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Abstract: Large-scale quantum computing poses a major threat to classical public-key cryptography.
Recently, strong “quantum access” security models have shown that numerous symmetric-key
cryptosystems are also vulnerable. In this paper, we consider classical encryption in a model that
grants the adversary quantum oracle access to encryption and decryption, but where we restrict
the latter to non-adaptive (i.e., pre-challenge) queries only. We formalize this model using appropriate
notions of ciphertext indistinguishability and semantic security (which are equivalent by standard
arguments) and call it QCCA1 in analogy to the classical CCA1 security model. We show that
the standard pseudorandom function (PRF)-based encryption schemes are QCCA1-secure when
instantiated with quantum-secure primitives. Our security proofs use a strong bound on quantum
random-access codes with shared randomness. Revisiting plain IND-CPA-secure Learning with
Errors (LWE) encryption, we show that leaking only a single quantum decryption query (and no
other leakage or queries of any kind) allows the adversary to recover the full secret key with constant
success probability. Information-theoretically, full recovery of the key in the classical setting requires
at least a linear number of decryption queries. Our results thus challenge the notion that LWE is
unconditionally “just as secure” quantumly as it is classically. The algorithm at the core of our attack
is a new variant of the well-known Bernstein–Vazirani algorithm. Finally, we emphasize that our
results should not be interpreted as a weakness of these cryptosystems in their stated security setting
(i.e., post-quantum chosen-plaintext secrecy). Rather, our results mean that, if these cryptosystems are
exposed to chosen-ciphertext attacks (e.g., as a result of deployment in an inappropriate real-world
setting) then quantum attacks are even more devastating than classical ones.
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1. Introduction

1.1. Background

Full-fledged quantum computers with millions of logical qubits threaten classical cryptography
dramatically. The ability of such devices to run Shor’s efficient quantum factoring algorithm
(and its variants) would lead to devastation of the currently deployed public-key cryptography
infrastructure [1,2]. This threat has led to significant work on so-called “post-quantum” alternatives,
where a prominent category is occupied by cryptosystems based on the Learning with Errors (LWE)
problem of solving noisy linear equations over Zq [3] and its variants [1,4]. The LWE problem is closely
related to lattice problems and is widely believed to be intractable even for quantum computers.
It thus forms the basis for a number of candidate post-quantum cryptosystems. In addition to
motivating significant work on post-quantum cryptosystems, the threat of quantum computers has
also spurred general research on secure classical cryptography in the presence of quantum adversaries.
One area in particular explores strong security models where a quantum adversary gains precise
quantum control over portions of a classical cryptosystem. In such models, a number of basic
symmetric-key primitives can be broken by simple quantum attacks based on Simon’s algorithm [5–9].
It is unclear if the assumption behind these models is plausible for typical physical implementations of
symmetric-key cryptography. However, attacks which involve quantumly querying a classical function
are always available in scenarios where the adversary has access to a circuit for the relevant function.
This is certainly the case for hashing, public-key encryption, and circuit obfuscation. Moreover,
understanding this model is crucial for gauging the degree to which any physical device involved
in cryptography must be resistant to reverse engineering or forced quantum behavior (consider, e.g.,
the so-called “frozen smart card” example [10]). For instance, one may reasonably ask: what happens to
the security of a classical cryptosystem when the device leaks only a single quantum query to the adversary?

When deciding which functions the adversary might have (quantum) access to, it is worth
recalling the classical setting. For classical symmetric-key encryption, a standard approach considers
the security of cryptosystems when exposed to so-called chosen-plaintext attacks (CPA). This notion
encompasses all attacks in which an adversary attempts to defeat security (by, e.g., distinguishing
ciphertexts or extracting key information) using oracle access to the function which encrypts plaintexts
with the secret key. This approach has been highly successful in developing cryptosystems secure
against a wide range of realistic real-world attacks. One devastating attack that allows an adversary
to exercise precise control over a cryptosystem is characterized by a chosen-ciphertext attack (CCA).
In this scenario, the attacker receives adaptive access to the encryption and decryption procedures of
a cryptosystem, i.e., the attacker is able to choose plaintexts and ciphertexts that depend on previous
outcomes of the attack. Despite their strong security requirements, chosen-ciphertext attacks are often
perfectly realistic. Surprisingly, even widely adopted cryptosystems such as RSA have been shown to
be vulnerable. For example, a well-known attack due to Bleichenbacher [11] only requires access to
an oracle that decides if the input ciphertext is encrypted according to a particular RSA standard.

In this work, we consider analogues of both CPA and CCA attacks, in which the relevant functions
are quantumly accessible to the adversary. Prior works have formalized the quantum-accessible model
for classical cryptography in several settings, including unforgeable message authentication codes and
digital signatures [12,13], encryption secure against quantum chosen-plaintext attacks (QCPA) [10,14],
and encryption secure against adaptive quantum chosen-ciphertext attacks (QCCA2) [12]. Gagliardoni,
Hülsing and Schaffner also consider a wide range of indistinguishability and semantic-security models
within the QCPA framework [10].
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1.2. Our Contributions

1.2.1. The Model

In this work, we consider a quantum-secure model of encryption called QCCA1. This model
grants non-adaptive access to the decryption oracle, and is thus intermediate between QCPA and QCCA2.
Studying weaker and intermediate models is a standard and useful practice in theoretical cryptography.
In fact, CPA and CCA2 are intermediate models themselves, since they are both strictly weaker than
authenticated encryption. Our particular intermediate model is naturally motivated: it is sufficent for
a new and interesting quantum attack on LWE encryption. As is typical, the challenge in QCCA1 can be
semantic, or take the form of an indistinguishability test, where the adversary supplies two challenge
plaintexts (m0, m1), receives a challenge ciphertext Enck(mb) for random b, and must correctly guess b.
Alternatively, the challenge can be semantic, where the adversary receives partial information about
a plaintext m, and is tasked with outputting some additional information about m by making use of
its encryption Enck(m). This leads to natural security notions for symmetric-key encryption, which
we call IND-QCCA1 and SEM-QCCA1, respectively. Following previous works, it is straightforward to
define both IND-QCCA1 and SEM-QCCA1 formally, and prove that they are equivalent [10,12,14].

We then prove IND-QCCA1 security for two symmetric-key encryption schemes, based on standard
assumptions. Specifically, we show that the standard encryption schemes based on quantum-secure
pseudorandom functions (QPRF) and quantum-secure pseudorandom permutations (QPRP) are both
IND-QCCA1. We remark that both QPRFs and QPRPs can be constructed from quantum-secure one-way
functions [15,16]. Our security proofs use a novel technique, in which we control the amount of
information that the adversary can extract from the oracles and store in their internal quantum state
(prior to the challenge) by means of a certain bound on quantum random-access codes.

1.2.2. A Quantum-Query Attack on LWE

We then revisit the aforementioned question: what happens to a post-quantum cryptosystem
if it leaks a single quantum query? Our main result is that standard IND-CPA-secure LWE-based
encryption schemes can be completely broken using only a single quantum decryption query and no
other queries or leakage of any kind. In our attack, the adversary recovers the complete secret
key with constant success probability. In standard bit-by-bit LWE encryption, a single classical
decryption query can yield at most one bit of the secret key; The classical analogue of our attack
thus requires n log q queries. The attack is essentially an application of a modulo-q variant of
the Bernstein–Vazirani algorithm [17]. Our new analysis shows that this algorithm correctly recovers
the key with constant success probability, despite the decryption function only returning an inner
product which is rounded to one of two values. We show that the attack applies to four variants
of standard IND-CPA-secure LWE-based encryption: The symmetric-key and public-key systems
originally described by Regev [3], the FrodoPKE scheme (FrodoPKE is an IND-CPA-secure building
block in the IND-CCA2-secure post-quantum cryptosystem “FrodoKEM” [18]. Our results do not affect
the post-quantum security of Frodo and do not contradict the CCA2 security of FrodoKEM.) [18,19],
and standard Ring-LWE [20,21].

Finally, we consider a setting where the adversary receives one quantum encryption query,
including access to the randomness register. We show that a similar algorithm again leads to complete
key recovery in this model. In this case, the analysis amounts to the observation of Grilo et al. that
the LWE problem becomes easy with access to quantum samples [22].

The novelty of our results on LWE is as follows. First, we show that a variant of
the Bernstein–Vazirani algorithm succeeds even if the parameters correspond to a broad cryptographic
security model; second, we show that this leads to a dramatic quantum speed-up in an actual attack:
full key-recovery with a single quantum query in each case.
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1.2.3. Important Caveats

Our results challenge the view that LWE encryption is “just as secure” classically as it is quantum
in any real-world application; notably, this intuition stems from the conjecture that quantum computers
do not seem to solve the standard LWE problem much faster than classical computers. Nonetheless,
the reader is cautioned to interpret our work carefully. Our results do not indicate a weakness in LWE

(or any LWE-based cryptosystem) in the standard post-quantum security model. Since it is widely
believed that quantum-algorithmic attacks will need to be launched over purely classical channels,
post-quantum security does not allow for quantum queries to encryption or decryption oracles.
Moreover, while our attack does offer a dramatic quantum speedup (i.e., one query vs. linear queries),
the classical attack is already efficient.

The plain LWE-based encryption schemes we consider in this work are already vulnerable to
decryption queries in a purely classical attack model. In particular, we remark that one classical
decryption query can produce at most one bit of the (n log q)-bit key. Similarly, a classical encryption
query which can access also the randomness used in the encryption can produce at most log q bits of
the key. Our results should thus not be interpreted as a weakness of these cryptosystems in their stated
security setting (i.e., IND-CPA). The proper interpretation is that, if these cryptosystems are exposed
to chosen-ciphertext attacks, then quantum attacks can be even more devastating than classical ones.
Finally, we remark that schemes we attack can me modified to achieve chosen-ciphertext security [23].

1.2.4. Related Work

We remark that Grilo, Kerenidis and Zijlstra recently observed that a version of LWE with so-called
“quantum samples” can be solved efficiently (as a learning problem) using Bernstein–Vazirani [22].
Our result, by contrast, demonstrates an actual cryptographic attack on standard cryptosystems based
on LWE, in a plausible security setting. Moreover, in terms of solving the learning problem, our analysis
shows that constant success probability is achievable with only a single query, whereas [22] require
a number of queries which is at least linear in the modulus q. In particular, our cryptographic attack
succeeds with a single query even for superpolynomial modulus.

