games in an AND configuration or in an OR
configuration (as described in Section 4.1). Finally, we expand the single-layer parallel
PLADD system to a hierarchical parallel PLADD system with at least three PLADD games
(as described in Section 4.2). With our model, a security analyst can refine the reset policy
to minimize the attacker′s mean probability of controlling a parallel PLADD system.

5.1. Notation and Definitions

The notation used in this manuscript is summarized in Table 1.
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Table 1. Notation and definition.

Notation Definition
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Natural numbers (1, 2, 3, 4, etc.).

N The number of PLADD games in parallel PLADD system.

k The index of a PLADD game in parallel PLADD system; note that 1 ≤ k ≤ N.

t Time; we allow time to begin at 0 and proceed to infinity.

τk
The defender “take” period of a single game with index k in a parallel PLADD
system.

dk
The time of occurrence of the first defender ““take” move in a game with index k
in a parallel PLADD system. A “take” move resets control to the defender.

fk(t)
The probability density function of the attacker′s time-to-success in a game with
index k.

Fk(t)
The cumulative distribution function of the attacker′s time-to-success in a game
with index k.

nk

The number of defender “take” moves between time dk + τk and t; in other
words, the first “take” move that is counted by nk is the “take” move at time
dk + τk; thus, the “take” moves at times t = 0 and t = dk are not counted in nk.

tk′

The time since the last defender “take” move in a PLADD game with index k,
assuming the last defender “take” move before time t occurred either at time 0 or
at time dk + nkτk.

t′k =

{
t 0 ≤ t ≤ dk

t − dk − nkτk t > dk

Pk(t)
The probability that the attacker controls a PLADD game with index k at time t.
Note that if t is at an exact time where a defender “take” move occurs (i.e.,
instantaneously), we define Pk(t) as equal to lim

t→t−
Pk(t).

R(t) The probability that the attacker controls the parallel PLADD system at time t.

EPS
Expected probability of success. It is computed as shown below:
EPS = lim

T→∞
1
T
∫ T

0 R(t) dt

τ-periodic A τ-periodic function is a function with period equal to τ.

5.2. Single PLADD Game

A PLADD game models a resource that an attacker and a defender contend to control.
We make the following assumptions about each PLADD game we consider:

(a) The defender executes “take” moves periodically; specifically, the defender executes
“take” moves at {dk, dk + τk, dk + 2τk, . . . , dk + nkτk, . . .}.

(b) dk is less than τk.
(c) The attacker is persistent, i.e., starts an attack at time 0 and immediately after anytime

the defender takes back the resource.

The probability that the attacker controls the PLADD game with index k at time t
before the first defender “take” move is given by Equation (1). Since there is no defender
“take” move (except at exactly dk), the probability that the attacker controls the resource
at time t is equal to the probability that the time used in a successful attack is less than or
equal to t, which is the cumulative distribution function.

Pk(t) = Fk(t), where t < dk (1)
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Example 7. Consider a PLADD game k with dk = 5, τk = 10, and µk = 30. The probability that
the attacker controls the PLADD game at time 4 is calculated as shown below.

Pk(4) = Fk(4) = 1− e−
1

30 ∗4 = 0.1248

To find the probability that the attacker controls the PLADD game with index k at
time t, where dk < t < τk, we need to consider four possible cases shown in Figure 10.
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Figure 10. Four possible outcomes of a PLADD game, where the attacker starts an attack at time
t = 0, and the time of inspection is at time t, dk < t < τk.

One possible outcome is Case A in Figure 10, where the attacker’s first attack (which
occurred at t = 0) is successful before time dk and the attacker’s second attack is also
successful before the time of inspection at time t, dk < t < τk. The second possible
outcome is Case B in Figure 10, where the attacker’s first attack is successful before time dk
and the attacker’s second attack is ongoing (not successful) before the time of inspection at
time t, dk < t < τk. The third possible outcome is Case C in Figure 10, where the attacker’s
first attack is successful after time dk and before the time of inspection at time t, dk < t < τk.
Finally, the last possible outcome is Case D in Figure 10, where the attacker’s first attack is
not successful before time dk and is also not successful before the time of inspection at time
t < τk. Since we are only interested in calculating the probability that the attacker controls
the PLADD game at time t, we can disregard the cases where the attacker is not successful
(attack is ongoing) at the time of inspection, which are Case B and Case D.

In Case A of Figure 10, the attacker′s last attack started right after the defender′s “take”
move at dk. In this case, the probability that the attacker controls the PLADD game is
Pk(dk)Fk(tk′), which is the probability that the attacker controls the PLADD game at dk mul-
tiplied by the probability that the time used in a successful attack is less than or equal to tk′
(recall that tk′ is the time since the last defender “take” move, see Table 1). In Case C of Figure
10, the attacker′s last attack started at t = 0. In this case, the probability that the attacker
controls the PLADD game is Fk(t) − Fk(dk), which is the probability that the time used in
a successful attack is (dk, t]. Note that Case A accounts for the probability that the attacker
controls the PLADD game when the attacker′s most recent attack (relative to t) is right after
dk, and Case C accounts for the probability that the attacker controls the PLADD game when
the attacker′s most recent attack began at t = 0. By adding the probability that the attacker
controls the PLADD game at time t in Cases A and C, the probability that the attacker controls
the PLADD game with index k at time t, dk < t < τk is given by Equation (2).

Pk(t) = Fk(t) − Fk(dk) + Pk(dk)× Fk
(
t′k
)
, where dk < t < τk (2)
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Example 8. Consider a PLADD game with index k with dk = 5, τk = 10, and µk = 30. The
probability that the attacker controls the PLADD game at time 7 is calculated as shown below.

Pk(7) = Fk(7)− Fk(5) + Pk(5)× Fk(2) =
(

1− e−
1
30 ∗7
)
−
(

1− e−
1
30 ∗5
)
+
(

1− e−
1
30 ∗5
)
×
(

1− e−
1
30 ∗2
)

= 0.0644

6. Overview of Major Theorems

In this section, we discuss the overall results of this paper in a summary fashion.

6.1. Single-Layer Parallel PLADD System

The following two theorems are proved in detail in Section 7.

Theorem 1. Consider a single-layer parallel PLADD system with N games in the AND configura-
tion where the period τk of defender “take” moves for all PLADD games are equal. The steady-state
solution of the attacker′s expected probability of success is minimized when the resets (i.e., “take”
moves) of each PLADD game in the parallel PLADD system are equally spaced apart.

