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Abstract: In this paper, we present the need for specialized artificial intelligence (AI) for counterfeit
and defect detection of PCB components. Popular computer vision object detection techniques are
not sufficient for such dense, low inter-class/high intra-class variation, and limited-data hardware
assurance scenarios in which accuracy is paramount. Hence, we explored the limitations of existing
object detection methodologies, such as region based convolutional neural networks (RCNNs)
and single shot detectors (SSDs), and compared them with our proposed method, the electronic
component localization and detection network (ECLAD-Net). The results indicate that, of the
compared methods, ECLAD-Net demonstrated the highest performance, with a precision of 87.2%
and a recall of 98.9%. Though ECLAD-Net demonstrated decent performance, there is still much
progress and collaboration needed from the hardware assurance, computer vision, and deep learning
communities for automated, accurate, and scalable PCB assurance.

Keywords: hardware assurance; PCB assurance; reverse engineering; bill of materials; AutoBoM;
automated optical inspection; automatic visual inspection

1. Introduction

Printed circuit boards (PCBs) are essential components of many contemporary elec-
tronic systems, ranging from private sector computers and cell phones to public sector
military and medical equipment. Predominant developments in the outsourcing of PCB
manufacturing make boards increasingly vulnerable on a global scale to malicious changes
from external entities [1]. Attacks such as hardware Trojan insertions provide backdoor
access to sensitive networks and compromise a nation’s infrastructure, military capability,
and civil safety. Therefore, PCB assurance is an important research area in cyber-security.

With the PCB supply chain being potentially highly unreliable and insecure, the US
government has taken multiple steps to bring changes to the protocols [2,3]. However,
assurance is limited by the lack of automatic inspection methods. Reference [2] reports
that apart from integrated circuits (ICs), resistors, capacitors, and transistors are among the
most commonly counterfeited components, these being the most predominant of electronic
components on any given PCB; it is, therefore, essential to identify and validate these
components in any PCB.

Over the years, many state-of-the-art approaches for automated PCB assurance have
been developed using image processing, computer vision, and machine learning in the
visual spectrum [4–6]. However, most of these approaches often need a golden sample, i.e.,
a PCB proven free of flaws and hardware Trojans, to compare with the device under test
(DUT). These golden references are often not available in areas such as hardware assurance
reverse engineering. Hence, certain approaches that can operate in their absence must be
developed, such as bill of materials (BoM) analysis.

A BoM is a list of all components on a PCB, such as resistors, capacitors, and integrated
circuits (ICs) [7]. BoM analysis, i.e., contrasting the BoM collected from the DUT and the
BoM published by the design firm, can reveal out-of-spec, defective, reused, recycled, and
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malicious board alterations without the presence of a golden sample. BoMs have several
uses outside the area of hardware assurance as well, such as reverse engineering (e.g., for-
eign, competitor, or legacy device analysis), industrial assessments (e.g., cost estimation,
quality assurance), and academic research (e.g., technology trend analysis) [8]. Toward this
end, we developed AutoBoM, which is a framework for automatically extracting a BoM
using optical images of a target PCB [9].

For a successful and fully automated bill of materials extraction, several conditions
must be met. Firstly, there are a various types of components on a board (resistors, capac-
itors, sensors, ports, potentiometers, inductors, etc.), so it is important to classify them
into different types, and extract the peripheral information necessary to identify them
correctly. For example, resistors can be identified by their resistance values and ICs can
be identified by their model and part numbers. Second, processing should be performed
extremely fast. Due to increased outsourcing and globalization, the electronics supply chain
and hardware community span over multiple continents. With so many external entities
involved in the PCB life cycle, companies must validate the PCBs quickly to maintain the
short time-to-market. Finally, and most importantly, the automatic extraction of a bill of
materials must be accurate. Though PCBs consist of hundreds, or even thousands of com-
ponents, the addition, removal, or substitution of a single component could compromise
the confidentiality, integrity, and/or accessibility of the entire system. An exemplary case
is presented in Figure 1. Though the claims in [10] are under dispute, many experts in the
hardware assurance community agree that the claims are highly plausible, and it is only
a matter of time before more such reports surface. Since PCBs are often mass-produced
for critical government, military, and biomedical infrastructures, 100% accuracy is highly
desirable.

Figure 1. The Super Micro Computer, Inc. servo motherboard featured in Bloomberg Buisinessweek’s article, “The Big
Hack.” Among the hundreds of components on the board, the suspected hardware trojan (circled in red) is no larger than a
pencil tip, yet it compromised over 30 U.S. companies [10].

Numerous object detection approaches still cannot achieve near 100% accuracy on
popular million-image datasets [11,12]. There is a trend of showcasing increasingly better
performance either in speed or in accuracy over the other popular architectures, but the
focus has not been on pushing toward attaining perfect accuracy for any one particular
scenario [13,14], predominantly because this is not the focus. Automatic bill of materials
extraction, being a special case of object detection, has not seen as a solution either even
with innovative machine learning (ML) and deep learning (DL) techniques. Due to the
inherent uniqueness of the PCB assurance field, such a solution is even more challenging
and there is still much progress and collaboration needed from the hardware assurance and
security community for automated, accurate, and scalable PCB component recognition.