1.3. Technical Summary of Results

1.3.1. Security Model and Basic Definitions

First, we set down the basic QCCA1 security model, adapting the ideas of [10,13]. Recall that
an encryption scheme is a triple Π = (KeyGen,Enc,Dec) of algorithms (key generation, encryption,
and decryption, respectively) satisfying Deck(Enck(m)) = m for any key k← KeyGen and message m.
Here, KeyGen represents a procedure for generating a key, Enc represents the encryption procedure,
and Dec the decryption procedure. In what follows, all oracles are quantum, meaning that a function f
is accessed via the unitary operator |x〉|y〉 7→ |x〉|y⊕ f (x)〉. We define ciphertext indistinguishability
and semantic security as follows.

Definition 1 (informal). Π is IND-QCCA1 if no quantum polynomial-time algorithm (QPT) A can succeed
at the following experiment with probability better than 1/2 + negl(n).

1. a key k ← KeyGen(1n) and a uniformly random bit b $←−{0, 1} are generated; A gets access to oracles
Enck and Deck, and outputs (m0, m1);

2. A receives Enck(mb) and gets access to an oracle for Enck only, and outputs a bit b′; A wins if b = b′.

Definition 2 (informal). Consider the following game with a QPT A.

1. a key k← KeyGen(1n) is generated;A gets access to oracles Enck, Deck and outputs circuits (Samp, h, f );
2. Sample m← Samp;A receives h(m), Enck(m), and access to an oracle for Enck only, and outputs a string

s; A wins if s = f (m).
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Then Π is SEM-QCCA1 if for every QPT A there exists a QPT S with the same winning probability but
which does not get Enck(m) in step 2.

The following fact is straightforward.

Theorem 1. A classical symmetric-key encryption scheme is IND-QCCA1 if and only if it is SEM-QCCA1.

1.3.2. Secure Constructions

Next, we show that standard pseudorandom-function-based encryption is QCCA1-secure,
provided that the underlying PRF is quantum-secure (i.e., is a QPRF.) a QPRF can be constructed
from any quantum-secure one-way function, or directly from the LWE assumption [15]. Given a PRF

f = { fk}k, define PRFscheme[ f ] to be the scheme which encrypts a plaintext m using randomness r
via Enck(m; r) = (r, fk(r)⊕m) and decrypts in the obvious way.

Theorem 2. If f is a QPRF, then PRFscheme[ f ] is IND-QCCA1-secure.

We also analyze a standard permutation-based scheme. Quantum-secure PRPs (i.e., QPRPs) can be
obtained from quantum-secure one-way functions [16]. Given a PRP P = {Pk}k, define PRPscheme[P]
to be the scheme that encrypts a plaintext m using randomness r via Enck(m; r) = Pk(m||r), where ||
denotes concatenation; to decrypt, one applies P−1

k and discards the randomness bits. We show
the following.

Theorem 3. If P is a QPRP, then PRPscheme[P] is IND-QCCA1-secure.

We briefly describe our proof techniques for Theorems 2 and 3. In the indistinguishability game,
the adversary can use the decryption oracle prior to the challenge to (quantumly) encode information
about the relevant pseudorandom function instance (i.e., fk or Pk) in their private, poly-sized quantum
memory. From this point of view, establishing security means showing that this encoded information
cannot help the adversary compute the value of the relevant function at the particular randomness
used in the challenge. To prove this, we use a bound on quantum random access codes (QRAC).
Informally, a QRAC is a mapping from N-bit strings x to d-dimensional quantum states $x, such that
given $x, and any index j ∈ [N], the bit xj can be recovered with some probability px,j =

1
2 + εx,j.

The average bias of such a code is the expected value of εx,j, over uniform x and j. A QRAC with
shared randomness further allows the encoding and decoding procedures to both depend on some
random variable.

Lemma 1. The average bias of a quantum random access code with shared randomness that encodes N bits
into a d-dimensional quantum state is O(

√
N−1 log d). In particular, if N = 2n and d = 2poly(n) the bias is

O(2−n/2 poly(n)).

The proof of Theorem 3 is similar to that of Theorem 2.

1.3.3. Key Recovery Against LWE

Our attack on LWE encryption will make use of a new analysis of the performance of
a large-modulus variant of the Bernstein–Vazirani algorithm [17], in the presence of a certain type of
“rounding” noise.
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1.3.4. Quantum Algorithm for Linear Rounding Functions

In the simplest case we analyze, the oracle outputs 0 if the inner product is small, and 1 otherwise.
Specifically, given integers n ≥ 1 and q ≥ 2, we consider keyed families of (binary) linear rounding
functions, LRFk,q : Zn

q −→ {0, 1}, with key k ∈ Zn
q , as follows:

LRFk,q(x) :=

{
0 if |〈x, k〉| ≤ b q

4c,
1 otherwise.

Here, 〈·, ·〉 denotes the inner product modulo q. Our main technical contribution is the following.

Theorem 4 (informal). There exists a quantum algorithm which runs in time O(n), makes one quantum query
to LRFk,q (with q ≥ 2 and unknown k ∈ Zn

q ), and outputs k with probability at least
( 2

π −
π
8
)2 ≈ 0.059.

We also show that the same algorithm succeeds against more generalized function classes,
in which the oracle indicates which “segment” of Zq the exact inner product belongs to.

1.3.5. One Quantum Query Against LWE

Finally, we revisit our central question of interest: what happens to a post-quantum cryptosystem
if it leaks a single quantum query? we show that, in standard LWE-based schemes, the decryption
function can (with some simple modifications) be viewed as a special case of a linear rounding
function, as above. In standard symmetric-key or public-key LWE, for instance, we decrypt a ciphertext
(a, c) ∈ Zn+1

q with key k by outputting 0 if |c− 〈a, k〉| ≤
⌊ q

4
⌋

and 1 otherwise. In standard Ring-LWE,
we decrypt a ciphertext (u, v) with key k (here u, v, k are polynomials in Zq[x]/〈xn + 1〉) by outputting
0 if the constant coefficient of v− k · u is small, and 1 otherwise.

Each of these schemes is secure against adversaries with classical encryption oracle access,
under the LWE assumption. If adversaries also gain classical decryption access, then it is not hard to
see that a linear number of queries is necessary and sufficient to recover the private key. Our main
result is that, by contrast, only a single quantum decryption query is required to achieve this total
break. Indeed, in all three constructions described above, one can use the decryption oracle to build
an associated oracle for a linear rounding function which hides the secret key. The following can then
be shown using Theorem 4.

Theorem 5 (informal). Let Π be standard LWE or standard Ring-LWE encryption (either symmetric-key,
or public-key.) Let n be the security parameter. Then there is an efficient quantum algorithm that runs
in time O(n), uses one quantum query to the decryption function Deck of Π,and outputs the secret key with
constant probability.

1.4. Organization

The remainder of this paper is organized as follows. In Section 2, we outline preliminary
ideas that we will make use of, including cryptographic concepts, and notions from quantum
algorithms. In Section 3, we define the QCCA1 model, including the two equivalent versions
IND-QCCA1 and SEM-QCCA1. In Section 4, we define the PRF and PRP scheme, and show that
they are IND-QCCA1-secure. In Section 5, we show how a generalization of the Bernstein–Vazirani
algorithm works with probability bounded from below by a constant, even when the oracle outputs
some rounded value of 〈k, x〉 (i.e., the oracle is a linear rounding function). In Section 6, we use
the results of Section 5 to prove that a single quantum decryption query is enough to recover the secret
key in various versions of LWE-encryption; we also observe a similar result for a model in which
the adversary can make one quantum encryption query with partial access to the randomness register.
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2. Preliminaries

2.1. Basic Notation and Conventions

Selecting an element x uniformly at random from a finite set X will be written as x $←−X. If we are
generating a vector or matrix with entries in Zq by sampling each entry independently according to
a distribution χ on Zq, we will write, e.g., v χ←−Zn

q . Given a matrix A, AT will denote the transpose of
A. We will view elements v of Zn

q as column vectors; The notation vT then denotes the corresponding
row vector. We use bold fonts to discriminate between vectors (or matrices) and scalars. The Kronecker
delta δij of two nonnegative integers i and j is equal to 1 if i = j, and 0 otherwise. The notation
negl(n) denotes some function of n which is smaller than every inverse-polynomial. We denote
the concatenation of strings x and y by x||y. We abbreviate classical probabilistic polynomial-time
algorithms as PPT algorithms. By quantum algorithm (or QPT) we mean a polynomial-time uniform
family of quantum circuits, where each circuit in the family is described by a sequence of unitary
gates and measurements. In general, such an algorithm may receive (mixed) quantum states as inputs
and produce (mixed) quantum states as outputs. Sometimes we will restrict QPTs implicitly; for
example, if we write Pr[A(1n) = 1] for a QPT A, it is implicit that we are only considering those QPTs
that output a single classical bit. The notation Pr[1← GAME 0] denotes the probability that a QPTA
outputs 1 in some security game GAME 0.

Every function f : {0, 1}m → {0, 1}` determines a unitary operator U f : |x〉|y〉 → |x〉|y⊕ f (x)〉 on
m + ` qubits where x ∈ {0, 1}m and y ∈ {0, 1}`. In this work, when we say that a quantum algorithm
A gets (adaptive) oracle access to f (written A f ), we mean that A can apply the oracle unitary U f .
This quantum oracle will sometimes also be denoted by O f .

Recall that a symmetric-key encryption scheme is a triple of classical probabilistic algorithms
(KeyGen,Enc,Dec) whose run-times are polynomial in some security parameter n. Such a scheme
must satisfy the following property: when a key k is sampled by running KeyGen(1n), then it holds
that Deck(Enck(m)) = m for all m except with negligible probability in n. In this work, all encryption
schemes will be fixed-length, i.e., the length of the message m will be a fixed (at most polynomial)
function of n.

Since the security notions we study are unachievable in the information-theoretic setting,
all adversaries will be modeled by QPTs. When security experiments require multiple rounds of
interaction with the adversary, it is implicit that A is split into multiple QPTs (one for each round),
and that these algorithms forward their internal (quantum) state to the next algorithm in the sequence.

2.2. Basic Number Theory Notation

We briefly review the following mathematical conventions. We denote the greatest common
divisor (gcd) between two integers a, b ∈ N as gcd(a, b). The multiplicative group of integers modulo
a prime q is denoted as Z×q . Recall that for m ∈ N, the Euler totient function ϕ(m) counts the number
of positive integers up to m that are relatively prime to m. The Möbius function µ(n) is defined as
the sum of the primitive n-th roots of unity. Finally, we also recall that ω(m) denotes the prime omega
function which counts the number of distinct prime factors of an integer m ∈ N.

