
cryptography

Article

Partly-Pseudo-Linear Cryptanalysis of Reduced-Round SPECK

Sarah A. Alzakari * and Poorvi L. Vora

����������
�������

Citation: Alzakari, S.; Vora, P.

Partly-Pseudo-Linear Cryptanalysis

of Reduced-Round SPECK.

Cryptography 2021, 5, 1.

https://doi.org/10.3390/

cryptography5010001

Received: 2 July 2020

Accepted: 2 December 2020

Published: 30 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science, The George Washington University, 800 22nd St. NW,
Washington, DC 20052, USA; poorvi@gwu.edu
* Correspondence: salzakari@gwu.edu

Abstract: We apply McKay’s pseudo-linear approximation of addition modular 2n to lightweight
ARX block ciphers with large words, specifically the SPECK family. We demonstrate that a pseudo-
linear approximation can be combined with a linear approximation using the meet-in-the-middle
attack technique to recover several key bits. Thus we illustrate improvements to SPECK linear
distinguishers based solely on Cho–Pieprzyk approximations by combining them with pseudo-linear
approximations, and propose key recovery attacks.
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1. Introduction

ARX block ciphers—which rely on Addition-Rotation-XOR operations performed a
number of times—provide a common approach to lightweight cipher design. In June 2013,
a group of inventors from the US’s National Security Agency (NSA) proposed two families
of lightweight block ciphers, SIMON and SPECK—each of which comes in a variety of
widths and key sizes. The SPECK cipher, as an ARX cipher, provides efficient software
implementations, while SIMON provides efficient hardware implementations. Moreover,
both families perform well in both hardware and software and offer the flexibility across
different platforms that will be required by future applications [1,2]. In this paper, we focus
on the SPECK family as an example lightweight ARX block cipher to illustrate our attack.

Pseudo-linear cryptanalysis [3–5] is a method of analyzing and measuring the security
of an ARX block cipher. The main idea of the pseudo-linear approximation is to examine a
window (group of contiguous bits) of size w, for some w < n, and approximate addition
modulo 2n by addition modulo 2w. If the carry into the window is estimated correctly,
the approximation will be perfect. The probability of correctness for a random guess of
the value of the window is 1

2w , but the accuracy of the pseudo-linear approximation can be
much larger.

This paper presents a new approximation and corresponding key recovery attack,
Partly-Pseudo-Linear attack, combining pseudo-linear approximation with linear cryptanal-
ysis of addition modulo 2n using Cho and Pieprzyk’s property of modular addition [6,7].
This combination of linear and pseudo-linear attack is original to the best of our knowledge.
We illustrate, on SPECK, improvements due to this approximation over the Cho–Pieprzyk
approximation for all rounds. We further use our approximation to describe key recovery
attacks. Additionally, for SPECK 32/64, we are able to provide experimental results of a few
implemented six-round attacks verifying our proposal. We have demonstrated a similar
approach to cryptanalysing the SPARX cipher in a later paper [8].

We compare our attack to [9,10] which present linear distinguishers using the Cho–
Pieprzyk property. Our key recovery attacks are able to either cover more rounds with
similar or better bias, or, when we cover same rounds, our bias is better. We are able to
attack nine rounds for SPECK 32/64, 11 rounds for SPECK 48/96, 14 rounds for SPECK

64/128, 12 rounds for SPECK 96/144 and 14 rounds for SPECK 128/256 (see Section 3 for
more detailed comparisons). Note that our approximation is itself a key recovery attack
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for more than a single bit of key, because its use requires nonlinear operations with some
key bits. Though they do not discuss this, the linear distinguishers of [9,10] could possibly
be extended to key recovery attacks, bias permitting, by appending rounds of encryption
and/or decryption. In this instance, our attack covers more rounds for the variants SPECK

64/96 and 64/128, and covers same rounds for SPECK 48/72, determining a few more key
bits. For SPECK 96/96 and 128/128, the data complexity of the attacks of [9,10] is large
enough that they cannot add encryption/decryption rounds and hence can perform no
key recovery, while we are able to determine 46 (of 96) and 50 (of 128) key bits respectively.
While [9,10] do not report key recovery, they would need to reduce their covered rounds in
order to determine key bits. In other instances too, when we are not able to cover same
rounds, we often find many more key bits.

We find that our proposed Partly-Pseudo-Linear attack, a combination of Cho–Pieprzyk
linear approximations with pseudo-linear approximations, is not necessarily more power-
ful than attacks that use other approaches to linear trails, such as Wallen’s approach [11–13].
This seems reasonable, as the correct comparison with these would be a combination of
their linear trails with pseudo-linear approximations, which is out of the scope of this paper.

This paper is organized as follows. In Section 2, we present a brief description of
SPECK and the notation used in this paper. In Section 3 we focus on the most relevant
related work. In Section 4, we present our first contribution by applying the pseudo-linear
attack on SPECK—specifically, SPECK 32. In Section 5, we present our proposed Partly-
Pseudo-Linear attack on SPECK and the results of the implementation. We conclude in
Section 6.

2. Preliminaries

This section presents our notation and briefly describes the SPECK cipher.

2.1. Notation

The following describes the notation used in this paper.

• �n: Addition modulo 2n

• �n: Subtraction modulo 2n

• ⊕: The bitwise exclusive-or

• ≫r: r-bit right rotation on an n-bit word

• ≪r: r-bit left rotation on an n-bit word

• PL(CL): Left word of the Plaintext (Ciphertext)

• PR(CR): Right word of the Plaintext (Ciphertext)

• xl j(xrj): Left (right) word at round j

• xl j
t(xrj

t): tth window of state xl (xr) at round j

• xl j
t(i, i + w) (xrj

t(i, i + w)): window t with size w of the left (right) word x, where the
msb is at i and the lsb is at i + w− 1, for 0 ≤ i < n

2 and 1 ≤ w ≤ n
2 .

• xl j
t(i) (xrj

t(i)): Bit at index i of the window where 0 ≤ i < w the left (right) word x.

2.2. The SPECK Cipher

The SPECK cipher is a family of lightweight block ciphers, proposed by inventors from
the National Security Agency (NSA) in June 2013 [1,2]. A member of the family is denoted
by SPECK 2n/mn, where the block size is 2n and the key size is mn for some m ∈ {2, 3, 4}.
Each round function in SPECK has three main operations:
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• Addition modulo 2n, denoted �n

• Rotation: right rotation by α, denoted≫ α and left rotation by β, denoted≪ β

• bitwise XOR, denoted ⊕

In this construction the block of the plaintext is split into two words, PL and PR, which
are then added, XORed and rotated by the round function. Figure 1 shows one round from
SPECK; where xl j (xrj) denotes to the left (right) input words of round j and kj denotes to
the key of round j.

Figure 1. SPECK round function (j denotes to the number of round).

The output of the round function for the left word of SPECK is:

xl j+1 = ((xl j ≫ α)�n xrj)⊕ kj. (1)

The output of the round function for the right word is:

xrj+1
R = (xrj ≪ β)⊕ xl j+1. (2)

The parameters specifying the SPECK versions are listed in Table 1.

Table 1. The SPECK cipher family.

Block Size, 2n Key Size, mn Word Size, n α β Rounds

32 64 16 7 2 22

48 72 24 8 3 22
96 23

64 96 32 8 3 26
128 27

96 96 48 8 3 28
144 29

128 128 64 8 3 32
192 33
256 34

3. Related Works

In this section, we review previous works that are relevant to our contributions.
We first review linear cryptanalysis and pseudo-linear cryptanalysis, as we will combine
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the two approaches for our attack. We then describe cryptanalysis of SPECK, as we will
illustrate our attack on the SPECK family.

3.1. Linear Cryptanalysis

Linear cryptanalysis [14] is one of the most powerful and widely used attacks on
block ciphers. It was introduced by Matsui in 1998, and is a known plaintext attack where
the attacker has access to both the plaintext and its encrypted version ciphertext [14,15].
Using linear cryptanalysis, an adversary is able to find a linear expression that approximates
a non-linear function that connects plaintext, ciphertext, and key bits with high probability.

The quality of the linear approximation is measured by the bias ε which is defined as
ε = p− 1

2 ; a higher bias in absolute value, |ε|, implies a better approximation and a more
efficient attack. The number of required known plaintext and ciphertext pairs (data com-
plexity, pairs) depends on the success probability desired and is roughly proportional to
ε−2. For example, pairs = 24 × ε−2 corresponds to a 99.80% success rate. Table 2 shows
different small multiple of ε−2 with their success rate of the linear approximation [14,15].

Table 2. The success rate.