Our contributions in this study are as follows: (i) an investigation of ML and DL
challenges in the PCB assurance domain, (ii) an introduction of our proposed ECLAD-
Net, a specialized network for PCB component detection, and (iii) a comparison of the
benefits and limitations of the proposed method and those of other popular object detection
methods. The rest of the paper is organized as follows. In Section 2, the challenges for
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automated PCB assurance are elaborated. Then, in Sections 3 and 4, existing techniques
along with a novel method, the electronic component localization and detection network
(ECLAD-Net), are presented. Section 5 compares the proposed method with the existing
methods. Finally, Section 6 concludes the paper with future work needed to enhance the
hardware assurance community.

2. Challenges for Automatic PCB Assurance

There are several elements of PCBs that present challenges for component recognition
and are hence difficult for existing algorithms to tackle. The following subsections elaborate
on the challenges of (i) high intra-class/low inter-class variance, (ii) the evolving problem
scope, and (iii) a limited amount of data.

2.1. The Variance Problem

PCBs are comprised of several different types of components. Examples of four
common types are presented in Figure 2. As shown, there are examples of the same
component type that appear different (high intra-class variance) and examples of different
component types that appear similar (low inter-class variance). There are also many other
types of components that further complicate the variance problem not shown in Figure 2,
including but not limited to, inductors, transformers, and crystal oscillators. At present,
there is a lack of universal standards for classifying the different component types (e.g., a
resistor network array could be categorized as a resistor, an IC, or as a class all by itself).

Figure 2. Examples of four common types of PCB components. High intra-class variance is shown in
a variety of different integrated circuits (ICs), and low inter-class variance is shown in the similarities
between some 3-pronged ICs and the transistors. Even resistors and capacitors, the most common
components, can appear similar under certain lighting conditions.

In addition, there are numerous other factors that contribute to the variance problem.
The PCB board itself may possess component-like features, which could result in false
positive detections. Component appearances, functionalities, and classifications may vary
by company, year, and even by designer. Components can also change over time, as they
age naturally with standard wear-and-tear. Additionally, the majority of modern PCB
components are machine-placed off-the-shelf surface mount device (SMD) resistors and
capacitors. Such a class imbalance must be accounted for when training and evaluating
component recognition algorithms. In addition, since the input image is an optical image,
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there are also non-PCB factors contributing to the variance problem, such as imaging
condition (e.g., lighting, angle-of-view, and resolution). These variations present additional
challenges for designing a high-accuracy PCB component recognition method.

2.2. Evolving Problem Scope

Technology is in a constant state of development toward smaller components which
enables a higher level of complexity with more compact designs at the PCB level, from small
single-board microcontrollers to large motherboards and GPUs [10]). Additionally, just as
PCB designs are becoming more advanced, so too are hardware Trojans and the protective
coutermeasures against them. Not only is there a variance challenge (as described in
Section 2.1), but the aforementioned problem is regularly changing over time.

The constantly evolving nature of the PCB assurance problem and its scope presents
challenges for traditional image processing and computer vision approaches, which operate
best in closed systems [15]. Hence, intelligent algorithms capable of learning (i.e., ML and
DL) are necessary to achieve and maintain high accuracy and avoid becoming outdated.

2.3. The Need for a Dataset

As stated in Section 2.2, the PCB assurance problem is highly dynamic, so ML and DL
are vital. This requires a large and regularly updated dataset of images labeled by subject
matter experts (SMEs). Though there are several existing datasets of PCB components,
there are few that are publicly available [16]. Moreover, many of the available datasets
are intended and formatted for a specific study, so they are difficult to combine effectively
and re-purpose for a different study. For example, FICS-PCB [16] consists of 9900 images
taken with a Digital Single-Lens Reflex (DSLR) camera and optical microscope with six
component classes annotated, and PCB-Metal [17] consists of only 1000 images taken with
a DSLR camera with four component classes annotated. While these datasets provide
sufficient information to experiment with various algorithms, much work is needed to
increase and maintain data to be representative of as many components and their variations
as possible.

Meanwhile, PCB assurance is currently a field with a large number of classes and
a relatively small amount of data per class. ML and DL methods, which tend to require
large amounts of data, tend to overfit (i.e., overtrain) when trained on such a limited datset.
Overfitting, which is when a ML model is memorizing instead of learning salient features
necessary for recognition, can be identified by significant performance degradation between
training and testing accuracy. There are two primary ways to prevent overfitting: (1) collect
more data or (2) use prior knowledge (e.g., PCB design rules) to reduce the number of free
parameters so the amount of data required by the ML model is reduced. Both ways require
much work and collaboration from the hardware assurance community to standardize the
way data and prior knowledge is collected, annotated, and communicated.

To summarize, there are several object detection challenges in the PCB assurance
domain. Hence, conventional approaches will be limited, as they are not tailored to the
specific problem. In the following sections, we evaluate several of these conventional
approaches, present a novel method, and compare them.