2.3. Quantum-Secure Pseudorandomness

A pseudorandom function is a family of deterministic and efficiently computable functions
that appear random to any PPT adversary with adaptive (classical) oracle access. Similarly,
a quantum-secure pseudorandom function achieves security against QPT adversaries with adaptive
quantum oracle access. More specifically, let f : {0, 1}n × {0, 1}m → {0, 1}` be an efficiently
computable function, where n, m, ` are integers and where f defines a family of functions { fk}k∈{0,1}n

with fk(x) = f (k, x). We say f is a quantum-secure pseudorandom function (or QPRF) if, for every QPTA,
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∣∣∣∣∣∣ Pr
k $←− {0,1}n

[
A fk (1n) = 1

]
− Pr

g $←− F `
m

[Ag(1n) = 1]

∣∣∣∣∣∣ ≤ negl(n) . (1)

Here, F `
m denotes the set of all functions from {0, 1}m to {0, 1}`. The standard method for

constructing a pseudorandom function from a one-way function produces a QPRF, provided that
the one-way function is quantum-secure [15,24,25].

A quantum-secure pseudorandom permutation is a a bijective function family of quantum-secure
pseudorandom functions. More specifically, consider a function P : {0, 1}n ×{0, 1}m → {0, 1}m, where
n and m are integers, such that each function Pk(x) = P(k, x) in the corresponding family {Pk}k∈{0,1}n

is bijective. We say P is a quantum-secure pseudorandom permutation (or QPRP) if, for every QPT A with
access to both the function and its inverse,∣∣∣∣∣∣ Pr

k $←− {0,1}n

[
APk ,P−1

k (1n) = 1
]
− Pr

π
$←− Pm

[
Aπ,π−1

(1n) = 1
]∣∣∣∣∣∣ ≤ negl(n) , (2)

where Pm denotes the set of permutations over m-bit strings. Throughout this work,we shall assume
strong QPRPs under the above definition, i.e., such that the security is maintained despite additional
access to an inverse. One can construct QPRPs from quantum-secure one-way functions [16].

2.4. Quantum Random Access Codes

A quantum random access code (QRAC) is a two-party scheme for the following scenario involving
two parties Alice and Bob [26]:

1. Alice gets x ∈ {0, 1}N and encodes it as a d-dimensional quantum state $x.
2. Bob receives $x from Alice, and some index i ∈ {1, . . . , N}, and is asked to recover the i-th bit of

x, by performing some measurement on $x.
3. They win if Bob’s output agrees with xi and lose otherwise.

We can view a QRAC scheme as a pair of (not necessarily efficient) quantum algorithms: one for
encoding, and another for decoding. We remark that the definition of a QRAC does not require a bound
on the number of qubits; The interesting question is with what parameters a QRAC can actually exist.

A variation of the above scenario allows Alice and Bob to use shared randomness in their encoding
and decoding operations [27] (note that shared randomness per se does not allow them to communicate).
Hence, Alice and Bob can pursue probabilistic strategies with access to the same random variable.
Finally, the definition also takes into account that the encoder and decoder are allowed to share
an entangled state as part of $x.

Define the average bias of a QRAC with shared randomness as ε = pwin − 1/2, where pwin is
the winning probability averaged over x $←−{0, 1}N and i $←−{1, . . . , N}.

2.5. Quantum Fourier Transform

For any positive integer q, the quantum Fourier transform over Zq is defined by the operation

QFTZq |x〉 =
1
√

q ∑
y∈Zq

ω
x·y
q |y〉,

where ωq = e
2πi

q . Due to early work by Kitaev [28], this variant of the Fourier transform can be
implemented using quantum phase estimation in complexity polynomial in log q. An improved
approximate implementation of this operation is due to Hales and Hallgren [29].
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3. The QCCA1 Security Model

3.1. Quantum Oracles

In our setting, adversaries will (at various times) have quantum oracle access to the classical
functions Enck and Deck. The case of the deterministic decryption function Deck is simple:
The adversary gets access to the unitary operator UDeck

: |c〉|m〉 7→ |c〉|m⊕Deck(c)〉. For encryption,
to satisfy IND-CPA security, Enck must be probabilistic and thus does not correspond to any single
unitary operator. Instead, each encryption oracle call of the adversary will be answered by applying
a unitary sampled uniformly from the family {UEnck ,r}r where

UEnck ,r : |m〉|c〉 7→ |m〉|c⊕ Enck(m; r)〉

and r varies over all the possible values of the randomness register of Enck. Note that, since Enck and
Deck are required to be probabilistic polynomial-time algorithms provided by the underlying classical
symmetric-key encryption scheme, both UEnck ,r and UDeck

correspond to efficient and reversible
quantum operations. For the sake of brevity, we adopt the convenient notation Enck and Deck to refer
to the above quantum oracles for encryption and decryption respectively.

3.2. Ciphertext Indistinguishability

We now define indistinguishability of encryptions (for classical, symmetric-key schemes) against
non-adaptive quantum chosen-ciphertext attacks.

Definition 3 (IND-QCCA1). Let Π = (KeyGen,Enc,Dec) be an encryption scheme, A a QPT, and n
the security parameter. Define IndGame(Π,A, n) as follows.

1. Setup: a key k← KeyGen(1n) and a bit b $←−{0, 1} are generated;
2. Pre-challenge: A gets access to oracles Enck and Deck, and outputs (m0, m1);
3. Challenge: A gets Enck(mb) and access to Enck only, and outputs a bit b′;
4. Resolution: A wins if b = b′.

Then Π has indistinguishable encryptions under non-adaptive quantum chosen ciphertext attack (or is
IND-QCCA1) if, for every QPT A,

Pr[a wins IndGame(Π,A, n)] ≤ 1/2 + negl(n) .

By inspection, one immediately sees that our definition lies between the established notions of
IND-QCPA and IND-QCCA2 [10,12,14]. It will later be convenient to work with a variant of the game
IndGame, which we now define.

Definition 4 (IndGame′). We define the experiment IndGame′(Π,A, n) just as IndGame(Π,A, n), except
that in the pre-challenge phase A only outputs a single message m, and in the challenge phase A receives
Enck(m) if b = 0, and Enck(x) for a uniformly random message x if b = 1.

Working with IndGame′ rather than IndGame does not change security. Specifically (as we show
in Appendix A.2), Π is IND-QCCA1 if and only if, for every QPT A, Pr[a wins IndGame′(Π,A, n)] ≤
1/2 + negl(n) .

3.3. Semantic Security

In semantic security, rather than choosing a pair of challenge plaintexts, the adversary chooses
a challenge template: a triple of circuits (Samp, h, f ), where Samp outputs plaintexts from some
distribution DSamp, and h and f are functions with domain the support of DSamp. The intuition
is that Samp is a distribution of plaintexts m for which the adversary, if given information h(m) about
m together with an encryption of m, can produce some new information f (m).
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Definition 5 (SEM-QCCA1). Let Π = (KeyGen,Enc,Dec) be an encryption scheme, and consider
the experiment SemGame(b) (with parameter b ∈ {real, sim}) with a QPT A, defined as follows.

1. Setup: a key k← KeyGen(1n) is generated;
2. Pre-challenge: A gets access to oracles Enck and Deck, and outputs a challenge template (Samp, h, f );
3. Challenge: a plaintext m $←− Samp is generated; A receives h(m) and gets access to an oracle for Enck

only; if b = real, A also receives Enck(m); A outputs a string s;
4. Resolution: A wins if s = f (m).

Π has semantic security under non-adaptive quantum chosen ciphertext attack (or is SEM-QCCA1) if,
for every QPT A, there exists a QPT S such that the challenge templates output by A and S are identically
distributed, and ∣∣Pr[a wins SemGame(real)]− Pr[S wins SemGame(sim)]

∣∣ ≤ negl(n) .

Our definition is a straightforward modification of SEM-QCPA [10,12]; The modification is to give
A and S oracle access to Deck in the pre-challenge phase.

Theorem 6. Let Π = (KeyGen,Enc,Dec) be a symmetric-key encryption scheme. Then, Π is IND-QCCA1-secure
if and only if Π is SEM-QCCA1-secure.

The classical proof of the above (see, e.g., [30]) carries over directly to the quantum case. This was
already observed for the case of QCPA by [10], and extends straightforwardly to the case where both
the adversary and the simulator gain oracle access to Deck in the pre-challenge phase. In fact, the proof
works even if Deck access is maintained during the challenge, so the result is really that IND-QCCA2 is
equivalent to SEM-QCCA2.

4. Secure Constructions

4.1. PRF Scheme

Let us first recall the standard symmetric-key encryption based on pseudorandom functions.

Construction 1 (PRF scheme). Let n be the security parameter and let f : {0, 1}n × {0, 1}n −→
{0, 1}n be an efficient family of functions { fk}k. The symmetric-key encryption scheme PRFscheme[ f ] =
(KeyGen,Enc,Dec) is defined by the following efficient algorithms:

1. KeyGen: output a key k $←−{0, 1}n;
2. Enc: to encrypt a message m, choose a random string r $←−{0, 1}n and output (r, fk(r)⊕m);
3. Dec: to decrypt a ciphertext (r, c), output c⊕ fk(r);

For simplicity, we chose a particularly simple set of parameters for the PRF, so that key length,
input size, and output size are all equal to the security parameter. It is straightforward to check that
the definition (and our results below) are valid for arbitrary polynomial-size parameter choices.

We show that the above scheme satisfies QCCA1, provided that the underlying PRF is secure
against quantum queries.

Theorem 7. If f is a QPRF, then PRFscheme[ f ] is IND-QCCA1-secure.

Proof. Fix a QPT adversary A against Π := PRFscheme[ f ] = (KeyGen,Enc,Dec) and let n denote
the security parameter. It will be convenient to split A into the pre-challenge algorithm A1 and
the challenge algorithm A2.

We will work with the single-message variant of IndGame, IndGame′, described below as GAME 0.
In Appendix A.2, we show that Π is IND-QCCA1 if and only if no QPT adversary can win IndGame′
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with non-negligible bias. We first show that a version of IndGame′ where we replace f with a random
function, called GAME 1 below, is indistinguishable from IndGame′, so that the winning probabilities
cannot differ by a non-negligible amount. We then prove that no adversary can win GAME 1 with
non-negligible bias by showing how any adversary for GAME 1 can be used to make a quantum
random access code with the same bias.

Game 0: This is the game IndGame′(Π,A, n), which we briefly review for convenience (see also
Figure 1). In the pre-challenge phase, A1 gets access to oracles Enck and Deck, and outputs
a message m∗ while keeping a private state |ψ〉 for the challenge phase. In the challenge
phase, a random bit b $←−{0, 1} is sampled, and A2 is run on input |ψ〉 and a challenge
ciphertext

c∗ := Φb(m∗) :=

{
Enck(m∗) if b = 0,

Enck(x) if b = 1.