Please note that Theorem 1 will be fully explained in Section 7. Our intention here is
to briefly give an overview of the main theorems proven and simulated in this paper.

Example 9. Consider two PLADD games with index “1” and “2”. The two PLADD games are
in the AND configuration as shown in the top half of Figure 6. We simulate three different reset
patterns, which are (1) the resets of each PLADD game in the parallel PLADD system are at the
same time, (2) the resets of each PLADD game in the parallel PLADD system are equally spaced
apart, and (3) the resets of each PLADD game in the parallel PLADD system are at different times
but are not equally spaced apart. The expected probabilities of success of three of these possible reset
patterns are shown in Table 2.

Table 2. PLADD parameters and attacker′s expected probability of success in AND configuration for
Testcases 1, 2, and 3.

Testcases d1 d2 τ1 τ2 µ1 µ2 EPSAND

1 0 0 90 90 30 30 0.5372

2 0 45 90 90 30 30 0.4194

3 30 45 90 90 30 30 0.4236

Theorem 2. Consider a single-layer parallel PLADD system in the OR configuration where the
period τk of defender “take” moves for all PLADD games are equal. The steady-state solution of the
attacker′s expected probability of success is minimized when the resets (i.e., “take” moves) of each
PLADD game in the parallel PLADD system are done at the same time.

Example 10. Consider two PLADD games with index “1” and “2” in the OR configuration as
shown in the bottom half of Figure 6. We simulate three different reset patterns, which are as follows:
(1) the resets of each PLADD game in the parallel PLADD system are at the same time, (2) the
resets of each PLADD game in the parallel PLADD system are equally spaced apart, and (3) the
resets of each PLADD game in the parallel PLADD system are at different times but are not equally
spaced apart. The expected probabilities of success of these three possible reset patterns are shown in
Table 3.
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Table 3. PLADD parameters and attacker′s expected probability of success in OR configuration for
Testcases 1, 2, and 3.

Testcases d1 d2 τ1 τ2 µ1 µ2 EPSOR

1 0 0 90 90 30 30 0.8348

2 0 45 90 90 30 30 0.8991

3 30 45 90 90 30 30 0.8494

Note that Theorem 2 is fully explained in Section 7. Our intention here is to briefly
give an overview of the main theorems proven and simulated in this paper.

Based on the results shown in Tables 2 and 3, we see that (a) the steady-state solution
of the attacker’s expected probability of success is minimized when the resets of each
PLADD game in the parallel PLADD system in the AND configuration are equally spaced
apart, and (b) the steady-state solution of the attacker′s expected probability of success is
minimized when the resets of each PLADD game in the parallel PLADD system in the OR
configuration are done at the same time.

6.2. Hierarchical Parallel PLADD System

A hierarchical parallel PLADD system (see Section 4.2) follows the same rules as
single-layer parallel PLADD system. The steady-state solution of the attacker’s expected
probability of success is minimized when (a) each individual subsystem (which is a single-
layer parallel PLADD system) applies Theorem 1 and Theorem 2 to obtain minimized
attacker’s expected probability of success, and (b) each upper layer also applies Theorem 1
and Theorem 2 to obtain minimized attacker’s expected probability of success.

Example 11. Consider three PLADD games with indices “1”, “2”, and “3”. Assume the three
PLADD games are in a hierarchical parallel PLADD system in an AND_OR configuration as
shown in Figure 11. Let us also assume the defender’s “take” move periods (τ) are 90 time units
and the attacker’s mean time-to-successes (µ) are 30 time units. We simulate four different reset
patterns, which are the following:

i. The resets of each PLADD game in the hierarchical parallel PLADD system are at
the same time.

ii. The resets of each PLADD game in subsystem 1 are at the same time, and the
PLADD game in subsystem 2 is offset by 45, which is τ

2 .
iii. The resets of each PLADD game in subsystem 1 are offset by 0 and 45, and the

PLADD game in subsystem 2 is offset by 0.
iv. The resets of each PLADD games in subsystem 1 are offset by 0 and 45, and the

PLADD game in subsystem 2 is offset by 45.
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Example 12. Consider three PLADD games with indices “1”, “2”, and “3”. Assume the three
PLADD games are in a hierarchical parallel PLADD system in an OR-AND configuration as
shown in Figure 12. Let us also assume the defender′s “take” move periods (τ) are 90 time units
and the attacker′s mean time-to-successes (µ) are 30 time units. We simulate four different reset
patterns, which are the following:

i. The resets of each PLADD game in the hierarchical parallel PLADD system are at
the same time.

ii. The resets of each PLADD game in subsystem 1 are at the same time, and the
PLADD game in subsystem 2 is offset by 45, which is τ

2 .
iii. The resets of each PLADD game in subsystem 1 are offset by 0 and 45, and the

PLADD game in subsystem 2 is offset by 0.
iv. The resets of each PLADD game in subsystem 1 are offset by 0 and 45, and the

PLADD game in subsystem 2 is offset by 45.
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The simulation result for Example 11 is shown in Table 4. The simulation result for
Example 11 is shown in Table 5. Based on the results shown in Tables 4 and 5, we show
that the steady-state solution of the attacker′s expected probability of success is minimized
when (a) each individual subsystem applies Theorem 1 and Theorem 2 to minimize an
attacker′s expected probability of success and (b) the upper layers of the hierarchical
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parallel PLADD system also apply Theorem 1 and Theorem 2 to minimize an attacker′s
expected probability of success.

Table 4. PLADD parameters and attacker’s expected probability of success in AND configuration for
testcases 1–4.

Testcases d1 d2 d3 τ1 τ2 τ3 µ1 µ2 µ3 EPSAND_OR

1 0 0 0 90 90 90 30 30 30 0.62909

2 0 0 45 90 90 90 30 30 30 0.52004

3 0 45 0 90 90 90 30 30 30 0.63435

4 0 45 45 90 90 90 30 30 30 0.58903

Table 5. PLADD parameters and attacker’s expected probability of success in AND configuration for
testcases 1–4.

Testcases d1 d2 d3 τ1 τ2 τ3 µ1 µ2 µ3 EPSOR_AND

1 0 0 0 90 90 90 30 30 30 0.77963

2 0 0 45 90 90 90 30 30 30 0.84917

3 0 45 0 90 90 90 30 30 30 0.75229

4 0 45 45 90 90 90 30 30 30 0.75229

7. Mathematical Model in Detail

In this section, we discuss the detailed mathematical proofs.