3. Related Work

Within the PCB assurance field, the majority of existing work has focused on defect
detection. For example, [18] proposes a placement defect detection approach using genetic
algorithms while [19] proposes an approach using SURF and conventional morphological
operations. A comprehensive survey of old and new hardware defect detection approaches
can be found in [1,4]. In such methods, “defects” are defined in reference to a golden, i.e.,
non-defective, sample. Counterfeiters and adversaries intentionally obscure designs to
make detection difficult, but golden samples may not be always available. In addition,
general analysis of a PCB to localize and extract regions using image segmentation tech-
niques are presented in [20]. Similarly [21,22] present approaches using features based
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detection (e.g., color, illumination, background, and tilted objects), however they address
specific problems and not PCB assurance as a whole. Hence, alternative methods such
as Automatic bill of materials extraction have been proposed as an additional hardware
assurance method, complimentary to defect detection.

Automatic bill of material extraction is an application of object recognition, the pro-
cess of detecting and identifying objects. Recognition can be categorized into two types:
(i) regression and (ii) classification. The main difference is regression returns a continuous
number (e.g., a confidence percentage such as an object is 78% capacitor vs. 22% resis-
tor) while classification returns a discrete value (e.g., this object is most like a capacitor).
Classification can be considered a special case of regression, in that a decision criteria is
used to group the detected objects into preexisting categories (classes). In this study, the
classification is considered for further analysis.

Over the years, numerous generic object recognition techniques have been pro-
posed [23]. For example, popular two stage methods (e.g., RCNN [24], and FastRCNN [25])
and single stage detectors (e.g., YOLO [26] and SSD [27]) have all demonstrated high
accuracy on popular datasets [23]. However, due to the inherent uniqueness of the PCB
assurance field (as explored in Section 2), there is still much research is needed in this area.

Only recently have there been applications of ML and DL for PCB component recog-
nition. Reference [28] proposes a conventional machine learning based approach using
an AdaBoost classifier to detect capacitors. Here, the proposed method focuses only on
through hole capacitors, which are easier to detect and are less common on modern PCBs
than the SMD variety. Lately, there have been a few DL methods investigated for PCB com-
ponent detection such as [29,30]. Reference [29] conducted a thorough analysis using the
YOLO architecture and found Average Precision(AP) scores for capacitors and resistors at
only about 50%. In [30], which uses an object detection with a graph-based neural network
to recognize multiple PCB component classes, a similar poor performance is observed for
smaller components such as resistors and capacitors. While both of the latter approaches
appear to detect large components such as ICs, ports and those will high interclass variance,
these struggle for smaller low interclass variance samples. From these works, it appears
the challenges in PCB component detection are such that generalized techniques are not
sufficient to achieve and maintain high accuracy. Hence, we propose a more specialized
method, the electronic component localization and detection network (ECLAD-net) in the
following section.

4. Materials and Methods

To reiterate, the goal of this paper is to present the need for specialized Artificial
Intelligence (AI) for PCB hardware assurance. To this end, several generic object recognition
methods from literature are explored. Then, we propose a novel specialized method:
ECLAD-net, and compare its performance with those of the existing solutions.

Analysis is conducted in two phases: (i) classification and (ii) detection. Though the
ordering of the phases appear counter-intuitive to traditional two-step detection-then-
classification approaches, this is done on purpose to showcase the specific challenges
associated with each step, independent of each other. In phase (i), we compare classifiers
popular in literature with ECLAD-net’s object classification stage using manually cropped
resistors and capacitors. This experiment is conducted with such controlled conditions to
investigate the feasibility of the tested classification methods, independent of any detection
stages. In phase (ii), we compare object detection methods popular in literature with
ECLAD net’s object detection stage using entire PCB images, with the goal to detect
resistors and capacitors. Comparing only the detectors make it difficult to identify at what
stage the error is from, thus making the classification phase necessary. Results are discussed
in Section 5.
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4.1. Experiment Specifications

The objective of the following experiments is to introduce and compare the perfor-
mance of the novel ECLAD-net with those of popular approaches for the tasks of classifying
and detecting resistors and capacitors. While there are other classes of components such
as ICs, inductors; Resistors and capacitors succinctly capture the structure, color palette,
and texture of the majority of components within a PCB. Results obtained using these two
classes are sufficient to describe the complications in PCB component recognition.

Two datasets were used for the experiments in this study. For the component classifica-
tion analysis, from 1152 images, 1000 images of manually cropped and labeled resistors and
capacitors were used (to maintain class-balance). Data augmentation was used to increase
the number of images to reduce overfitting of larger networks; more detail is discussed
in the Sections 4.2 and 4.3. For the component detection analysis, 26 three-channel RGB
images of PCBs were also used. The PCB images were collected with a high-resolution (i.e.,
5000 pixels × 4000 pixels, on average) DSLR camera, collected in a top-down fashion using
a vertical mount setup. Table 1 presents statistics of the dataset used and Figure 3 presents
examples of the datasets. Images were captured under moderate lighting conditions to
reduce reflection from the different PCB materials. Image clarity is verified by computing
the signal-to-noise ratio (SNR). PCBs are iteratively imaged until a clear, high resolution
image, i.e., an image with a high db psnr, is obtained, relative to every sample imaged.
Experiments were performed in python using libraries such as Keras, Opencv, Scikit-image,
Scikit-learn, and Tensorflow. Where implementation of existing method is available, we
have utilized them for comparison purposes. The code was run on a core i5 desktop with 4
GB of Nvidia 1050-Ti GPU.