Here, Enck(x) := (r∗, fk(r∗) ⊕ x) where r∗ and x are sampled uniformly at random.
In the challenge phase, A2 only has access to Enck and must output a bit b′. A wins
if δbb′ = 1, so we call δbb′ the outcome of the game.

Game 1: This is the same game as GAME 0, except we replace fk with a uniformly random function
F : {0, 1}n → {0, 1}n.

1n A1

|ψ〉

m∗
Φb

c∗
A2 b′

Enck Deck Enck

Figure 1. IndGame′ from Definition 4.

First, we show that for any adversary A, the outcome when A plays GAME 0 is at most
negligibly different from the outcome when A plays GAME 1. We do this by constructing a quantum
oracle distinguisher D that distinguishes between the QPRF { fk}k and a true random function,
with distinguishing advantage ∣∣Pr[1← GAME 0]− Pr[1← GAME 1]

∣∣,
which must then be negligible since f is a QPRF. The distinguisher D gets quantum oracle access to
a function g, which is either fk, for a random k, or a random function, and proceeds by simulating A
playing IndGame′ as follows:

1. Run A1, answering encryption queries using classical calls to g in place of fk, and answering
decryption queries using quantum oracle calls to g:

|r〉|c〉|m〉 7→ |r〉|c〉|m⊕ c〉 7→ |r〉|c〉|m⊕ c⊕ g(r)〉 ;

2. Simulate the challenge phase by sampling b $←−{0, 1} and encrypting the challenge using g in place
of fk; run A2 and simulate encryption queries as before;

3. When A2 outputs b′, output δbb′ .

It remains to show that no QPT adversary can win GAME 1 with non-negligible probability.
To do this, we design a quantum random access code from any adversary, and use the lower bound
on the bias given in Lemma 1.
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Intuition. We first give some intuition. In an encryption query, the adversary, either A1 or A2,
queries a message, or a superposition of messages ∑m |m〉, and gets back ∑m |m〉|r, m ⊕ F(r)〉 for
a random r, from which he can easily get a sample (r, F(r)). Thus, in essence, an encryption query is
just classically sampling a random point of F.

In a decryption query, which is only available to A1, the adversary sends a ciphertext,
or a superposition of ciphertexts, ∑r,c |r, c〉 and gets back ∑r,c |r, c〉|c⊕ F(r)〉, from which he can learn
∑r |r, F(r)〉. Thus, a decryption query allows A1 to query F, in superposition. Later in the challenge
phase,A2 gets an encryption (r∗, m⊕ F(r∗)) and must decide if m = m∗. SinceA2 no longer has access
to the decryption oracle, which allows him to query F, it follows there seem to be only two possible
ways A2 could learn F(r∗):

1. A2 gets lucky in one of his at most poly(n) many queries to Enck and happens to sample
the challenge pair (r∗, F(r∗));

2. Or, the adversary is somehow able to use what he learned while he had access to Deck, and thus
F, to learn F(r∗), meaning that the poly(n)-sized quantum memory A1 sends to A2, that can
depend on queries to F, but which cannot depend on r∗, allows A2 to learn F(r∗).

The first possibility is exponentially unlikely, since there are 2n possibilities for r∗. As we will
see shortly, the second possibility would imply a very strong quantum random access code. It would
essentially allow A1 to interact with F, which contains 2n values, and make a state, which must
necessarily be of polynomial size, such that A2 can use that state to recover F(r∗) for any of the 2n

possible values of r∗, with high probability. We now formalize this intuition. To clarify notation,
we will use boldface to denote the shared randomness bitstrings.

Construction of a quantum random access code. Let A be a QPT adversary with winning probability
p. Let ` = poly(n) be an upper bound on the number of queries made by A2. Recall that a random
access code consists of an encoding procedure that takes (in this case) 2n bits b1, . . . , b2n , and outputs
a state $ of dimension (in this case) 2poly(n), such that a decoding procedure, given $ and an index
j ∈ {1, . . . , 2n} outputs bj with some success probability. We define a quantum random access code as
follows (see also Figure 2).

Bits to be encoded:
b1, . . . , b2n ∈ {0, 1}

Bit to be recovered:
j ∈ {1, . . . , 2n}

Shared randomness:
s, y1, . . . , y2n , r1, . . . , r` ∈ {0, 1}n

QRAC Encoding QRAC Decoding

A1 A2
b′

m (r, m⊕ f̃ (r))

Enc query

r $←−{0, 1}n

(r, c) c⊕ f̃ (r)

Dec query

mi (ri, mi ⊕ f̃ (ri))

i-th Enc query

f̃ (r1), . . . , f̃ (r`)

|ψ〉

m∗
Φj

c∗

(j, m∗ ⊕ yj)

f̃ (r) :=

{
yr if br = 0
yr ⊕ s if br = 1

Figure 2. Quantum random access code construction for the pseudorandom function (PRF) scheme.

Encoding. Let b1, . . . , b2n ∈ {0, 1} be the string to be encoded. Let s, y1, . . . , y2n ∈ {0, 1}n be given by
the first n(1 + 2n) bits of the shared randomness, and let r1, . . . , r` ∈ {0, 1}n be the next
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`n bits. Define a function f̃ : {0, 1}n → {0, 1}n as follows. For r ∈ {0, 1}n, we will
slightly abuse notation by letting r denote the corresponding integer value between
1 and 2n. Define f̃ (r) = yr ⊕ brs. Run A1, answering encryption and decryption queries
using f̃ in place of F. Let m∗ and |ψ〉 be the outputs of A1 (see Figure 1). Output
$ = (|ψ〉, m∗, f̃ (r1), . . . , f̃ (r`)).

Decoding. Let j ∈ {1, . . . , 2n} be the index of the bit to be decoded (so given $ as above, the goal
is to recover bj). Decoding will make use of the values s, y1, . . . , y2n , r1, . . . , r` given by
the shared randomness. Upon receiving a query j ∈ {1, . . . , 2n}, run A2 with inputs |ψ〉
and (j, m∗ ⊕ yj). OnA2’s i-th encryption oracle call, use randomness ri, so that if the input
to the oracle is |m, c〉, the state returned is |m, c⊕ (ri, m⊕ f̃ (ri))〉 (note that f̃ (ri) is given
as part of $). Return the bit b′ output by A2.

Average bias of the code. we claim that the average probability of decoding correctly, taken over
all choices of b1, . . . , b2n ∈ {0, 1} and j ∈ {1, . . . , 2n}, is exactly p, the success probability of A. To see
this, first note that from A’s perspective, this is exactly GAME 1: The function f̃ is a uniformly random
function, and the queries are responded to just as in GAME 1. Further, note that if bj = 0, then
m∗ ⊕ yj = m∗ ⊕ f̃ (j), so the correct guess for A2 would be 0, and if bj = 1, then m∗ ⊕ yj = m∗ ⊕
f̃ (j)⊕ s = x⊕ f̃ (j) for the uniformly random string x = m∗ ⊕ s, so the correct guess forA2 would be 1.

Therefore, the average bias of the code is p− 1/2. We also observe that $ has dimension at most
2poly(n), since |ψ〉must be a poly(n)-qubit state (A1 only runs for poly(n) time), and `, the number of
queries made byA2 must be poly(n), sinceA2 only runs for poly(n) time. As this code encodes 2n bits
into a state of dimension 2poly(n), by Lemma 1 (proven in Appendix A.1), the bias is O(2−n/2 poly(n)) =
negl(n), so p ≤ 1

2 + negl(n).

4.2. PRP Scheme

We now prove the IND-QCCA1 security of a standard encryption scheme based on
pseudorandom permutations.

Construction 2 (PRP scheme). Let n be the security parameter and let P : {0, 1}n × {0, 1}2n −→ {0, 1}2n

be an efficient family of permutations {Pk}k. The symmetric-key scheme PRPscheme[ f ] = (KeyGen,Enc,Dec)
is defined by the following efficient algorithms:

1. KeyGen: output k $←−{0, 1}n;
2. Enc: to encrypt m ∈ {0, 1}n, choose r $←−{0, 1}n and output Pk(m||r);
3. Dec: to decrypt c ∈ {0, 1}2n, output the first n bits of P−1

k (c).

As before, we chose a simple set of parameters; in general, the randomness length, plaintext
length, and security parameter can be related by arbitrary polynomials.

Theorem 8. If P is a QPRP, then PRPscheme[P] is IND-QCCA1-secure.

Proof. We follow a similar proof strategy as with the PRF scheme. Fix a QPT adversary A against
Π := PRPscheme[P] = (KeyGen,Enc,Dec). We have that Π is IND-QCCA1 if and only if no QPT

adversary can win IndGame′ with non-negligible bias. First, we show that a version of IndGame′ where
we replace P with a random permutation, described below as GAME 1, is indistinguishable from
IndGame′, so that the winning probabilities cannot differ by a non-negligible amount. We then prove
that no adversary can win GAME 1 with non-negligible bias, by showing how any adversary for GAME

1 can be used to make a quantum random access code with the same bias.
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Game 0: in the pre-challenge phase, A1 gets access to oracles Enck and Deck. in the challenge phase,
A1 outputs m and its private data |ψ〉; a random bit b $←−{0, 1} is sampled, and A2 is run on
input |ψ〉 and a challenge ciphertext

c∗ :=

{
Enck(m∗) = Pk(m∗||r∗) if b = 0,

Enck(x) = Pk(x||r∗) if b = 1,

where r∗ $←−{0, 1}n and x is sampled uniformly at random. In the challenge phase, A2 has
oracle access to Enck only and outputs a bit b′. The outcome of the game is simply the bit δbb′ .

Game 1: This is the same game as GAME 0, except we now replace Pk with a perfectly random
permutation π : {0, 1}2n → {0, 1}2n.

We show that for any adversary A, the outcome when A plays GAME 0 is at most negligibly
different from the outcome when A plays GAME 1. We construct a quantum oracle distinguisher D
that distinguishes between Pk and a perfectly random permutation, with distinguishing advantage

|Pr[1← GAME 0]− Pr[1← GAME 1]| ,

which must then be negligible since Pk is a QPRP. Here, the distinguisher D receives quantum oracle
access to a function ϕ, which is either Pk for a random k, or a random permutation π, and proceeds by
simulating A playing IndGame′ as follows:

1. Run A1, answering encryption queries using oracle calls to ϕ in place of Pk, where for a given
input and via randomness r,

Enc : |m〉|c〉 7→ |m〉|c⊕ ϕ(m||r)〉.

