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Abstract: We present a simple protocol for certifying graph states in quantum networks using
stabiliser measurements. The certification statements can easily be applied to different protocols
using graph states. We see, for example, how it can be used for measurement based verified quantum
computation, certified sampling of random unitaries, quantum metrology and sharing quantum
secrets over untrusted channels.
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1. Introduction

Graph states are a family of multipartite quantum states, defined in one to one correspondence
with a simple graph [1]. They are incredibly useful resources across quantum information, acting as
the key entanglement resource for error correction [2], measurement based quantum computation [3],
quantum secret sharing [4] and more [1]. Furthermore, they can be implemented in many different
ways, for example in optics [5–9] including on chip [10], in ion traps [11,12], super conducting
qubits [13] and NV centres [14].

Many methods exist for testing graph states varying in the trust that must be assumed and the
kind of statements that are made. With respect to trust assumptions, on the one hand techniques
such as tomography [15] and entanglement witnesses [16] make assumptions about the source and
measurements (essentially that they are honest but noisy). On the other hand tests which require the
least trust, where neither the source nor the measurement devices are trusted, such as self testing [17],
are incredibly demanding to implement in a way that closes all loopholes (necessary for security).

In this work we explore the mid ground, where (local) measurement devices are trusted,
but sources and channels are not [7,18–21]. Our statements of confidence are tailored to this end,
following the language of quantum authentication [22], particularly suited to applications for quantum
networks. At the end of the protocol one gets a quantum output—the state we want to use—and a
classical output—which tells us weather we accept or reject. A successful test for us is then one that
always accepts an ideal source and outputs the ideal source state (completeness) and, if it accepts,
the state is not too far from the ideal state (soundness—see below for technical definitions). With this in
hand, we see how it can be used for certification for various quantum network tasks, in particular for
delegated computation, generation of randomness, quantum metrology and quantum secret sharing.

For a given graph G with vertices V, and denoting N(i) as the neighbours of i ∈ V, associating
a qubit to each vertex, a graph state |G〉 on |V| = n qubits is defined through the associated
stabiliser equations

|G〉 = Si|G〉, (1)
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where Si are the graph stabiliser operators, with generators Si := Xi ⊗j∈N(i) Zj associated to each of
the N veritces, and Xi and Zi are Pauli operators. We denote the full stabiliser group S = {Si} =<

S1, ..., Sn >, which has 2N elements. We say that the graph state |G〉 is shared amongst n players, who,
depending on the application may be in one physical location or distributed across a network.

The idea of the protocol is very straightforward. The players ask the source for M copies of the
graph state. They choose at random one of these to be used, and all the rest are tested by randomly
choosing a stabiliser operator and checking it returns the value +1. Since the malicious parties
(the source, channel... everything except the players) do not know which copy will be tested or used
beforehand, the only way they will always pass all the tests is if the players receive the intended graph
state each all M times.

We begin in the next section by introducing the basic protocol, along with an example. We then
provide the rigorous security statements, followed by several applications. We conclude with
discussions on variants of the protocol, some possible further applications and comments on the
scaling of the security parameter.

2. Protocol

Many variants of the protocol are possible, in ways that may depend on the application or
implementation at hand. For clarity we present one particular simple variant of a protocol. After we
will comment on other possibilities. We start in the standard assumption that the honest parties,
the players, share a secret classical key k = {r, t}, composed of r ∈ [1...M], t = {ti}i 6=r, ti ∈ [1, ..., 2n]

denoting K the set of all keys (k ∈ K). The protocol follows the steps below.

1. The source distributes M n-partite systems to the n players. In the honest case, this will be M
copies of the graph state |G〉.

2. For copy i 6= r, each player performs their part of the measurement of stabiliser Sti . If all the
stabilisers output value +1, Accept, otherwise Reject.

3. For copy r the state is the quantum output of the protocol.

The variable M plays the role of security parameter (see (9)). We briefly comment on some
variants. Different parts of the protocol can be changed depending on the application. Indeed even the
way the secret keys are shared even before the first step may vary, as we will see for the application to
secret sharing. The way that the outcomes of the test in step 2 is shared and acceptance or rejection
decided may be important for different cases, for example if some players in the network are dishonest
or not trusted. One may also want to lower the accept threshold in step 2 to allow for noisy resource
states, for example accepting if something less than 100% of stabiliser tests give the correct output +1.
We will come back to these variants at different points later, but for now we continue with the simplest
version presented above.