Table 1. Image statistics for a database of resistors, capacitors, and full PCBs.

Image Name
Initial
Dataset
Images

Class-
Balanced
Dataset
Images

Augmented
Dataset
Images

Average Size
(in Pixels)

Resized Size
(in Pixels)

Resistors 618 500 4000 29 × 22 30 × 30
Capacitors 534 500 4000 24 × 41 30 × 30
Full PCB 26 - - 5729 × 4113 -

Figure 3. Sample data from the FICS-PCB dataset [16] used in this study. (left) Images of full
PCBs used in the component detection analysis. (right) Labeled images of individual resistors and
capacitors manually cropped from the full PCB images used in the component classification analysis.
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4.2. Classification of Resistors and Capacitors

Before discussing the challenges of PCB component detection, classification of resistors
and capacitors is first investigated to establish if the problem is feasible. Here, high intra-
class/low inter-class variance is a key challenge. Hence, these classification experiments
indicate class separability in the low- and high-dimensional spaces.

When training in higher-dimensional spaces, more data is required. Here, data
augmentation was used to increase the dataset by a factor of 8. Augmentations were chosen
to be realistic, i.e., representative of real-scenario variances. For instance, the capacitor and
resistor images were rotated by 90◦, 180◦, and 270◦. These values were chosen as realistic
because pick-and-place assembly devices primarily implant SMD components horizontally
or vertically with high precision and mild deviation. Additional augmentations include
random image cropping with a maximum of 25% to encourage algorithm generalizability
and regularization.

Additionally, before classification, images are normalized by scaling data to possess
zero mean and unit variance. The dataset, which consisted of 8000 images after augmenta-
tion, was split 80%:20% into training and testing sets. The training data was further split
80%:20% for validation testing. Data was split to maintain balanced classes. When possible,
3-fold cross validation is performed. The loss function, optimization algorithms, and other
algorithm-specific parameters vary by the method employed, and will be discussed in the
following subsection.

4.2.1. Previous Classifiers from Literature

For a baseline, two conventional ML approaches were implemented: the squared error
classifier and the hinge linear classifier. For both classifiers, two different models were used:
one to model resistors, and the other for capacitors. Images were then classified based
on the model that returned the highest confidence (i.e., match score). The hinge linear
classifier models, which simulate linear support vector machines (SVMs) by optimizing
over hinge loss, were configured as one vs rest. All linear classifier models were trained
using stochastic gradient descent for 1500 epochs maximum, with a 10-epoch early stopping
condition with an epsilon of 1× 10−4.

Several standard neural network (NN) approaches of various architectures were
explored. Select examples are described below, including two fully-connected dense NNs,
two convolutional NN (CNN), and VGG16 [31].

Two dense NNs were implemented: one with a single hidden layer (1024 nodes), and
another with two hidden layers (1024 and 256 nodes). Each node employed a Rectified
Linear Unit (ReLU) activation function [32]. Models were trained using an Mean Squared
Error (MSE) cost and a Stochastic Gradient Descent(SGD) optimizer function with a step
size of 0.0001. All the NN models were trained for a maximum of 150 epochs unless
stopped early by the early stopping condition, similar to the ML classifiers.

Two CNNs were implemented: one with two convolution layers (16 and 32 filters), and
another with three convolution layers (16, 32, and 64 filters). Convolution layers, which
extract local image features, dramatically increase the number of trainable parameters
relative to the amount of data. Hence, regularizing layers were utilized in the convolution
layers: max pooling layers of size 2 and dropout layers with 25% probability. Here, only
CNNs with two or three convolution layers are considered because (a) there isn’t enough
data to support a larger architecture and (b) at least 2 convolution layers are necessary to
efficiently detect curves rather than just lines and summations of lines, such as the curved
edges of many SMD capacitors (Figure 2). For both CNNs, the two hidden layer dense NN
described in the preceding paragraph was incorporated after the feature-extracting layers.
Models were trained using the same MSE cost function and an SGD classifier with step
size of 0.0001, momentum of 0.5 and the same early stopping condition as before.

To explore deeper networks, a popular CNN architecture called VGG is also evaluated.
Here, the VGG16 architecture, which has been the standard for many computer vision
tasks, is programmed as in [31], with transfer learning done with our dataset.
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4.3. Detection of Resistors and Capacitors

Detection of PCB components is the goal of this study. In the previous section
(Section 4.2), existing classification methods were considered to gain insight in the class
separability of the data in low- and high-dimensional spaces. In this section, existing
methods are considered for detecting resistors and capacitors for comparison against our
proposed method, the electronic component localization and detection network–ECLAD
Net. Considering the various challenges outlined in Section 2, such as the limited amount of
data in particular, we primarily consider simpler methods such as SSD [27] and RCNN [24].