7.1. Single PLADD Game

Theorem 3. Consider a PLADD game labeled as index k. Given time t, 0 ≤ t ≤ dk, the probability
that the attacker controls the game at time t is Fk(t). For time t > dk, suppose that the last defender

“take” move before time t was at time dk + nkτk, and let t′ be the time since the last defender “take”
move. nk ∈ [0, N) and t′ ∈ (0, τk] are the unique values such that t = dk + nkτk + tk′. Then, the
probability that the attacker controls the game with index k at time t is given by Equation (3).

Pk(t) = Fk(t)− Fk(dk + nkτk) +
nk

∑
i=0

Pk(dk + (nk − i)τk)(Fk(tk′+ iτk)− Fk(iτk)) (3)

Proof. For time 0 ≤ t ≤ dk, there is no defender “take” move (except at exactly dk), and so
the attacker controls the resource if and only if the initial attack at time 0 has succeeded. By
definition of the cumulative distribution function, Fk(0) = 0. Thus, we obtain Equation (4).

Pk(t) = Fk(t)− Fk(0) = Fk(t), 0 ≤ t ≤ dk (4)

For time t > dk, we proceed by considering all possible start times of the last attack
before time t. By our assumptions in Section 5, the attacker starts an attack at time 0 and
immediately after the defender takes back the resource. Thus, the last attack must have
started at one of 0, dk, dk + τk, . . . , dk + nkτk (where t > dk + nk ∗ τk). For time t > dk,
there are three cases to consider, which are labeled as case A, case B, and case C below.

For case A, the start of the most recent attack (relative to t) is at time 0 and the attack
is successful sometime after dk + nkτk and before time t. An illustration for case A is shown
in Figure 13.

The probability that the attacker controls the PLADD game k at time t is equal to
the probability that the time used in a successful attack is within the range (dk + nkτk, t].
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Equation (5) shows the probability that the time used in a successful attack is within the
range (dk + nkτk, t]. Notice that Equation (5) comprises the first two terms in Equation (3).
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For case B, the start of the most recent attack (relative to t) is at time dk and the attack
is successful sometime after dk + nkτk and before time t. An illustration for case B is shown
in Figure 14.
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The probability that the attacker controls the PLADD game k at time t is equal to the
probability that the time used in a successful attack is between (nkτk, t− dk].

For case C, the start of the most recent attack (relative to t) is at time dk +(nk − i)τk and
the attack is successful sometime after dk + nkτk and before time t. An illustration for case
C is shown in Figure 15. Note that for some i ∈ {0, 1, . . . , nk}, the attacker starts an attack
at time dk + (nk − i)τk if and only if the defender took the resource from the attacker at time
dk + (nk − i)τk. Furthermore, the defender takes back the resource from the attacker at time
dk + (nk − i)τk if and only if the attacker controlled the resource at time dk + (nk − i)τk,
which by definition has the probability Pk(dk + (nk − i)τk). For this attack (which starts at
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time dk + (nk − i)τk) to be the most recent attack (relative to time t), the attack must not
be successful by the last defender “take” move at time dk + nkτk. Additionally, for the
attacker to control the resource at time t, the attack must have resolved by time t. The
probability that the attacker controls the PLADD game k at time t is equal to the probability
that the time used in a successful attack is between (iτk, t− (dk + (nk − i)τk)].
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Figure 15. Timeline of events in PLADD game k, where the start of the most recent attack (relative to
t) is at time dk + (nk − i)τk.

Therefore, the probability that the attacker controls the resource at time t and the last
attack started at time dk + (nk − i)τk is found by accounting for the components below:

i. The probability that the attacker controls the resource at time dk + (nk − i)τk (which
is the time of the attacker′s most recent attack relative to t).

ii. The probability that the time used in a successful attack is within the range
(iτk, t− (dk + (nk − i)× τk)].

Therefore, the probability that the attacker controls the resource at time t and the last
attack started at time dk + (nk − i)τk is shown in Equation (6). Note that Equation (6) is the
third term in Equation (3).

Pk(dk + (nk − i)τk)× (Fk(t− (dk + (nk − i)τk))− F((dk + nkτk)− (dk + (nk − i)τk)))

= Pk(dk + (nk − i)τk)×
(

Fk
(
t′k + iτk

)
− Fk(iτk)

) (6)

The description for Equation (6) is listed below:

• dk + (nk − i)τk is the start time of the attacker’s most recent attack relative to the
variable t.

• t − (dk + (nk − i)τk) is the amount of time between the start time of the attacker’s
most recent attack relative to the variable t.

• dk + nkτk is the time of the last defender “take” move relative to the variable t.
• (dk + nkτk)− (dk + (nk − i)τk) is the amount of time between the start of the attacker′s

most recent attack relative to the time of the last defender “take” move.
• Pk(dk + (nk − i)τk) is the probability that the attacker controls the resource at dk +

(nk − i)τk.
• Fk(t− (dk + (nk − i)τk)) is the probability that the time used in a successful attack is

less than or equal to t− (dk + (nk − i)τk).
• F((dk + nkτk)− (dk + (nk − i)τk)) is the probability that the time used in a successful

attack is less than or equal to (dk + nkτk)− (dk + (nk − i)τk).
• (Fk(t− (dk + (nk − i)τk))− F((dk + nkτk)− (dk + (nk − i)τk))) is the probability that

the time used in a successful attack is between ((dk + nkτk) − (dk + (nk − i)τk),
t− (dk + (nk − i)τk)].
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Equation (7) shows the summation of all times the previous attack could have started.
Theorem 1 is summarized in Equation (7).

Pk

=

Fk(t), 0 ≤ t ≤ dk

Fk(t)− Fk(dk + nkτk) +
nk
∑

i=0
Pk(dk + (nk − i)τk)(Fk(τ

′
k + iτk)− Fk(iτk)) t > dk

(7)

�

Next, Definition 5 defines a steady-state solution of a single PLADD game.

Definition 5. A steady-state solution to a PLADD game with index k is a bounded function Qk:
R→ R+ such that for all t ∈ R,

Qk(t) =
∞

∑
i=0

Qk(dk + (nk − i)τk)
(

Fk
(
t′k + iτk

)
− Fk(iτk)

)
(8)

where nk ∈ [0, N), t′k ∈ (0, τk] are the unique values such that t = dk + nkτk + t′k.

