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Abstract: A new public key agreement (PKA) algorithm, called the strongly-asymmetric algorithm
(SAA-5), was introduced by Accardi et al. The main differences from the usual PKA algorithms are
that Bob has some independent public keys and Alice produces her public key by using some part of
the public keys from Bob. Then, the preparation and calculation processes are essentially asymmetric.
This algorithms has several free parameters more than the usual symmetric PKA algorithms and the
velocity of calculation is largely dependent on the parameters chosen; however, the performance
of it has not yet been tested. The purpose of our study was to discuss efficient parameters to share
the key with high speeds in SAA-5 and to optimize SAA-5 in terms of calculation speed. To find
efficient parameters of SAA-5, we compared the calculation speed with Diffie–Hellman (D-H) while
varying values of some parameters under the circumstance where the length of the secret shared
key (SSK) was fixed. For optimization, we discuss a more general framework of SAA-5 to find more
efficient operations. By fixing the parameters of the framework properly, a new PKA algorithm
with the same security level as SAA-5 was produced. The result shows that the calculation speed
of the proposed PKA algorithm is faster than D-H, especially for large key lengths. The calculation
speed of the proposed PKA algorithm increases linearly as the SSK length increases, whereas D-H
increases exponentially.

Keywords: public key exchange; security; asymmetric; asymmetric algorithm; cryptography;
framework; generalization

1. Introduction

The discovery of the Diffie–Hellman(D-H) [1] public key agreement (PKA) protocol and RSA [2]
asymmetric cryptography are two of the greatest achievements for the literature of data protection.
Although it has been over 40 years since the discovery of those algorithms, they are still utilized not
only for key agreement but also for various scenes (e.g., digital signature) along with algorithms such
as ElGamal [3], Elliptic curve D-H [4], etc.

However, a lot of threats were developed at the same time. Because of recent increase in
the computational power of eavesdroppers, the small key lengths of D-H or RSA are no longer
safe [5]. Even for longer keys, these algorithms are expected to become vulnerable in the near future
because of Shor’s quantum algorithm for both the integer factorization problem and discrete logarithm
problem [6].

As a solution against these threats, studies of a modern PKA and asymmetric cryptography
are widely spread. Algorithms based on multivariate polynomial equations [7,8] and lattices [9,10]
are the most well known ones. These algorithms utilize matrices and security, which are based
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on NP-hard problems, e.g., the difficulty of solving a system of multivariate quadratic polynomial
equations and the difficulty of the shortest vector problem. In 2019, NIST announced 26 public
key cryptographic algorithms as candidates for the standardization of post-quantum-cryptographic
systems [11]. The lattice based ones, such as NewHope [12] and NTRU [13], and the multivariate
polynomial based digital signature algorithms such as GeMSS [14] are included in the list.

In [15], Accardi et al. proposed a new scheme of public key agreement based on non-commutative
algebra called a strongly asymmetric public key agreement (SAPKA). Because this scheme is very
general, we need concrete realizations to estimate computational and breaking complexity. In [16],
strongly-asymmetric algorithm 3 (SAA-3) is introduced as one of the concrete realizations of SAPKA.
SAA-3 is based on matrix algebra with element-wise matrix exponentiation, which is called the
Schur-product. Strongly-asymmetric algorithm 5 (SAA-5), introduced in [17], has a similar structure to
SAA-3, but there are differences. The main differences between them are:

• The public parameter α is removed.
• The secret key of Alice is scalar in [16]. In [17], this is replaced by a matrix set.
• The constraints on Bob’s secret keys are reduced to the requirement that certain matrices should

not be invertible.

Strictly speaking, SAA-5 cannot be described in the form of SAPKA because of the secret key
structure of Alice, but both computational and breaking complexity are improved from SAA-3.

In this paper, we explain the mathematical setting of SAA-5 and the breaking strategy introduced
in [17] and report our performance test compared with D-H. After that, we tried to realize a much
faster PKA than SAA-5 by considering the general PKA class that SAA-5 belongs to and has much
more freedom than SAPKA in term of the key structure of Alice.

2. Mathematical Setting and Key Agreement Protocol of SAA-5

The key agreement process between Alice and Bob are:

Step 1. Alice and Bob share following public information:

a natural integer d ∈ N ,

a finite field F := Zp where p is a large prime number ,

a finite set I ⊂ N .

Step 2. Bob creates his secret keys as matrices:

xB ∈ M(d;F) ,

NB ∈ M(d;F) ,

c ∈ F ,

and as a set of matrices:
A := {Aj ∈ M(d,F) , j ∈ I} .

For all secret keys of Bob, the following conditions must be satisfied:
- NB must be invertible
- Each Aj (j ∈ I) must not be invertible.

Step 3. Bob creates his public keys for all j ∈ I as:

yB,2;j := c◦(Aj NB) ∈ M(d;F) ,

yB,3;j := c◦(AjxB) ∈ M(d;F) .
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Here, the symbol c◦M denotes the matrix:

c◦M :=
(

cMa,g
)

; a, g ∈ {1, · · · , d} , (1)

which is called the Schur exponentiation of c by M.