For this experiment, 26 images of PCBs are used in addition to the 8000 images of
resistors and capacitors described in Sections 4.1 and 4.2. Component images are used to
re-train, through transfer learning, the previous object detection networks, which possess
pre-trained weights. PCB images were then used to evaluate the object detection networks.
Detection experiments follow similar train-validation-test splits, class balancing, and 3-fold
cross validation as the component images in Section 4.2. Details on the implemented
detection networks, along with any adaptations, are discussed in the following subsection.

4.3.1. Previous Detectors from Literature

Two single shot detectors (SSDs) were implemented: the SSD architecture as described
in [27] and a modified version. The SSD proposed in [27], which builds off a VGG16 back-
bone, utilizes a pyramid of anchors to identify region proposals. The set of anchor boxes
are manually selected based on component size. After the probabilities were determined,
overlapping predictions are removed using Non-Maximal Suppression (NMS) [33]. For
a simple baseline, a modified version of the SSD proposed in [27] is also implemented
utilizing the CNN with three convolution layers described in Section 4.2.1 in place of the
VGG16 backbone in the original version. SSDs were run on the PCB images in overlapping
300 × 300-pixel windows. After NMS, results were merged as in [33] so resistors and
capacitors were detected across the full PCB.

To explore two-stage object detection networks, a popular RCNN is also evaluated.
In this study, the RCNN architecture is programmed as in [24]. Here, the RCNN, which
uses an Alexnet [34] backbone, utilizes Selective search [35] to identify region proposals.
Selective search follows the efficient graph-based segmentation method [36], which is
designed to capture regions of interest at various scales with the trade-off of missing objects
on the same scale. After the probabilities were determined, NMS and a linear SVM were
used. The RCNN was run on the PCB images similar to the SSDs, but with overlapping
227 × 227-pixel windows.

4.4. Electronic Component Localization and Detection Network

In this section, we propose the electronic component localization and detection net-
work (ECLAD Net), a specialized neural network built for PCB component detection,
presented in Figure 4. ECLAD-Net consists of two stages: region proposal and classifica-
tion. Each stage is detailed in the following subsections.

4.4.1. Region Proposal Stage

As discussed in Section 2, the field of PCB assurance has many aspects of high intra-
class/low inter-class variance which are unique. Unlike many conventionally-researched
applications, which tend to feature natural scenes with a large variety of colors and
textures, irregular contours, and sparsely-populated objects of interest, PCBs are more
structured. For example, PCBs tend to feature artificial designs with a limited variety of
colors, rectangular contours, and a multitude of densely-packed components with varying
appearances. Since PCB backgrounds (i.e., the boards) tend to comprise a small distinct
range of colors (e.g., green, blue, red), we developed a color-based background subtraction
algorithm inspired by chroma-keying.

Though exact details are proprietary information and a patent has been applied for, the
general procedure used in this study to achieve color-based background subtraction are as
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follows. First, various-sized median and gaussian filters were used to reduce noise. Then,
the original, unfiltered image and the filtered image were both converted into the Hue
Saturation Value(HSV) color space. Since PCB backgrounds are relatively monochromatic
and highly reflective, Hue channel thresholding and Saturation/Value reflection detection
are used to model the background. The background model is then post-processed using
binary morphological operations and used to isolate the individual PCB components in
the unfiltered and filtered images. Region proposals are determined by averaging the two
results. This is done to maintain both high frequency information (e.g., pins densely-packed
resistors and capacitors) and low frequency information (e.g., packaging, ICs). A rectangle
detector is then used to refine the region proposals, which may contain ICs, pins, ports,
resistors, capacitors, etc. or just background. An example of the output of stage one is
shown in Figure 5 (Left). Regions were then normalized and fed into the next stage of
ECLAD Net.

Figure 4. Proposed ECLAD-Net architecture for PCB component detection.

Figure 5. An example of ECLAD-Net results. (Left) Region proposals from the first stage. (Right)
Resistors and capacitors detected from the classification stage, which are in blue and green boxes,
respectively.

4.4.2. Classifier Stage

In addition to the region proposal stage, we also present a specialized classification
stage: a similarity prediction network similar to [37]. In [37], two CNNs were trained
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in parallel and the final layers were merged with a distance metric. This enables the
network to learn both discriminative information. In this study, two modified 3 Layer
CNN networks (as presented in Section 4.3.1) were used as the twin CNN architectures.
The final layers were merged by applying the distance metric in Equation (1) below.

δ( f (x1), f (x2)) = ( f (x1)− f (x2))
T( f (x1)− f (x2)), (1)

where f (x1) and f (x2) are the transformed input features from each of the twin CNN
architectures. To capture the error for iterative learning, a weighted convex sum called
contrastive loss [38] is used at the distance layer to ensure similar images are embedded
closer in the feature space. Hence, minimization is done over the distance metric discussed
in Equation (1) using the contrastive loss function in Equation (2).