The steady-state solution can be thought of as how Pk(t) should behave after infi-
nite time. As t→ ∞ , the first two terms in Pk(t) in Equation (7) approach zero. Note
that dk + (nk − i)τk is at exactly the time where the defender “take” move occurs. So
Qk(dk + (nk − i)τk) is equal to lim

t→(dk+(nk−i)τk)
−

Qk(t).

Proposition 1. The steady-state solution of a PLADD game converges to a constant 1 >= c ≥ 0.

Proof. Since a steady-state solution to a PLADD game with index k is τ-periodic, the
steady-state solution to a PLADD game will have the same value at all occurrences of
defender “take” move. Note that for any fixed c ≥ 0, if we let Qk(dk + (nk − 1)τk) = c for
all nk ∈ [0,N), then Equation (9) shows Qk(t) converges to a constant c.

Qk(t) =
∞
∑

i=0
Qk(dk + (nk − i)τk)

(
Fk
(
t′k + iτk

)
− Fk(iτk)

)
=

∞
∑

i=0
c×

(
Fk
(
t′k + iτk

)
− Fk(iτk)

)
= c×

∞
∑

i=0

(
Fk
(
t′k + iτk

)
− Fk(iτk)

)
= c lim

t→∞
Fk(t) = c

(9)

�

Lemma 1. Consider Pk(t) and Qk(t) on (dk + nkτk, dk + (nk + 1)τk] for all nk ∈ [0,N), then
both Pk(t) and Qk(t) are monotonically increasing functions.

Proof. For a given nk ∈ [0,N), let t1, t2 ∈ (dk + nkτk, dk + (nk + 1)τk] and t1 < t2. There
is no defender “take” move between t1 and t2. If the attacker controls the resource at time
t1, then the attacker must also control the resource at time t2. Recall Equation (7): if there is
no defender “take” move between t1 and t2, then Pk(t1) ≤ Pk(t2) must be true. Therefore,
Pk(t) is monotonic on (dk + nkτk, dk + (nk + 1)τk].

For some nk ∈ [0,N), let t1, t2 ∈ (dk + nkτk, dk + (nk + 1)τk] and t1 < t2. Let
t′k1 = t1 − (dk + nkτk) and t′k2 = t2 − (dk + nkτk). Since Fk is a cumulative distribution
function, it is monotonically increasing. In particular, for all i ∈ N,

Fk
(
t′k1 + iτk

)
≤ Fk

(
t′k2 + iτk

)
(10)

We arrive at Equation (11) by subtracting Fk(iτk) from both sides of the inequality in
Equation (8).

Fk
(
t′k1 + iτk

)
− Fk(iτk) ≤ Fk

(
t′k2 + iτk

)
− Fk(iτk) (11)
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We arrive at Equation (12) by multiplying
∞
∑

i=0
Qk(dk + (nk − i)τk) to both sides of

Equation (9).
∞

∑
i=0

Qk(dk + (nk − i)τk)
(

Fk

(
t′k1

+ iτk

)
− Fk(iτk)

)
≤

∞

∑
i=0

Qk(dk + (nk − i)τk)
(

Fk

(
t′k2

+ iτk

)
− Fk(iτk)

)
(12)

By Definition 5, we obtain Equation (13) from Equation (12).

Qk(t1) ≤ Qk(t2) (13)

Thus, Qk(t) is monotonic on (dk + nkτk, dk + (nk + 1)τk] for some nk ∈ [0,N). �

Theorem 4. Consider a PLADD game with index k where dk = 0 and Fk(T) ∼= 1 for some T > 0.
Then, as t→ ∞ , Pk(t) converges to a steady-state solution.

Proof. Recall Equation (7), which is reproduced below.

Pk =


Fk(t), 0 ≤ t ≤ d
Fk(t)− Fk(dk + nkτk)+
nk
∑

i=0
Pk(dk + (nk − i)τk)(Fk(τ

′
k + iτk)− Fk(iτk)), t > dk

(14)

As t approaches ∞, nk also approaches ∞, because nk is defined as the number of
“take” moves before t starting at dk + τk.

Therefore, Fk(t)− Fk(dk + nkτk) in Equation (7) approaches zero.
Equation (15) is in the form of Qk(t). By Proposition 1, Pk(t) also converges to a

steady-state solution.

lim
t→∞

Pk(t) = lim
t→∞

nk
∑

i=0
Pk(dk + (nk − i)τk)

(
Fk
(
t′k + iτk

)
− F(iτk)

)
=

∞
∑

i=0
Pk(dk + (nk − i)τk)(Fk(t′k + iτk)− F(iτk))

(15)

�

Lemma 2. Let p1(t), . . . , pN(t) : R→ R be nonnegative τ-periodic functions that are all mono-
tonically increasing or all monotonically decreasing on (0, τ]. Then the mean of Equation (16) is
maximized when d1 = d2 = . . . = dN .

s(t) =
N

∏
k=1

pk(t + dk) (16)

Proof. We will do a proof by contradiction. Assume that the value s′(t) is achieved with
values of d1 = d2 = . . . = dN = d where d ∈ [0, R+); then Equation (17) is the mean of
s′(t).

E
(
s′(t)

)
= lim

T→∞

1
T

T∫
0

N

∏
k=1

pk(t + d)dt (17)

Let ∆t→ 0 , and for some i ∈ {1, 2, . . . , N}, the value s(t) is achieved with values
of d1 = d2 = . . . = di−1 = di+2 = . . . = dN = d. Let di = d + ∆t and di+1 = d− ∆t;
then Equation (18) shows the value E(s(t)).