Step 4. Alice creates her secret key as a matrix set as:

xA := {xA,j ∈ M(d,F) , j ∈ I} ,

and creates her public key yA ∈ M(d,F) using one of Bob’s public key yB,2;j as: For each
a, g ∈ {1, · · · , d},

(
yA;a,g

)
=

∏
j∈I

∏
b∈{1,··· ,d}

(yB,2;j)
(xA,j)a,b
b,g

 =

∏
j∈I

∏
b∈{1,··· ,d}

(cAj NB)
(xA,j)a,b
b,g



=

∏
j∈I

∏
b∈{1,··· ,d}

(c
(xA,j)a,b(Aj NB)b,g)

 =
(

c∑j∈I ∑b∈{1,··· ,d} (xA,j)a,b(Aj NB)b,g
)

=
(

c(∑j∈I xA,j Aj NB)a,g
)
= c◦∑j∈I xA,j Aj NB .

Step 5. Bob computes his secret shared key (SSK) κB ∈ M(d,F) using the public key of Alice and his
own secret keys xB and NB as: For each a, g ∈ {1, · · · , d},

κB =

 ∏
b∈{1,··· ,d}

(yA)
(N−1

B xB)b,g
a,b

 =

 ∏
b∈{1,··· ,d}

(c◦∑j∈I xA,j Aj NB)
(N−1

B xB)b,g
a,b

 .

Step 6. Alice computes her SSK κA ∈ M(d,F) by using yB,3;j and her own secret key xA as:

κA =

∏
j∈I

∏
b∈{1,··· ,d}

(yB,3;j)
(xA,j)a,b
b,g

 =

∏
j∈I

∏
b∈{1,··· ,d}

(cAjxB)
(xA,j)a,b
b,g

 .

The equality of κA and κB is guaranteed by the following equations. The SSK of Alice is:

κA =

∏
j∈I

∏
b∈{1,··· ,d}

(cAjxB)
(xA,j)a,b
b,g

 =

∏
j∈I

∏
b∈{1,··· ,d}

(c
(xA,j)a,b(AjxB)b,g)


=
(

c∑j∈I ∑b∈{1,··· ,d} (xA,j)a,b(AjxB)b,g
)
=
(

c∑j∈I xA,j AjxBa,g
)

= c◦∑j∈I xA,j AjxB . (2)

and the SSK of Bob is:

κB =

 ∏
b∈{1,··· ,d}

(c∑j∈I xA,j Aj NB)
(N−1

B xB)b,g
a,b


=

 ∏
b∈{1,··· ,d}

c(∑j∈I xA,j Aj NB)a,b(N−1
B xB)b,g

 =
(

c∑b∈{1,··· ,d}(∑j∈I xA,j Aj NB)a,b(N−1
B xB)b,g

)
=
(

c(∑j∈I xA,j Aj NB N−1
B xB)a,g

)
=
(

c(∑j∈I xA,j AjxB)a,g
)
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= c◦∑j∈I xA,j AjxB . (3)

Obviously (2) = (3).

2.1. Breaking Complexity of SAA-5

The breaking complexity of SAA-5 is already discussed in [17]. The eavesdropper(Eve) tries to
recover the SSK by using the following public parameters:

• Common parameters d, p, I.
• Public keys of Bob yB,2;j, yB,3;j for all j ∈ I.
• Public key of Alice yA.

Alice knows the following values for all j ∈ I, denoting x1 := ∑j∈I xA,j Aj, x2 := NB, x3,j := Aj,
x4 := xB and log c:

α1 = log yA = ∑
j∈I

xA,j AjNB log c = x1x2 log c , (4)

α2,j = log yB,2;j = AjNB log c = x3,jx2 log c , (5)

α3,j = log yB,3;j = AjxB log c = x3,jx4 log c . (6)

But, for Eve to get α1, α2,j and α3,j, she needs to solve the discrete logarithm problem for each
value. Here, we assume the cost for solving discrete logarithm problem is 0 so, Eve can immediately
calculate all α1, α2,j and α3,j in this case.

After getting all α1, α2,j and α3,j, her strategy is to calculate log κ from the equation:

log κ = ∑
j∈I

xA,j AjxB log c = x1x4 log c , (7)

by deducing x1, x2, x3,j, x4 and log c from (4)–(6). This system contains 4d2 + 1 unknowns for 3d2

number of polynomials so, x1, x2, x3,j, x4 and log c are not determined uniquely. we try to brute-force
attack one unknown of the above system to estimate the breaking complexity of the algorithm. As an
example, we try this on x2 and Sb f ;x2 denotes the space she has to search for this attack.

2.2. The Brute-Force Attack

Eve has as the same number of choices as the cardinality of GL(d;F) for x2. If she finds x2 equal
to NB, then x1 log c = ∑j∈I xA,j Aj log c and x3,j log c = Aj log c are satisfied from (4) and (5) because
x2 = NB is invertible. From (6), she wants to know x4 to satisfy x4 = xB, however, x3,j log c is not an
invertible matrix and the solution of (6) contains d2 − rank(x3,j log c) number of arbitrary elements.

This means one from pd2−rank(x3,j log c) number of candidates satisfies x4 = xB so, Sb f ;x2 is:

Sb f ;x2 = |GL(d;F)|pd2−rank(x3,j log c) , (8)

which is extremely large even if p is relatively small such as 16 bit or 32 bit. Moreover, she cannot
judge whether x2 = NB and x4 = xB are satisfied because NB and x4 are kept secret by Bob. This fact
shows that even an exhaustive search is impracticable for this strategy.

For other security analyses, please refer to the attacks in Section 4 of [17], which more adequately
shows the difficulty of the attacks.

3. Performance Estimation and Evaluation of SAA-5

We already know the difficulty in breaking the above-mentioned algorithm, however,
the high-speed calculation for generating the SSK is also needed from the view point of practicality.
Here, we estimate the time spent to generate the SSK and report our performance tests of SAA-5
verses D-H.
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3.1. Performance Estimation

The computational complexity of SAA-5 is already analyzed in [17]. We show the estimated total
multiplication steps needed to share the SSK.