Pairs 2 × ε−2 22 × ε−2 23 × ε−2 24 × ε−2

Rate 48.6% 78.5% 96.7% 99.9%

The Piling Up Lemma [14] provides an expression for the bias of an approximations
that results from the xor of s approximations, each with bias εi:

ε = 2s−1
s

∏
i=1

εi (3)

Linear Cryptanalysis of Modular Addition

The modular addition operation is nonlinear as an operation in Z2. The result of
modular addition in a certain position is the exclusive-or (addition in Z2) of the two bits in
that position and the carry into the position. The carry, in turn, depends on a non-linear
operation (the and operation, multiplication over Z2) of previous bits.

Cho and Pieprzyk [6] describe in their paper the behavior of neighboring bits in
modular additions. Consider c = a� b where a, b ∈ {0, 1}32 and� corresponds to addition
modulo 232. Let a = (an−1, . . . , a0), b = (bn−1, . . . , b0) and c = (cn−1, . . . , c0).

Lemma 1. (Practically verbatim from Cho and Pieprzyk [6]) Let ci be the ith output bit of the
modular addition. Then, c0 = a0 ⊕ b0, c1 = a1 ⊕ b1 ⊕ a0 × b0 and for 2 ≤ i ≤ n− 1:

ci = ai ⊕ bi ⊕ ai−1 × bi−1 ⊕
i−2

∑
t=0

at × bt ×
i−1

∏
r=t+1

(ar ⊕ br)
′′ (4)

According to Cho and Pieperzyk [7], if Cr(a, b) denotes the carry of modular addition,
from Lemma 2:

Cri(a, b) = ai × bi ⊕
i−1

∑
t=0

at × bt ×
i

∏
r=t+1

(ar ⊕ br), i = 0, . . . , n− 2 (5)

Then, obviously, ci = ai ⊕ bi ⊕ Cri−1(a, b) for i = 1, . . . , 31. Due to Equation (5),
the carry Cri(a, b) has the following recursive relation [7].

Cri(a, b) = ai × bi ⊕ (ai ⊕ bi)× Cri−1(a, b) (6)

All these equations with ai, bi and ci represent one bit each. In another paper, Cho and
Pieprzyk [6] describe a property of modular addition that removes the carry chain from
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Equation (4) and this property uses consecutive bits. Two consecutive bits can be approxi-
mated as:

ci ⊕ ci+1 = ai ⊕ bi ⊕ ai+1 ⊕ bi+1, with probability P =
3
4

. (7)

This means:
Pr[Cri(a, b)⊕ Cri−1(a, b) = 0] =

3
4

(8)

Removing the carry chain from Equation (4), using a mask λ to mask the bits that we
want to throw away and keep the bits that we are interested in, we can write:

P[λ× (a� b) = λ× (a⊕ b)] =
3
4

(9)

The mask λ contains exactly the two consecutive bits we are interested in and we can
replace λ× (a� b) by λ× (a⊕ b) to obtain a linear expression. This approximation holds
with a probability equal to 3

4 . Consequently, the bias is equal to 1
4 . In fact, a prerequisite for

Equation (9) is that the following two cases are avoided, because these two cases do not
adhere to the Cho and Pieprzyk framework [6]:

1. Bitwise rotation breaks the two consecutive bits. After the rotation, one of these two
bits will be in the most significant bit position (msb) and the other will be in the least
significant bit position (lsb).
Example: 00011000≫ 4 = 10000001

2. Bitwise exclusive-or breaks the two consecutive bits. These two bits will be not
consecutive any more.
Example: 00011000⊕ 00110000 = 00101000

3.2. Pseudo-Linear Cryptanalysis

McKay and Vora present the idea of pseudo-linear cryptanalysis [3–5] which aims
to overcome the limitations of traditional linear cryptanalysis by approximating addition
modulo 2n for large values of n with addition modulo 2w, for a small window size w,
0 < w ≤ n. In other words, the pseudo-linear approximations use addition modulo 2w

and exclusive-or over a w-bit strings of contiguous bits (windows) instead of using the
entire n-bit strings. In this section we provide detail about the approach, which was first
developed to analyze Threefish for the SHA-3 competition [5].

McKay and Vora [5] illustrate why this is an improvement over traditional linear
cryptanalysis. Consider the following example:

In Figure 2, there are two n-bit words added modulo 2n, only the value of the dark
square, labeled z, is needed and it is of size w in bits. Denote by x and y the operand
windows in the same position as z. Thus, z can be approximated as x�w y. The correctness
of this approximation is dependent on the value of the carry into the window z.

Figure 2. Addition of two words.

Let part(x, s, e) represent bits of the word x in positions [s, e), where s represents the
index of the word that the window starts with and e is the size of this window, 0 ≤ s < n,
0 ≤ e < n, and the least significant bit (lsb) is at index s. We have two scenarios, illustrated
by examples for n = 12. We have two strings added modulo 212, z = x � y. The adversary
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wants to approximate only a window of 4 bits of z. Thus, part(z, 4, 4) ≈ part(x, 4, 4) �2
part(y, 4, 4). Note that the approximation implicitly assumes that the carry into bit s is zero.

1. Suppose x = 001001000100 and y = 100010101010. In this case the approximation is
correct because the carry into the window is correctly assumed to be zero (See Figure 3).

Figure 3. Correct approximation of a window of z = x� y.

2. Suppose x = 00100100110 and y = 100010101010. In this case the approximation
is incorrect because the carry into the window is incorrectly assumed to be zero
(See Figure 4).

Figure 4. Incorrect approximation of a window of z = x� y.

The probability that the carry is 0 is exactly the probability that the approximation
is correct when it is applied for the first time and both summand windows are correct
(and not yet the result of approximations). This probability is equal to 1

2 + 2−(s+1) where
s is the lsb of the window [4]. Note that the probability of correctly estimating an entire
window is slightly larger than 1

2 . How does one measure the efficacy of this approximation?
Consider the approximation of a single bit, whether by linear approximation or any

other technique. A guess made at random with no information would be correct with
probability 1

2 . The bias of the approximation is defined as the deviation from 1
2 .

If w > 1, the pseudo-linear approach provides an approximation for multiple bits,
and we define an error measure for the approximation as the difference between the
probability of correctly approximating the (entire) window and 1

2w . Thus the pseudo-linear
approximation is more advantageous if the size of the window is larger.

Note that the pseudo-linear approximation capture the influence of intermediate
carries, which are not typically captured by linear approaches. This is expected to improve
the result, even when the aim is to approximate the parity of the final window (see,
for example, Section 5.1).

Additionally, intuitively, for a large window, a non-zero carry will not always affect the
higher-order bits. Thus, if one is measuring the number of bits that are well-approximated
by the pseudo-linear expression (in the previous paragraph, we considered only whether
the entire w-bit window was correctly evaluated or not), the higher order bits are more
likely to be correct.

Finally, because addition modulo 2w and exclusive-or do not distribute, the composi-
tion of the pseudo-linear approximation and the key injection includes key bits combined
in a non-linear manner. For this reason, the use of the pseudo-linear approximation for key
recovery requires guessing multiple key bits. In spite of this, we are able to obtain attacks
more efficiently than the brute force attack because pseudo-linear approximations enable
the reduction of the number of key bits from those required by the cipher [5].
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3.2.1. Some Observations Regarding the Addition Window

McKay and Vora [3] provide some properties of the approximation over addition
windows. Consider two n-bit words, x and y, selected uniformly at random, and a window
size w < n. The following notation is used in the lemmas: (quoted verbatim from [4])

• ⊕ Bitwise exclusive-or

• � Addition modulo 2n

• �w Addition modulo 2w

• � Subtraction modulo 2n

• �w Subtraction modulo 2w

Lemma 2. “Let 0 ≤ s < s + w < n. Then Pr[ part (x� y, s, s + w) = part (x, s, s + w) �w
part (y, s, s + w)] > 1

2 ”.

In the proof of this lemma, McKay and Vora demonstrate that

Pr[ part (x� y, s, s + w) = part (x, s, s + w)�w part (y, s, s + w)] =
1
2
+ 2−(s+1).

Note that this is the probability of the entire window being correctly approximated.
The probability of bit parities being correctly approximated will typically be larger.

Lemma 3. Pr[ part (x� y, 0, w) = part (x, 0, w)�w part (y, 0, w)] = 1.

Lemma 4. Pr[ part(x⊕ y, s, (s + w)mod n) = part(x, s, (s + w)mod n)⊕ part(y, s,
(s + w)mod n)] = 1.

Corollary 1. Let 0 ≤ s < n and (s + w)mod n < s. Pr[ part(x � y, s, (s + w)mod n) =
part(x, s, (s + w)mod n)�w part(y, s, (s + w)mod n)] > 1

2 .

Corollary 2. Pr[ part(x� y, s, (s +w)mod n) = part (x, s, (s +w)mod n)�w part (y, s,*(s +
w)mod n)] = 1

2 .

Corollary 1 is for the case when the window wraps around from the higher end
of the n-bit word to the lower end. If the window does not wrap around in the word,
the corresponding result is presented in Lemma 3.

