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Abstract: The edge devices connected to the Internet of Things (IoT) infrastructures are increasingly
susceptible to piracy. These pirated edge devices pose a serious threat to security, as an adversary can
get access to the private network through these non-authentic devices. It is necessary to authenticate
an edge device over an unsecured channel to safeguard the network from being infiltrated through
these fake devices. The implementation of security features demands extensive computational power
and a large hardware/software overhead, both of which are difficult to satisfy because of inherent
resource limitation in the IoT edge devices. This paper presents a low-cost authentication protocol for
IoT edge devices that exploits power-up states of built-in SRAM for device fingerprint generations.
Unclonable ID generated from the on-chip SRAM could be unreliable, and to circumvent this issue,
we propose a novel ID matching scheme that alleviates the need for enhancing the reliability of the
IDs generated from on-chip SRAMs. Security and different attack analysis show that the probability
of impersonating an edge device by an adversary is insignificant. The protocol is implemented using
a commercial microcontroller, which requires a small code overhead. However, no modification of
device hardware is necessary.

Keywords: IoT security; SRAM; edge device; authentication

1. Introduction

The recent growth in Internet of Things (IoT) infrastructure has created an enormous potential for
semiconductor design and manufacturing primarily to improve performance and enhance security.
Billions of low-cost devices are connected to the Internet to provide seamless integration of computing
systems to the physical world. These devices are commonly known as "things" or edge devices (EDs).
The number of these connected devices has grown significantly and will continue growing at an
astonishing rate in the near future [1–3]. As these devices are deployed in large geographic areas
with limited energy resources and reachability, the power requirement becomes a significant issue for
proper operations, which ultimately limits the usage of standard cryptographic schemes for secure
operations [4]. Moreover, the cost of these devices requires them to have a low die area, which restricts
the use of costly cryptographic primitives in the design. As a result, a majority of the EDs do not use
computation and resource-heavy cryptographic schemes. HP mentioned in a report that 70% of the
tested IoT devices communicate without encryption [5].

The use of cryptographic primitives does not necessarily ensure the authenticity of an ED, as
the majority of them are manufactured offshore with limited trust and lack of government or other
appropriate oversight. Moreover, as these devices travel through many distributors located across the
globe, it is very difficult to determine their origin and the complete route in the supply chain. Many
untrustworthy third party suppliers and distributors can introduce compromised devices, which look
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and function exactly like the authentic ones. It is thus extremely difficult to ensure the authenticity of
these resource constraints and low-cost edge devices. Numerous incidents, which include the presence
of cloned systems in the US defense supply chain, indicate that inauthentic hardware entered into
the electronics supply chain [6–16]. Figure 1 presents the simplified view of an Internet of Things
infrastructure, where the EDs are connected to the Internet through gateways. In our threat model, we
treat the gateways as trusted, as one can implement security measures using traditional cryptographic
primitives. However, as the edge devices are limited in resources, it is extremely difficult to ensure
their authenticity, as an ED can easily be cloned or counterfeited. Note that the hardware attacks
can be initiated at the place, where the system is located. For example, an untrustworthy employee
in an organization can practically replace an authentic device with its cloned counterpart to gain
access to a secure system. In addition, a trusted user can unknowingly add a counterfeit device to
the IoT infrastructure, since it is fairly impossible to track their origin if they are acquired from an
untrustworthy distributor. Note that various software attacks, such as denial of service (DoS), phishing,
and data spoofing, can be performed through untrustworthy hardware [17,18]. As the objective of this
paper is to address the hardware attacks, we design our proposed solution to ensure the authenticity
of EDs.
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Figure 1. A typical IoT model that illustrates common hardware vulnerabilities.

1.1. Motivation

A recent study suggests that the IoT nodes are severely resource-constrained and they are not
well equipped with standard cryptographic protocols [4,5,19]. It is essential for a user to authenticate
an ED with very high confidence, as it may be cloned or tampered, and may have a secret backdoor,
which can be exploited by an adversary. Traditionally, digital signatures [20] are widely used for
end-point authentication, which generally uses Rivest–Shamir–Adleman (RSA) [21] or elliptic-curve
cryptography (ECC) [22] crypto primitives. Implementing these primitives in EDs is too expensive due
to severe resource constraints. A typical ED consists of an 8MHz microcontroller (MCU), a small (e.g.,
128KB) flash memory, and a small (e.g., 10KB) RAM [23]. Software implantation may be preferred in
case of hardware limitations; however, these crypto primitives are usually intensive in computation
that may not be affordable for EDs as well.

The authentication of integrated circuits (ICs) can be performed using the use of physically
unclonable functions (PUFs), as they can generate unique and unclonable bits for creating a unique
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identifier (ID). Uncontrollable and unpredictable manufacturing process variations are utilized in
PUFs to generate random and unclonable bits. Over the years, researchers proposed different PUF
architectures and they are the arbiter PUF [24], ring oscillator (RO) PUF [25], SRAM PUF [26], and
a few others [27–29]. Every authentication can be unique if a unique challenge-response pair (CRP)
is used for every communication between the EDs and the gateway. To authenticate an IoT device
over an unsecured channel using PUF as an ID generation unit, it is essential to have a strong PUF,
with a very large number of CRPs. However, a large number of CRPs management and storage can
be another intricate problem to manage for billions of connected devices. In addition, a strong PUF
requires hardware modification for EDs, which might not be feasible. Instead, we can exploit built-in
SRAM and use software support to generate the ID.

Typically EDs have on-chip SRAM that can be used to design a PUF, which would offer a
cost-effective solution to produce an unclonable device ID. However, there are several challenges to
using SRAM-PUF to create device IDs. The bits generated from an SRAM may be unstable and create
different IDs for the same device. Error correction codes needs to be used to increase the reliability
of the SRAM-PUF response. However, error correction codes usually consume larger memory space,
which may not be available in these resource-constraint EDs. It is, thus, required to design a low-cost
authentication scheme to uniquely identify EDs over an unsecured channel.