The exponentiation of elements in Zp needs log2 p steps of multiplication in the worst case.
Then, the Schur-exponential:

(c◦M)a,g = (cMa,g)a,g ,

requires d2 log2 p steps of multiplication. The calculation: ∏
b∈{1,··· ,d}

(Aa,b)
Bb,g

 ,

requires d2(d + log2 p) = d3 + d log2 p steps of multiplication. Therefore, the calculation:∏
j∈I

∏
b∈{1,··· ,d}

(Aa,b)
Bb,g

 ,

requires (|I| − 1)d2(d + log2 p) = (|I| − 1)(d3 + d2 log2 p) steps of multiplication. Hence, we can
estimate the multiplication steps needed for generating the SSK as the Table 1.

Table 1. Key size and estimation of the time for multiplication of keys.

Key Bit Size Steps

yA d2 log p (|I| − 1)(d3 + d2 log p)

κA d2 log p (|I| − 1)(d3 + d2 log p)

yB2 d2 I log p |I|(d3 + d2 log p)

yB3 d2 I log p |I|(d3 + d2 log p)

κB d2 log p 2(d3 + d2 log p)

Total 4I(d3 + d2 log p)

Note that the bit length of element in Zp is expressed as dlog2 pe, so, the bit length of modular
matrix in M(d,Zp) is expressed as d2dlog2 pe bits. As can be seen, the calculation steps is expected to
be on the order of d3.

3.2. Discussion: Efficient Parameters of SAA-5 and Comparison with D-H

Here, we report our performance test of SAA-5 versus D-H. Hereafter, We implement all PKA
algorithms in the following environment:

• macOS Mojave ver10.14.6.
• 1.3 GHz Intel Core i5.
• 8 GB 1867 MHz LPDDR3.
• Language: JAVA.

We compare SAA-5 with D-H by fixing the length of the SSK. When the key length of the SSK is
fixed, denoted by κ̄, the total multiplication steps for sharing the SSK in SAA-5 (denoted by CCSAA−5)
is described as:

CCSAA−5 = 4|I|(d3 + κ̄) ,
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because κ̄ = d2 log p. In this case, the total computational complexity of D-H (denoted by CCD−H) is
described as:

CCD−H ' 4κ̄ ,

because Alice and Bob calculate a public key and their own SSK for each and the bit size of each secret
key is the same size as that of the SSK, which is κ̄. Since κ̄ is constant, the calculation time of SAA-5 is
expected to depend only on the parameter d. However, the fact that the time needed for calculating
scalar exponentiation in Zp depends on the size of p and increases at an exponential rate is well known
(for example, see pp. 5–6 of [18]). Therefore, we expect that the calculation time depends not only on d
but also on p. Before comparing SAA-5 with D-H, we show our experimental result, which shows how
the parameters p and d effect the calculation speed of SAA-5, while the SSK length is fixed (16,384 bits).

The white circle in Figure 1 indicates the total time spent calculating the SSK for Alice and Bob,
and the black diamond indicates the bit length of the SSK. The pair of dimension and bit length of
Figure 1 are:

(d, log p) = (2, 4096), (4, 1024), (8, 256), (16, 64), (32, 16) .

Roughly speaking, the time needed to share the SSK can be reduced by decreasing p and increasing
d while keeping the length of SSK.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30 35

ke
y 

siz
e 

(b
it)

tim
e 

(m
se

c)

dimension of matrices

Calculation Time Key Size

Figure 1. Changing time to compute a fixed-length key when d is a variable.

Finally, we show the experimental result in which we compare SAA-5 with D-H. Table 2 and
Figure 2 shows our result of comparison with D-H. Java codes of the algorithms can be referred in [19].
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Table 2. Comparison of the time to generate the secret shared key (SSK).

SSK Length (bit) SAA-5 (msec) D-H (msec)

512 12.45 1.45

1024 20.63 3.37

1536 16.19 10.87

2048 18.10 24.21

2560 28.77 45.68

3072 23.54 83.39

3584 23.35 120.29

4096 24.42 219.90

4608 38.12 332.46

5120 39.58 620.86

0
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tim
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D-H SAA5

Figure 2. Comparison of the time to generate SSK.

3.3. Experimental Result: Comparison with D-H

In this experiment, we fixed the SAA-5 parameters as d = 8 and |I| = 5 so, the size of the prime
number (denoted by pSAA−5) is given by κ̄/64 because the length of the SSK κ̄ is expressed as d2 log p.
The size of each public key of D-H is the same size as that of the SSK, which is κ̄, so as a bit length of
the prime. The bit size of the prime used in SAA-5 and D-H (denoted by pD−H) is shown in Table 3.
As can be seen from Table 2 and Figure 2, when the length of the SSK is over 2048 bit, the SAA-5
out-performs D-H, and the larger the SSK becomes, the the larger the difference of calculation speed
between them becomes (SAA-5 is approximately 15 times faster than D-H when the SSK is 5120 bit).
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Table 3. Comparison of the bit size of the prime number.

SSK Length (bit) pSAA−5 (bit) pSAA−5 (bit)

512 8 512

1024 16 1024

1536 24 1536

2048 32 2048

2560 40 2560

3072 48 3072

3584 56 3584

4096 64 4096

4608 72 4608

5120 80 5120

4. Performance Improvement

We showed that the performance of SAA-5 is more effective than the D-H, especially for large
keys because of its algebraic property and variety of parameters.