The use of these equations will lead us to approximate windows derived from a
single addition. However, the ARX block cipher is an iterated cipher. Thus, after the first
approximated addition, the input of all further subsequent additions changes. In particular,
the input for the further additions is dependent on the input of the operand bits that
precede this addition over all rounds approximated [5].

3.2.2. Pseudo-Linear Approximations of ARX Round Functions

1. Base Approximation
The base approximation is a simple approximation that follows the windows until
the target window. All exclusive-or operations and addition modulo 2n operations
are preserved, assuming that the carry into all windows is 0 [3].

2. Carry Patterns
A carry pattern is a series of carry values, ci ∈ {0, 1} where i denotes to the approxi-
mated addition window that may have a carry into it.

Multiple carry patterns, indexed by j, Cj = (c0, . . . , ci, . . . , cm−1) can be constructed for
each base approximation; here j denotes a specific carry pattern for the approximation,
i the approximated window, and m the total number of windows approximated. If ci
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= 1, then the carry going into the ith approximated addition window is 1. Thus,
the base approximation is overlaid by the m carry patterns, Cj + base to result in m
estimates of the target window. [5].

3. Computing Bias
If cp carry patterns are used, the bias may be experimentally computed to be the differ-
ence between the probability of the approximation being correct and the probability
of correctly guessing a carry pattern at random, with cp tries. The carry patterns will
be correct with probability cp

2w instead of 1
2w since each pattern represents a different

approximation. According to McKay [3] the bias is computed using Equation (10)

bias =
times correct − #patterns

2w × pairs
pairs

. (10)

3.3. Comparison between Pseudo-Linear Cryptanalysis and Linear Cryptanalysis

The pseudo-linear attack is clearly inspired by linear cryptanalysis, and there are
several differences that should be noted. Table 3, shows these differences [3].

Table 3. The main differences between linear and pseudo-linear cryptanalysis.

Linear Cryptanalysis Pseudo-Linear Cryptanalysis

The effect of several approximations can be easily
concatenated and simplified because there is only
one operation (exclusive-or).

The effect of several approximations cannot
be concatenated and simplified because the
two operations (exclusive-or and addition
modulo 2w) do not commute.

Combining key bits across rounds into a single func-
tion of the key, independent of plaintext bits, is
possible.

Cannot combine key bits across rounds into
a single function of the key independent of
plaintext.

The approximation may be used for a distinguisher
as well as for key recovery.

The approximation includes a non-linear
function of key and plaintext bits, and can-
not be used as a distinguisher but can be
used for key recovery.

Approximation of a single modular addition for
large window sizes has low bias.

Approximation of a single modular addi-
tion can result in high accuracy prediction
of large windows.

3.4. Cryptanalysis of SPECK

Since the publication of SPECK in 2013 [1,2], there have been several analyses of the
cipher, most focused on differential and linear cryptanalysis. Beaulieu et al. summarise the
cryptanalysis and implementation results [16]. Section 3.4.1, reviews different methods of
cryptanalysis on SPECK. Section 3.4.2, reviews some key results on linear cryptanalysis,
as the focus of this paper is to combine linear and pseudo-linear cryptanalysis.

3.4.1. Different Methods of Cryptanalysis on SPECK

There are two previous works that have the best results of the differential cryptanalysis
on SPECK. Ling et al. (2016) [17] present differential cryptanalysis of ARX block ciphers.
They develop a framework for finding differential characteristics. Lee et al. (2018) [18] present
a method of approximating the differentials probability using a SAT solver. In addition,
Yunwen et al. (2017) [19] presents a rotational-XOR cryptanalysis on SPECK.

Table 4 summarizes the result of Differential and rotational cryptanalysis on the
SPECK family.
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Table 4. Summary: differential and rotational cryptanalysis on the SPECK family.

N/K Ref. Type of Attack Number of Rounds Data Complexity Time Complexity

32/64 [19] Rotational 12 NA NA
[20] Differential 12 231 263

[17] Differential 14 230.47 262.47

[18] Differential 15 231.39 263.39

48/72 [17] Differential 15 245.31 269.31

[18] Differential 16 247.8 295.8

48/96 [20] Differential 13 248 296

[19] Rotational 15 NA NA
[17] Differential 16 245.31 293.31

[18] Differential 17 247.8 271.8

64/96 [17] Differential 19 261.56 293.56

64/128 [19] Rotational 13 NA NA
[20] Differential 15 264 2128

[17] Differential 20 261.56 2125.56

96/96 [17] Differential 20 295.94 295.94

96/144 [19] Rotational 13 NA NA
[20] Differential 13 293 2141

[17] Differential 21 295.94 2143.94

128/128 [17] Differential 23 2125.35 2125.35

128/128 [17] Differential 24 2125.35 2189.35

128/128 [19] Rotational 13 NA NA
[20] Differential 15 2126 2254

[17] Differential 25 2125.35 2253.35

3.4.2. Linear Cryptanalysis of SPECK

Ashur and Bodden (2016) [10] find a linear approximation of reduced round SPECK

using Cho and Pieprzyk’s property of modular addition. Bodden (2018) [9] improves
on [10] by using the Wallén algorithm to increase the number of attacked rounds by one.
These two papers do not have the best results on linear cryptanalysis of SPECK but they
present different techniques and both of them are focused on discovering a distinguisher
and do not attempt to recover key bits.

Yao et al. (2015) [11] were the first to implement Wallén’s enumeration algorithm for
the purpose of obtaining linear distinguishers and key recovery attacks on the SPECK family.
For SPECK 32/64, SPECK 48/72, SPECK 48/96, SPECK 64/96, SPECK 64/128, and SPECK

96/96 they have the distinction of having attacked the largest number of rounds.
Liu et al. (2016) [13] have the largest number of attacked rounds on the two largest size

members of the SPECK family. They show in their paper that they are able to attack more
rounds on the large SPECK with large key size especially for SPECK 96/144, SPECK 128/192,
and SPECK 128/256. The number of the attacked rounds is larger than [11]. Moreover,
they present a new search method for linear approximations of the SPECK family by using
the partial linear mask table (pLMT).

Fu et al. [12] present differential and linear trails (hull) for an ARX cipher and imple-
ment their approach on SPECK. For the linear trails (hull), they use the Wallén algorithm
and the Mixed Integer Linear Programming model (MILP). Table 5 summarises the results
of these previous works.

This paper presents a novel attack: the combination of linear and pseudo-linear attacks.
It illustrates improvements to SPECK attacks based solely on Cho–Pieprzyk approximations
by combining them with pseudo-linear approximations.
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Table 5. Summary: linear cryptanalysis on the SPECK family.

N Ref. Number of Rounds Guessed Key Bit/K Bias Data Complexity Time Complexity

32 [10] 7 LT 2−14 228 228

[9] 8 LT 2−15 230 230

This work 9 36/64 2−13.348 226.68 262.68

[12] 9 LT 2−14 NA NA
[13] 9 LT 2−14 NA NA
[11] 12 29/64 2−14 230.87 260.21

48 [10] 8 LT 2−22 244 244

[9] 9 LT 2−23 246 246

This work 10 27/72 2−22.436 244.872 271.872

[12] 10 LT 2−22 NA NA
[13] 10 LT 2−22 NA NA
[11] 11 24/72 2−20 243.72 267.93

This work 11 45/96 2−24 248 293

[11] 12 48/96 2−20 243.72 291.93

64 [9] 11 LT 2−31 262 262

[10] 11 LT 2−32 264 264

[13] 12 LT 2−30 NA NA
This work 13 28/96 2−29.88 259.76 287.76

[11] 13 31/96 2−25 254.63 285.74

[12] 13 LT 2−30 NA NA
[11] 14 31/96 2−31 262.73 294.87

[11] 14 63/128 2−25 254.80 2117.7

This work 14 49/128 2−31.58 263.16 2112.16

[11] 15 63/128 2−31 262.73 2126.9

96 [11] 8 47/96 2−11 227.65 274.7

[11] 9 95/144 2−11 227.65 2122.7

[10] 10 LT 2−47 292 292

This work 10 46/96 2−21.86 243.72 289.72

[9] 12 LT 2−48 296 296

This work 12 76/144 2−29.238 258.476 2134.476

[12] 15 LT 2−45 NA NA
[13] 17 NA/144 2−45 292 296

128 [11] 7 191/256 2−11 228.30 2220.7

[11] 8 63/128 2−11 228.30 292.69

[11] 9 127/192 2−11 228.30 2156.7

[10] 11 LT 2−63 2144 2144

This work 11 50/128 2−28.179 256.358 2106.358

[9] 13 LT 2−58 2116 2116

This work 13 122/192 2−31.299 262.598 2184.598

This work 14 173/256 2−33.415 266.83 2239.83

[12] 16 LT 2−58 NA NA
[13] 18 NA/192 2−61 2124 2128

[13] 19 NA/256 2−61 2124 2192

N is the block size and K is the key size. LT refers to a Linear Trail used as a distinguisher. NA refers to Not Available (not reported
in the paper).