1.2. Contributions

We present a lightweight authentication protocol that verifies the authenticity of a resource
constraint edge device. The communication protocol is low-cost, as it uses the resources available in
an ED, such as a processor and an on-chip SRAM memory. In addition, we have further developed a
robust repeated ID matching scheme to authenticate an ED, where the ID is created from an on-chip
SRAM memory. Our scheme is superior over the simple ID matching scheme, as SRAM PUFs are often
found to be unreliable. The contributions of our paper are as follows. We:

• Developed a low-cost and secure communication protocol: We propose a novel lightweight
communication protocol that utilizes existing hardware resources of an edge device. A secure
hash function [30] is used in our proposed protocol and it is implemented using an embedded
processor and on-chip memory of an ED [31,32]. It is necessary to make sure that the unencrypted
device ID does not leave the system. We show that the protocol is at least as secure as a hash
function. We provide the security proof of our protocol in Section 5.3. In addition, the heuristic
security evaluation shows that our proposed protocol is resistant to various known attacks.

• Proposed repeated authentication for device identity verification: We propose a novel repeated ID
matching technique (see details in Section 4) to address the reliability issues arisen from an SRAM
PUF. Our proposed solution does not require expensive helper data and algorithms for error
correction, and thus can be lightweight. If a noisy SRAM PUF is used in the ED, an adversary
might get lucky to pass the authentication once. However, it is highly unlikely that he/she
will pass the authentication a second time and successfully register a fake device using random
guesses unless the communication protocol described in Section 3.1 is broken. The unreliable bits
from the SRAM PUFs can be identified in the proposed repeated ID matching scheme and will
be excluded during the ID matching process. We demonstrate that it is highly unlikely for an
adversary to impersonate an ED (see the details in Section 1). An adversary can pass the simple
ID matching scheme by random trial (see Section 4.1) if the PUF responses are noisy. However,
an adversary cannot impersonate an edge device two times with random guesses. Note that one
can also implement an authentication scheme that verifies an ED more than two times to further
increase the difficulty of impersonating an authentic device.

• Implemented the proposed protocol in low-cost devices: We have implemented this proposed protocol
using Raspberry Pi as a gateway and Arduino as the edge devices. The EDs go through a
registration process (see Algorithm 1), where the device signature is generated from the power-up
states of the on-chip SRAM. We implemented the proposed protocol without any hardware



Cryptography 2020, 4, 8 4 of 20

modifications. The IDs generated from the Arduino EDs show good uniqueness properties (see
the Hamming distance’s analysis in Section 6.4).

The rest of the paper is organized as follows. Section 2 briefly surveys the literature. Section 3
describes our proposed lightweight communication protocol to verify the identity of an ED. We present
the ID matching scheme by repeated authentication in Section 4. The security evaluation is performed
in Section 5. The implementation detail is described in Section 6. Finally, the paper is concluded in
Section 7.

2. Prior Work

Over the years, researchers have proposed several PUF-based authentication protocols for resource
constraint applications. Most of these protocols consists of a prover node, and a verifier. The prover
is a node (e.g. sensors), which responds to the verifier’s (e.g., routers) query to confirm that it is an
authorized node in the IoT system. To perform a verification, a random challenge is sent to the prover
by a verifier, and the prover acknowledges by sending a valid response in return. The authors in [33]
combined a delay PUF-based authentication protocol with an HB-based protocol (named after the
authors) [34] to remove security vulnerabilities of these individual protocols. Later in their work, they
proposed a protocol that reduces power and area overhead by using 2-level noisy PUF instead of
using area and power-intensive cryptographic modules, such as hash functions [35]. Katzenbeisser
et al. proposed a logically re-configurable PUF [36], which can be used to reduce excessive area
requirement [37]. The above protocols use a CRP only once in order to prevent the replay attack.

Management and storage of CRPs at the verifier’s end are pressing issues when it comes to
millions of devices connected to the Internet. An adversary, listening to the communication among
prover and verifier nodes, can model a PUF mathematically and predict the responses. Rührmair et
al. presented a modeling attack for several PUF models including arbiter PUFs and ring oscillator
PUFs [38]. To eliminate these issues, the converse PUF-based authentication protocol has been proposed
in [39], where the verifier is considered a resource-constrained device, and the prover is considered a
resource-rich server. A hardware and software co-verification based lightweight IoT authentication
scheme is presented in [40]. The authors applied the hash of firmware along with PUF response to
detect software and hardware impersonation attacks. Chatterjee et al. proposed an authentication
scheme that combines the concepts of PUF, identity-based encryption (IBE), and keyed hash function
to eliminate the need for explicitly storing CRPs [41]. Braeken et al. [42] proved that this protocol is
vulnerable to the man-in-the-middle (MITM) attack, impersonation, and replay attacks [43].

A preshared key based host identity protocol is proposed in [44] to authenticate an IoT edge
node. The primary shortcoming of the method is that adversary might gain access to the network
if the shared key gets compromised. Kothmayr et al. proposed a two-way authentication protocol,
entitled datagram transport layer security (DTLS) based on the X.509 certificate [45]. Porambage
et al. proposed an implicit certificate-based two-phase authentication protocol [46]. Since the
certificates are more lightweight than the protocol proposed in [45], distributed IoT applications
are supported by this protocol. This implicit certificate-based protocol is suitable for highly
resource-constrained devices. However, the protocol is vulnerable to replay attack, DoS attack, and
man-in-the-middle (MITM) attack [47]. To mitigate these vulnerabilities, Turkanović et al. presented
a four-step authentication model, which is suitable for the scenario where a remote user negotiates
a session key with a sensor node without connecting to the gateway [48]. Challa et al. proposed a
signature-based user authenticated key agreement scheme using Elgamal and ECC-based signature
for IoT device authentication [47]. Although this protocol is advantageous in comparison to [46,48], it
is computationally intensive. Hash function-based and chaos-based privacy-preserving schemes for
IoT in a smart home system have been proposed in [49]. The authors used symmetric cryptosystem
(e.g., Message Authentication Code or MAC) for both schemes. The heuristic suggests that the
protocols are secure. Formal security analysis and verification would strengthen the contribution
of the proposed method. Wazid et al. proposed three-factor—smart card, password, and personal
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biometrics—remote user authentication for a hierarchical IoT network called the user authenticated key
management protocol [50].