L(x0, x1, y) = y‖ f (x0)− f (x1)‖+ (1− y)max(0, m− ‖ f (x0)− f (x1)‖), (2)

where m, the margin parameter, was set to 1 in this study. As there are two classes in our
study, we make use of two twin CNN setups for each class, i.e, two similarity prediction
networks. During training, both twin CNNs were fed the same set of images and trained in
parallel. However, one of the twin networks is specialized for classifying resistors, while the
other is specialized for capacitors. During classification, for each twin network, one CNN
is provided a template from the manually cropped dataset (a capacitor or resistor), and
the other CNN iterates over the region proposal. Regions that are similar to the template
image are then isolated with a match score; thus, for each region proposal we obtained a
probability of it being a resistor and another probability of it being a capacitor. The class
with the highest classification probability was deemed to be the predicted class. In addition,
we performed the same test using three different templates for generalizability; the mean
scores were then classified into the two classes. To extend this method to classify additional
types of components, additional specialized networks are necessary for each class.

4.5. Evaluation

For the classification experiment, the classifier stage of ECLAD Net (Section 4.4.2)
is compared with the existing classifiers described in Section 4.2.1. To evaluate the clas-
sifiers’ performances, training and testing accuracy are used. A significant performance
degradation from training to testing accuracy is indicative of model over-fitting. For the
classification experiments, accuracy is a measure of recall given in Equation (3).

Recall =
TruePositive

TruePositive + FalseNegative
(3)

For further insight regarding the class separability of the data, t-SNE [39] was used.
t-SNE is an unsupervised, non-linear feature reduction technique commonly used to
visualize high-dimensional data by projecting it onto a low-dimensional manifold. Here,
several t-SNE tests were conducted using various parameters; e.g., a perplexity of 10 to 30
and a step size of 10 to 20 were explored.

For the detection experiment, ECLAD Net (Section 4.4), is compared with the existing
detectors described in Section 4.3.1. To evaluate the detectors’ performances, in addition to
recall, precision, given in Equation (4) is also used.

Precision =
TruePositive

TruePositive + FalsePositive
(4)
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An additional metric called F1-score is also evaluated. This is a harmonic mean
between precision and recall scores and does not incorporate the biases of the individual
metrics but rather combines their shortcomings into one, as seen in Equation (5).

F1 score = 2 ∗ Precision ∗ Recall
Precision + Recall

(5)

In the field of PCB assurance, a recall degradation indicates that trustworthy hardware
is incorrectly flagged as suspicious, while a precision degradation indicates that suspicious
hardware is incorrectly deemed trustworthy. Though the former may result in wasted
resources (e.g., increased human SME involvement, tossed PCBs), the latter means an
unsecured supply chain.

5. Results and Discussion

Results for the classification and detection experiments described in Section 4 are
presented below.

5.1. Classification of Resistors and Capacitors

Table 2 presents the training and testing accuracy of the various classification methods,
as described in Section 4.2. Our findings are detailed in the following paragraphs.

Table 2. The classification results for resistors and capacitors, with manually-cropped images given
as input. The average accuracy from a set of five individual trials is reported.

Learning Model Training Accuracy Testing Accuracy

Squared Error Linear Classifier 51.6% 63.7%
Hinge Linear Classifier 95.2% 94.37%
1 Layer Dense NN 83.7% 82.8%
2 Layer Dense NN 96.1% 95.8%
2 Layer CNN 97.3% 97.2%
3 Layer CNN 98.9% 99.0%
VGG 98.1% 89.6%
ECLAD Net- Classifier Stage 99.1% 99.0%

The squared error linear classifier, one-hidden layer dense NN, and VGG16 demon-
strated the lowest testing accuracy. The baseline squared error linear classifier performed
as expected, as the classifier’s assumption of a Gaussian distribution was not an accurate
estimation of the data’s Bernoulli distribution. Results of the one-hidden layer dense NN
indicate that the data is too complex for such a small architecture to efficiently understand
and model. On the other hand, the significant performance degradation between VGG16’s
training and testing accuracy implies over-fitting. This means there is not enough data for
such a large architecture to regularize. Though the dataset can be augmented, there still
remain limitations in the PCB assurance domain, especially concerning hardware Trojans
(Section 2). These findings suggest that an ideal learning model should be nonlinear, larger
than a one-hidden layer NN, and smaller than VGG16 in terms of the number and the size
of layers.

The hinge linear classifier, two-hidden layer dense NN, and two-convolution layer
CNN, all show accuracy in the 90 to 100 percentage range (Table 2). Results of the hinge
linear classifier indicate that there exists a feature space in which the problem is linearly
separable for the most part, but there still exists a few outliers. The two-hidden layer dense
NN performed better than the one-hidden layer model, which supports that the latter
model was indeed too small for this application. The results of the two-convolution layer
CNN emphasize the importance of extracting local shapes and textures for detection and
classification. These findings support that local images features are important for PCB
component classification, as conceptually discussed in Section 2.
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The three-convolution layer CNN and ECLAD-Net classifier consistently demon-
strated the highest performance (Table 2). The three-convolution layer CNN performed
slightly better than the two-convolution layer model, however both require hundreds
of examples of each class. In contrast, the ECLAD-Net classifier can learn with as few
as single-digit amounts of examples per class. This is ideal for the single-PCB scenario,
where an operator or an end-user wishes to authenticate a purchased PCB. While resistors
and capacitors are relatively common, there are many other types of components that are
uncommon such as crystal oscillators; Zener diodes; and hardware Trojans, which are
specifically designed to go undetected. Though 10 images per class is sufficient to obtain
excellent results, the ECLAD-Net classifier’s siamese network architecture [37] is inherently
capable of training on a single instance of an image class with decent accuracy.