4. Pseudo-Linear Cryptanalysis Attacks on Reduced-Round SPECK 32/64

In this section, we derive pseudo-linear approximations for 4 and 6 round attacks
on SPECK 32/64. That is, we approximate the addition mod 2n by addition mod 2w,
for w = 2, 3, 4, using some carry patterns for each approximated addition window unless
its right end is at the least significant bit (lsb) of the word. In later sections, we combine
these approximations with linear approximations.
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4.1. Four-Round Attack

We begin our work by implementing the pseudo-linear cryptanalysis on four rounds
of SPECK 32/64, as a meet-in-the-middle attack with a four-bit window approximated
by two rounds in the forward direction and two backward. The approximation requires
12 key bits. The first addition operation is before the key round injection, thus it can be
performed for the full word without windows or carry patterns, and is denoted NewPL in
Table 6, which shows the approximation for four rounds meeting at xl2

1(0, 1). Note that
x(i, i + w− 1) is a window of size w beginning at msb i and ending at lsb i + w− 1.

Table 6. The pseudo-linear attack approximation for 4 rounds meeting at xl2
1(0, 1), w = 2.

Round Encryption Decryption

1 NewPL = (PL≫ 7)�16 PR
xl1

1 = NewPL(0, 1)⊕ k1
1(0, 1)

xl1
2 = NewPL(7, 8)⊕ k1

2(7, 8)
xr1

1 = (PR(14, 15))≪ 2)⊕ xl1
1

2 xl2
1(0, 1) = ((xl1

2 ≫ 7)�2 xr1
1)⊕ k2

1(0, 1)

xl2
1(0, 1) ≡ xl3

1(0, 1)

3 xl3
1(0, 1) ≈ ((xl4

1(9, 10)⊕ k3
1(9, 10))�2 xr3

1(9, 10)))≪ 7
xr3

1(9, 10) ≈ ((xl4
2(11, 12)⊕ xr4

3(11, 12)))≫ 2

4 xl4
2(11, 12) ≈ ((CL(4, 5)⊕ k4

1(4, 5))�2 xr4
2(4, 5))≪ 7

xl4
1(9, 10) ≈ ((CL(2, 3)⊕ k4

1(2, 3))�2 xr4
1(2, 3))≪ 7

xr4
1(2, 3) = (CR(4, 5)⊕ CL(4, 5))≫ 2

xr4
2(4, 5) = (CR(6, 7)⊕ CL(6, 7))≫ 2

xr4
3(11, 12) = (CR(13, 14)⊕ CL(13, 14))≫ 2

Figure 5 shows how we drive our target window through two rounds of SPECK 32/64
and how a meet-in-the-middle attack works for four rounds. Approximations for windows
of sizes w = 3 and w = 4 are available in the Appendix A.

There are two approximations of interest, xl2
1(0, 1) (Table 6, Round 2) and xl3

1(0, 1)
(Table 6, Round 3), each of size w = 2. xl2

1(0, 1) is the first window (windows are denoted
in subscript) of the second round (rounds are denoted in superscript) in the left half.
It consists of bits 0 through 1. Similarly, xl3

1(0, 1) is the first window in the third round,
consisting of the two least significant bits of the left half state. Each window represents a
pseudo-linear approximation from a particular direction (forward or backward), and the
approximation meets in the middle, at the target window, xl2

1(0, 1) ≡ xl3
1(0, 1). Note that

for window xl2
1(0, 1), the approximation is exact when the key is correct because the

summands are exact and the window begins at the least significant bit and the incoming
carry is always zero. The approximation for window xl3

1(0, 1) needs an approximation for
xl4

1(9, 10) and xr3
1(9, 10), which, in turn, needs an approximation for window xl4

2(11, 12)
(window xr4

3(11, 12), xr4
2(6, 7), and xr4

1(2, 3) are computed exactly).
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Figure 5. Four-round pseudo-linear attack on SPECK 32/64.

First, we begin with approximating windows xl4
1(9, 10), xl4

2(11, 12), which use the
correct value of summand windows, and the approximation error is only due to an error
in carry.

McKay shows [4] that the bias of an incoming carry into a window with lsb at position
s, assuming a uniform distribution of the bits that have lower significance, is 2−(s+1).
If carrys denotes the carry coming into a window with the least significant bit s, and e1, e2
are the error in the first and second bit in a window.

Pr[e1e0 = 00 | carrys = 0] = 1
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In addition, the probability with which the intermediate carry is correctly computed
(by the pseudo-linear summation which assumes the incoming carry is zero) when the
incoming carry is actually one is 1

2 , which is also the probability with which the msb is
correctly computed when the incoming carry is one (of the four possibilities for the pairs of
lsbs of the summand window, when both lsbs are 0, the approximated intermediate carry
is 0 as is the true one. Similarly, when both lsbs are 1, both the true and the approximated
intermediate carries are 1. When one of the two lsbs is 0 and the other is 1, the approximated
carry is zero, but the true carry is one.). Hence:

Pr[e1e0 = 01 | carrys = 1] = Pr[e1e0 = 11 | carrys = 1] =
1
2

An approximation which uses the correct values for summand windows can never have
an error in the msb if the lsb is correct (that is, the carry was correctly estimated), hence:

Pr[e1e0 = 10 | carrys = 1] = 0

We start from round 4 to approximate xl4
1(9, 10) and xl4

2(11, 12) (note: xl4
1 , the first two-

bit window of the fourth round, is located at (2, 3) before rotation and, similarly, xl4
2 is located

at (4, 5)). Thus, we need to calculate the probabilities of these two windows as follows:
For window xl4

1 at (2, 3):

• Pr[e1e0 = 00] = Pr[carrys = 0] = 1
2 + 2−(3) = 0.625

• Pr[e1e0 = 01] = Pr[carrys = 1]Pr[carry + s + 1 = 0 | carrys = 1] = 1
2 (1− Pr[carrys =

0]) = 1
2 (1− 2−(3)) = 0.1875

• Pr[e1e0 = 10] = 0

• Pr[e1e0 = 11] = 1
2 (1− 2−(3)) = 0.1875

For window xl4
2 at (4, 5):

• Pr[e1e0 = 00] = Pr[carrys = 0] = 1
2 + 2−(5) = 0.53125

• Pr[e1e0 = 01] = Pr[carrys = 1]Pr[carry + s + 1 = 0 | carrys = 1] = 1
2 (1− Pr[carrys =

0]) = 1
2 (1− 2−(5)) = 0.2343

• Pr[e1e0 = 10] = 0

• Pr[e1e0 = 11] = 1
2 (1− 2−(5)) = 0.2343

For window xr3
1(9, 10):

• xr3
1(9, 10) ≈ xl4

2(11, 12)⊕ xr4
3(11, 12); the error probabilities are those of xl4

2 , as xr4
3 is

approximated with zero error.

Finally, window xl3
1(0, 1):

• is obtained by adding xr3
1(9, 10) and xl4

1(9, 10). This is the target window and we
are trying to compute the entire window correctly, so we compute Pr[e1e0 = 00].
If the incoming carry is carrys = 0, we have 16 possibilities for two bit errors in
each summand window, 6 of these, with an incoming carry of zero (the possibilities
are: both summands have error 00 or 10; with probability half, when both have
error patterns 01 or 11; with probability half when the summands are 01 and 11
(two possibilities).), and 8 with an incoming carry of one (with probability half, each of
the following pairs of summand errors will result in an error of 00 in the approximated
window when the true value of the incoming carry is one; each pair occurs twice:
00 and 01, 00 and 11, 01 and 10, 10 and 11) , give e1e0 = 00. The total probability
is obtained using the probabilities of errors in windows xl4

1(9, 10) and xl4
2(11, 12)

computed above to obtain:
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• Pr[e1e0 = 00] = 0.4198(Pr[carrys = 0]) + 0.1992(Pr[carrys = 1]) = 0.3097.

To experimentally verify our probability, we carried out 200 experiments for the pseudo-
linear approximation each with a key chosen at random. We used 210 P/C pairs for each
experiment. The average empirically determined probability for the xl2

1(0, 1) ≡ xl3
1(0, 1)

was 0.3476
The bias for this approximation is 2−3.35. Table 7 shows the results of these approxi-

mations. The bias for the pseudo-linear approximation above is experimentally computed
as described in Section 3 and verified theoretically by computing the probability of each
window in this approximation.

Table 7. Results of the pseudo-linear approximations: four rounds of SPECK 32/64.