The majority of these protocols use a strong-PUF that requires hardware modification which
ultimately imposes a strain on the resource limitation of EDs. Mass production and remote deployment
are among the primary features of IoT devices. Adding extra hardware could be very expensive in
terms of run-time power consumption and production cost. Therefore, a better approach would be to
utilize existing hardware to implement security features that would be secure but lightweight.

3. Proposed Authentication Scheme

One of the major constraints in implementing standard authentication protocol is limited resources
available in an ED. It is essential for an ED to have a low die area, smaller memory, and lower power
consumption which, in effect, limit the performance. These constraints ultimately prohibit EDs from
using standard secure protocols such as TLS and IPsec [4]. Less stress was given on security during the
development of IoT edge devices considering that the generated or transmitted data would have little
value to the attackers. It has been proven otherwise because this seemingly trivial information can
be exploited to break into complex systems [51,52]. Authentication of an ED in an IoT network could
help avoid the potential threat posed by counterfeit or cloned devices. In this section, we propose an
authentication technique for an ED by correctly identifying its origin. To prevent various run attacks,
the device needs to encrypt its data. However, advanced encryption methods are only feasible for
gateways, since they have higher resources. Our proposed scheme does not address authentication of
the gateways and treats them as authentic.

3.1. Proposed Communication Protocol

Figure 2 shows our proposed authentication approach. A true random number generator
(TRNG) is necessary for the gateway device for random nonce (n) generation. We propose to use a
cryptographically secure pseudo-random number generator (CSPRNG) such as [53] or [54] considering
area efficiency in its implementation. A one-time-pad (OTP) [55,56] is employed to encrypt the key
with n. Note that OTP is area efficient, as it only requires a simple XOR array. To authenticate the lth

ED in the network, we employed a pair of keys, {Kl , IDl}. Kl is stored in an on-chip memory of an
ED, and it is shared with the gateway. IDl is a unique device signature that can be generated from an
SRAM PUF (see Section 4 for details).

Proposed Communication Protocol

SI’s Database Edge Device (EDl)

5. Receive mi

6. Recover ni ← mi ⊕ Kl  
7. Compute Hi ← Hash(ni)
8.  IDl ← PUF Response 
9. Compute ri ←Hi ⊕ IDl

10. Send ri

TLS

Gateway

11. Receive ri

12. Compute Hi ← Hash(ni)
13. Reconstruct secret device ID
    IDl* = ri ⊕ Hi

14. Compare the reconstructed ID (IDl*) 
with the stored ID (IDl)

mi

ri

K0,ID0

K1,ID1

K2,ID2

-------
Ki,IDi

-------
-------

0

1

2

---
i

---
---

1. Receive key-ID pair, {Kl,IDl} ϵ {0,1}N

2. Generate ni , ni ϵ  {0,1}N

3. Compute mi ← Kl ⊕ ni

4. Send mi

Figure 2. Proposed communication protocol for verifying the identity of an edge device (ED) [57].
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The proposed communication protocol for authenticating an ED is described in the following
steps:

1. The gateway receives the secret device key-ID pair {Kl ,IDl} from the trusted system integrator
(SI) using an existing secure communication protocol (e.g., TLS [58]). Here, SI is an entity that
produced ED. During production, every device needs to be registered in a secure database with a
public ID, and a key-ID pair, {IDl ∈ {0, 1}N , Kl ∈ {0, 1}N}. Here, N is the length of the IDl and
Kl . Depending on the level of security one requires, N could vary. We analyzed the protocol for
both N = 128 and N = 256, and implementation is only demonstrated for a 256 bit ID. The public
ID is needed to locate the ED in the database. A tamper-proof memory in a gateway can also be
used to store this data rather than transferring them from another database. However, since the
gateway is always connected to the Internet, standard security measures can be implemented, as
it typically does not have any resource limitations. However, it is recommended to receive the
key-ID pair from the trusted integrator rather than store it into the gateway itself.

2. The gateway stores {Kl , IDl} in its on-chip (volatile or non-volatile) memory, but no information
can be extracted through the input and output of the gateway. This will prevent an adversary
from getting access to the {Kl , IDl}, which was generated during the registration phase of the
ED.

3. An on-chip CSPRNG generates a unique nonce (ni), which is stored in the memory of the gateway.
This ni will be used later for decrypting the secret device ID. A one-time pad (OTP) now encrypts
the key (Kl) with this random nonce. The gateway then sends this encrypted key (depicted as
(mi) in the figure) to the lth ED, EDl , to request for its identification.

mi = ni ⊕ Kl (1)

4. The nonce (ni) is retrieved at the ED by XORing the mi with the shared secret key (Kl). A secure
hash (e.g., SHA-2 or SHA-3 [30]) is computed on this nonce (ni) to produce a 256/512 bit hash
output (Hi). Existing hardware resources such as embedded processor and memory [31,32] of the
EDs are sufficient to compute this hash.