In addition to evaluating the training and testing accuracy for the classification experi-
ments, a 3D t-SNE visualization of the resistor/capacitor separability is also trained and
presented (Figure 6). Samples were collected to represent a wide variety of the possible
resistors and capacitors. Though most instances were identified correctly, there were a few
failed cases, which will be discussed later in Section 5.3.

Figure 6. T-SNE visualization of resistor/capacitor class separability in 3D space [39]. Resistors
are predominantly on the left side of the XZ plane (green and red), and capacitors are on the right.
Images are in grayscale for visualization purposes only.

With the classification accuracy and the t-SNE visualization, we establish that resistors
and capacitors, and in extension a variety of other PCB components, can be classified. In
the next section, we discuss the results of the detection experiments.

5.2. Detection of Resistors and Capacitors

Table 3 presents the precision, recall, and F1 scores of the various detection methods,
as described in Section 4.3. Findings are described in the following paragraphs.

As shown in Table 3, SSD, modified SSD, and RCNN demonstrated decently high
recall scores, but relatively low precision. As discussed in Section 4.5, a low recall indicates
trustworthy components are incorrectly flagged as suspicious, while a precision indicates
suspicious components are incorrectly deemed trustworthy, a more dangerous scenario.
In other words, though the three methods rarely miss resistors or capacitors, they return
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numerous false positives. Such results are predominantly due to the number and quality of
returned object proposals. Networks such as these are typically designed to locate objects
with a high recall, while a threshold must be manually set to filter out false positives.
However, as demonstrated, this generic approach is not always sufficient in the PCB
assurance field, which exhibits very dense placements of low inter-class/high intra-class
variance components (Section 2).

A notable object proposal complication, apart from missing objects, is the grouping of
multiple components. In this study, SSD and RCNN had approximately half the proposed
regions included multiple components, thereby complicating the predictions. Therefore, the
accuracy of the region proposal system is just as important as the classification system. For
example, SSD, which had a VGG backbone larger than the amount of data could support,
returned more false region proposals and hence performed worse than the modified SSD,
which had a smaller backbone. RCNN, with its selective search, faces similar problems.
In one experiment, selective search returned more than 2000 region proposals, with only
75 instances of resistors or capacitors. Even after non-maximal suppression, many false
positives still remained present. In the field, these large amounts of false positives, which
must be manually-reviewed by human SMEs, are impractical for real-time PCB assurance.
In addition to precision and recall, which describe only the effectiveness in a subset of the
results, overall effectiveness of the approaches is described by the F1 scores in Table 3.

ECLAD-Net demonstrated the highest performance across all the evaluation metrics
(Table 3). Its background subtraction technique, which is context-based yet still automatic,
provides region proposals with a high accuracy in addition to a close-fitting contour such as
the MaskRCNN [40]. In addition, ECLAD-Net’s region proposal stage inherently prevents
overlapped regions, which significantly reduces the number of false positive proposals
and removes the necessity for non-maximal suppression. The number of region proposals
returned by ECLAD-Net’s first stage are on the magnitude of 100s, compared to SSD’s
anchor boxes and RCNN’s selective search, which are on the magnitude of 1000s. ECLAD-
Net’s region proposal stage, which has only one parameter - a minimum area to capture, is
able to operate at various scales.

In addition to the region proposal network, ECLAD-net’s similarity-based classifica-
tion network is also specialized to improve performance. This similarity-based network
is effective for two reasons: (i) it learns discriminative information despite the low inter-
class variance between resistors and capacitors, and (ii) it is capable of learning with few
instances per class. In addition, ECLAD-Net can incorporate new information by either
directly comparing the new samples with the old or by retraining on the newer samples
and then comparing for a match.

Table 3. The detection results for resistors and capacitors, with PCB images given as input.

Learning Model Recall Scores Precision Scores F1-Scores

SSD 88.4% 59.9% 71.41%
SSD- Modified 93.3% 67.4% 78.26%
RCNN 97.3% 53.7% 69.20%
ECLAD-Net 98.9% 87.2% 92.68%

5.3. Edge Cases

In this study, numerous challenges for PCB object detection were encountered. Though
the proposed ECLAD-Net shows significant performance improvement compared to con-
ventional approaches, completely autonomous PCB assurance is far from perfection. For
instance, in the component segmentation stage, only about 90% of the components were
captured in an unsupervised manner. Though it is possible to modify the parameters and
produce near 100% accurate region proposals, such parameter tuning involves a lot of
manual effort. Hence, there is still a need for a more intelligent segmentation algorithm.
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Figure 6 shows examples of components that were misclassified in the classification
experiments. As shown, the similar color and texture patterns make it difficult even for a
human operator to identify. Some instances lie so close to the class separation boundary,
they slightly overlap into the other region. Though the classification accuracies are above
99%, the field of PCB assurance demands near 100% accuracy (Section 1). Therefore, future
research should focus on these challenges.