E(s(t)) = lim
T→∞

1
T

T∫
0

(
i−1

∏
k=1

pk(t + dk)

)
× pi(t + di)× pi+1(t + di+1)×

(
N

∏
k=i+1

pk(t + dk)

)
dt (18)
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Let us assume that E(s′(t)) is not optimal. Thus, a deviation such as E(s(t)) > E(s′(t))
is shown in Equation (19).

lim
T→∞

1
T

∫ T

0

[
i−1

∏
k=1

pk(t + dk)× pi(t + di)× pi+1(t + di+1)×
N

∏
k=i+2

pk(t + dk)

]
dt > lim

T→∞

1
T

∫ T

0

[
N

∏
k=1

pk(t + dk)

]
dt (19)

Equation (19) implies Equation (20).

i−1

∏
k=1

pk(t + dk)× pi(t + di)× pi+1(t + di+1) ×
N

∏
k=i+2

pk(t + dk) >
N

∏
k=1

pk(t + dk) (20)

We simplify Equation (20) to obtain Equation (21).

pi(t + di)× pi+1(t + di+1) > pi(t + d)× pi+1(t + d) (21)

Equation (22) is obtained by substituting di = d and di+1 = d into Equation (21)
because the right side of the inequality corresponds to E(s′(t)) where d1 = d2 = . . . =
dN = d.

pi(t + d + ∆t)× pi+1(t + d− ∆t) > pi(t + d)× pi+1(t + d) (22)

Since pi(t + di) and pi+1(t + di+1) are monotonic, and for ∆t→ 0 , we can expand
Equation (22) to obtain Equation (23).[

pi(t + d) + ∆t× ∂pi(t + d)
∂t

]
×
[

pi+1(t + d)− ∆t× ∂pi+1(t + d)
∂t

]
> pi(t + d)× pi+1(t + d) (23)

By carrying out the multiplication rearranging terms from Equation (23), we obtain
Equation (24).

pi(t + d)× pi+1(t + d) + ∆t
((

∂pi(t+d)
∂t × pi+1(t + d)

)
−
(

∂pi+1(t+d)
∂t × pi(t + d)

))
-
(

∆t2 × ∂pi(t+d)
∂t × ∂pi+1(t+d)

∂t

)
> pi(t + d)× pi+1(t + d)

(24)

If the probability distribution pi and pi+1 are the same, then the derivative of pi and
pi+1 are the same.

∂pi(t + d)
∂t

=
∂pi+1(t + d)

∂t
(25)

Equation (24) can be simplified into Equation (26) using Equation (25).

−
(

∆t2 × ∂pi(t + d)
∂t

× ∂pi+1(t + d)
∂t

)
> 0 (26)

Equation (26) cannot be true. We have arrived at a contradiction. Therefore, E(s(t))
cannot be greater than E(s′(t)). Thus, E(s′(t)) is the optimal policy. �

Lemma 3. Let p1(t), . . . , pN(t) : R→ R be nonnegative τ-periodic functions that are all mono-
tonically increasing or all monotonically decreasing on (0, τ]. Then the mean of Equation (27) is
minimized when dk =

τ
N ∗ (k− 1) for k ∈ {1, 2, . . . , N}.

s(t) =
N

∏
k=1

pk(t + dk) (27)
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Proof. We will do a proof by contradiction. Assume that the value s′(t) is achieved with
values of dk =

τ
N ∗ (k− 1) for k ∈ {1, 2, . . . , N}; then, Equation (28) is the mean of s′(t).

E
(
s′(t)

)
= lim

T→∞

1
T

T∫
0

N

∏
k=1

pk(t + dk)dt (28)

Let ∆t→ 0 , and for some i ∈ {1, 2, . . . , N}; the value s(t) is achieved with values
of d1 = τ

N × 0, d2 = τ
N × 1, . . . , di−1 = τ

N × (i− 2), . . . , di+2 = τ
N × (i + 1), . . . ,

dN = τ
N × (N − 1). In addition, let di = τ

N × (i− 1 + ∆t), di+1 = τ
N × (i− ∆t); then

Equation (29) shows the value E(s(t)).

E(s(t)) = lim
T→∞

1
T

T∫
0

(
∏i−1

k=1 pk(t + dk)
)
× pi

(
t + τ

N × (i− 1 + ∆t)
)
× pi+1

(
t + τ

N ∗ (−∆t)
)

×
(

∏N
k=i+1 pk(t + dk)

)
dt

(29)

Let us assume E(s′(t)) is not optimal. Thus, a deviation such as E(s(t)) < E(s′(t)) is
shown in Equation (30).

E(s(t)) < E
(
s′(t)

)
(30)

We obtain Equation (31) by substituting Equations (28) and (29) into Equation (30).

lim
T→∞

1
T

T∫
0

(
∏i−1

k=1 pk(t + dk))
)
× pi

(
t + τ

N × (i− 1 + ∆t)
)
× pi+1

(
t + τ

N × (i− ∆t)
)

×
(

∏N
k=i+1 pk(t + dk))

)
d < lim

T→∞
1
T

T∫
0

∏N
k=1 pk(t + dk)dt

(31)

Equation (31) can be simplified into Equation (32).

pi

(
t +

τ

N
× (i− 1 + ∆t)

)
× pi+1

(
t +

τ

N
× (i− ∆t)

)
< pi

(
t +

τ

N
× (i− 1)

)
× pi+1

(
t +

τ

N
× i
)

(32)

Since pi(t + di)and pi+1(t + di+1) are monotonic, and ∆t→ 0 , we can expand Equa-
tion (32) to obtain Equation (33).(

pi
(
t + τ

N (i− 1)
)
+ τ

N × ∆t
dpi(t+ τ

N )
dt

)
×
(

pi+1
(
t + τ

N (i)
)
− τ

N ∆t× dpi+1(t+ τ
N )

dt

)
< pi

(
t + τ

N × (i− 1)
)
× pi+1

(
t + τ

N × i
) (33)

By carrying out the multiplication in Equation (33), we arrive at Equation (34).(
pi
(
t + τ

N (i− 1)
)
× pi+1

(
t + τ

N (i)
))
−
(

pi
(
t + τ

N (i− 1)
)
× τ

N ∆t× dpi+1(t+ τ
N )

dt

)
+

(
pi+1

(
t + τ

N (i)
)
× τ

N × ∆t
dpi(t+ τ

N )
dt

)
−
(

τ
N × ∆t

dpi(t+ τ
N )

dt × τ
N ∆t× dpi+1(t+ τ

N )
dt

)
< pi

(
t + τ

N × (i− 1)
)
× pi+1

(
t + τ

N × i
)

(34)

We obtain Equation (35) by subtracting pi
(
t + τ

N × (i− 1)
)
× pi+1

(
t + τ

N × (i)
)

on
both sides of the inequality.

−
(

pi
(
t + τ

N (i− 1)
)
× τ

N ∆t× dpi+1(t+ τ
N )

dt

)
+

(
pi+1

(
t + τ

N (i)
)
× τ

N × ∆t
dpi(t+ τ

N )
dt

)
-
(

τ
N × ∆t

dpi(t+ τ
N )

dt × τ
N ∆t× dpi+1(t+ τ

N )
dt

)
< 0

(35)

If the probability distribution pi and pi+1 are the same, then the derivative of pi and
pi+1 are the same.