Hi = hash(ni) (2)

5. The device ID (IDl) is created from the on-chip SRAM (extensive desription and analysis of SRAM
PUF can be found in [59–63]) of the ED. Now, the ED encrypts IDl using N bits of computed H.
The encrypted ID {ri} is sent to the gateway for authentication.

ri = IDl ⊕ Hi (3)

6. The gateway computes the same hash (SHA-2 or SHA-3) using the ni after receiving ri. By this,
the secret device ID is reconstructed in the gateway.

ri ⊕ Hi = IDl ⊕ Hi ⊕ Hi = IDl (4)

7. This reconstructed ID is then verified with the stored ID (see Section 4 for details). Steps 3-6 are
repeated for the second stage of the authentication to increase the confidence of an authentic ED.

3.2. Security Proof

A protocol preserves the secrecy if an adversary cannot determine secret data, e.g., key, with
absolute certainty just by interacting with the protocol. Therefore, the protocol analysis primarily tries
to determine a protocol trace that would compromise the secrecy of the system [64]. In this section, we
will provide detailed proof for our proposed protocol.
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The proposed protocol employs a symmetric key encryption system. First, the gateway sends a
nonce encrypted using a shared key to an ED, K. Then, the ED uses the same shared key to recover the
nonce to transfer the ID to the gateway for authentication. Key freshness is ensured, since the nonce is
transformed through a secure hash function before it is used again to encrypt the ID.

Let us assume that a probabilistic polynomial time adversary adv performs an authentication
experiment Authadv,π(n, Hadv, mi, ri, rj) and tries to find a difference between a random data and
private information; e.g., key K of the protocol π. The adversary adv has the following information:

1. The hash function Hadv with the security parameter N, which is the length of shared key K.
2. He/she can eavesdrop and collect message contents mi, ri, and rj.

To prove that the protocol is secured, we need to show that the probability of success in the
Authadv,π experiment is negligible. In other words, there exists a function negl(.) for every probabilistic
polynomial time adversary such that:

Pr[Authadv,π = 1] ≤ negl(N) (5)

Definition 1. For a secure hash function H, it is computationally infeasible to calculate the two input messages
x1 and x2 (x1 6= x2) such that H(x1) = H(x2). This property of hash function is commonly denoted as collision
resistance [65].

Definition 2. Given an N-bit output of a secure hash function H is z, it is computationally infeasible to
calculate the input message x such that H(x) = z. This property of hash function is commonly denoted as
preimage resistance [65].

Theorem 1. The protocol π is secured from a polynomial time adversary such that it is not feasible to disintegrate
H(ai)⊕ H(aj) into H(ai) and H(aj). Here, ai,j is any variable of length N and ai 6= aj.

Proof. Let us assume an adversary adv can actively monitor and alter {m1, m2, · · · , mi} and
{r1, r2, · · · , ri}, and performs two corner case experiments.

First, a zero string of length N is injected instead of ni ⊕ K to an authentic ED. Therefore, ED
receives mi = [00...00] and calculates ni = mi ⊕ K = K. Then, the ED computes ri = H(K)⊕ ID and
sends ri to the adversary. Second, all one string of length N is passed to the same ED. Similar to the
first attempt, ED receives mi = [11...11] and calculates ni = mi ⊕ K = K. Then, the ED computes
ri = H(K)⊕ ID and sends ri to the adversary. From these two transactions, the adversary can construct
H(K)⊕ H(K) which is a more specific case for any replay attack (See Equation (13)).

Considering more general case, adv can retrieve H(ai) and H(aj) if and only if H(ai)⊕ H(aj) = 0;
that is, H(ai) = H(aj). This is not computationally feasible because of the collision property (see
Definition 1) of a secure hash function. Therefore, the protocol π is secured from a polynomial time
adversary because it is not feasible to disintegrate H(a)⊕ H(a) into H(a) and H(a).

Now, we consider a more pessimistic case where the adversary identifies H(K) (and therefore
violates the Theorem 1), yet we show that the protocol is secured by proving the following theorem.

Theorem 2. If the preimage resistance definition holds, the proposed authentication protocol π is secured
against an eavesdropping adversary.

Proof. Let us assume that a polynomial time adversary runs an algorithm A that can compute the
inverse hash with a probability negl(N). The adversary constructs an efficient algorithm A′ using the
algorithm A as a subroutine (see Figure 3). The new algorithm is entitled "reduction," and it attempts
to solve preimage identification problem. This leads to an adversary; compute ni as follows:

ni = mi ⊕ K′ = K⊕ ni ⊕ K′ (6)



Cryptography 2020, 4, 8 8 of 20

Hadv(ni)⊕ ri = Hadv(ni)⊕ ID⊕ H(ni)

= ID (7)

Here, A′ computes a shared key K′ using H(K). All future authentications can be impersonated
using the Equation (7. Even though the protocol chooses a different nonce (nj 6= ni) during future
authentications, it can be retrieved using shared Key K. Revealing K particularly poses a major
threat because any future authentication for that particular ED can be passed. This implies a direct
contradiction to the preimage resistance property of a secure hash (see Definition 2) because the
algorithm A needs to find K from its hashed value to execute this attack. The protocol π is secured if
the preimage resistance property holds. From the above theorems, we conclude that the probability of
success for Authadv,π(n, Hadv, mi, ri, rj) is negligible.

Reduction A’

A

Instance of Hash

Preimage resistance problem

Solution to Hash`s 

Preimage resistance problem

Instance of 

Protocol π 

Break

Figure 3. Security proof using reduction method.

4. Device Authentication by ID Matching

Authentication of an ED would be challenging if we consider applying SRAM PUF response
as a device signature without any error correction codes. SRAM PUF outputs may vary because of
temperature variation, aging degradation, and fluctuations in the supply voltage. Therefore, responses
from a PUF could vary significantly if those are taken at different environmental conditions. How can
we use a PUF to verify the identity of a device, if a PUF produces an unreliable ID? Response collected from a
PUF during the registration phase and the response collected during authentication will necessarily
match bit-by-bit. To identify a device, however, it is not imperative to match every bit of the stored
and new responses. A decision can be reached if the majority of bits (above some predetermined
threshold) match among these responses. If the PUF responses are too noisy, an adversary can get
lucky to authenticate an illegitimate device. This vulnerability can be addressed by capturing multiple
responses from the PUF in a very short duration under similar environmental conditions and perform
authentication for once more. To utilize this idea we developed a repeated authentication scheme,
where the gateway interrogates an ED more than once in a short duration (see details in Section 4.2).
Note that this repeated authentication does not extract more stable bits to identify a device, rather than
preventing an adversary to become successful in impersonating an authentic one by random guesses.
We show that the probability of impersonating an authentic device twice is negligible.