In this section, we try to realize a faster PKA with the same breaking complexity as SAA-5 by
the following steps. As a first step, we extract the condition from SAA-5 that allows Alice and Bob
to create their SSK, that is, we construct a new PKA framework similar to SAPKA [15] in which key
agreement process is described by compositions of maps. As a second step, we fix the parameters
(maps) of the framework to produce a new PKA algorithm. Then, we check if the new PKA algorithm
possesses the same security level as and more efficient than SAA-5.

4.1. The SAPKA with Multiple Keys Class

Here, we define the new class called SAPKA with Multiple Keys class (SAPKA-MK) . The main
property of this class is that Alice produces her secret key as a set {xA,j ∈ P ; j ∈ I}, not a single
element as [15].

The SAPKA-MK algorithms have the following common ingredients:

- a semigroup P together with some operation •.
- a set M̂P of easily invertible maps P → P , called noise space.
- a set MP of maps : P → P .
- a finite set I := {i1, i2, . . . , in} ⊂ N.

where |I| = n .
Of these ingredients P is public and MP , M̂P belong to the secret keys of B. The set

KB := {MP} ×MP ×MP × {MP} × M̂P × M̂P ,

is used by Bob to construct his secret and public keys according to the following scheme. All maps
are defined by a finite set of parameters, so to send a map means to send the corresponding set of
parameters and the rules to combine them. Unless explicitly mentioned, an equality between two
functions means that these functions have the same domain of definition and equality holds on it.

Definition 1. Let S be a semigroup together with some operation • and let the functions be

y1,j, y2, y3, y4,j : S → S ,
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for all j ∈ I := {i1, i2, . . . , in} ⊂ N. The ordered quadruple ({y1,j ; j ∈ I}, y2, y3, {y4,j ; j ∈ I}) is said to
satisfy the multiple compatibility condition if the following equation:

(y1,i1 ◦ y2(xi1)) • (y1,i2 ◦ y2(xi2)) • · · · • (y1,in ◦ y2(xin))

= y3(y4,i1(xi1) • y4,i2(xi2) • · · · • y4,in(xin)) , (9)

is satisfied for all xj (j ∈ I). Hereafter, above symbol ◦ denotes map composition unless otherwise specified. If
the condition (9) is satisfied only on a sub-semigroup S0 ⊂ S , one says that the multiple compatibility condition
is satisfied on S0.

The key agreement for an algorithm belongs to SAPKA-MK is performed as:

Step 1. Bob chooses maps ({y1,j ; j ∈ I}, y2, y3, {y4,j ; j ∈ I}, N1, N2) ∈ KB. By conjugating
(y1,j, y2, y3, y4,j, N1, N2) for each j ∈ I, Bob constructs quadruple:

({y′1,j ; j ∈ I}, y′2, y′3, {y′4,j ; j ∈ I}) ,

satisfies (9). and he uses y′3 as secret key of him as a function:

xB := y′3 ,

and public keys (yB,1, yB,2) as following functions:

yB,1(xi1 , xi2 , . . . , xin) := (y′1,i1 ◦ y′2(xi1)) • (y
′
1,i2 ◦ y′2(xi2)) • · · · • (y

′
1,in ◦ y′2(xin)) , (10)

yB,2(xi1 , xi2 , . . . , xin) := y′4,i1(xi1) • y′4,i2(xi2) • · · · • y′4,in(xin) . (11)

Step 2. Bob sends the public keys (yB,1, yB,2) to Alice.
Step 3. Alice chooses her secret key as a set {xA,j ∈ P ; j ∈ I} then, she constructs her public key as

an element:
yA := yB,2(xA,i1 , xA,i2 , . . . , xA,in) ∈ P .

Step 4. Alice sends the public key yA to Bob.
Step 5. Alice computes the secret shared key (SSK) κ as:

κ = yB,1(xA,i1 , xA,i2 , . . . , xA,in) = (y′1,i1 ◦ y′2(xA,i1)) • (y
′
1,i2 ◦ y′2(xA,i2)) • · · · • (y

′
1,in ◦ y′2(xA,in)) .

Step6. Bob computes κ as:

κ = xB(yA) = y′3(y
′
4,i1(xA,i1) • y′4,i2(xA,i2) • · · · • y′4,in(xA,in)) .

Remark 1. When n = 1, SAPKA-MK is equivalent to the SAPKA algorithm. This means that SAPKA-MK is
one of general forms of SAPKA in terms of the number of Alice’s secret key.

Here, we introduce a lemma, which provides a constructive way to produce families to satisfy (9).

Lemma 1. Let S be as Definition 1 and functions given as:

y1,j, y2, y3, y4,j : S → S ,

for all j ∈ I. If the conditions:

1. Each (y1,j, y2, y3, y4,j) satisfies the equation:

y1,j ◦ y2 = y3 ◦ y4,j (12)
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2. y3 ∈ {semi-group endomorphism S → S}

are satisfied for all j ∈ I, (9) is achieved.

Proof. From the first condition, the equation:

(y1,i1 ◦ y2(xi1)) • (y1,i2 ◦ y2(xi2)) • · · · • (y1,in ◦ y2(xin))

= (y3 ◦ y4,i1(xi1)) • (y3 ◦ y4,i2(xi2)) • · · · • (y3 ◦ y4,in(xin)) ,

is obvious for all xj (j ∈ I). By the endomorphism property of y3 on S , the equation:

(y3 ◦ y4,i1(xi1)) • (y3 ◦ y4,i2(xi2)) • · · · • (y3 ◦ y4,in(xin))

= y3(y4,i1(xi1) • y4,i2(xi2) • · · · • y4,in(xin)) ,

is satisfied. Therefore, one gets:

(y1,i1 ◦ y2(xi1)) • (y1,i2 ◦ y2(xi2)) • · · · • (y1,in ◦ y2(xin))

= y3(y4,i1(xi1) • y4,i2(xi2) • · · · • y4,in(xin)) .