Answer decryption queries using quantum oracle calls to ϕ̃−1, a function that first computes
ϕ−1 but then (analogous to the PRP construction) discards the last n bits of the pre-image
corresponding to the randomness, i.e.

Dec : |c〉|m〉 7→ |c〉|m⊕ ϕ̃−1(c)〉.

2. Simulate the challenge phase by sampling b $←−{0, 1} and encrypting using a randomness r∗

together with a classical call to ϕ in place of Pk; run A2 and simulate encryption queries as before.
3. When A2 outputs b′, output δbb′ .

It remains to show that no QPT adversary can win GAME 1 with non-negligible probability.
To do this, we will again design a random access code from any adversary’s strategy with success
probability p, and use the lower bound on the bias given in Lemma 1. We will then construct a QRAC

with bias negl(n) from this adversary, and hence conclude that p ≤ 1
2 + negl(n).

Construction of a quantum random access code. Let A be a QPT adversary with winning probability
p and let ` = poly(n) be an upper bound on the number of queries made by A2. When constructing
a QRAC for the PRP scheme, we shall also assume for simplicity that both the encoder and decoder
share a random permutation (as part of the shared randomness). According to the well known coupon
collector’s problem [31], it is sufficient for the encoder and decoder to share around N ln(N) random
strings on average, where N denotes the number of distinct random strings required to make up
the desired permutation. We define a quantum random access code as follows (see also Figure 3).
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Bits to be encoded:
b1, . . . , b2n ∈ {0, 1}

Bit to be recovered:
j ∈ {1, . . . , 2n}

Shared randomness:
s, y1, . . . , y2n , r1, . . . , r`

QRAC Encoding QRAC Decoding

A1 A2
b′

m P̃(m||r)

Enc query

r $←−{0, 1}n

c P̃−1(c)

Dec query

mi P̃(mi||ri) = ymi⊕bri s||ri

i-th Enc query

br1 , . . . , br`

|ψ〉

m∗
Φj

c∗

ym∗ ||j

P̃(x||r) :=

{
yx||r if br = 0
yx⊕s||r if br = 1

Figure 3. Quantum random access code construction for the pseudorandom permutation (PRP) scheme.

Encoding. Let b1, . . . , b2n ∈ {0, 1} be the string to be encoded and let the shared randomness be
given by a random string s together with a random permutation y = y1, . . . , y22n ∈
{0, 1}2n and a set of random strings r1, . . . , r` ∈ {0, 1}n. Using b1, . . . , b2n , we define
a new random permutation by letting P̃(x||r) := yx⊕brs||r (P̃ remains a permutation since
P̃(x||r) = P̃(x′||r′) ⇐⇒ yx⊕brs||r = yx′⊕br′ s||r′

⇐⇒ (r = r′) ∧ (x = x′)). Now run A1

by answering encryption and decryption queries using P̃ in place of π (for decryption,
use P̃−1 and discard the last n bits). Let m∗ and |ψ〉 be the outputs of A1. Then, output
$ = (|ψ〉, m∗, br1 , . . . , brl ).

Decoding. Let j ∈ {1, . . . , 2n} be the index of the bit to be decoded; so given $ as above, we will
recover bj by making use of the shared randomness defined above. Upon receiving a query
j ∈ {1, . . . , 2n}, run A2 with inputs |ψ〉 and c∗ = ym∗ ||j. Return the bit b′ output by A2.

Average bias of the code. we claim that the average probability of decoding correctly, taken over
all choices of b1, . . . , b2n ∈ {0, 1} and j ∈ {1, . . . , 2n}, is exactly p, the success probability of A. To see
this, first note that from A’s perspective, this is exactly GAME 1: The function P̃ is a uniformly
random permutation, and the queries are responded to just as in GAME 1. Further, note that if bj = 0,
the challenge amounts to P̃(m∗||j) = ym∗ ||j, so the correct guess for A2 would be 0, and if bj = 1, then
yx||j is an encryption of a uniformly random string x = m∗ ⊕ s, so the correct guess for A2 would be 1.

Therefore, the average bias of the code is p− 1/2. We now proceed with a similar analysis as with
the PRF scheme. Note that $ has dimension at most 2poly(n), since |ψ〉must be a poly(n)-qubit state
(A1 only runs for poly(n) time), and `, the number of queries made by A2 must be poly(n), since A2

only runs for poly(n) time. As this code encodes 2n bits into a state of dimension 2poly(n), by Lemma 1,
the bias is O(2−n/2 poly(n)) = negl(n), so p ≤ 1

2 + negl(n).

5. Quantum Algorithm for Linear Rounding Functions

In this section, we analyze the performance of the Bernstein–Vazirani algorithm [17] with
a modified version of the oracle. While the original oracle computes the inner product modulo
q, our version only gives partial information about it by rounding its value to one of dq/be blocks of
size b, for some b ∈ {1, . . . , q− 1} (if b does not divide q, one of the blocks will have size < b).
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Definition 6. Let n ≥ 1 be an integer and q ≥ 2 be an integer modulus. Let a ∈ Zq, b ∈ Zq \ {0}
and c := dq/be. We partition Zq into c disjoint blocks (most of them of size b) starting from a as follows
(see Figure 4):

Iv(a, b) :=

{
{a + vb, . . . , a + vb + b− 1} if v ∈ {0, . . . , c− 2},
{a + vb, . . . , a + q− 1} if v = c− 1.

Based on this partition, we define a family LRFk,a,b : Zn
q −→ Zc of keyed linear rounding functions, with

key k ∈ Zn
q , as follows:

LRFk,a,b(x) := v if 〈x, k〉 ∈ Iv(a, b).

In words, we divide the cyclic group Zq into c blocks, beginning at a: The first c− 1 have size b, and the last
one has size b− (cb− q) ≤ b (see Figure 4). Then, the rounding function, LRF, classifies x by which of these
blocks the value 〈x, k〉 falls into.

a a
+

1

. . .

a
+

b−
1

b b b b− (cb− q)
a
+

b

. . .

a
+

2b−
1

. . .

a
+
(c−

2)b

. . .

a
+
(c−

1)b−
1

a
+
(c−

1)b

. . .

a−
1

I0(a, b) I1(a, b) Ic−2(a, b) Ic−1(a, b)

Figure 4. Dividing Zq into c = dq/be blocks, starting from a. The first c − 1 blocks, labelled
I0(a, b), . . . , Ic−2(a, b), have size b and the last, labelled Ic−1(a, b), contains the remaining b− (cb− q) ≤
b elements of Zq.

The following theorem shows that the modulo-q variant of the Bernstein–Vazirani algorithm
(Algorithm 1) can recover k with constant probability of success by using only a single quantum query
to LRFk,a,b.

Algorithm 1: Bernstein–Vazirani for linear rounding functions

Parameters : n, q, b ∈ {1, . . . , q− 1}, c = dq/be.
Input :Quantum oracle ULRF : |x〉|z〉 7→ |x〉|z + LRFk,a,b(x) (mod c)〉 where x ∈ Zn

q ,
z ∈ Zc and LRFk,a,b is the rounded inner product function for some unknown
k ∈ Zn

q and a ∈ Zq.
Output :String k̃ ∈ Zn

q such that k̃ = k with high probability.

1. Prepare the uniform superposition and append 1√
c ∑c−1

z=0 ωz
c |z〉 where ωc = e2πi/c:

1√
qn ∑

x∈Zn
q

|x〉 ⊗ 1√
c

c−1

∑
z=0

ωz
c |z〉.

2. Query the oracle ULRF for LRFk,a,b to obtain
1√
qn ∑

x∈Zn
q

ω
−LRFk,a,b(x)
c |x〉 ⊗ 1√

c

c−1

∑
z=0

ωz
c |z〉.

3. Discard the last register and apply the quantum Fourier transform QFT⊗n
Zq

.

4. Measure in the computational basis and output the outcome k̃.
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Theorem 9. Let ULRF be the quantum oracle for the linear rounding function LRFk,a,b with modulus q ≥ 2,
block size b ∈ {1, . . . , q− 1}, and an unknown a ∈ {0, . . . , q− 1}, and unknown key k ∈ Zn

q such that k has
at least one entry that is a unit modulo q. By making one query to the oracle ULRF, Algorithm 1 recovers the key
k with probability at least

( 2
π −

π
8
)2 ≈ 0.059.

Proof. For an integer m, let ωm = e2πi/m. Several times in this proof, we will make use of the identity

∑`−1
z=0 ωrz

m = ω
r(`−1)/2
m

(
sin(`rπ/m)
sin(rπ/m)

)
.

Let c = dq/be and d = cb− q. Throughout this proof, let LRF(x) = LRFk,a,b(x). By querying with
1√
c ∑c−1

z=0 ωz
c |z〉 in the second register, we are using the standard phase kickback technique, which puts

the output of the oracle directly into the phase:

|x〉 1√
c

c−1

∑
z=0

ωz
c |z〉

ULRF7−→ |x〉 1√
c

c−1

∑
z=0

ωz
c |z + LRF(x) (mod c)〉

= |x〉 1√
c

c−1

∑
z=0

ω
z−LRF(x)
c |z〉 = ω

−LRF(x)
c |x〉 1√

c

c−1

∑
z=0

ωz
c |z〉.

Thus, after querying the uniform superposition over the cipherspace with 1√
c ∑c−1

z=0 ωz
c |z〉

in the second register, we arrive at the state

1√
qn ∑

x∈Zn
q

ω
−LRF(x)
c |x〉 1√

c

c−1

∑
z=0

ωz
c |z〉.

Note that ωc = ω
q/c
q . If we discard the last register and apply QFT⊗n

Zq
, we get

|ψ〉 = 1
qn ∑

y∈Zn
q

∑
x∈Zn

q

ω
−(q/c)LRF(x)+〈x,y〉
q |y〉.