Approximation Window Size Guessed Key Bits Bias Data Complexity Time Complexity

Table 6 2 bits 12 2−3.35 210 222

Appendix A 3 bits 17 2−2.01 210 227

Appendix A 4 bits 22 2−1.65 210 232

4.2. Six-Round Attack

The maximum number of rounds we can analyze for key recovery in SPECK 32/64
using the pseudo-linear approximation is 6. We are limited by the fact that there are several
key bits involved in the approximation and the pseudo-linear cryptanalysis requires the
adversary to try all possibility of the key bits that are involved in the approximation.
Using this approximation 44 key bits may be recovered with data complexity 210 and time
complexity 254.

5. Partly-Pseudo-Linear Cryptanalysis with Illustration on SPECK

In this paper, we present a new attack for the ARX block cipher which we term the
Partly-Pseudo-Linear attack: a meet-in-the-middle combination of pseudo-linear and linear
attacks. We show that linear cryptanalysis relying on Cho–Pieprzyk approximations of
modular addition is improved by replacing some rounds of linear approximation with
pseudo-linear approximations. Using the approach of Bodden and Ashur [9,10], we find
the longest linear trails to approximate a window of two consecutive bits in each direction
(forward and backward). Of these, we choose the trail(s) that would combine with a
lower-error pseudo-linear attack.

The pseudo-linear attack itself first uses pseudo-linear approximations for each addi-
tion operation. The approximations require the use of key bits, but because the approxi-
mation is limited to a window, fewer key bits are used than in the entire round. Every bit
of the window is computed with considerable accuracy as a function of a few key bits.
The larger the window size the more key bits are required; similarly, the more rounds one
covers (the more additions one approximates) the more key bits are required. This typically
limits the window size, and we focus on window sizes of two bits. Thus, our pseudo-linear
approximation computes each bit of a window of size two bits in one direction, as a func-
tion of some key bits. We use the xor of this window and compare it to the xor computed
using linear cryptanalysis in the other direction as described above.

We have done this analysis in the forward direction and backward direction since we
will use one of these directions by combining it with the pseudo-linear attack. Figure 6
shows an approximated round of SPECK using Cho–Pieperzyk approximations in each
direction. Note that the constraint of requiring two consecutive bits in the window to be
approximated restricts the windows that can be approximated.
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Figure 6. Transformation of a round function of SPECK: forward (right) and backward (left).

The final linear approximation approximates the xor of the two bits of the win-
dow. The bias of the Partly-Pseudo-Linear cryptanalysis approximation hence consists of
two parts.

1. The first part is the bias of xor of the bits of the window when the window is computed
using the pseudo-linear approximation.

2. The second part is the bias for the linear approximation, computed using traditional
linear approaches. The combination of these two biases using the piling up lemma
allows us to determine the number of plaintext and ciphertext pairs that we should
use in our experiments.

5.1. Implementation of the Partly-Pseudo-Linear Attack on SPECK 32/64

We illustrate the Partly-Pseudo-Linear attack (including the analytical approach to
determining the bias of a pseudo-linear attack) on 6 and 9 rounds of SPECK 32/64.

5.1.1. Six-Round Partly-Pseudo-Linear Attack

We find the longest linear trail arising from a two-consecutive-bit target window,
discovering one that covers four rounds in the backward direction and combines it with
two rounds approximated using pseudo-linear cryptanalysis in the forward direction.
Table 8 shows the derivation of the mask that is used in the linear part of the Partly-Pseudo-
Linear attack. Note that we do not cover more rounds than four rounds because rotation
breaks the requirement for two consecutive ones.

Table 8. Linear trail of SPECK 32/64 for four rounds—six-rounds Partly-Pseudo-Linear attack (Starting with 0x30000000

forward).

Round Cost λxi λyi λxi+1 λyi+1 Reason to Stop

1 1 0x0006 0x0000 0x7800 0x6000

2 2 0x7800 0x6000 0x8331 0x83c1

3 3 0x8331 0x83c1 0xe019 0x831f

4 3 0xe019 0x831f 0xf0be 0xc37e

5 0xf0be 0xc37e Broke requirement of consecutive ones for
0xf0be≫ 7.

The window size of the pseudo-linear approximation is two, w = 2, and 6 key bits
are required for the approximation. In the first round, the addition operation is performed
before the key round injection; thus, it can be performed exactly for the full word without
any need for an approximation. The second round involves a single modular addition
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that is approximated by an addition over 2w = 22 with zero carry. Table 9 shows the
Partly-Pseudo-Linear approximation for six rounds meeting at xl2

1(1, 2), which denotes
the first (and only) window in round 2. The window is in the left word. (Recall that xl j

t
represents the tth window of the left word in the jth round.)

Table 9. The approximation for the Partly-Pseudo-Linear attack: six rounds, meeting at xl2
1(1, 2).

Round Encryption Decryption

1 NewPL = (PL≫ 7)�16 PR
xl1

1 = NewPL(1, 2)⊕ k1
1(1, 2)

xl1
2 = NewPL(8, 9)⊕ k1

2(8, 9)
xr1

1 = (PR(15, 16 mod 16)≪ 2)⊕ xl1
1

2 xl2
1(1, 2) ≈ ((xl1

2 ≫ 7)�2 xr1
1)⊕ k2

1(1, 2)

xl2
1(1)⊕ xl2

1(2) ≡ linearT

3 to 6 linearT ≈ λx4 .CL⊕ λy4 .CR

Figure 7 shows how the target window travels through two rounds of SPECK 32/64.

Figure 7. Pseudo-linear approximation of first two rounds of SPECK 32/64.

Linear cryptanalysis, and the techniques for computing bias are well-established.
On the other hand, pseudo-linear cryptanalysis is new, and we describe here an approach
to computing the bias of the xor of a 2-bit window approximated using one instance of the
pseudo-linear approximation, as in this case.

Consider the 2-bit target window of interest, xl2
1(1, 2) (Table 9, Round 2), where the

pseudo-linear approximation meets the linear approximation. The pseudo-linear part
of the attack approximates the xor of the two bits of the window, xl2

1(1)⊕ xl2
1(2), by ap-

proximating the window through multiple rounds, and then, finally, xoring the two bits.
The linear part of the attack follows the Cho–Pieprzyk property of modular addition
through multiple rounds.

Let the pseudo-linear approximation of the xor be denoted ζ. Because this is the first
instance of pseudo-linear approximation, the values of the component windows being
added to obtain the target window are correct. That is, no approximations have been used
while obtaining xl1

2 ≫ 7 and xr1
1. Thus, if the incoming carry is zero, the entire target

window, xl2
1(1, 2), is estimated correctly and, hence, so is ζ. McKay shows [4] that the bias

of an incoming carry into a window with lsb s, assuming a uniform distribution of the bits
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that have lower significance, is 2−(s+1). If carrys denotes the carry coming into a window
with the least significant bit s,

Pr[ζ is correct | carrys = 0] = 1

Now consider the case when the incoming carry is 1. The lsb in the approximated
window of the sum will be incorrect with probability 1. However, there will be instances
when the msb is also approximated incorrectly, in which case the xor will be correct.
Because the component windows being added are correct, the msb will be correct if and
only if the intermediate carry, going from the lsb to the msb, is incorrect. Of the four possible
combinations of the lsbs of the two windows that are being summed, the pseudo-linear
approximation approximates the intermediate carry correctly when:

(a) Both bits are zero (and the intermediate carry is zero, its value does not depend on
the value of the incoming carry).

(b) Both bits are one (the intermediate carry is one, independent of the incoming carry).

Thus the probability with which the intermediate carry is correctly computed when the
incoming carry is one is 1

2 , which is also the probability with which the msb is correctly
computed when the incoming carry is one. Hence:

Pr[ζ is correct | carrys = 1] =
1
2

Hence:

Pr[ζ is correct] = Pr[ζ is correct | carrys = 0]Pr[carrys = 0] + Pr[ζ is correct | carrys = 1]Pr[carrys = 1]

= 1× (
1
2
+ 2−(s+1)) +

1
2
× (

1
2
− 2−(s+1))

=
1
2
+

1
4
+ 2−(s+2)

For the pseudo-linear approximation of Table 9, we observe that s = 1, hence:

Pr[ζ = correct] =
1
2
+

3
8
≈ 1

2
+ 2−1.415

Our bias for the first approximation is larger than the bias of a first-round Cho–
Pieprzyk approximation.

To experimentally verify our bias prediction, we carried out 150 experiments for the
pseudo-linear approximation each with a key chosen at random. We used 210 P/C pairs for
each experiment. The average empirically determined bias for the xor of the target window
was 2−1.41.

Thus, the attack of the approximation of Table 9, using the masks of Table 8, has the
following characteristics.