We briefly present a small example to illustrate how the protocol works. In Figure 1 we illustrate
the square graph associated to the graph state |C4〉. The generators of the stabiliser group are given by

S1 = X1 ⊗ Z2 ⊗ Z3 ⊗ I4,

S2 = Z1 ⊗ X2 ⊗ I3 ⊗ Z4,

S3 = Z1 ⊗ I2 ⊗ X3 ⊗ Z4,

S4 = I1 ⊗ Z2 ⊗ Z2 ⊗ X4.
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Figure 1. Example of a square graph state with four vertices |C4〉.

The stabiliser group S =< S1, S2, S3, S4 > is the set of all products of the generators. In step 1 of
the protocol the source is requested to generate M copies of the state |C4〉. In step two all but one of
the copies (identified by r) are tested by each time randomly choosing one of the stabilisers to measure.
For example if S1 were chosen to be tested on the i 6= rth copy, the first party would measure X and
parties two and three would measure Z. They would then compare all their answers, and if the product
of their results was +1 they would accept. The example state here is the one of the simplest graph
states, yet has been experimentally already used to demonstrate computation [23], error correction [24]
and secret sharing [7]. The additional difficulty in performing our protocol to verify these applications
is minimal as it just requires asking for many copies of the resource state, which is in any case how the
set up works in all these implementations.

3. Security

We first formalise our notions of security, following [22]. For simplicity we encode the classical
output as orthogonal quantum states |ACC〉R for accept and |REJ〉R for reject. The output state will in
general depend on the classical key k = {r, t}. For each key k ∈ K, we denote the output state of the
players plus classical reference system as ρk. We say the protocol is ε-secure if it satisfies the following
two properties

• Completeness. If the players recieve M copies of the ideal resource state |G〉, then for all keys k

ρk = |G〉P〈G| ⊗ |ACC〉R〈ACC|. (2)

• Soundness. Denoting the expected output state over all key strings as ρout := 1
|K| ∑k∈K ρk,

and denoting the projection Pf ail := (I − |G〉P〈G|)⊗ |ACC〉R〈ACC|, then

Tr
(

Pf ailρout

)
≤ ε. (3)

Completeness is trivially guaranteed since the test uses the stabilisers of the state itself, so it will
always accept. Note that this definition of correctness is somewhat impractical, as one can never expect
to have a perfect entangled state in any realistic source. However it is important in the sense of an ideal
property of a protocol. Furthermore, our protocol can easily be adapted for more practical versions of
completeness, as we discuss in the conclusions (see also Reference [25]).

Soundness follows through a similar reasoning to that in Reference [21]. Let us denote by ρ the
state of all the Mn systems that the players receive in step 1 of the protocol. In order to bound (3) we
only need to consider the output state conditioned on accept, let us denote it by ρACC. To find this we
start with the fact that for a given key k = {r, t}, the projection corresponding to accepting all M− 1
tests can be written as :

Mr,t
accept =

⊗
i 6=r

(Sti + Ii)

2
⊗ Ir. (4)
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From this we have that ρACC can be written as

ρACC =
M

∑
r=1

∑
t

1
M

1
|S|M−1 ρr,t, (5)

with
ρr,t =

1
Tr(Mr,t

acceptρ)
Trrc(Mr,t

acceptρ), (6)

where Ac denotes the complement of set A.
Putting this together, we obtain

Tr
(

Pf ailρout

)
=

1
M

Tr (Qρ)) , (7)

where

Q =
M

∑
r=1

∑
t

1
SM−1

⊗
i 6=r

Sti + Ii

2
⊗ (Ir − |G〉 〈G|)

=
M

∑
r=1

⊗
i 6=r

Ii + |G〉i〈G|
2

⊗ (Ir − |G〉r 〈G|), (8)

since 1/|S|∑i Si = |G〉〈G|. Note that Q is hermitian and positive. It then remains to check that
all eigenvalues of Q are smaller than 1, for which a proof can be found in the Appendix A. It then
follows that

Tr(Pf ailρout) ≤
1
M

, (9)

for all source states ρ.
The protocol also has natural extensions for higher prime dimensional graph states, where proofs

also follow straightforwardly.
Below we present several applications, where the security follows directly as above with a simple

application of our protocol, or slight variants of the security statement are made (verified t-designs)
or some of the variants of the simplest protocol mentioned above give the utility required (quantum
secret sharing).