We then perform a complete measurement in the computational basis. The probability of obtaining
the key k is given by

|〈k|ψ〉|2 =

∣∣∣∣∣∣ 1
qn ∑

x∈Zn
q

ω
− q

c LRF(x)+〈x,k〉
q

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣ 1
qn

c−1

∑
v=0

ω
− q

c v
q ∑

x∈Zn
q :LRF(x)=v

ω
〈x,k〉
q

∣∣∣∣∣∣
2

. (3)

We are assuming that k has at least one entry that is a unit modulo q. For simplicity, suppose that
entry is kn. Let k1:n−1 denote the first n− 1 entries of k. Then, for any v ∈ {0, . . . , c− 2}:

∑
x∈Zn

q :LRF(x)=v
ω
〈x,k〉
q = ∑

x∈Zn
q :〈x,k〉∈Iv(a,b)

ω
〈x,k〉
q

= ∑
y∈Zn−1

q

ω
〈y,k1:n−1〉
q ∑

xn∈Zq :
xnkn∈Iv(a−〈y,k1:n−1〉,b)

ωxnkn
q . (4)

(recall the definition of Iv(a, b) from Definition 6). Since kn is a unit, for each z ∈ Iv(a− 〈y, k1:n−1〉),
there is a unique xn ∈ Zq such that xnkn = z. Thus, for a fixed y ∈ Zn−1

q , letting a′ = a− 〈y, k1:n−1〉,
we have:

∑
xn∈Zq :xnkn∈Iv(a′ ,b)

ωxnkn
q =

a′+(v+1)b−1

∑
z=a′+vb

ωz
q = ωa′+vb

q

b−1

∑
z=0

ωz
q,
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which we can plug into (4) to get:

∑
x∈Zn

q :
LRF(x)=v

ω
〈x,k〉
q = ∑

y∈Zn−1
q

ω
〈y,k1:n−1〉
q ω

a−〈y,k1:n−1〉+vb
q

b−1

∑
z=0

ωz
q = qn−1ωa+vb

q

b−1

∑
z=0

ωz
q. (5)

We can perform a similar analysis for the remaining case when v = c− 1. Recall that d = cb− q ≥
0 so vb = cb− b = d + q− b = −(b− d) (mod q) and we get

∑
x∈Zn

q :LRF(x)=c−1
ω
〈x,k〉
q = qn−1ω

a−(b−d)
q

b−d−1

∑
z=0

ωz
q. (6)

This is slightly different from the v < c− 1 case, shown in (5), but very similar. If we substitute
v = c− 1 in (5) and compare it to (6), we get

∣∣∣∣∣qn−1ω
a−(b−d)
q

b−d−1

∑
z=0

ωz
q − qn−1ω

a−(b−d)
q

b−1

∑
z=0

ωz
q

∣∣∣∣∣
= qn−1

∣∣∣∣∣ b−1

∑
z=b−d

ωz
q

∣∣∣∣∣ = qn−1

∣∣∣∣∣d−1

∑
z=0

ωz
q

∣∣∣∣∣ = qn−1
∣∣∣∣ sin(πd/q)

sin(π/q)

∣∣∣∣
≤ qn−1 πd/q

2/q
= qn−1 π

2
d. (7)

Above, we have used the facts sin x ≤ x, and |sin x| ≥ 2x/π when |x| ≤ π/2. Now, plugging
(5) into (3) for all the v < c− 1 terms, and using (7) and the triangle inequality for the v = c− 1 term,
we get:

|〈k|ψ〉| ≥
∣∣∣∣∣ 1
qn

c−1

∑
v=0

ω
−qv/c
q · qn−1ωa+vb

q

b−1

∑
z=0

ωz
q

∣∣∣∣∣−
∣∣∣∣ 1
qn ω

−q(c−1)/c
q · qn−1 π

2
d
∣∣∣∣

=
1
q

∣∣∣∣∣c−1

∑
v=0

ω
v(b−q/c)
q

sin(bπ/q)
sin(π/q)

∣∣∣∣∣− π

2
d
q

=
1
q

sin(bπ/q)
sin(π/q)

∣∣∣∣∣c−1

∑
v=0

ω
v(b−q/c)
q

∣∣∣∣∣− π

2
d
q

. (8)

Since b− q/c = d/c, we can bound the sum as follows:∣∣∣∣∣c−1

∑
v=0

ω
v(b−q/c)
q

∣∣∣∣∣ =
∣∣∣∣∣c−1

∑
v=0

ωvd/c
q

∣∣∣∣∣ ≥
∣∣∣∣∣c−1

∑
v=0

cos
(

2π

q
vd
c

)∣∣∣∣∣
≥

∣∣∣∣∣c−1

∑
v=0

cos
(

2π

q
d
)∣∣∣∣∣ =

∣∣∣∣c cos
(

2πd
q

)∣∣∣∣ (9)

≥ c
∣∣∣∣√1− (2πd/q)2

∣∣∣∣ ≥ c

√
π2

4
− 1. (10)

To get the inequalities (9) and (10) and , we used 0 ≤ v ≤ c and the assumption that d/q ≤ 1/4
(if d/q > 1/4, the claim of the theorem is trivial), which implies that 2πv

c
d
q ≤

π
2 . The last inequality

follows from |cos x| ≥
√

1− x2.
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Next, we bound sin(bπ/q)
sin(π/q) . When b/q ≤ 1/2, bπ/q ≤ π/2, so we have sin(bπ/q) ≥ 2b/q. We also

have sin(π/q) ≤ π/q. Thus,
sin(bπ/q)
sin(π/q)

≥ 2b
π

.

on the other hand, when b/q > 1/2, we must have c = 2 and b = q+d
2 . In that case

sin(bπ/q) = sin
π(q + d)

2q
= sin

(
π

2
+

π

2
d
q

)
= cos

πd
2q
≥

√
1−

(
πd
2q

)2
.

Since sin(π/q) ≤ π/q and q ≥ 2b, and by the assumption that d/q ≤ 1/4, we get

sin(bπ/q)
sin(π/q)

≥

√
1−

(
πd
2q

)2

π/q
≥ 2b

π

√
1− π2

64
.

Thus, in both cases,
sin(bπ/q)
sin(π/q)

≥ 2b
π

√
1− π2

64
.

Plugging this and (10) into (8), and again and using the assumption d/q ≤ 1/4, we get:

|〈k, ψ〉| ≥ 1
q

sin(bπ/q)
sin(π/q)

∣∣∣∣∣c−1

∑
v=0

ω
v(b−q/c)
q

∣∣∣∣∣− π

2
d
q

(11)

≥ 2
π

bc
q

√(
1− π2

64

)
·
(

π2

4
− 1
)
− π

8

≥ 2
π

bc
q
− π

8
=

2
π

q + d
q
− π

8
(12)

≥ 2
π
− π

8
,

completing the proof.

6. Key Recovery Against LWE

In this section, we consider various LWE-based encryption schemes and show using Theorem 9
that the decryption key can be efficiently recovered using a single quantum decryption query
(Sections 6.1–6.3). Then, in Section 6.4, we show that a single quantum encryption query can be
used to recover the secret key in a symmetric-key version of LWE, as long as the querying algorithm
also has control over part of the randomness used in the encryption procedure.

6.1. Key Recovery via One Decryption Query in Symmetric-Key LWE

Recall the following standard construction of an IND-CPA symmetric-key encryption scheme
based on the LWE assumption [3].

Construction 3 (LWE-SKE [3]). Let n ≥ 1 be an integer, let q ≥ 2 be an integer modulus and let χ be
a discrete and symmetric error distribution. Then, the symmetric-key encryption scheme LWE-SKE(n, q, χ) =

(KeyGen,Enc,Dec) is defined as follows:

1. KeyGen: output k $←−Zn
q ;

2. Enck: to encrypt b ∈ {0, 1}, sample a $←−Zn
q , e χ←−Zq and output (a, 〈a, k〉+ b

⌊ q
2
⌋
+ e);

3. Deck: to decrypt (a, c), output 0 if |c− 〈a, k〉| ≤
⌊ q

4
⌋
, else output 1.
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We refer to an encryption scheme as correct if Pr[Deck(Enck(b)) = b] = 1− negl(n). To guarantee
that the above LWE-SKE scheme is correct, we need to restrict the support of the discrete error
distribution χ by fixing the noise magnitude η so that |e| ≤

⌊ q
4
⌋

for all e← χ.
As a corollary of Theorem 9, an adversary that is granted a single quantum decryption query can

recover the key with probability at least
( 2

π −
π
8
)2

:

Corollary 1. There is a quantum algorithm that makes one quantum query to LWE-SKE.Deck and recovers
the entire key k with probability at least

( 2
π −

π
8
)2 ≈ 0.059.

Proof. Note that LWE-SKE.Deck coincides with a linear rounding function LRFk′ ,a,b for a key k′ =
(−k, 1) ∈ Zn+1

q , which has a unit in its last entry. We consider the following two cases: if q is not 3
mod 4, set b = dq/2e, a = −bq/4c, hence we get Deck = LRFk′ ,a,b. If q = 3 mod 4, set b = dq/2e,
a = dq/4e, and then we have Deck = 1−LRFk′ ,a,b. Our claim follows in both cases. Thus, by Theorem 9,
Algorithm 1 makes one quantum query to LRFk′ ,a,b, which can be implemented using one quantum

query to LWE-SKE.Deck, and recovers k′, and thus k, with probability at least
( 2

π −
π
8
)2

.

Note that the key in this scheme consists of n log q uniformly random bits, and that a classical
decryption query yields at most a single bit of output. It follows that any algorithm making t classical
queries to the decryption oracle recovers the entire key with probability at most 2t−n log q. Using a linear
number of classical queries, a straightforward key-recovery algorithm does in fact recover the key with
constant success probability. One can simply query “unit vectors” of the form e(i) = (0, ..., 0, 1, 0, ..., 0)
in order to recover one entry of the key at a time by averaging over errors.

6.2. Key Recovery via One Decryption Query in Public-Key LWE

The key-recovery attack described in Corollary 3 required nothing more than the fact that
the decryption procedure of LWE-SKE is just a linear rounding function whose key contains
the decryption key. as a result, the attack is naturally applicable to other variants of LWE.
In this section, we consider two public-key variants. The first is the standard construction of IND-CPA
public-key encryption based on the LWE assumption, as introduced by Regev [3]. The second is
the IND-CPA-secure public-key encryption scheme FrodoPKE [18], which is based on a construction of
Lindner and Peikert [19]. In both cases, we demonstrate a dramatic speedup in key recovery using
quantum decryption queries.

We emphasize once again that key recovery against these schemes was already possible classically
using a linear number of decryption queries. Our results should thus not be interpreted as a weakness
of these cryptosystems in their stated security setting (i.e., IND-CPA). The proper interpretation is that,
if these cryptosystems are exposed to chosen-ciphertext attacks, then quantum attacks can be even
more devastating than classical ones.

6.2.1. Regev’s Public-Key Scheme

The standard construction of an IND-CPA public-key encryption scheme based on LWE is
the following.

Construction 4 (LWE-PKE [3]). Let m ≥ n ≥ 1 be integers, let q ≥ 2 be an integer modulus, and let χ

be a discrete error distribution over Zq. The public-key scheme LWE-PKE(n, q, χ) = (KeyGen,Enc,Dec) is
defined by the following efficient algorithms:

1. KeyGen: output a secret key sk = k $←−Zn
q and a public key pk = (A, a k + e) ∈ Zm×(n+1)

q , where
a $←−Zm×n

q , e χ←−Zm
q , and all arithmetic is done modulo q.