On the other hand, detection leaves a lot more room for improvement. Examples of
edge cases are presented in Figure 7 and described in detail in the following sentences.

Figure 7. Challenging edge cases seen in the detection experiments. Shown on the left are true
positive cases, i.e., difficult cases that were correctly recognized. On the right are false positive cases,
i.e., difficult cases that were incorrectly recognized.

For the true positives, we see (a) a capacitor under non-ideal illumination due to
being in the shadow of a large component, and (b) a large flat resistor with text in a
dataset where the majority of resistors are small and without text. Despite these challenges,
ECLAD-Net was still able to correctly recognize them. For the false positives, we see
several examples. In Figure 7a, a horizontally-oriented capacitor is in the same region
proposal as another. Here, ECLAD-Net correctly classified them as a capacitor, but failed
to identify the two instances as separate. Figure 7b shows an uncommonly gray capacitor
that was misclassified as a resistor. In Figure 7c, a light brown LED was misclassified as
a capacitor due to its similarities to typical SMD capacitors. Figure 7d shows two solder
pads under a shadow that were misclassified as a resistor. Though there is no component
here, the shadow creates a false impression of a resistor. In Figure 7e, a dark gray inductor
was misclassified as a resistor. For false positive cases, (c), (d), and (e), recognition can be
difficult for even non-experts. Hence, as shown in Figure 7, there are several edge cases
between resistors and capacitors, along with other types of components that were not
trained on.

ECLAD-Net has shown to be effective in scenarios popular object detection networks
fail, however the above edge-cases show that there is room for improvement by incorpo-
rating and learning multiple classes of components. Our current efforts in collecting and
building a larger, more comprehensive and representative dataset will help this process
and guide future research.

PCB authentication and assurance is another example of dense object detection for
which there has been very limited research. It needs specialized approaches and increased
attention from the computer vision community. An example of a similar problem is pre-
sented in spacenet [41] which works with dense satellite images; its objective is mainly
to detect houses from satellite images, which makes it ultimately, a “one class” problem.
Supermarket product detection [42], on the other hand, deals with multiple classes, but the
accuracy of the predictions is not of high priority, yet identifying multiple classes is impor-
tant. PCB component detection, however, needs accurate localization and classification of
various microelectronic components, all of which share a high amount of variance in them.
Thus, ECLAD-Net can be utilized for both of these purposes with slight modifications,
as they are special cases of PCB component detection. Similarly, this is also applicable
to problems in the science and medical spheres for the detection of small components in
medical imaging, such as in [43].
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6. Conclusions

In this paper, we proposed and described a network for PCB component detection
to identify malicious, counterfeit, reused, or recycled components. We also presented a
discussion of the unique challenges in PCB assurance, such as low inter-class/high intra-
class variance, dense object placement, and limited data. Popular generic approaches for
object detection, such as RCNN and SSD, do not provide the near-perfect performances
desired in PCB assurance applications. Therefore, we present a more specialized network
called the electronic component localization and detection network (ECLAD-Net). Results
from various experiments were presented to compare the proposed ECLAD-Net with
existing methods to showcase the need for such specialized networks.

Though ECLAD-net has demonstrated excellent classification and detection perfor-
mance relative to the generic methods, there is still much room for improvement. While this
paper focused on resistors and capacitors, similar problems arise with other components
as well, such as ICs and transistors (Figure 2). Due to the uniqueness and importance of
the PCB assurance field, attention and collaboration is necessary from both the hardware
assurance community and the computer vision community. While this paper presents
some fundamental research to help pave the way, there exists a larger scope for research
and improvement, and we hope to continue research in this front.

In the future, we hope to improve our network to provide better precision and recall,
while also improving algorithm speed. Component detection is only one part of PCB
assurance. Text recognition for serial number verification, texture analysis for counterfeit
detection, and 3D analysis for Trojan detection are just a few examples of other areas that
would benefit from better and more efficient computer vision algorithms tailored toward
PCB assurance and hardware security. In addition, there is also a great need for a larger and
more comprehensive dataset for PCB assurance, as the lack of data is currently a bottleneck
in applying DL to hardware assurance. To aid the community and help future research,
we are in the process of building a public dataset and currently have around ten thousand
component images.
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Abbreviations

The following abbreviations are used in this manuscript:
AI Artificial Intelligence
AP Average Precision
BoM Bill of Materials
CNN Convolution Neural Network
DL Deep Learning
DSLR Digital Single-Lens Reflex
DUT Device Under Test
ECLAD-Net Electronic Component Localization and Detection Network
HSV Hue Saturation Value
ICs Integrated Circuits
ML Machine Learning
MSE Mean Squared Error
NMS Non-Maximal Suppression
NN Neural Network
PCB Printed Circuit Board
RCNNs Region Based Convolutional Neural Networks
ReLU Rectified Linear Unit
SGD Stochastic Gradient Descent
SMD Surface Mount Device
SMEs Subject Matter Experts
SNR Signal-to-Noise Ratio
SSDs Single Shot Detectors
SVMs Support Vector Machines
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