• Bias: The bias for this approximation is a combination of the experimentally-verified
bias of the pseudo-linear approximation of the exclusive-or of the two-bit window
(2−1.415)and the bias of the linear approximation (2−10) using the piling-up lemma:
2× 2−1.415 × 2−10 = 2−10.415

• Data complexity: We use the square of the inverse of the bias of the linear approxima-
tion: 220.83

• Time complexity: Data complexity multiplied by the complexity of trying all possibili-
ties for the number of key bits in the pseudo-linear approximation: 220.83 × 26 = 226.83

The summary of attack properties is presented in Table 10. We were able to determine
all six key bits correctly for each of the randomly-chosen keys in a list of three best keys.
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Table 10. Partly-Pseudo-Linear approximation of six rounds of SPECK 32/64. Window size is 2 bits.

Approximation Window No. of Key Bits Correctly Determined Bias Data Complexity Time Complexity

Table 9 2 bits 6 2−10.415 220.83 226.83

5.1.2. Nine-Round Partly-Pseudo-Linear Attack

We describe a nine-round key recovery attack. Here in this nine-round attack, we
use a different mask that covers four rounds and can be combined with our pseudo-linear
approximation. Table 11 shows the mask that is used in this attack.

Table 11. Linear trail of SPECK 32/64 for four rounds—nine rounds Partly-Pseudo-Linear attack (Starting with 0x0c000000

forward).

Round Cost λxi λyi λxi+1 λyi+1 Reason to Stop

1 1 0x0c00 0x0000 0x0078 0x0060

2 2 0x0078 0x0060 0x3183 0xc183

3 3 0x3183 0xc183 0x19e0 0x1f83

4 3 0x19e0 0x1f83 0xbef0 0x7ec3

5 0xbef0 0x7ec3 Broke requirement for consecutive ones for
0xfbc2≫ 7.

We use five rounds forward of pseudo-linear approximation (the maximum given the
time complexity constraints of the non-linear approximation) and four rounds backward
using a linear approximation. The window size of the pseudo-linear approximation is two,
w = 2. Table 12 shows the approximation for nine rounds meeting at xl5

1(10, 11); note that
36 key bits are required. Figure 8 shows how we derive the pseudo-linear approximation
of the target window through five rounds of SPECK 32/64.

Table 12. The Partly-Pseudo-Linear approximation for nine rounds meeting at xl5
1(10, 11).

Round Encryption Decryption

1 NewPL = (PL≫ 7)�16 PR
xl1

1 = NewPL(15, 16 mod 24)⊕ k1
1(15, 16 mod 24)

xl1
2 = NewPL(1, 2)⊕ k1

2(1, 2)
xl1

3 = NewPL(4, 5)⊕ k1
3(4, 5)

xl1
4 = NewPL(6, 7)⊕ k1

4(6, 7)
xl1

5 = NewPL(8, 9)⊕ k1
5(8, 9)

xl1
6 = NewPL(10, 11)⊕ k1

6(10, 11)
xl1

7 = NewPL(13, 14)⊕ k1
7(13, 14)

xr1
1 = (PR(13, 14)≪ 2)⊕ xl1

1
xr1

2 = (PR(15, 16 mod 24)≪ 2)⊕ xl1
2

xr1
3 = (PR(2, 3)≪ 2)⊕ xl1

3
xr1

4 = (PR(4, 5)≪ 2)⊕ xl1
4

xr1
5 = (PR(6, 7)≪ 2)⊕ xl1

5
xr1

6 = (PR(8, 9)≪ 2)⊕ xl1
6

xr1
7 = (PR(11, 12)≪ 2)⊕ xl1

7
2 xl2

1 ≈ ((xl1
4 ≫ 7)�2 xr1

1)⊕ k2
1(15, 16 mod 24)

xl2
2 ≈ ((xl1

5 ≫ 7)�2 xr1
2)⊕ k2

2(1, 2)
xl2

3 ≈ ((xl1
7 ≫ 7)�2 xr1

4)⊕ k2
3(6, 7)

xl2
4 ≈ ((xl1

1 ≫ 7)�2 xr1
5)⊕ k2

4(8, 9)
xl2

5 ≈ ((xl1
2 ≫ 7)�2 xr1

6)⊕ k2
5(10, 11)

xr2
1 ≈ (xr1

7 ≪ 2)⊕ xl2
1

xr2
2 ≈ (xr1

1 ≪ 2)⊕ xl2
2

xr2
3 ≈ (xr1

3 ≪ 2)⊕ xl2
3

xr2
4 ≈ (xr1

4 ≪ 2)⊕ xl2
4

xr2
5 ≈ (xr1

5 ≪ 2)⊕ xl2
5
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Table 12. Cont.

Round Encryption Decryption

3 xl3
1 ≈ ((xl2

4 ≫ 7)�2 xr2
2)⊕ k3

1(1, 2)
xl3

2 ≈ ((xl2
1 ≫ 7)�2 xr2

4)⊕ k3
2(8, 9)

xl3
3 ≈ ((xl2

2 ≫ 7)�2 xr2
5)⊕ k3

3(10, 11)
xr3

1 ≈ (xr2
1 ≪ 2)⊕ xl3

1
xr3

2 ≈ (xr2
3 ≪ 2)⊕ xl3

2
xr3

3 ≈ (xr2
4 ≪ 2)⊕ xl3

3

4 xl4
1 ≈ ((xl3

2 ≫ 7)�2 xr3
1)⊕ k4

1(1, 2)
xl4

2 ≈ ((xl3
1 ≫ 7)�2 xr3

3)⊕ k4
2(10, 11)

xr4
1 ≈ (xr3

2 ≪ 2)⊕ xl4
2

5 xl5
1(10, 11) ≈ ((xl4

1 ≫ 7)�2 xr4
1)⊕ k5

1(10, 11)

xl5
1(10)⊕ xl5

1(11) ≡ linearT

6 to 9 linearT ≈ λx4 .CL⊕ λy4 .CR

Figure 8. The pseudo-linear approximation of the first 5 rounds of SPECK 32/64 for a nine-round
Partly-Pseudo-Linear attack.

For SPECK 32/64, the maximum number of rounds we can reach is nine rounds with a
recovery of 36 key bits (See Table 13).

Table 13. Summary of the Partly-Pseudo-Linear approximation: nine rounds of SPECK 32/64,
with window size w = 2.

Approximation Window Size Key Bias Data Complexity Time Complexity

Table 12 2 bits 36 2−13.348 226.68 262.68
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5.2. The Partly-Pseudo-Linear Attack on the Large Variants of SPECK

The larger variants of SPECK correspond to a larger block with two or three different
key sizes. This gives us two features. First, with a larger key size, we have a larger brute-
force attack to compare with, so a pseudo-linear attack can cover more rounds in spite of
requiring key bits in the approximation. Second, with a larger block size, it is harder to
break the mask λ through bitwise rotation.

Table 14 summarizes the results of the Partly-Pseudo-Linear attack on the SPECK

family. Details of the individual attacks are in Appendices B–E. For the attacks on larger
rounds, our bias predictions are limited by the ability to experimentally determines the
error of pseudo-linear approximation.

Table 14. Summary: the Partly-Pseudo-Linear attack on larger variants of SPECK.

Block Size Key Size Rounds Guessed Key Bits Bias Data Complexity Time Complexity Approximation

32 64 9 36 2−13.348 226.68 262.68 Table 12

48 72 10 27 2−22.436 244.872 271.872 Appendix B
96 11 45 2−24 248 293

64 96 13 28 2−29.88 259.76 287.76 Appendix C
128 14 49 2−31.58 263.16 2112.16

96 96 10 46 2−21.86 243.72 289.72 Appendix D
144 12 76 2−29.238 258.476 2134.476

128 128 11 50 2−28.179 256.358 2106.358 Appendix E
192 13 122 2−31.299 262.598 2184.598

256 14 173 2−33.415 266.83 2239.83

6. Conclusions

This paper presents a new cryptanalysis of the ARX block cipher Partly-Pseudo-Linear
attack: combining linear and the pseudo-linear cryptanalysis. We illustrate this attack by
combining linear approximations using Cho–Pieprzyk and pseudo-linear approximations
on the SPECK family. We are able to extend distinguishers using Cho–Pieprzyk to key
recovery attacks.

We are able to recover 36 encryption key bits for 9 rounds of SPECK 32/64, 45 key
bits for 11 rounds of SPECK 48/96, 49 key bits for 14 rounds of SPECK 64/128, 76 key
bits for 12 rounds of SPECK 96/144 and 173 key bits for 14 rounds of SPECK 128/256.
We propose to apply our Partly-Pseudo-Linear attack to other ARX block ciphers with a
design similar to SPECK. Moreover, we are exploring the combination of the pseudo-linear
cryptanalysis attack with a linear cryptanalysis attack that uses Wallen’s algorithm to
improve our Partly-Pseudo-Linear attack.
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Appendix A. Four-Rounds Attack of Pseudo-Linear Cryptanalysis

Pseudo-linear cryptanalysis of four-round SPECK 32/64 with different window sizes:

1. Window size w = 3. The following Table A1 shows the approximation for four rounds
meeting at xl2

1(0, 2).