2. Enc: to encrypt b ∈ {0, 1}, pick a random v ∈ {0, 1}m with Hamming weight roughly m/2 and output
(vTA, vT(Ak + e) + bb q

2c) ∈ Zn+1
q , where vT denotes the transpose of v.

3. Dec: to decrypt (a, c), output 0 if |c− 〈a, sk〉| ≤
⌊ q

4
⌋
, else output 1.
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Although the encryption is now done in a public-key manner, all that matters for our purposes
is the decryption procedure, which is identical to the symmetric-key case, LWE-SKE. We thus have
the following corollary, whose proof is identical to that of Corollary 3:

Corollary 2. There is a quantum algorithm that makes one quantum query to LWE-PKE.Decsk and recovers
the entire key sk with probability at least

( 2
π −

π
8
)2 ≈ 0.059.

6.2.2. Frodo Public-Key Scheme

Next, we consider the IND-CPA-secure public-key encryption scheme FrodoPKE, which is based
on a construction by Lindner and Peikert [19]. Compared to LWE-PKE, this scheme significantly
reduces the key-size and achieves better security estimates than the initial proposal by Regev [3].
For a detailed discussion of FrodoPKE, we refer to [18]. We present the entire scheme for completeness,
but the important part for our purposes is the decryption procedure.

Construction 5 (FrodoPKE [18]). Let n, m̄, n̄ be integer parameters, let q ≥ 2 be an integer power of 2, let B
denote the number of bits used for encoding, and let χ be a discrete symmetric error distribution. The public-key
encryption scheme FrodoPKE = (KeyGen,Enc,Dec) is defined as follows:

1. KeyGen: generate a matrix a $←−Zn×n
q and matrices S, E χ←−Zn×n̄

q ; compute B = a S+ E ∈ Zn×n̄
q ; output

the key-pair (pk, sk) with public key pk = (A, B) and secret key sk = S.
2. Enc: to encrypt m ∈ {0, 1}B·m̄·n̄ (encoded as a matrix M ∈ Zm̄×n̄

q with each entry having 0 s in all but
the B most significant bits) with public key pk, sample error matrices S′, E′ χ←−Zm̄×n

q and E′′ χ←−Zm̄×n̄
q ;

compute C1 = S′a + E′ ∈ Zm̄×n
q and C2 = M + S′B + E′′ ∈ Zm̄×n̄

q ; output the ciphertext (C1, C2).
3. Dec: to decrypt (C1, C2) ∈ Zm̄×n

q × Zm̄×n̄
q with secret-key sk = S, compute M = C2 − C1S ∈ Zm̄×n̄

q .
For each (i, j) ∈ [m̄]× [n̄], output the first B bits of Mi,j.

We now show how to recover m̄ of the n̄ columns of the secret key S using a single quantum
query to FrodoPKE.DecS. If m̄ = n̄, as in sample parameters given in [18], then this algorithm recovers
S completely.

Theorem 10. There exists a quantum algorithm that makes one quantum query to FrodoPKE.DecS and recovers
any choice of m̄ of the n̄ columns of S. For each of the chosen columns, if that column has at least one odd entry,
then the algorithm succeeds in recovering the column with probability at least

( 2
π −

π
8
)2 ≈ 0.059.

Proof. Let s1, . . . , sn̄ be the columns of S. Let U denote the map:

U : |c〉|z1〉 . . . |zn̄〉 7→ |c〉|z1 + LRFs1,0,q/2B(c)〉 . . . |zn̄ + LRFsn̄ ,0,q/2B(c)〉,

for any c ∈ Zn
q and z1, . . . , zn̄ ∈ Z2B . We first argue that one call to FrodoKEM.DecS can be used to

implement U⊗m̄. Then we show that one call to U can be used to recover any choice of the columns of
S with probability

( 2
π −

π
8
)2 ≈ 0.059, as long as it has at least one entry that is odd.

Let Trunc : Zq 7→ Z2B denote the map that takes x ∈ Zq to the integer represented by the B most
significant bits of the binary representation of x. We have, for any C1 ∈ Zm̄×n

q , C2 = 0m̄×n̄, and any
{zi,j}i∈[m̄],j∈[n̄] ⊆ Z2B :

UFrodoKEM.Dec : |C1〉|0m̄·n̄〉
⊗

i∈[m̄],j∈[n̄]
|zi,j〉 7→ |C1〉|0m̄·n̄〉

⊗
i∈[m̄],j∈[n̄]

|zi,j + Trunc([C1S]i,j)〉. (13)

Above, [C1S]i,j represents the ij-th entry of C1S. If c1, . . . , cm̄ denote the rows of C1, then [C1S]i,j =
〈ci, sj〉. Thus, Trunc([C1S]i,j) = LRFsj ,0,q/2B(ci), the linear rounding function with block size b = q/2B,
which is an integer since q is a power of 2, and a = 0. Note that we have also assumed that the plaintext
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is subtracted rather than added to the last register; this is purely for convenience of analysis, and can
easily be accounted for by adjusting Algorithm 1 (e.g., by using inverse-QFT instead of QFT.)

Discarding the second register (containing C2 = 0), the right-hand side of (13) becomes

|c1〉 . . . |cm̄〉
⊗

i∈[m̄],j∈[n̄]
|zi,j + LRFsj ,0,q/2B(ci)〉. (14)

Reordering the registers of (14), we get:

⊗
i∈[m̄]

|ci〉
⊗
j∈[n̄]
|zi,j + LRFsj ,0,q/2B(ci)〉

 = U⊗m̄

⊗
i∈[m̄]

|ci〉
⊗
j∈[n̄]
|zi,j〉

 .

Thus, we can implement U⊗m̄ using a single call to FrodoKEM.DecS.
Next we show that for any particular j ∈ [n̄], a single call to U can be used to recover sj, the j-th

column of S, with probability at least
( 2

π −
π
8
)2 ≈ 0.059, as long as at least one entry of sj is odd.

To do this, we show how one use of U can be used to implement one phase query to LRFsj ,0,q/2B .
Then the result follows from the proof of Theorem 9.

Let |ϕ〉 = 2−B/2 ∑2B−1
z=0 |z〉, and define

|φj〉 = |ϕ〉⊗(j−1) ⊗ 1√
2B

2B−1

∑
z=0

ωz
2B |z〉 ⊗ |ϕ〉⊗(n̄−j).

Then for any c ∈ Zn
q , we have:

1√
2B

2B−1

∑
z=0
|z + LRFsi ,0,q/2B(c)〉 =

1√
2B

2B−1

∑
z=0
|z〉 = |ϕ〉,

since addition here is modulo 2B, and

1√
2B

2B−1

∑
z=0

ωz
2B |z + LRFsj ,0,q/2B(c)〉 =

1√
2B

2B−1

∑
z=0

ω
z−LRF

sj ,0,q/2B (c)

2B |z〉.

Thus:

U(|c〉|φj〉) = |c〉|ϕ〉⊗(j−1) ⊗ 1√
2B

2B−1

∑
z=0

ω
z−LRF

sj ,0,q/2B (c)

2B |z〉 ⊗ |ϕ〉⊗(n̄−j)

= ω
−LRF

sj ,0,q/2B (c)

2B |c〉|φj〉.

Thus, by the proof of Theorem 9, if we apply U to q−n/2 ∑c∈Zn
q
|c〉|φj〉, Fourier transform the first

register, and then measure, assuming sj has at least one entry that is a unit (since q is a power of 2, this
is just an odd number) we will measure sj with probability at least

( 2
π −

π
8
)2 ≈ 0.059.

Thus, if we want to recover columns j1, . . . jm̄ of S, we apply our procedure for U⊗m̄, which costs
one query to FrodoKEM.DecS, to the state

∑
c∈Zn

q

1√
qn |c〉|φj1〉 ⊗ · · · ⊗ ∑

c∈Zn
q

1√
qn |c〉|φjm̄〉,

Fourier transform each of the c registers, and then measure.
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6.3. Key Recovery via One Decryption Query in Public-Key Ring-LWE

Next, we analyze key-recovery with a single quantum decryption query against Ring-LWE

encryption. Unlike the plain LWE-based encryption schemes we considered in the previous sections,
Ring-LWE encryption uses noisy samples over a polynomial ring. In the following, we consider
the basic, bit-by-bit Ring-LWE public-key encryption scheme introduced in [20,21]. It is based
on the rings R = Z[X]/〈Xn + 1〉 and Rq := R/qR = Zq[X]/〈Xn + 1〉 for some power-of-two
integer n and poly(n)-bounded prime modulus q. The details of the error distribution χ below will
not be relevant to our results.

In order to generate samples, we assume a symmetric error distribution χ that samples “small”
error polynomials from R. For example, a typical choice (under a particular representation for Rq)
is to use an n-dimensional Gaussian, more specifically the product of n centered one-dimensional
Gaussian distributions.

Let us first recall the basic public-key encryption scheme based on Ring-LWE. We restrict our
analysis to single-bit encryption only.

Construction 6 (Ring-LWE-PKE [20,21]). Let n ≥ 1 be an integer, let q ≥ 2 be an integer modulus, and let χ

be an error distribution over R. The public-key encryption scheme Ring-LWE-PKE = (KeyGen,Enc,Dec) is
defined as follows:

1. KeyGen: sample a $←−Rq and e, s χ←−R; output sk = s and pk = (a, c = a · s + e (mod q)) ∈ R2
q.

2. Enc: to encrypt b ∈ {0, 1}, sample r, e1, e2
χ←−R and output a ciphertext pair (u, v) ∈ R2

q, where
u = a · r + e1 (mod q) and v = c · r + e2 + bbq/2c (mod q).

3. Dec: to decrypt (u, v), compute v− u · s = (r · e− s · e1 + e2) + bbq/2c (mod q) ∈ Rq; output 0
if the constant term of the polynomial is closer to 0 than bq/2c, else output 1.

We note that our choice of placing single-bit encryption in the constant term of the polynomial
is somewhat arbitrary. Indeed, it is straightforward to extend our results to encryption with respect
to other monomials. To speed up multiplication of large polynomials, various embeddings are
adopted in practice that represent elements in Rq as vectors in Zn

q [20]. For example, one can
adopt the number-theoretic transform (NTT) to reduce polynomial multiplication to the much faster
component-wise multiplication, such as in the post-quantum proposal New Hope [32]. We emphasize
that our results are independent of the actual embedding used in practice, as long as the representation
is an isomorphism betweenRq and Zn

q . The same is true for the choice of ringR under a cyclotomic
polynomial, and ultimately results in only slightly different classical post-processing. We show
the following corollary to Theorem 9.