4.2. SAPKA-MK Version of SAA-5

SAA-5 can be described in the form of SAPKA-MK as:
The ingredients for this algorithm are:

I := {i1, i2, . . . , in} ⊂ N ,

P := M(d,Zp) ,

and an operation • denotes the Schur-product, which is the element-wise matrix multiplication.
Here, (P , •) forms a semigroup because for any x, y ∈ P :

x • y ∈ P ,

and for any x, y, z ∈ P :
x • (y • z) = (x • y) • z .

Denoting L (resp. R) the left (resp. right) action of M(d,Zp) on itself, defined by:

Lx(m) := ( ∏
b∈{1,··· ,d}

xa,b
mb,g) ; Rx(m) := ( ∏

b∈{1,··· ,d}
xb,g

ma,b) ; x, m ∈ M(d,Zp) .

Then, additional ingredients are:

MP := {Lx : x ∈ M(d,Zp)} ∪ {Rx : x ∈ M(d,Zp)} ,

M̂P := {invertible elements of MP} .

If Bob defines the six-tuple ({y1,j ; j ∈ I}, y2, y3, {y4,j ; j ∈ I}, N1, N2) for each j ∈ I as:

y1,j(x) :=

 ∏
b∈{1,··· ,d}

(c◦BjxB)
(x)a,b
b,g

 = R
c◦Bj xB (x)
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= c◦xBjxB ,

y2 := idP ,

y3(x) :=

 ∏
b∈{1,··· ,d}

x
(xB)b,g
a,b

 = Lx(xB) ,

y4,j(x) :=

 ∏
b{1,··· ,d}

(c◦Bj)
(x)a,b
b,g

 = R
c◦Bj (x) = c◦xBj ,

N1 := idP ,

N2(x) :=

 ∏
b∈{1,··· ,d}

x
(N−1

B )b,g
a,b

 := Lx(N−1
B ) ,

and constructs the quadruple ({y′1,j ; j ∈ I}, y′2, y′3, {y′4,j ; j ∈ I}) as:

y′1,j := y1,j ◦ N−1
1 ; y′2 := N1 ◦ y2 ; y′3 := y3 ◦ N2 ; y′4,j := N−1

2 ◦ y4,j ,

for all j ∈ I, then Lemma 1 is achieved, i.e.,

y′1,j ◦ y′2(x) = y1,j ◦ y2(x) = c◦xBjxB =

c◦xBj NB N−1
B xB = y3 ◦ N2 ◦ N−1

2 ◦ y4,j(x) = y′3 ◦ y′4,j(x) ,

and for x, z ∈ P :

y′3(x • z) =

 ∏
b∈{1,··· ,d}

(x • z)
(N−1

B xB)b,g
a,b

 =

 ∏
b∈{1,··· ,d}

x
(N−1

B xB)b,g
a,b z

(N−1
B xB)b,g

a,b



=

 ∏
b∈{1,··· ,d}

x
(N−1

B xB)b,g
a,b

 •
 ∏

b∈{1,··· ,d}
z
(N−1

B xB)b,g
a,b

 = y′3(x) • y′3(z) .

By the formation of maps, each process of SAPKA-MK key agreement can be described.

4.3. SAA-5 without Schur-Exponentiations

In this section, we introduce a new PKA, which we call SAA-5 without Schur-Exponentiations
(SAA-5-no-SE). SAA-5-no-SE can be described as follows.

The public parameters for this algorithm are:

d ∈ N ; a finite set I ⊂ N ,

P := M(d,Zp) := {d× d-matrices with entries in Zp} .

Denoting L (resp. R) the left (resp. right) action of M(d,Zp) on itself, defined by:

Lx(m) := xm ; Rx(m) := mx ; x, m ∈ M(d,Zp) .

Additional public parameters are:

MP := {Lx : x ∈ M(d,Zp)} ∪ {Rx : x ∈ M(d,Zp)} ,



Cryptography 2020, 4, 21 12 of 19

M̂P := {invertible elements of MP} .

Bob’s secret ingredients are:
– NB, xB ∈ M(d,Zp)

– a set
B := {Bj ∈ P : j ∈ I , non-invertible}

Step 1. Bob defines, for each j ∈ I, the following six maps:

y1,j(x) = xBjxB = RBjxB(x) ,

y2 = idP ,

y3(x) = xxB = RxB(x) ,

y4,j(x) = xBj = RBj(x) ,

N1 = idP ,

N2(x) = xN−1
B = RN−1

B
(x) .

From the six-tuple ({y1,j ; j ∈ I}, y2, y3, {y4,j ; j ∈ I}, N1, N2), Bob constructs the quadruple
({y′1,j ; j ∈ I}, y′2, y′3, {y′4,j ; j ∈ I}) as:

y′1,j := y1,j ◦ N−1
1 ; y′2 := N1 ◦ y2 ; y′3 := y3 ◦ N2 ; y′4,j := N−1

2 ◦ y4,j ,

for all j ∈ I. With this construction, (12) is satisfied, i.e.,

y′1,j ◦ y′2(x) = y1,j ◦ y2(x) = xBjxB = xBjNBN−1
B xB = y3 ◦ N1 ◦ N−1

1 ◦ y4,j(x) = y′3 ◦ y′4,j(x) .