4. Applications

We focus on applications that can be considered as completely positive trace preserving (CPTP)
map Γ acting on the quantum output. Since fidelity is monotonic under CPTP maps, the usefulness or
soundness is preserved. This is the case, for example, when further interaction with the source is not
required to run the protocol.

Formally, with respect to the CPTP application Γ one defines a new fail projector,

PFail(Γ) := (I − Γ (|G〉〈G|))⊗ |ACC〉〈ACC|. (10)

Due to the monotonicity of fidelity, (3) implies that

Tr
(

PΓ(G)
f ail Γ(ρB)

)
≤ 1

M
. (11)

We now go through some examples of applications.
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4.1. Verified Blind Quantum Computation

In verified blind quantum computation a technologically limited Alice wishes to delegate some
quantum computational task to a server, Bob, in such a way that Bob does not get information about
the computation (blind), and moreover, that she can be confident the computation has been carried out
correctly (verified). There are many techniques to achieve this—see Reference [26] for a recent overview.

In our scenario Alice is limited to single qubit measurements. Clearly this, on its own, is not
enough for universal quantum computation. However, in measurement based quantum computation
(MBQC), universal quantum computation is achieved by single qubit measurements on a graph state,
with feed forward [3]. Importantly the measurements can be made one qubit at a time. Thus, if Alice
asks Bob to provide her with a universal graph states, either cluster states [3] or brickwork states [27]
for example—Alice can perform the computation she wants. Moreover this is blind to Bob—he gets
only minimal information, an upper bound to the size of the computation (given by the size of the
graph state Alice asks for). To verify the computation Alice can simply apply our protocol to test and
use a universal graph state of her choice.

One has the same notions of completeness and soundness as those above, replacing the graph state
by the ideal output of the computation. Completeness follows immediately from the universality of the
chosen graph state. For soundness, we simply note that Alice’s measurement sequence, which affects
the computation, can be understood entirely as a CPTP map on the quantum output of our protocol.
In this way, the condition (11) ensures soundness also. More specifically, if we denote the ideal output
of a computation as ρ

comp
ideal , and the average output of a given computation ρ

comp
out , the failing projector

becomes Pcomp
Fail :=

(
I − ρ

comp
ideal

)
⊗ |ACC〉〈ACC|, and we have from (11) a verification soundness

condition (see e.g., Reference [28]),

Tr
(

Pcomp
Fail ρ

comp
out

)
≤ 1

M
. (12)

Note that, compared to Reference [28], this scaling with resources is poor. We will talk about this in the
conclusions, but it is essentially a trade-off between the security scaling, and the entanglement costs of
the protocol. In this sense our protocol sacrifices scaling for practicability.

We also note that the idea of testing graph states for MBQC computation has been presented
before in several measurement based verification schemes, for example, References [29,30]. Indeed,
this application of our protocol is almost identical to the verified computation scheme in Reference [30],
the main differences being in the specifics of the test (we measure settings chosen from all stabilisers,
they a subset) and the figure of merit used (we use the correctness and soundess above, they use the
language of hypothesis testing). We present it here simply as an alternative possible scheme, with
similar characteristics. As pointed out in Reference [30], this scenario is suited to performing fault
tolerant computation, since Alice could equally ask Bob for a resource graph state for fault tolerant
computation, for example the topological scheme in Reference [31] using 3D cluster states. This was
the idea of the fault tolerant verified computation presented in Reference [32], note however that this
works only if the errors on Alice’s measurement device are assumed to be independent from anything
happening on Bob’s side.

4.2. Verified t-Designs

Graph states can also be used to sample from a random ensemble of unitaries—this is effectively
MBQC without correction, where the measurement outcomes index which unitary is implemented.
In particular, in Reference [33] it was shown that ensembles with a particularly useful property of
being t-designs can be efficiently sampled using graph states. A t-design is an ensemble of unitaries
with the property that its statistical moments match those of a Haar ensemble up to order t, with
applications across quantum information and physics, for example in estimating noise [34], private
channels [35], modelling thermalisation [36], photonics [37], and even black hole physics [38]. Later in
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Reference [39] this approach was developed to show that efficient t-designs can be generated using a
regular lattice similar to the brickwork state. Both results rely heavily on the construction of [40,41]
using random circuits.