∂pi(t + d)
∂t

=
∂pi+1(t + d)

∂t
(36)
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We obtain Equation (37) by substituting (36) into Equation (35) and factor out τ
N ∆t×

dpi(t+ τ
N )

dt .

τ

N
∆t×

dpi
(
t + τ

N
)

dt
×
(

pi+1

(
t +

τ

N
(i)
)
− pi

(
t +

τ

N
(i− 1)

))
−
(

τ

N
× ∆t

dpi
(
t + τ

N
)

dt

)2

< 0 (37)

We obtain Equation (38) by dividing Equation (37) by ∆t
dpi+1(t+ τ

N )
dt .

(
pi+1

(
t +

τ

N
(i)
)
− pi

(
t +

τ

N
(i− 1)

))
<

τ

N
× ∆t

dpi
(
t + τ

N
)

dt
(38)

Since ∆t→ 0 , Equation (38) cannot be true. Hence, we have arrived at a contradiction.
Therefore, E(s(t)) cannot be less than E(s′(t)). Thus, E(s′(t)) is the optimal policy. �

7.2. Parallel PLADD System

Definition 6. A parallel PLADD system consists of at least two PLADD games that start at the
same time and interact simultaneously with the same attacker and defender in each game. The
attacker and defender can make moves in each game independently. If the parallel PLADD system is
in the AND configuration, then the attacker is considered to control the system when the attacker
controls all resources. If the parallel PLADD system is in the OR configuration, then the attacker is
considered to control the system when the attacker controls at least one resource.

Definition 7. We will consider the attacker’s expected probability of success (EPS) as a metric for
attacker success. The attacker’s EPS is the mean of R(t) for t ∈ [0, ∞). The attacker’s EPS is
computed as shown in Equation (39).

lim
T→∞

1
T

∫ T

0
R(t) dt (39)

Definition 8. The probability that the attacker controls a parallel PLADD system in the AND
configuration is RAND- which is computed as shown in Equation (40).

RAND(t) = P1(t)× P2(t)× . . . PN(t) (40)

Definition 9. The probability that the attacker controls a parallel PLADD system in the OR
configuration is ROR which is computed as shown in Equation (41).

ROR(t) = 1− ((1− P1(t))× (1− P2(t)) × . . . (1− PN(t))) (41)

Definition 10. The attacker’s EPS for a parallel PLADD system in the AND configuration is
EPSAND which is computed as shown in Equation (42).

EPSAND = lim
T→∞

1
T

∫ T

0
RAND(t)dt (42)

Definition 11. The attacker’s EPS for a parallel PLADD system in the OR configuration is EPSOR
which is computed as shown in Equation (43).

EPSOR = lim
T→∞

1
T

∫ T

0
ROR(t)dt (43)
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Theorem 5. Consider a parallel PLADD system in the AND configuration where τ1 = τ2 =
. . . = τN = τ for some τ > 0. The steady-state solution of the attacker’s EPS is maximized when
d1 = d2 = . . . = dN .

Proof. Let Q1(t + d1), Q2(t + d2), . . . , QN(t + dN) be the steady-state solutions of the
N-PLADD games. Then, Q1(t + d1), Q2(t + d2), . . . , QN(t + dN) are τ-periodic functions
that are monotonically increasing on (0, τ]. The attacker′s EPS when d1 = d2 = . . . = dN is
the mean of Equation (44).

N

∏
k=1

Qk(t + dk) (44)

By Lemma 2, the attacker’s EPS is maximized when d1 = d2 = . . . = dN . �

Theorem 6. Consider a parallel PLADD system in the AND configuration where τ1 = τ2 =
. . . = τN = τ for some τ > 0. The steady-state solution of the attacker’s EPS is minimized when
dk =

τ
N ∗ (k− 1) for k ∈ {1, 2, . . . , N}.

Proof. Let Q1(t + d1), Q2(t + d2), . . . , QN(t + dN) be the steady-state solutions of the
N-PLADD games. Then, Q1(t + d1), Q2(t + d2), . . . , QN(t + dN) are τ-periodic functions
that are monotonically increasing on (0, τ]. The attacker′s EPS when dk =

τ
N × (k− 1) for

k ∈ {1, 2, . . . , N} is the mean of Equation (44).
By Lemma 3, the attacker′s EPS is minimized when dk =

τ
N × (k− 1) for k ∈ {1, 2, . . . , N}.

�

Theorem 7. Consider a parallel PLADD system in the OR configuration where τ1 = τ2 = . . . =
τN = τ for some τ > 0. The steady-state solution of the attacker’s EPS is minimized when
d1 = d2 = . . . = dN .

Proof. Let Q1(t + d1), Q2(t + d2), . . . , QN(t + dN) be the steady-state solutions of the
N-PLADD games. Then, 1 − Q1(t + d1), 1 − Q2(t + d2) . . . , 1 − QN(t + dN) are τ-
periodic functions that are monotonically decreasing on (0, τ]. The steady-state solution
of the probability that the attacker does not control any resource at time t is given by
Equation (45).

N

∏
k=1

1− (Qk(t + dk)) (45)

The steady-state solution of the probability that the attacker controls at least one
resource at time t is given by Equation (46).

1−
N

∏
k=1

1− (Qk(t + dk)) (46)

By Lemma 2, the mean of Equation (45) is maximized when d1 = d2 = . . . = dN . Thus,
the attacker′s EPS for Equation (46) is minimized when d1 = d2 = . . . = dN . �

Theorem 8. Consider a parallel PLADD system in the OR configuration where τ1 = τ2 = . . . =
τN = τ for some τ > 0. The steady-state solution of the attacker’s EPS is maximized when
dk =

τ
N × (k− 1) for k ∈ {1, 2, . . . , N}.

Proof. Let Q1(t + d1), Q2(t + d2), . . . , QN(t + dN) be the steady-state solutions of the N-
PLADD games. Then, 1 − Q1(t + d1), 1 − Q2(t + d2) . . . , 1−QN(t + dN) are τ-periodic
functions that are monotonically decreasing on (0, τ]. The steady-state solution of the
probability that the attacker does not control any resource at time t is given by Equation
(45). The steady-state solution of the probability that the attacker controls at least one
resource at time t is given by Equation (46).
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By Lemma 3, the mean of Equation (45) is minimized when dk = τ
N × (k− 1) for

k ∈ {1, 2, . . . , N}. Thus, the attacker′s EPS for Equation (46) is maximized when
dk =

τ
N × (k− 1) for k ∈ {1, 2, . . . , N}. �

8. Experimental Results

The implementation of a single PLADD game is shown in Figure 16. The time unit
used in Figure 16 is days, but this can be switched to another time unit. Note that dk is
the offset to the defender′s first “take” move (relative to the start of the simulation). τk
is the period of the defender′s “take” move. For the attacker, the time unit of the integer
countdown is also days.