Moreover, for any x, z ∈ P , y′3 satisfies:

y′3(x + z) = y3 ◦ N2(x + z) = (x + z)xBN−1
B = xxBN−1

B + zxBN−1
B

= y3 ◦ N2(x) + y3 ◦ N2(z) = y′3(x) + y′3(z) .

Thus, the multiple compatibility condition (9) is satisfied from Lemma 1.
Hence, for any choice of xj ∈ P (j ∈ I), following equation:

∑
j∈I

y′1,j ◦ y′2(xj) = y′3 ◦∑
j∈I

y′4,j(xj) ,

is satisfied. Then, Bob prepares his secret key as a function:

x′B := y3 ◦ N2 = y′3 , (13)

and produces the public keys as following functions:

yB,1(xi1 , xi2 , . . . , xin) = ∑
j∈I

y′1,j ◦ y′2(xj) = ∑
j∈I

y1 ◦ N−1
1 ◦ N1 ◦ y2(xj) = ∑

j∈I
xjBjxB , (14)

yB,2(xi1 , xi2 , . . . , xin) = ∑
j∈I

y′4,j(xj) = ∑
j∈I

N−1
2 ◦ y4,j(xj) = ∑

j∈I
xjBjNB . (15)

Step 2. In order to send the public keys (yB,1, yB,2) to Alice, Bob sends the public matrices:

BjxB , BjNB (j ∈ I) .
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Step 3. Alice chooses as her secret key a set of matrices:

{xA,j ∈ M(d,Zp) ; j ∈ I} ,

and constructs her public key:

yA = yB,2(xA,i1 , xA,i2 , . . . , xA,in) = ∑
j∈I

xA,jBjNB .

Step 4. Alice sends the public key yA to Bob.
Step 5. The secret shared key (SSK) κ is:

κ := ∑
j∈I

xA,jBjxB .

Alice knows the BjxB, so she can compute:

κ = yB,1(xA,i1 , xA,i2 , . . . , xA,in) = ∑
j∈I

xA,jBjxB .

Step 6. Bob computes κ as:

κ = x′3(yA) = x3 ◦ N2(∑
j∈I

xA,jBjNB) = (∑
j∈I

xA,jBjNB)N−1
B xB = ∑

j∈I
xA,jBjxB .

4.4. The Comparison of Breaking Complexity between SAA-5 And SAA-5-no-SE

The breaking complexity of SAA-5 is already evaluated. In this section, we assume 0 cost for
solving the discrete logarithm problem, the same as [17] and Section 2.1. Under this assumption, we
can prove the breaking complexity of SAA-5-no-SE is equivalent to that of SAA-5 by considering Eve’s
strategy to find the SSK of both algorithms.

Theorem 1. The breaking complexity of SAA-5 is equivalent to that of SAA-5-no-E.

Proof. (Strategy of Eve against SAA-5-no-SE)

Eve knows the following finite set of integer I = {i1, i2, . . . , in} where |I| = n and matrices BjxB,
BjNB, yA = ∑j∈I xA,jBjNB for all j ∈ I. She also knows following equation:

κ = ∑
j∈I

xA,jBjxB , (16)

is held. She tries to recover κ from public keys BjxB, BjNB, yA = ∑j∈I xA,jBjNB where all Bj, xB, NB
and xA,j are unknown for Eve.

(Strategy of Eve against SAA-5)

In this case, Eve’s strategy to break the algorithm is that she gets the following logarithm of public
keys as:

log c◦BjxB = BjxB log c ,

log c◦Bj NB = BjNB log c ,

log yA = ∑
j∈I

xA,jBjNB log c = ∑
j∈I

xA,j log c◦Bj NB ,
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for all j ∈ I. Then she try to recover log κ, which is:

log κ = ∑
j∈I

xA,jBjxB log c = ∑
j∈I

xA,j log c◦BjxB .

But, by putting B′j = Bj log c, Eve knows the following equations:

log c◦BjxB = B′jxB , (17)

log c◦Bj NB = B′j NB , (18)

log yA = ∑
j∈I

xA,j log c◦Bj NB = ∑
j∈I

xA,jB′j NB , (19)

and tries to recover
log κ = ∑

j∈I
xA,j log c◦BjxB = ∑

j∈I
xA,jB′jxB , (20)

are held. She tries to recover log κ from public keys B′jxB, B′j NB, yA = ∑j∈I xA,jB′j NB where all B′j,
xB, NB and xA,j are unknown for Eve. For Eve, this is the same strategy as against the SAA-5-no-SE
case.

4.5. Discussion: Performance of SAA-5-no-SE

Here, we estimate the computational complexity and report the performance test of SAA-5-no-SE.
The total estimated number of multiplications for SAA-5-no-SE is given in Table 4. Notice that one
matrix multiplication requires d3 number of scalar multiplications. Although the calculation time
is expected to be on the order of d3, as in the SAA-5 case, it does not need extra d2 log p number of
multiplications, which are needed for the calculation of scalar exponentiations in SAA-5. We already
know that the calculations of scalar exponentiations heavily effect the performance of SAA-5, so the
calculation speed of it is expected to be much faster than SAA-5 with same condition.

Table 4. Key size and estimation of the time for multiplication of keys.