Our protocol can be used to certify the application of a t-design random unitary onto an input,
where the source of the graph state is not trusted. For each set of measurement outcomes m̄, we denote
the applied CPTP map on the graph state as Γm̄. For simplicity we consider the action of the induced
unitary on the input vertices I ⊂ V corresponing to inputs in the state |+〉. Then [33,39] state that
measurement result m̄, occuring with probability pm̄ applies a unitary on the input |+〉⊗|I|

Γm̄(|G〉) = Um̄|+〉⊗|I|, (13)

such that the ensemble {pm̄, Um̄} is an approximate t-design (see Reference [33] for detailed
definitions).

For security of verified t-designs one can replace the graph state in the definitions (2) and (3) by
the output state (13). The soundness is then guaranteed for each m̄ by (11). It can easily be seen that
one can flip this around to give a statement on the fidelity,

F(Um̄|ψ〉, Γm̄(ρACC))
2 ≥ 1− 1

Pacc M
, (14)

where Pacc is the probability of passing the tests and ρACC is the output of the protocol conditioned on
accepting.

4.3. Quantum Metrology

In quantum metrology entangled states are used to measure with more precision than is possible
with classical probes [42]. The general setting can be understood as an interferometer which imparts a
phase ψ on one arm, each time a system passes through it. The idea is to send in many probes N in an
entangled state ρ, whereafter measurements can reveal the phase with higher precision than possible
sending in separable states.

How well this process allows the parameter ψ to be estimated is quantified by the Quantum Fisher
Information, FQ(ρ). Note, as indicated by the notation, for a simple interferometer the quantum Fisher
information is independent of the value of ψ since it is unitarily encoded [43,44]. In particular, for
ν independent repetitions of the process, the precision is characterised by the mean squared error
∆2ψ̃ of a (consistent and unbiased) estimator ψ̃, which is lower bounded by the Quantum Cramér-Rao
Bound [45],

∆2ψ̃ ≥ 1
νFQ(ρ)

. (15)

For the standard interferometer, the best possible scaling with N is achieved by the N-party GHZ state
1√
2
(|0〉⊗N + |1〉⊗N). Denoting its density matrix ρGHZ we have FQ(ρGHZ) = N2. The GHZ state is

locally equivalent to a graph state for the fully connected graph. Our certification protocol can easily
be adapted using the same local unitaries to test ρGHZ (simply by rotating the test measurements
accordingly).

In Reference [44], they show that the quantum Fisher information of two states differs by an
amount bounded by their fidelity

∣∣FQ(ρ)−FQ(σ)
∣∣ ≤ 6

√
1− F(ρ, σ)2N2, (16)

if ρ or σ are pure. That is, if two states are close, as measured by their fidelity, their usefulness for
quantum metrology is close. Given the fidelity bound implied by our test (14), we see that the quantum
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Fisher information is also bounded. For the rotated protocol testing a GHZ states, given the output
state conditioned on accepting ρACC, we have,

FQ(ρACC) ≥ N2
(

1− 6
PACC M

)
. (17)

4.4. Secret Sharing over Untrusted Channels

In quantum secret sharing a dealer wishes to distribute a secret quantum state amongst N players
such that only certain subsets of players can access the secret—the authorised sets. It was shown in
References [4,46] that any secret sharing scheme can be implemented using graph states. However,
these rely on the trusted sharing of the graph state. If we are careful, a variant of our protocol can be
used to boost these protocols to one where the network of dealer and players do not need to trust the
source of the graph state or the channels used to share them.

There are two important subtleties in the application of our protocol here, stemming from the
fact that unauthorised sets of players should be treated as adversaries. Firstly, it makes their inclusion
in the stabiliser tests not ideal. Secondly, if they also have access to the random key k this could
potentially allow attacks. In Reference [21] a protocol was presented which can be understood as a
variant of the application of our scheme where (i) the stabiliser tests are restricted to an authorised
set, and (ii) the classical key k is distributed by a classical secret sharing scheme, with the same
access structure. A proof of principle example of this protocol was implemented in Reference [7],
demonstrating its simplicity.