Table A1. The pseudo-linear attack approximation for 4 rounds meeting at xl2
1(0, 2), w = 3.

Round Encryption Decryption

1 NewPL = (PL≫ 7)�16 PR
xl1

1 = NewPL(0, 2)⊕ k1
1(0, 2)

xl1
2 = NewPL(7, 9)⊕ k1

2(7, 9)
xr1

1 = (PR(14, 16 mod 24)≪ 2)⊕ xl1
1

2 xl2
1 = ((xl1

2 ≫ 7)�3 xr1
1)⊕ k2

1(0, 2)

xl2
1 ≡ xl3

1

3 xl3
1 ≈ ((xl4

1 ⊕ k3
1(9, 11))�3 xr3

1))≪ 7
xr3

1 ≈ ((xl4
2 ⊕ xr4

3))≫ 2

4 xl4
2 ≈ ((CL(4, 6)⊕ k4

1(4, 6))�3 xr4
2)≪ 7

xl4
1 ≈ ((CL(2, 4)⊕ k4

1(2, 4))�3 xr4
1)≪ 7

xr4
1 = (CR(4, 6)⊕ CL(4, 6))≫ 2

xr4
2 = (CR(6, 8)⊕ CL(6, 8))≫ 2

xr4
3 = (CR(13, 15)⊕ CL(13, 15))≫ 2

2. Window size w = 4. The following Table A2 shows the approximation for four rounds
meeting xl2

1(0, 3).

Table A2. Four-round pseudo-linear attack, meeting at xl2
1(0, 3).

Round Encryption Decryption

1 NewPL = (PL≫ 7)�16 PR
xl1

1 = NewPL(0, 3)⊕ k1
1(0, 3)

xl1
2 = NewPL(7, 10)⊕ k1

2(7, 10)
xr1

1 = (PR(14, 17 mod 24))≪ 2)⊕ xl1
1

2 xl2
1 = ((xl1

2 ≫ 7)�2 xr1
1)⊕ k2

1(0, 3)

xl2
1 ≡ xl3

1

3 xl3
1 ≈ ((xl4

1 ⊕ k3
1(9, 12))�2 xr3

1))≪ 7
xr3

1 ≈ ((xl4
2 ⊕ xr4

3))≫ 2

4 xl4
2 ≈ ((CL(4, 7)⊕ k4

2(4, 7))�2 xr4
2)≪ 7

xl4
1 ≈ ((CL(2, 5)⊕ k4

1(2, 5))�2 xr4
1)≪ 7

xr4
1 = (NewCR(4, 7))≫ 2

xr4
2 = (NewCR(6, 9))≫ 2

xr4
3 = (NewCR(13, 16 mod 24))≫ 2

NewCR = CL⊕ CR

Appendix B. The Partly-Pseudo-Linear Attack on SPECK 48

In SPECK 48 there are two key sizes: 72 bits and 96 bits. With SPECK 48/72, we are
able to attack 10 rounds (four rounds using a pseudo-linear approximation and six rounds
using a linear approximation). Using this approach, we are able to recover 27 key bits.
With SPECK 48/96, we increase the pseudo-linear approximation by one more round and
are able to recover 45 key bits.

In the previous attacks in Section 5, we show that the longest linear trail covers four
rounds of SPECK 32/64 in the backward direction and Tables 8 and 11 show that the reason
to stop after four rounds was that rotation broke the requirement for two consecutive ones.
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Here in this attack, we use a mask that covers six rounds and the reason to stop is that
exclusive-or breaks the requirement for two consecutive ones. Table A3 shows the mask
that is used in this attack. As with SPECK 32, we can drive our target window xl7

1(1, 0)
backward from the ciphertext to build the pseudo-linear approximation.

Table A3. Linear trail of SPECK 48 for six rounds. (Starting with 0x000003000000 backward).

Round λxi+1 λyi+1 λxi λyi Cost

1 0xe3036d 0xe03f62 0x3c0f03 0x5f3be3 5
2 0x0f0063 0x03000f 0xe3036d 0xe03f62 6
3 0x000363 0x0f0063 0x03000f 0x6ee30c 3
4 0x030300 0x600303 0x000363 0x0f0063 3
5 0x000300 0x000003 0x030300 0x600303 2
6 0x000003 0x000000 0x000300 0x000003 1

Appendix C. The Partly-Pseudo-Linear Attack on SPECK 64

In SPECK 64 there are two key sizes: 96 bits and 128 bits. With SPECK 64/96, we are
able to attack 13 rounds (four rounds using a pseudo-linear approximation and nine rounds
using linear approximations). Thus, we are able to recover 28 key bits. With SPECK 64/128,
we increase the pseudo-linear approximation by one more rounds and are able to recover
49 key bits.

Table A4 shows the mask that is used in this attack. As with SPECK 32, we can
drive our target window xl10

1 (0, 1) backward from the ciphertext to build the pseudo-
linear approximation.

Table A4. Linear trail of SPECK 64 for 9 rounds. (Starting with 0x0000000300000000 backward).

Round λxi+1 λyi+1 λxi λyi Cost

1 0x30c03030 0x30f6e836 0x36d80600 0xc6280500 5
2 0x36018000 0x06314030 0x30c03030 0x30f6e836 4
3 0x300c0c00 0x303a0d80 0x36018000 0x06314030 3
4 0x8060006d 0x80500c61 0x300c0c00 0x303a0d80 3
5 0x0303030f 0x6e83630f 0x8060006d 0x80500c61 4
6 0x03000360 0x0c030063 0x0303030f 0x6e83630f 5
7 0x00030300 0x60000303 0x03000360 0x0c030063 3
8 0x00000300 0x00000003 0x00030300 0x60000303 2
9 0x00000003 0x00000000 0x00000300 0x00000003 1

Appendix D. The Partly-Pseudo-Linear Attack on SPECK 96

In SPECK 96 there are two key sizes: 96 bits and 144 bits. With SPECK 96/96, we are
able to attack 10 rounds (five rounds using a pseudo-linear approximation and five rounds
using linear approximations). Thus, we are able to recover 46 key bits. With SPECK

96/144, we increase the pseudo-linear approximation by one round and increase the linear
approximation by one round too. Thus, the total is 12 rounds and we are able to recover 76
key bits.

Table A5 shows the mask that is used in this attack. As with SPECK 32 and SPECK 48,
in SPECK 96/96, we can drive our target window xl5

1(1, 0) backward from the ciphertext to
build the pseudo-linear approximation. On the other hand, for SPECK 96/144, we increase
the attacked rounds by two rounds and the target window is xl6

1(0, 1).



Cryptography 2021, 5, 1 23 of 24

Table A5. Linear trail of SPECK 96 for six rounds. (Starting with 0x000000000003000000000000

backward).

Round λxi+1 λyi+1 λxi λyi Cost

1 0x83000060036d 0x803300600c62 0x3300000f0f03 0x5335600c0e83 7
2 0x00030303030c 0x6d800303630f 0x83000060036d 0x803300600c62 6
3 0x000003000360 0x0c0000030063 0x00030303030c 0x6d800303630f 5
4 0x000000030300 0x600000000303 0x000003000360 0x0c0000030063 3
5 0x000000000300 0x000000000003 0x000000030300 0x600000000303 2
6 0x000000000003 0x000000000000 0x000000000300 0x000000000003 1

Appendix E. The Partly-Pseudo-Linear Attack on SPECK 128

In SPECK 128 there are three key sizes: 128 bits, 192 bits, and 256 bits. With SPECK

128/128, we are able to attack 11 rounds (five rounds using a pseudo-linear approximation
and 6 rounds using a linear approximations). Thus, we are able to recover 50 key bits.
With SPECK 128/192, we increase the pseudo-linear approximation by two more rounds
(Total rounds is 13) and are able to recover 122 key bits. With SPECK 128/256, we increase
the pseudo-linear approximation by one round (Total rounds is 14) and are able to recover
173 key bits.

Table A6 shows the mask that is used in this attack. As with SPECK 32, we can
drive our target window xl7

1(0, 1) backward from the ciphertext to build the pseudo-linear
approximation.

Table A6. Linear trail of SPECK 128 for six rounds. (Starting with 0x000000000000000

30000000000000000 backward).