Key Bit Size Steps

yA d2 log p (|I| − 1)d3

κA d2 log p (|I| − 1)d3

yB2 d2|I| log p |I|d3

yB3 d2|I| log p |I|d3

κB d2 log p 2d3

Total 4|I|d3

Here, we compare the calculation speed with SAA-5 for two settings. In the first setting,
we measure the calculation speed of both algorithms for each SSK length from 800 bit to 16,000
bit, while d and |I| are both fixed as 10 to see the impact of p and the SSK length on speed (results are in
Table 5 and Figure 3). In the second setting, the calculation speed of SAA-5-no-SE for each SSK length
from 512 bit to 5120 bit while d = 8 and |I| = 5 is measured, and has the same settings as in Table 2
and Figure 2. Since the SSK length of SAA-5-no-SE is given by d2 log p, which is the same number as
SAA-5, the relation of size of prime numbers for D-H, SAA-5 and SAA-5-no-SE are described as:

κ̄ = pD−H = 64pSAA−5 = 64pSAA−5−no−SE (21)
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where pSAA−5−no−SE is the bit size of prime used in SAA-5-no-SE and κ̄ is that of fixed SSK. Also,
the computational complexity of SAA-5-no-SE (denoted by CCSAA−5−no−SE) when the SSK length is
fixed as κ̄ is shown in Table 6 along with that of SAA− 5 and D-H.

Table 5. Calculation speed for each SSK length while d = 10 and |I| = 10.

SSK Length (bit) p (bit) SAA-5 SAA-5-no-SE

800 8 34.42 16.88

1600 16 40.26 9.58

2400 24 44.98 9.92

3200 32 52.36 12.86

4000 40 89.82 19.24

4800 48 75.18 18.78

5600 56 83.94 14.74

6400 64 101.16 14.76

7200 72 145.04 15.62

8000 80 150.58 14.68

8800 88 164.84 17.64

9600 96 176.44 17.68

10,400 104 191.20 17.46

11,200 112 202.76 17.22

12,000 120 213.36 15.96

12,800 128 223.30 16.54

13,600 136 314.08 18.24

14,400 144 336.24 17.58

15,200 152 349.96 18.02

16,000 160 364.66 20.30

Table 6. Computational complexity of each algorithm when SSK length is κ̄.

CCD−H CCSAA−5 CCSAA−5−no−SE

4κ̄ 4|I|(d3 + κ̄) 4|I|d3
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Figure 3. Calculation speed for each SSK Length with strongly-asymmetric algorithm (SAA-5) while
d = 10 and |I| = 10.

4.6. Experimental Result: Performance of SAA-5-no-SE

In Figure 3, the white circle indicates the time spent to calculate in SAA-5-no-SE, and the black
diamond indicates the time in SAA-5. As we expected, we can see the prime p does not effect the
calculation speed of SAA-5-no-SE. Moreover, the calculation time of SAA-5-no-SE is not heavily
influenced by its SSK length.

In Table 7 and Figure 4, the white circle indicates the time spent to calculate in SAA-5, and the
black circle indicates the time in SAA-5-no-SE. Note that the calculation time of SAA-5 shown in
Figure 4 is the value of Table 2 and Figure 2. With Table 2 and Figure 2, we can check SAA-5-no-SE
out-performs not only SAA-5 of all SSK lengths but also D-H of over 1536 bit. Especially when the SSK
lengths are 5120 bit, SAA-5-no-SE is approximately 100 times faster than D-H.
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Table 7. The time to generate SSK.

SSK Length (bit) SAA-5-no-SE(msec)

512 8.32

1024 5.63

1536 4.57

2048 5.26

2560 7.41

3072 6.84

3584 6.15

4096 4.80

4608 5.75

5120 6.02
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Figure 4. Comparison of the generation time of the SSK with SAA-5.

As for performances of other standard PKA/asymmetric cryptography, such as ElGamal, RSA
and Elliptic curve D-H, there are not many differences with that of D-H (see Table 1 of [20], Figures 1–3
of [21] and Figures 3, 4 of [18]) and the speed of their algorithms increases exponentially as the SSK
length increases. Although some algorithms might be faster than SAA-5 or SAA-5-no-SE, especially for
short key lengths, the calculation speed of SAA-5 and SAA-5-no-SE increase linearly, not exponentially.
This is one of the advantage points of SAA-5 and SAA-5-no-SE.

5. Conclusions

In this paper, we showed that the performance of SAA-5 is much more effective than D-H,
especially for large keys, because of its algebraic property and variety of parameters.

Moreover, a more general scheme of SAA-5, called SAPKA-MK, is proposed. SAA-5 is shown to
be described in the form of SAPKA-MK, and a new PKA algorithm called SAA-5-no-SE is introduced
as a concrete example of SAPKA-MK. Alice’s secret key structure of SAA-5-no-SE is the same as that of



Cryptography 2020, 4, 21 18 of 19

SAA-5, but the functions used in the public key and SSK generation steps are different in several ways.
Our performance test on SAA-5-no-SE showed its calculation time increases linearly not exponentially
as the SSK length increases. The test also showed that SAA-5-no-SE is a much more efficient PKA
algorithm than not only D-H of over 1536bit but also the SAA-5 of all SSK lengths, and its security
level is as high as SAA-5.
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writing—original draft, K.J. and S.I.; writing—review and editing, K.J., S.I. and M.R. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

PKA public key agreement
D-H Diffie-Hellman
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References

1. Diffie, W.; Hellman, M. New directions in cryptography. IEEE Trans. Inf. Theory 1976, 22, 644–654.
2. Rivest, R.L.; Shamir, A.; Adleman, L. Method for obtaining digital signatures and public key cryptosystems.