5. Conclusions

In this work we have presented a protocol for certifying graph states and a few applications
in quantum networks. There are clearly some applications that our protocol would not be suited
for—namely ones where further interactions are required with Bob. Such interactions may allow for
Bob to correlate his strategy in cheating the ‘test’ part to the future applications potentially threatening
functionality (be it security or otherwise). Nevertheless its simplicity lends itself to many applications
as we have seen, not only in the form of protocol presented here, but also its suitability to permit
variants, as with secret sharing. A simple variant can also deal with noisy states for example, where
one would not expect, even an honest noisy source to pass all the time. In such a case one can change
the accept requirement to require some smaller portion of correct answers. One can adapt the security
statements and proofs to this end without too much difficulty. Indeed, this is the approach taken in
follow up work [25].

We also note that the fidelity of a state to particular graph states can be used as a witness for
genuine multipartite entanglement (that is, entanglement which cannot be considered as entanglement
between fewer than all the systems) [47]. In this way our protocol can be used to demonstrate this
feature also. A related notion is genuine multipartite steering [48], where one considers the capacity of
a state to violate a steering inequality [49] across all bipartitions. The fidelity to certain graph states
is also known be usable as a witness for genuine multipartite steering [50]. In both these cases, the
standard approach uses stabiliser measurements, but assumes that the source is preparing identical
copies of the state in each round [47,48,50]. Our protocol relaxes this assumption, yet still allows for
witnessing these features within confidence levels.

We end with a discussion on scaling of soundness condition with M. In the kind of protocol
presented here, it is impossible to beat the 1/M scaling. This is clear simply because a malicious party
can behave honestly for all but one requested state, and send one false/dishonest state. With probability
1/M the malicious party’s choice of when to be dishonest coincides with the users choice of which
one would be used and not tested, so strategy passes the test perfectly yet the state can be arbitrarily
far from the ideal one and potentially ruin whatever application. Thus in order to beat the 1/M
scaling one expects to need some more entanglement. This can be done, for example, by encoding the
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desired state on some randomly chosen error correcting code—the essential trick used in the original
authentication paper by Barnum et al. [22]. Such an approach can give an exponential scaling in
security with the number of systems sent. The downside now is that the entanglement required scales
with the security. This then suggests a tradeoff between entanglement and scaling.

In this context, the advantage of our protocol is that, for many applications, the difficulty in
implementing a certified version of an application becomes only the same difficulty as producing
the same resource state many times, rather than asking for much more difficult larger, scaling,
entanglement. In optics for example, this advantage makes certified secret sharing possible [7],
doing so an entangled code version would require impractical scaling in entanglement.
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Appendix A

We can write Q (8) as

Q =
M

∑
r=1

Qr (A1)

with

Qr =
⊗
i 6=r

Ii + |G〉i〈G|
2

⊗ (Ir − |G〉r〈G|) (A2)

Define A as I+|G〉〈G|
2 and B as I− |G〉〈G|.

An eigenvector for A with eigenvalue 1 is just given by |G〉. Denoting |G′〉 an eigenvector with
eigenvalue 1 of B, an complete eigenbasis for Q is given by all possible combinations of tensor products
of those vectors. B acts on |G〉 as B|G〉 = |G〉 − |G〉 = 0 while A|G′〉 = |G′〉

2 + |G〉〈G|G′〉
2 = |G′〉

2 as
〈G|G′〉 = 0.

We can then write Qr =
⊗r−1

i=1 Ai
⊗

Br
⊗M

l=r+1 Al where r denotes the position of B in
the tensor. We then denote the k-th family of eigenvectors where |G′〉 appears k times as
|Eig〉k =

⊗
j 6=k |G〉k

⊗
k 6=j |G′〉k|k + j = M

Trying to determinate the action from Qr on |Eig〉k, we have to distinguish the following cases :
Let r be in [1, M− k]. |G〉 will then be projected to the eigenvalue 0 so that these cases are trivial.

Regarding r in [k, M] gives us B|G′〉 = |G′〉. After then, A acts for k − 1 times on |G′〉 giving the
eigenvalue 1

2k−1 .
Putting this together and regarding the symmetry of Q with respect to permutations of r within

the sum the distribution of |G〉 and |G′〉 in the eigenvectors does not matter. It suffices to know, how
often |G′〉 appears. The sum contains M− k elements with eigenvalue 0 and the remaining k elements
with eigenvalue 1

2k−1 . The summation gives than as eigenvalue k
2k−1 for every |Eig〉k , which is always

below one.
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