4.1. Simple ID Matching

The uncertainty in the PUF output is mitigated in the proposed method primarily because the ID
matching does not consider the bit-by-bit matching of the IDs during authentication. We propose to
apply Hamming distance (HD) to calculate the similarity between stored IDS and received IDR. Note
that, Hamming distance indicates how many bits are different between two binary numbers.

The authentication can be performed as follows:

HD(IDS, IDR)→
{ ≤ HDT , The device is authentic
> HDT , The device is counterfeit
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where HDT is the threshold that should be determined once the PUF is characterized. For instance,
initially, we can set a threshold of 10 which would mean that as long as stored IDS and received IDR
are mismatched at most 10 bit, the authentication will pass.

At this point, we determine the probability of impersonating an authentic ED by an adversary.
Let us assume that the size of the stored ID (PUF response) is of N-bits and HDT is of k-bits. Now, the
probability of finding one vector with exactly (N − k)-bit match or k-bit mismatch is as follows:

p =
1

2N
NC(N−k) =

1
2N

(N
k

)
Thus, the probability of finding a vector with at most k-bit mismatch to pass the ID matching test

becomes:

p =
1

2N

k

∑
i=0

(N
i

)
(8)

From Equation (8, we conclude (see Table 1 for details) that the attacker has a low probability of
authenticating an illegitimate device.

Table 1. Probability of matching an ID.

Simple ID Matching Repeated ID Matching
HD†

T =1 HD†
T=2 HD†

T=4 HD†
T=8 HD†

T=16
HDT ID =128 ID = 256 ID =128 ID = 256 ID =128 ID = 256 ID =128 ID = 256 ID =128 ID = 256 ID =128 ID = 256

1 3.8×10−37 2.2×10−75 2.9×10−73 9.8×10−150 1.8×10−71 1.3×10−147 2.4×10−68 6.7×10−144 3.2×10−63 1.6×10−137 2.1×10−55 3.9×10−127

2 2.4×10−35 2.8×10−73 3.6×10−71 2.5×10−147 2.3×10−69 3.2×10−145 3.0×10−66 1.7×10−141 3.8×10−61 3.9×10−135 2.4×10−53 9.3×10−125

4 3.2×10−32 1.5×10−69 1.9×10−67 5.4×10−143 1.2×10−65 6.8×10−141 1.5×10−62 3.5×10−137 1.8×10−57 7.9×10−131 9.7×10−50 1.8×10−120

8 4.5×10−27 3.7×10−63 4.1×10−61 2.0×10−135 2.5×10−59 2.5×10−133 2.9×10−56 1.3×10−129 3.1×10−51 2.6×10−123 1.2×10−43 5.2×10−113

16 3.2×10−19 9.3×10−53 6.9×10−51 1.3×10−122 3.9×10−49 1.5×10−120 4.0×10−46 7.2×10−117 3.2×10−41 1.3×10−110 7.0×10−34 2.0×10−100

32 6.4×10−9 5.9×10−37 7.9×10−36 4.9×10−102 3.8×10−34 5.5×10−100 2.8×10−31 2.3×10−96 1.2×10−26 3.1×10−90 6.7×10−20 2.6×10−80

64 5.4×10−1 2.4×10−16 1.9×10−18 7.5×10−72 6.0×10−17 7.2×10−70 2.0×10−14 2.2×10−66 1.5×10−10 1.6×10−60 2.1×10−5 3.7×10−51

Although the success probability for adversaries passing authentication is indeed insignificant,
this is not sufficient to prevent guessing an ID by random trials when there are many unreliable bits in
an ID. This is not unlikely if an ED uses an SRAM PUF without any error correction code. Hence, it is
essential to further improve the simple matching scheme.

4.2. Repeated ID Matching

It is not likely that an attacker will authenticate a fake device a second time consecutively, unless
the communication protocol described in Section 3.1 is broken. This section describes a repeated ID
matching scheme, where an ED is certified as authentic if it passes two consecutive ID verification tests.
In addition, we can extract more stable bits from the PUF response during the second ID matching
by discarding unreliable bits. Unreliable bits can be defined as the bits which flip during the first ID
matching, are and computed using the following equation:

IDR[i] 6= IDS[i]

where IDR and IDS are the received and stored PUF responses, respectively.
The repeated authentication scheme is described in the following steps:

1. The gateway requests lth edge device (EDl) for its device ID by sending n1 ⊕ Kl . The ED returns
encrypted IDR (H(n1)⊕ IDR). The gateway first decrypts the ID (see Equation (4), and then
computes the mismatch locations of the received ID (IDR[i] 6= IDS[i]). A robust ID RID is created
by discarding mismatch bits. Additionally, the gateway keeps track of the mismatch locations.

RID[k] = IDR[i], if IDR[i] = IDS[i]; 0 < k < i < N (9)
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2. The gateway again requests EDl for its ID by sending n2 ⊕ Kl , (n1 6= n2). Similar to the first
authentication, EDl then returns the encrypted IDR, (H(n2)⊕ IDR). This is decrypted in the
gateway side using the Equation (4). Then, the gateway computes the new robust ID (RID∗) by
using Equation (9).