Given the attack scenarios as described in Section 4, the attacker′s goal is to open/close
breakers to cause a blackout. As shown in Figures 5 and 6, if the attacker attacks the RTUs,
then the attacker needs to attack both RTU 1 and RTU 2 to have the ability to open/close
all breakers. If the attacker attacks operator computers, then the attacker only needs to
succeed in an attack on either Operator Computer 1 or Operator Computer 2.
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The defender needs to decide how to schedule password resets on RTU 1, RTU 2,
Operator Computer 1, and Operator Computer 2. Based on Theorem 6, assuming the
password reset period for RTU 1 is equal to the password reset period for RTU 2, the
defender should not reset passwords for RTU 1 and RTU 2 simultaneously. The time
between the password reset of RTU 1 and the password reset of RTU 2 should equal
half of the password reset period. Based on Theorem 7, assuming the password reset
period for Operator Computer 1 and the password reset period for Operator Computer
2 are equal, the defender should reset passwords for Operator Computer 1 and Operator
Computer 2 simultaneously. We have simulated our example attack scenarios for 365
days. The simulation uses Equations (40) and (41) to calculate the attacker′s probability
of a successful attack on the parallel PLADD system with respect to time. Then, we use
Equations (42) and (43) to calculate the attacker′s EPS for a parallel PLADD system in
the AND configuration and the attacker′s EPS for a parallel PLADD system in the OR
configuration. We fixed dRTU1 and dcomputer1 to zero and varied dRTU2 and dcomputer2, as
shown in Table 6.

To quantify the improvement shown in the experiment results, we define an equation
for the percent improvement in Equation (47).

Percent improvement =
Maximum EPS−Minimum EPS

Maximum EPS
× 100% (47)
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Table 6. Simulation of attacker’s expected probability of success.

Figure 6
AND configuration

Simulation # Player Parameters
(Days) PLADD Game Offsets (Days) EPS Percent

Improvement

1.a dRTU1 = 0, dRTU2 = 0 0.169

1.b τ = 90, µ = 90 dRTU1 = 0, dRTU2 = 30 0.121 33.1

1.c dRTU1 = 0, dRTU2 = 45 0.113

1.d dRTU1 = 0, dRTU2 = 60 0.117

2.a dRTU1 = 0, dRTU2 = 0 0.059

2.b τ = 90, µ = 180 dRTU1 = 0, dRTU2 = 30 0.040 37.3

2.c dRTU1 = 0, dRTU2 = 45 0.037

2.d dRTU1 = 0, dRTU2 = 60 0.038

3.a dRTU1 = 0, dRTU2 = 0 0.379

3.b τ = 180, µ = 90 dRTU1 = 0, dRTU2 = 60 0.281 30.6

3.c dRTU1 = 0, dRTU2 = 90 0.263

3.d dRTU1 = 0, dRTU2 = 120 0.270

Figure 6
OR configuration

1.a dcomputer1 = 0, dcomputer2 = 0 0.567

1.b τ = 90, µ = 90 dcomputer1 = 0, dcomputer2 = 30 0.585 3.57

1.c dcomputer1 = 0, dcomputer2 = 45 0.588

1.d dcomputer1 = 0, dcomputer2 = 60 0.586

2.a dcomputer1 = 0, dcomputer2 = 0 0.3672

2.b τ = 90, µ = 180 dcomputer1 = 0, dcomputer2 = 30 0.3673 0.08

2.c dcomputer1 = 0, dcomputer2 = 45 0.3675

2.d dcomputer1 = 0, dcomputer2 = 60 0.3674

3.a dcomputer1 = 0, dcomputer2 = 0 0.749

3.b τ = 180, µ = 90 dcomputer1 = 0, dcomputer2 = 60 0.766 3.10

3.c dcomputer1 = 0, dcomputer2 = 90 0.773

3.d dcomputer1 = 0, dcomputer2 = 120 0.772

8.1. Single-Layer PLADD Simulation

For each configuration, we have simulated three different sets of player parameters.
For simulations 1.a through 1.d, the defender’s “take” move period (τ) is 90 days, and
the attacker’s mean-time-to-success (µ) is also 90 days. For simulations 2.a through 2.d,
the defender’s “take” move period is 90 days and the attacker’s mean-time-to-success
is 180 days. For simulations 3.a through 3.d, the defender’s “take” move period is 180
days, and the attacker’s mean-time-to-success is 90 days. For each set of player parameters,
we have simulated four different dk (as shown in Table 6). Simulations 1.a, 2.a, and 3.a
assume the defender executes “take” moves on all PLADD games with the same period
simultaneously. Simulations 1.b and 2.b assume the defender executes “take” moves on all
PLADD games with the same period but with an offset of 30 days between each PLADD
game. Simulations 1.c and 2.c assume the defender executes “take” moves on all PLADD
games with the same period but with an offset of 45 days between each PLADD game.
Simulations 1.d and 2.d assume the defender executes “take” moves on all PLADD games
with the same period, but with an offset of 60 days between each PLADD game. Simulation
3.b assumes the defender executes “take” moves on all PLADD games with the same
period but with an offset of 60 days between each PLADD game. Simulation 3.c assumes
the defender executes “take” moves on all PLADD games with the same period but with
an offset of 90 days between each PLADD game. Simulation 3.d assumes the defender
executes “take” moves on all PLADD games with the same period but with an offset of
120 days between each PLADD game. Simulations 3.b through 3.d have different offsets
(dComputer2) as compared to simulation 1.b, 1.c, and 1.d because the defender’s “take” move
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period is doubled. Therefore, PLADD game offsets (dComputer2) in simulations 3.b through
3.d are also doubled for consistency of the experiment. We show the probability that the
attacker controls the parallel PLADD system with respect to time for simulation 1.c in
Figures 17 and 18. As described in Section 7, Equations (40) and (41) are used to plot RAND
and ROR in Figures 17 and 18. Table 6 shows the attacker’s EPS in our simulations.
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8.2. Hierarchical PLADD Simulation