Commun. ACM 1978 21, 120–126.
3. ElGamal, T. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans.

Inf. Theory 1985, 31, 469–472.
4. Koblitz, N. Elliptic curve cryptosystems. Math. Comput. 1987, 48, 203–209.
5. Adrian, D.; Bhargavan, K.; Durumeric, Z.; Gaudry, P.; Green, M.; Halderman, J.A.; Heninger, N.; Springall, D.;

Thome, E.; Valenta, L.; et al. Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA,
12–16 October 2015; pp. 5–17.

6. Shor, P. Polynomial-time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum
Computer. SIAM J. Comput. 1997, 25, 1484–1509.

7. Patarin, J. Hidden fields equations (HFE) and isomorphisms of polynomials (IP): Two new families of
asymmetric algorithms. In Proceedings of the International Conference on the Theory and Applications of
Cryptographic Techniques, Saragossa, Spain, 12–16 May 1996: Springer: Berlin/Heidelberg, Germany, 1996;
pp. 33–48.

8. Porras, J.; Baena, J.; Ding, J. ZHFE, a new multivariate public key encryption scheme. In Proceedings of
the International Workshop on Post-Quantum Cryptography, Waterloo, ON, Canada, 1–3 October 2014;
pp. 229–245.

9. Ajtai, M.; Dwork, C. A public-key cryptosystem with worst-case/average-case equivalence. In Proceedings
of the 50th ACM Symposium on Theory of Computing, El Paso, TX, USA, 4–6 May 1997; pp. 284–293.

10. Khot, S. Hardness of approximating the shortest vector problem in lattices. J. ACM (JACM) 2005, 52, 789–808.
11. Post-Quantum Cryptography Competition Round 2 Submittions. Available online: https://csrc.nist.gov/

projects/post-quantum-cryptography/round-2-submissions (accessed on 24 July 2020).
12. Alkim, E.; Ducas, L.; Poppelmann, T.; Schwabe, P. Post-quantum key exchange—A new hope. In Proceedings

of the 25th USENIX Security Symposium (USENIX Security 16), Austin, TX, USA, 10–12 August 2016;
pp. 327–343.

13. Hoffstein, J.; Pipher, J.; Silverman, J.H. NTRU: A ring-based public key cryptosystem. In Proceedings of
the International Algorithmic Number Theory Symposium, Portland, OR, USA, 21–25 June 1998; Springer:
Berlin/Heidelberg, Germany, 1998; pp. 267–288.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions


Cryptography 2020, 4, 21 19 of 19

14. Casanova, A.; Faugere, J.C.; Macario-Rat, G.; Patarin, J.; Perret, L.; Ryckeghem, J. GeMSS: A Great
Multivariate Short Signature. Available online: https://www-polsys.lip6.fr/Links/NIST/GeMSS_
specification_round2_V2.pdf (accessed on 29 July 2020).

15. Accardi, L.; Iriyama, S.; Regoli, M.; Ohya, M. Strongly Asymmetric Public Key Agreement Algorithms; Technical
Report ISEC2011-20; IEICE: Tokyo, Japan, 2011; pp. 115–121.

16. Accardi, L.; Regoli, M. On a class of strongly asymmetric PKA algorithms. J. Math. Crypt. 2015, 9, 151–159,
doi:10.1515/jmc-2015-0019.

17. Accardi, L.; Iriyana, S.; Jimbo, K.; Regoli, M. A New Class of Strongly Asymmetric PKA Algorithms: SAA-5.
Cryptography 2019, 3, 9.

18. Ottaviani, V.; Zanoni, A.; Regoli, M. Conjugation as public key agreement protocol in mobile cryptography.
In Proceedings of the 2010 International Conference on Security and Cryptography (SECRYPT), Athens,
Greece, 26–28 July 2010; pp. 1–6.

19. Jimbo, K.; Iriyama, S.; Regoli, M. Project Name: Implementation of a New Strongly Asymmetric Algorithms
and Its Optimization. GitHub Repository. 2020. Available online: https://github.com/jimbobmij/project_
KSM (accessed on 29 July 2020).

20. Großschädl, J.; Kizhvatov, I. Performance and security aspects of client-side SSL/TLS processing on mobile
devices. In Proceedings of the International Conference on Cryptology and Network Security, Kuala Lumpur,
Malaysia, 12–14 December 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 44–61.

21. Okeyinka, A.E. Computational speeds analysis of RSA and ElGamal algorithms on text data. In Proceedings
of the World Congress on Engineering and Computer Science, San Francisco, CA, USA, 21–23 October 2015;
Volume 1.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www-polsys.lip6.fr/Links/NIST/GeMSS_specification_round2_V2.pdf
https://www-polsys.lip6.fr/Links/NIST/GeMSS_specification_round2_V2.pdf
https://github.com/jimbobmij/project_KSM
https://github.com/jimbobmij/project_KSM
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Mathematical Setting and Key Agreement Protocol of SAA-5
	Breaking Complexity of SAA-5
	The Brute-Force Attack

	Performance Estimation and Evaluation of SAA-5
	Performance Estimation
	Discussion: Efficient Parameters of SAA-5 and Comparison with D-H
	Experimental Result: Comparison with D-H

	Performance Improvement
	The SAPKA with Multiple Keys Class
	SAPKA-MK Version of SAA-5
	SAA-5 without Schur-Exponentiations
	The Comparison of Breaking Complexity between SAA-5 And SAA-5-no-SE
	Discussion: Performance of SAA-5-no-SE
	Experimental Result: Performance of SAA-5-no-SE

	Conclusions
	References