3. The two robust IDs are compared by using Hamming distance, which is described below:

HD(RID, RID∗)→
{ ≤ HD†

T , The device is authentic
> HD†

T , The device is counterfeit

Note that PUF produces a similar response for similar conditions; therefore, HD†
T is much less

than HDT . It is important to keep in mind that depending on the expected security of the system
one can implement an authentication scheme that uses more than two repeated IDs from the
same device.

Now, let us calculate the probability of authenticating a device twice by an adversary. We assume
that the size of the stored ID is of N-bits, HDT is of k-bits, and HD†

T is of r-bits (r < k). The probability
of passing two repeated authentication becomes:

p =
1

2N

k

∑
i=0

(N
i

)
× 1

2(N−k)

r

∑
i=0

(N − k
i

)
(10)

It is clear from the Equation (10) that the probability of successful authentication is significantly
reduced if repeated authentications are performed. Successive failed authentication can also be
prevented simply by implementing a counter in the gateway to keep track of the failed attempts. If the
count crosses some threshold, that can raise a flag.

5. Security Analysis

We provide a detailed security analysis in this section by showing the attack success probabilities
and show that the proposed protocol is robust against known attacks, such as denial of service, the
replay attack, and different physical attacks.

5.1. Probability Analysis for Proper ID Matching

For a fixed ID length, Hamming distance plays an important role that could reduce the chance
of impersonating a device. A smaller Hamming distance makes it harder for an attacker to guess an
ID by random trials. However, the reliability of a PUF determines the Hamming distance in this case.
Simple ID matching should be enough for a reliable PUF to prevent cloning. However, repeated ID
matching can provide the solution for even a very unreliable PUF.

Table 1 lists the probabilities of matching IDs for both a simple ID matching scheme (see Section
4.1) and the proposed repeated ID matching scheme (see Section 4.2). The analysis here considered
128-bit and 256-bit device IDs. The Hamming distances (HDTs) chosen for the analysis are 1, 2, 4, 8,
16, 32, and 64. The PUFs are considered very reliable when HDT values are 1, 2, and 4. On the other
hand, we also consider very noisy PUFs where 32 or 64 bits may be flipped during authentication.
As expected, the probabilities of ID matching increase with an increase of HDT . This is intuitive, as
an adversary has a lesser required effort for matching an ID. For a reliable PUF, an attacker has a
significantly low probability of matching an authentic ID. For example, the probability of finding a
match becomes 4.5× 10−27 and 3.7× 10−63 considering an HDT of 8, when the IDs are 128 bit and
256 bit respectively. However, the probability increases significantly to 5.4× 10−1 and 2.5× 10−16

considering HDT of 64 for an ID of 128 and 256 bits, respectively.
For the repeated ID matching scheme, the Hamming distances (HD†

Ts) chosen for the second
stage of the authentication process were of 1, 2, 4, 8, and 16 bits. As before, the probability of ID
matching is higher with an increase of HD†

Ts. However, it is much less when we compare it to the
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simple ID matching scheme. We now have a significant improvement of not finding an ID, as the
probability has decreased significantly. For example, the probability of finding an ID is 1.9× 10−18 for
a PUF that is heavily impacted by aging (64 out of 128 bits are unstable) assuming stable bits remain
stable (HD†

T is of 1). For a 128 bit ID, we also have a very low probability of 1.5× 10−10 and 2.1× 10−5

with HD†
T of 8 and 16 bits, respectively. For a 256 bit ID, it is fairly impossible for an adversary to pass

the repeated ID matching scheme even though PUF responses are unreliable.

5.2. Denial of Service (DoS) Attack

When an adversary intentionally stages a failed authentication for a genuine ED so that it cannot
be in service, it is known as denial of service attack. For example, a security camera can be disabled
by making it fail to register itself to the server. For the protocol presented in this paper, an attacker
can eavesdrop the communication between ED and gateway G. Every authentication starts with a
nonce ni generation in the G, and then ni is sent lth ED as mi = Kl ⊕ ni. In response, the ED returns
ri = H(ni)⊕ IDl to the G. At this point, an attacker can intercept ri and feed a modified version as r∗i .
This would certainly fail the authentication as G will fail to reconstruct the IDl . To prevent this attack,
the proposed protocol needs the following modification:

5.2.1. First Authentication

• G generates a random nonce ni, and sends it as mi = Kl ⊕ ni to EDl .
• EDl returns ri = H(ni)⊕ IDl to the gateway as response. Attacker eavesdrops and replaces ri

with r∗i ( 6= ri).

• G retrieves ID(1)
l as the ID of EDl by computing ID(1)

l = H(ni)⊕ r∗i . Since the IDl 6= ID(1)
l , the

authentication fails.

5.2.2. Second Authentication

• G generates a random number nj( 6= ni) and sends mj = Kl ⊕ nj to EDl .
• EDl returns rj = H(nj)⊕ IDl back to the gateway. Similarly to the first authentication phase, an

attacker may eavesdrop and send r∗j ( 6= rj) to the gateway.

• Gateway retrieves ID(2)
l 6= IDl as the ID of the ED is IDl and authentication fails.

• Finally, gateway verifies the ID(1)
l and ID(2)

l to determine whether an attack has been launched.

According to the Table 1, the probability of matching these two IDs is very low.

5.3. Replay Attack

An attacker attempts to authenticate an ED by impersonating the ID using prior communications.
We assume that an attacker does not have access to the secret key (Kl), which is stored in the EDl . Let us
assume that the attacker observes two prior communications. First, he/she observes n1 ⊕ Kl from the
gateway and Hn1 ⊕ IDl from EDl . From this observation the attacker can compute Kl ⊕ IDl ⊕ n1⊕Hn1 ,
which is shown below:

(n1 ⊕ Kl)⊕ (Hn1 ⊕ IDl) (11)

From the second communication, the attacker observes n2( 6= n1)⊕Kl from the gateway and Hn2 ⊕ IDl
from EDl , and can compute Kl ⊕ IDl ⊕ n2 ⊕ Hn2 .