The hierarchical PLADD simulations are shown in Table 7, and illustrations of the
OR_AND_AND and AND_OR_OR configurations are shown in Figures 8 and 9. We have
simulated our example attack scenarios with 11 different sets of dk (as shown in Table 7).
Simulation 1 assumes the defender executes “take” moves on all PLADD games with the
same period simultaneously. Simulation 2 assumes the defender in Subsystem 2 executes
“take” moves on all PLADD games with an offset of 45 days. Simulation 3 assumes the
defender executes “take” moves on all PLADD games with an offset of 22.5 days between
each PLADD game. Simulation 4 assumes all PLADD games have the same offset, except
PLADD game 2 has an offset of 22.5 days. Simulation 5 assumes all PLADD games have
the same offset, except PLADD game 2 has an offset of 45 days. Simulation 6 assumes
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PLADD games 1 and 3 have offsets equal to zero, while PLADD games 2 and 4 have offset
equal to 45 days. Simulation 7 assumes PLADD games 1, 2, 3, and 4 have offsets equal to
0, 45, 9, and 54, respectively. Simulation 8 assumes PLADD game 1 and 4 have the same
offset, while PLADD game 2 has an offset of 45 days and PLADD game 3 has an offset of
22.5 days. Simulation 9 assumes PLADD games 1 and 4 have offsets equal to zero, while
PLADD games 2 and 3 have offsets of 45 days. Simulation 10 assumes PLADD game 1 has
an offset of zero, PLADD game 2 and 3 have offsets of 45 days, and PLADD game 4 has an
offset of 22.5 days. Finally, simulation 11 assumes PLADD game 1 has an offset of zero,
while the other PLADD games have offsets of 45 days. Using Equation (47), the percent
improvement in OR_AND_AND configuration is 19.4%, and the percent improvement in
AND_OR_OR configuration is 18.4%.

Table 7. Hierarchical PLADD simulation of attacker′s expected probability of success, where the period
of the defender’s “take” move (τ) is 90 days and the attacker′s mean-time-to-success (µ) is 30 days.

Simulation
Subsystem 1 Subsystem 2

EPSOR_AND_AND EPSAND_OR_OR
d1 d2 d3 d4

1 0 0 0 0 0.696 0.751

2 0 0 45 45 0.814 0.695

3 0 22.5 45 67.5 0.743 0.806

4 0 22.5 0 0 0.687 0.761

5 0 45 0 0 0.712 0.781

6 0 45 0 45 0.656 0.852

7 0 45 9 54 0.688 0.844

8 0 45 22.5 0 0.679 0.834

9 0 45 45 0 0.656 0.852

10 0 45 45 22.5 0.699 0.823

11 0 45 45 45 0.712 0.781

9. Discussion

Based on Table 6, EPSAND is the largest when the password reset of RTU1 and RTU 2
is done simultaneously. EPSAND is the smallest when RTU1’s password reset and RTU’s
password reset are equally spaced apart. EPSOR is the smallest when the password resets
of Operator Computer 1 and Operator Computer 2 are done simultaneously. EPSOR is
the largest when RTU 1’s password reset and RTU 2’s password reset are equally spaced
apart on the interval τ (the period of the password resets). For both the AND configuration
and the OR configuration, the experimental results show that it is possible to decrease the
attacker’s expected probability of success by making sure the defender’s “take” moves
occur with respect to the aforementioned method. However, the percent improvement
in the AND configuration is around 30%, while the percent improvement for the OR
configuration is around 3% or less. It is noteworthy that a shift in the reset schedule is
typically cheaper than other mitigations.

Based on the attacker’s EPS in Table 7, we show that the hierarchical parallel PLADD
system also follows the same rules proved in Theorems 5–8. Let us represent Subsystem
1’s offsets (d1 and d2) as tuple α and Subsystem 2’s offset (d3 and d4) as tuple β. The EPS
of hierarchical parallel PLADD system is minimized when (i) the individual subsystems
apply Theorems 6 and 7 to minimize EPS and (ii) tuple α and tuple β minimized also
applies Theorems and 7 to minimize EPS. Therefore, EPSOR_AND_AND is minimized when
(i) the resets of Subsystem 1 are equally spaced apart (e.g., d1 = 0, d2 = 45), (ii) the resets
of Subsystem 2 are equally spaced apart (e.g., d3 = 45, d4 = 0), and (iii) tuple α and tuple
β are equal (e.g., α = β = (d1 = 0, d2 = 45) = (d3 = 0, d4 = 45). The EPSAND_OR_OR is
minimized when i) the resets of Subsystem 1 are at the same time (e.g., d1 = 0, d2 = 0),



Cryptography 2021, 5, 12 28 of 29

(ii) the resets of Subsystem 2 are at the same time (e.g., d3 = 45, d4 = 45), and (iii) tuples α
and β are equally spaced apart (e.g., α = (d1 = 0, d2 = 0) and β = (d3 = 45, d4 = 45)).

Security analysts may use the proofs in this paper to provide insights and refine reset
policies in a system that is protected by multiple resources. Although we have provided a
way to decrease the attacker′s expected probability of success in the OR configuration, our
OR configuration result shows that the mitigations are relatively small compared to the
AND configuration. Therefore, if possible, the security analysts should adjust their system
such that attack scenarios do not have OR configuration. Finally, suppose a cyber-physical
system is in the AND configuration. In that case, the defender should reset the MTD′s
secret information equally spaced apart within the time frame of a single reset period. If
a cyber-physical system is in the OR configuration, the defender should reset the MTD′s
secret information simultaneously.

10. Conclusions

Various access controls protect cyber-physical systems. These access controls can be
a combination of passwords, keycards, internet protocol addresses, and more. While it
is important to focus on hardening the security of individual access controls, it is also
noteworthy to look at the entire system’s security. Our research can determine whether
the access controls in a cyber-physical system are working together to improve the overall
security. Specifically, our research’s contribution is a mathematical approach to determine
security policy recommendations for a cyber-physical system. Based on the assumption
that all MTDs have the same reset period, the reset of secret information for all MTDs in
the AND should be equally spaced apart. The reset of secret information for all MTDs in
the OR configuration should be at the same time. This paper introduces a novel concept of
a hierarchical parallel PLADD system to cover attack scenarios that are not described in
prior articles. In conclusion, we have clarified key concepts and provided experimental
results to validate our findings.
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