R λxi+1 λyi+1 λxi λyi Cost

1 0x800003000060036d 0x8030000300600c62 0x30030300000f0f00 0x50360303600c0e83 7
2 0x000000030303030c 0x6d8000000303630f 0x800003000060036d 0x8030000300600c62 6
3 0x0000000003000360 0x0c00000000030063 0x000000030303030c 0x6d8000000303630f 5
4 0x0000000000030300 0x6000000000000303 0x0000000003000360 0x0c00000000030063 3
5 0x0000000000000300 0x0000000000000003 0x0000000000030300 0x6000000000000303 2
6 0x0000000000000003 0x0000000000000000 0x0000000000000300 0x0000000000000003 1

References
1. Beaulieu, R.; Shors, D.; Smith, J.; Treatman-Clark, S.; Weeks, B.; Wingers, L. The SIMON and SPECK Families of Lightweight

Block Ciphers. IACR Cryptol. EPrint Arch. 2013, 2013, 404.
2. Beaulieu, R.; Shors, D.; Smith, J.; Treatman-Clark, S.; Weeks, B.; Wingers, L. The SIMON and SPECK lightweight block ciphers.

In Proceedings of the 52nd Annual Design Automation Conference, San Francisco, CA, USA, 7–11 June 2015; pp. 175:1–175:6.
[CrossRef]

3. McKay, K.A.; Vora, P.L. Analysis of ARX Functions: Pseudo-linear Methods for Approximation, Differentials, and Evaluating
Diffusion. IACR Cryptol. EPrint Arch. 2014, 2014, 895.

4. McKay, K.A. Analysis of ARX Round Functions in Secure Hash Functions. Ph.D. Thesis, The George Washington University,
Washington, DC, USA, 2014.

5. McKay, K.A.; Vora, P.L. Pseudo-Linear Approximations for ARX Ciphers: With Application to Threefish. In Proceedings of the
Second SHA-3 Candidate Conference, Santa Barbara, CA, USA, 23–24 August 2010; p. 282.

6. Cho, J.Y.; Pieprzyk, J. Multiple Modular Additions and Crossword Puzzle Attack on NLSv2. In Proceedings of the 10th
International Conference on Information Security (ISC 2007), Valparaiso, Chile, 9–12 October 2007; Lecture Notes in Computer
Science; Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4779,
pp. 230–248. [CrossRef]

7. Cho, J.Y.; Pieprzyk, J. Algebraic Attacks on SOBER-t32 and SOBER-t16 without Stuttering. In Fast Software Encryption, Proceedings
of the 11th International Workshop, (FSE 2004), Delhi, India, 5–7 February 2004; Revised Papers; Lecture Notes in Computer Science;
Roy, B.K., Meier, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3017, pp. 49–64. [CrossRef]

8. Alzakari, S.; Vora, P. Linear and Partly-Pseudo-Linear Cryptanalysis of Reduced-Round SPARX Cipher. IACR Cryptol. EPrint
Arch. 2020, 2020, 978.

http://dx.doi.org/10.1145/2744769.2747946
http://dx.doi.org/10.1007/978-3-540-75496-1_16
http://dx.doi.org/10.1007/978-3-540-25937-4_4


Cryptography 2021, 5, 1 24 of 24

9. Bodden, D. Linear Cryptanalysis of Reduced-Round Speck with a Heuristic Approach: Automatic Search for Linear Trails.
In Proceedings of the Information Security–21st International Conference (ISC 2018), Guildford, UK, 9–12 September 2018;
Lecture Notes in Computer Science; Chen, L., Manulis, M., Schneider, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2018;
Volume 11060, pp. 132–150. [CrossRef]

10. Ashur, T.; Bodden, D. Linear Cryptanalysis of Reduced-Round Speck. In Proceedings of the 37th Symposium on Information
Theory in the Benelux 2016, Louvain-la-Neuve, Belgium, 19–20 May 2016.

11. Yao, Y.; Zhang, B.; Wu, W. Automatic Search for Linear Trails of the SPECK Family. In Proceedings of the Information Security—
18th International Conference (ISC 2015), Trondheim, Norway, 9–11 September 2015; Lecture Notes in Computer Science; Lopez, J.,
Mitchell, C.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 9290, pp. 158–176. [CrossRef]

12. Fu, K.; Wang, M.; Guo, Y.; Sun, S.; Hu, L. MILP-Based Automatic Search Algorithms for Differential and Linear Trails for Speck.
In Proceedings of the Fast Software Encryption—23rd International Conference (FSE 2016), Bochum, Germany, 20–23 March 2016;
Revised Selected Papers; Lecture Notes in Computer Science; Peyrin, T., Ed.; Springer: Berlin/Heidelberg, Germany, 2016;
Volume 9783, pp. 268–288. [CrossRef]

13. Liu, Y.; Fu, K.; Wang, W.; Sun, L.; Wang, M. Linear cryptanalysis of reduced-round SPECK. Inf. Process. Lett. 2016, 116, 259–266.
[CrossRef]

14. Matsui, M. Linear Cryptanalysis Method for DES Cipher. In Advances in Cryptology—EUROCRYPT ’93, Proceedings of the Workshop
on the Theory and Application of of Cryptographic Techniques, Lofthus, Norway, 23–27 May 1993; Lecture Notes in Computer Science;
Helleseth, T., Ed.; Springer: Berlin/Heidelberg, Germany, 1993; Volume 765, pp. 386–397. [CrossRef]

15. Heys, H.M. A Tutorial on Linear and Differential Cryptanalysis. Cryptologia 2002, 26, 189–221. [CrossRef]
16. Beaulieu, R.; Shors, D.; Smith, J.; Treatman-Clark, S.; Weeks, B.; Wingers, L. SIMON and SPECK: Block Ciphers for the Internet of

Things. IACR Cryptol. EPrint Arch. 2015, 2015, 585.
17. Song, L.; Huang, Z.; Yang, Q. Automatic Differential Analysis of ARX Block Ciphers with Application to SPECK and LEA.

In Proceedings of the Information Security and Privacy—21st Australasian Conference (ACISP 2016), Melbourne, VIC, Australia,
4–6 July 2016; Part II; Lecture Notes in Computer Science; Liu, J.K., Steinfeld, R., Eds.; Springer: Berlin/Heidelberg, Germany,
2016; Volume 9723, pp. 379–394. [CrossRef]

18. HoChang, L.; Seojin, K.; HyungChul, K.; Deukjo, H.; Jaechul, S.; Hong, S. Calculating the Approximate Probability of Differentials
for ARX-Based Cipher Using SAT Solver. J. Korea Inst. Inf. Secur. Cryptol. 2018, 28, 15–24. [CrossRef]

19. Liu, Y.; Witte, G.D.; Ranea, A.; Ashur, T. Rotational-XOR Cryptanalysis of Reduced-round SPECK. IACR Trans. Symmetric Cryptol.
2017, 2017, 24–36. [CrossRef]

20. Dwivedi, A.D.; Morawiecki, P.; Srivastava, G. Differential Cryptanalysis of Round-Reduced SPECK Suitable for Internet of
Things Devices. IEEE Access 2019, 7, 16476–16486. [CrossRef]

http://dx.doi.org/10.1007/978-3-319-99136-8_8
http://dx.doi.org/10.1007/978-3-319-23318-5_9
http://dx.doi.org/10.1007/978-3-662-52993-5_14
http://dx.doi.org/10.1016/j.ipl.2015.11.005
http://dx.doi.org/10.1007/3-540-48285-7_33
http://dx.doi.org/10.1080/0161-110291890885
http://dx.doi.org/10.1007/978-3-319-40367-0_24
http://dx.doi.org/10.13089/JKIISC.2018.28.1.15
http://dx.doi.org/10.46586/tosc.v2017.i3.24-36
http://dx.doi.org/10.1109/ACCESS.2019.2894337

	Introduction
	Preliminaries
	Notation
	The Speck Cipher

	Related Works
	Linear Cryptanalysis
	Pseudo-Linear Cryptanalysis
	Some Observations Regarding the Addition Window
	Pseudo-Linear Approximations of ARX Round Functions 

	Comparison between Pseudo-Linear Cryptanalysis and Linear Cryptanalysis
	Cryptanalysis of Speck
	Different Methods of Cryptanalysis on Speck
	Linear Cryptanalysis of Speck


	Pseudo-Linear Cryptanalysis Attacks on Reduced-Round Speck 32/64
	Four-Round Attack
	Six-Round Attack

	Partly-Pseudo-Linear Cryptanalysis with Illustration on Speck
	Implementation of the Partly-Pseudo-Linear Attack on Speck 32/64
	Six-Round Partly-Pseudo-Linear Attack
	Nine-Round Partly-Pseudo-Linear Attack

	The Partly-Pseudo-Linear Attack on the Large Variants of Speck

	Conclusions
	Four-Rounds Attack of Pseudo-Linear Cryptanalysis 
	The Partly-Pseudo-Linear Attack on Speck 48
	The Partly-Pseudo-Linear Attack on Speck 64
	The Partly-Pseudo-Linear Attack on Speck 96
	The Partly-Pseudo-Linear Attack on Speck 128
	References