Now the attacker can perform the following operations:

(n1 ⊕ Kl)⊕ (n2 ⊕ Kl) = n1 ⊕ n2 (12)

(Hn1 ⊕ IDl)⊕ (Hn2 ⊕ IDl) = Hn1 ⊕ Hn2 (13)
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From Equation (13), it is obvious that an adversary successfully replays a prior communication if it
becomes zero, when Hn1 = Hn2 . This would certainly contradict the collision property of a secure
hash [30]. Thus, the communication protocol becomes is resistant to replay attack, when it has been
implemented with a secure hash function (SHA-2 or SHA-3).

5.4. Physical Attacks

We need to use a tamper-proof memory to store the secret key Kl in the ED. As discussed
previously Kl is shared between the gateway and ED, and so a breach in this information will break
the security of the protocol. Reverse engineering and physical attack can be a way to steal this secret
information. Nowadays, sophisticated optical microscopes can capture high-resolution 3D images
of a microchip. Scanning electron microscopes and transmission electron microscopes can produce
images of different inner layers of a microchip. Chipworks (now TechInsights) have performed such
experiments legitimately for competitive analysis and patent research. The physical layout of a chip can
be constructed from a legitimate chip through destructive physical attacks as well. Infrared backside
imaging can reveal stored data in an NVM. All these physical attacks can be used to reveal secret
information. Since our proposed protocol uses PUF for ID generation, this ID will be different for
different EDs. Performing a physical attack will expose the unique key Kl , and thus the PUF generated
ID of EDl only and not any other devices. From the financial point of view, this does not provide a
strong motivation for an adversary to launch physical attacks.

6. Implementation Details

In this section, we show that the proposed protocol can be efficiently implemented with low code
overhead using commercial resource-constrained devices. Arduino Mega [66] and Raspberry Pi-3
model B (RPi) [67] have been used as the ED and gateway, respectively. Note that Arduino Mega
is equipped with an ATMEGA2560 microcontroller [68] that contains 8KB SRAM and 256KB flash
storage. We exploit the uninitialized power-up states of this SRAM to generate device signature (i.e.,
ID). Figure 4 shows the implementation setup. The proposed protocol is implemented into two phases,
enrollment phase and authentication phase, which are described in the following.

Figure 4. Implementation setup with Arduino Mega 2560 as the ED and Raspberry Pi as the gateway.

6.1. Enrollment Phase

The objective of the enrollment phase is to read the unclonable device ID of an ED and store it in
a secure database for future authentication. The uninitialized memory space between the stack pointer
(SP) and the heap pointer (HP) is extracted to generate device ID. Figure 5 illustrates the memory space
for a typical microcontroller. Note that the memory space between HP and SP shrinks or expands
depending on the workload of a particular firmware. However, we can capture initial SP during the
program start-up and keep track of the changes to get the SRAM data from the preset address range
every time the ID is constructed. We present ID extraction and setup in Algorithm 1. The ID extraction
flow and all data processing in the enrollment phase are written in Python, whereas the firmware for
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the ID extraction is written in C. All the operations involved in this implementation use 256-bit data.
Algorithm 1 lists the steps to extract the signature of a device and is described as follows:

Algorithm 1: ID extraction of an ED and enrollment phase.
Input : ID length
Output :Unstable SRAM cell locations and device ID

1 Read initial SRAM state M← f ullRAMSpace;
2 Read available SRAM memory state with authentication and user subroutines M′ ← useableIDSpace

;
3 [L, H]← longestMatchingString(M, M′);
4 Compute IDStart ≈ L+H

2×8 ;
5 for index i = 1; i ≤ N + e; i = i + 1 do
6 id′[i]← usableIDSpace(IDStart, IDStart + (e− 1))
7 end
8 usCells← unstableCellLocation();
9 j = 0;

10 while (i <= N)&&(i ! = usCells[j]) do
11 ID[j]← id′[1 : end];
12 j ++;
13 end
14 Load usCell, IDStart, e, shared key K in ED;
15 Store {K, ID} in database ;

fullRamspace

useableIDSpace

ID generation space

Heap Pointer (HP)
Stack Pointer 

(SP)

Free memory Stack

Static DataHeap

  M    

M’

Figure 5. Typical memory map of a microcontroller.

1. A host computer starts executing Algorithm 1. fullRAMSpace firmware is loaded in the
microcontroller, and it reads the available uninitialized memory between HP and SP. The
uninitialized memory of the SRAM is shifted out through the serial port and captured on the
host computer. These data are stored in a variable M (Line 1). Note that fullRAMSpace firmware
contains only subroutines that extract SRAM data and communicates with the host computer.

2. Authentication subroutine and user application subroutines, data acquisition, monitoring, etc.,
are combined in usableIDSpace firmware and loaded into the microcontroller. Similarly to Step
1, the available uninitialized SRAM data are shifted out and stored in a variable M′ in the host
computer (Line 2).

3. longestMatchingString(M,M′) is a string matching algorithm implemented in Python (running
in the host computer) that returns the longest common string and its indices. For example,
fullRAMSpace firmware retrieves 7176 bits from M, and usableIDSpace firmware retrieves 6312 bits
from M′. The string matching algorithm returns the lowest index, L, and highest index, H of the
longest matched string (Line 3). For this specific example, a matched string starts from M′[4144]
to M′[5819] (total 209 bytes). Since SRAM has inherently unstable bits, for 256-bit (32 bytes)
ID we take (32 + e) bytes from an approximately equal distance away from M′[L] and M′[H].
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Here, e must be at least as large as the number of possible unstable bits in the address range
selected for ID generation. Memory space for ID generation has been selected approximately
in the middle of the matched string so that the processor does not read initialized values from
the stack and static data segment during ID extraction. This is important because, during the
execution of the user program, HP and SP grow toward each other and may interfere with the ID
generation space. IDStart parameter changes depending on the relative position of HP and SP
for each device. Line 4 calculates the starting index of the ID as L+H

2×8 . Here, 8 in the denominator
indicates the bit width of the memory. Address range for ID generation will be M[IDStart] to
M[IDStart + (e− 1)].

4. Once the range M[IDStart] to M[IDStart + (e − 1)] is known with an initial value of e,
unstableCellLocation() function is loaded in the ED, and unstable bits are identified with
hardware support (e.g. power-up circuitry). unstableCellLocation() function returns the location
of unstable bits and stable bits of the ID′ (Line 5–7). These unstable bit locations are stored in
the MCU as an array usCells (Line 8). For this experiment, we selected e = 10 which initially
assumes 76.2% stable uninitialized bits of the SRAM [69]. This parameter will vary based on
the implementation platform, which can be selected with a few trials of power-ups or data
reminiscence approach.

5. The ID is extracted discarding the unstable bits in Lines 10–12. Then, usCell, IDStart, e, and
shared key K are loaded into the MCU. Finally, the device ID is stored in the database for future
authentication.

The approach described above makes each ED unique because of the inherent randomness in the
power-up state of SRAM, inter-device variability of IDStart, and usCell array.

6.2. Authentication Phase

Authentication phase executes the protocol (Figure 2) in the gateway and edge devices connected
to it.

1. In this phase, gateway G starts authentication by sending a token to the ED. Since the token is
specific (and public) to an ED, only a particular ED will respond to the authentication request
from the G. Along with the token G also sends a nonce ni encrypted with shared key K.

2. At ED, ni is retrieved and converted into a hash using the SHA-2 algorithm. Then, ED runs the ID
extraction subroutine that constructs a 256-bit stable ID from SRAM using address range preset
during the enrollment phase. ID and SHA− 2(ni) strings are processed to get XOR’ed value ri.

3. The encrypted ID retrieved from ED (ri) is decrypted in the G as ID′ = SHA− 2(ni))⊕ ri and
compared with a stored ID. A successful first authentication would trigger another authentication
attempt as described in 4.2.

6.3. Overhead Analysis

As it is important to have low area and timing overhead in an IoT device, we present analysis in
this subsection. The overall code overhead due to the authentication function is 3.65%. The overhead
primarily comes from the hash algorithm and string processing. The hardware overhead is only from
the memory requirement for storing the symmetric key (K), which is 256-bit in this implementation.
Note that no additional hardware is needed to implement the PUF. Considering the importance
of security in the IoT infrastructure, this overhead is quite insignificant. Note that no hardware
modifications are necessary for EDs, which makes our solution feasible for adopting various low-cost
applications. Note that the timing overhead will not throttle the performance of the IoT devices, as the
proposed protocol is only used for authentication of an ED after the power-up of a device or at a large
regular time interval. The implementation presented in the paper uses approximately a million cycles
in ATMEGA2560 running at 16MHz for each authentication, which is practically within a few tens of
milliseconds and can be ignored.
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6.4. Reliability Analysis

Since ID generation would require randomness in the power-up states of SRAMs among different
devices, we need to analyze the reliability of our proposed ID generation scheme. We analyzed the
power-up states of built-in SRAM to show the probability of the authentication of a random device
as genuine is rather negligible. The uniqueness and randomness of an SRAM-PUF are assured by
the normal distribution of fractional inter-class Hamming distance (HD) [69] with a mean at 40.2%.
We choose the minimum value of HD (HDmin) to calculate the collision probability of IDs between
two different devices. For normal distribution, confidence interval (CI) for mean µ is of the form
l ≤ µ ≤ u, where u and l are upper and lower confidence limits respectively. The limits are calculated
as x̄ ± zα/2 × σ√

s , where 1− α is the confidence coefficient of a standard normal distribution [70].

Considering lowest limit of the mean µ, the probability of matching two IDs becomes 2N∗(1−l)−1
2N−1 . For

example, Figure 6 shows the distribution of HDmin with sample mean x̄ = 0.3436 and standard
deviation σ = 0.024 with s = 500 samples. We can estimate that 99% CI is 0.3409 ≤ µ ≤ 0.3464 for
256-bit ID, and the probability of generating two devices with a same ID is 2256(1−0.3464)−1

2256−1 ≈ 6.46× 10−27,
which is insignificant.
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Figure 6. Distribution of fractional Hamming (minimum) distance for 500 IDs.

7. Conclusions

In this paper, a novel, low-cost authentication protocol has been proposed. Production cost
reduction without sacrificing security for IoT applications is an extremely difficult task. In addition,
a standard cryptographic scheme’s implementation in ED is prohibitively expensive because of the
limited resources (e.g., energy) available during operation. We presented a low-cost protocol that uses
a secure hash function to authenticate an edge device in an IoT network. The protocol is designed
to utilize already available on-chip resources, which fits it in the domain of low-cost applications,
such as IoT. We exploited built-in SRAM to generate unclonable "digital fingerprint" of an IoT edge
device and used firmware to extract the fingerprint. Aging degradation and temperature variation
make it challenging to implement reliable SRAM-PUF. Our proposed repeated ID matching scheme
that utilizes Hamming distance eliminates this inherent PUF unreliability. Thorough security analysis
shows that the probability of ID impersonation by an attacker is extremely low. The protocol is
implemented in a commercial microcontroller, and the overhead of implementation is only a small
part of the memory for the firmware.
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ED Edge device
G Gateway
ECC Elliptic-curve cryptography
RSA Rivest–Shamir–Adleman
IoT Internet of Things
MCU Microcontroller
PUF Physically unclonable function
SRAM Static random-access memory
NVM Non-volatile memory
CRP Challenge response pair
HD Hamming distance
MITM Man-in-the-middle
IBE Identity-based encryption
CSPRNG Cryptographically secure pseudo-random number generator
MAC Message authentication code
OTP One-time-pad
DoS Denial of service
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