Corollary 3. There is a quantum algorithm that makes one quantum query to Ring-LWE-PKE.Decs and
recovers the entire key s with probability at least

( 2
π −

π
8
)2 ≈ 0.059.

Proof. Let us first analyze the decryption function. We let (p)0 denote the constant term of
a polynomial p ∈ Rq. Then, for any two polynomials u = ∑n−1

j=0 ujX j and s = ∑n−1
j=0 sjX j ∈ Rq,

we can identify the constant term of u · s as

(u · s)0 = u0s0 +
n−1

∑
j=1

ujsn−jX jXn−j

≡ u0s0 − u1sn−1 − u2sn−2 − . . .− un−1s1 (mod q), (15)

since Xn ≡ −1 inRq. We show that the outcome of Ring-LWE-PKE.Decs(u, v) coincides with a binary
linear rounding function over Zn

q . Let u, s ∈ Zn
q denote the coefficient vectors of u, s ∈ Rq respectively,

and define a constant polynomial v ≡ v0 ∈ Rq and vector u′ := (u, v0) ∈ Zn+1
q , for some v0 ∈ Zq.

We find that Ring-LWE-PKE.Decs(u, v0) rounds the inner product 〈u′, s′〉, where
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s′ = (−s0 (mod q), sn−1, . . . , s1, 1).

Thus, we can run the Bernstein–Vazirani algorithm for binary linear rounding functions on
a uniform superposition over Zn

q and recover s from s′ with simple classical post-processing.
Note also that any choice of isomorphism betweenRq and Zn

q necessarily preserves the inner product
in Equation (15), and hence any measurement outcome can be mapped back to the standard basis prior
to post-processing—independently of the actual ring representation used in practice.

By Theorem 9, Algorithm 1 makes one quantum query to LRFs′ ,q, which can be implemented using
one quantum query to Ring-LWE-PKE.Decs, and recovers the string s′, and thus also s, with probability( 2

π −
π
8
)2

.

6.4. Key Recovery via a Randomness-Access Query

While a linear number of classical decryption queries can be used to break LWE-based schemes,
we have shown that only a single quantum decryption query is required. A natural question to
ask is whether a similar statement can be made for encryption queries. Classically, it is known that
the symmetric key version of LWE described in Construction 3, LWE-SKE, can be broken using a linear
number of classical encryption queries when the adversary is also allowed to choose the randomness
used by the query: The adversary simply sets the value to e = 0 each time, with a taking n linearly
independent values.

In case the adversary is allowed to make quantum encryption queries with randomness access,
a single quantum query suffice to recover the entire key with non-negligible probability, even when
the adversary only has control over a part of the randomness used by the encryption: The randomness
used to prepare vectors a, but not the randomness used to select the error e. Specifically, the adversary
is given quantum oracle access to the randomness-access encryption oracle URA

Enck
such that, on input (b; a),

the adversary receives
EncRAk (b; a) = (a, 〈a, k〉+ b bq/2c+ e),

where e← χ. We extend this to a quantum randomness-access oracle by answering each element of
the superposition using i.i.d. errors ea ← χ:

URA
Enck

: |m〉|a〉|c〉 7→ |m〉|a〉|c⊕ EncRAk (m; a)〉.

This model is identical to the noisy learning model considered by Grilo et al. [22] which was
inspired by the original noise model of Bshouty and Jackson [33]. First, it is not hard to see that
algorithms making classical queries to the above oracle can extract at most log q bits of key from each
query (specifically, from the last component of the ciphertext), and thus still require a linear number of
queries to recover the complete key with non-negligible probability.

On the other hand, by a slight generalization of the proof of Theorem IV.1 from Ref. [22], we can
recover the entire key with inverse polynomial success probability using a single query to URA

Enck
, as long

as the noise magnitute η is polynomial in n. While Grilo et al. show how to apply Bernstein–Vazirani
to solve a certain computational learning version of LWE with quantum samples, we adopt a wider
set of cryptographic security parameters and show that this algorithm leads to a dramatic quantum
speed-up in an actual attack. Specifically, our improved analysis shows that the modulus need not be
prime. In particular, in the case of only a single query to a quantum randomness-access encryption
oracle, the entire key can be recovered with inverse polynomial success probability, as long as the noise
magnitude η is polynomial in n. This is certainly the case for the vast majority of schemes in practice.
Recall that ϕ denotes the Euler totient function. Specifically, for m ∈ N, ϕ(m) counts the number of
integers up to m that are relative prime to m. If m is prime, then ϕ(m) = m− 1. Our algorithm to
recover the key is as follows.
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Theorem 11. Consider LWE-SKE(n, q, χ) with an arbitrary integer modulus 2 ≤ q ≤ exp(n) and
a symmetric error distribution χ of noise magnitude η. Then, Algorithm 2 makes one query to
a randomness-accessible quantum encryption oracle for LWE-SKE(n, q, χ) and recovers the entire key with
probability at least ϕ(q)/(24ηq)− o(1).

Proof. We follow a similar analysis as in Theorem IV.1 in [22]. Let k denote the key as sampled by
LWE-SKE(n, q, χ). After querying URA

Enck
upon a state corresponding to an encryption of a message

b0 = 0, together with a choice of uniform superposition over the randomness register,

1√
qn ∑

x∈Zn
q

|b0〉|x1〉 . . . |xn〉|0〉,

Algorithm 2: Bernstein–Vazirani for randomness-accessible LWE encryption

input :Quantum randomness-access oracle URA
Enck

for LWE-SKE(n, q, χ)

output : k ∈ Zn
q with probability ≈ ϕ(q)/(24ηq)

1. Prepare a state corresponding to the message b0 = 0 and uniform randomness:

1√
qn ∑

x∈Zn
q

|b0〉|x1〉 · · · |xn〉|0〉.

2. Query the randomness-accessible oracle URA
Enck

, resulting in

1√
qn ∑

x∈Zn
q

|b0〉|x1〉 · · · |xn〉|〈x, k〉+ b0 bq/2c+ ex (mod q)〉.

3. Discard the first register and apply the quantum Fourier transform QFT⊗n+1
Zq

.
4. Measure in the computational basis, yielding an outcome |y1〉 · · · |yn〉|z〉.
5. If gcd(z, q) = 1, output k̃ = −(y1, . . . , yn)/z (mod q),

else output ⊥.

Algorithm 2 receives a sample |ψ〉 where, for unknown independent errors ex ← χ of noise
magnitude |ex| ≤ η,

|ψ〉 = 1√
qn ∑

x∈Zn
q

|b0〉|x1〉 . . . |xn〉|〈x, k〉+ ex (mod q)〉.

Thus, when discarding the first register and applying the quantum Fourier transform, we find

QFT⊗n+1
Zq

|ψ〉 = 1
qn+1/2 ∑

x∈Zn
q

∑
y∈Zn

q

∑
z∈Zq

ω〈x,y+zk〉+exz|y1〉 · · · |yn〉|z〉.

When measuring in the standard basis, the probability of obtaining outcome y1, . . . , yn, z is

1
q2n+1

∣∣∣∣∣∣ ∑
x∈Zn

q

ω〈x,y+zk〉+exz

∣∣∣∣∣∣
2

.
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In particular, the probability that y = −zk (mod q) and also that z is prime relative to q (i.e.,
gcd(z, q) = 1 and thus z ∈ Z×q ) is given by

1
q2n+1 ∑

z∈Z×q

∣∣∣∣∣∣ ∑
x∈Zn

q

ωexz

∣∣∣∣∣∣
2

=
1

q2n+1 ∑
z∈Z×q

( ∑
x∈Zn

q

Re (ωexz)

)2

+

(
∑

x∈Zn
q

Im (ωexz)

)2


≥ 1
q2n+1 ∑

z∈Z×q

 ∑
x∈Zn

q

cos
(

2πexz
q

)2

≥ 1
q2n+1 ∑

z∈Z×q
1≤z≤ q

6η

 ∑
x∈Zn

q

1
2

2

≥ 1
4q ∑

z∈Z×q
1≤z≤b q

6η c

1 ≥ ϕ(q)
24ηq

−O(1/q).

in the last inequality, we used the fact that
⌊

q
6η

⌋
= q

6η +O(1), as well as a standard identity on the Euler
totient function which we state in Lemma A2: Let n, m > 1 be integers and let ω be the prime omega
function. Then, the following identity holds:

∑
1≤j≤n

gcd(j,m)=1

1 = n
ϕ(m)

m
+ O

(
2ω(m)

)
.

Therefore, Algorithm 2 outputs the correct key k̃ with probability at least ϕ(q)/(24ηq)− o(1).
Note that, because ϕ(q) = Ω (q/ log log(q)), the success probability is inverse polynomial so long as
the noise magnitude η is polynomial in n.

For completeness, we also consider a slightly different and yet plausible error model for quantum
randomness-access queries. Unlike the previous model of i.i.d. errors, we now consider a single
error e ← χ being sampled for every branch of the superposition of a single query. Our algorithm
will crucially exploit the property that the error does not depend on any of the particular vectors
in the respective branches of the wave function.

Surprisingly, we find that the error model of choice does matter, and greatly impacts the analysis
of the algorithm. In fact, as we show next, one can now recover k with certainty using only a single
query to the randomness access encryption oracle. We adapt Algorithm 2 as follows:

We are left with the following Corollary.

Corollary 4. Consider LWE-SKE(n, q, χ) with an arbitrary integer modulus 2 ≤ q ≤ exp(n) and a symmetric
error distribution χ of noise magnitude η. Then, there exists a quantum algorithm that makes one query to
a single-error randomness-accessible quantum encryption oracle for LWE-SKE(n, q, χ) and recovers the entire
key with probability 1.

Proof. The result follows straight from the definition of the quantum Fourier transform. After applying
the transformation in step 3 of Algorithm 3, the register contains the entries (k1, . . . , kn).
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Algorithm 3: Bernstein–Vazirani for (single-error) randomness-accessible LWE encryption

input :Quantum randomness-access oracle URA
Enck

for LWE-SKE(n, q, χ) in the
single-error model.

output : k ∈ Zn
q with probability 1

1. Prepare a particular state corresponding to the message b0 = 0 as follows:

1√
qn ∑

x∈Zn
q

|b0〉|x1〉 · · · |xn〉 ⊗
1
√

q

q−1

∑
z=0

ωz
q|z〉.

2. Query the randomness-accessible oracle URA
Enck

with single error e← χ:

1√
qn ∑

x∈Zn
q

ω
−〈x,k〉
q |b0〉|x1〉 · · · |xn〉 ⊗

1
√

q

q−1

∑
z=0

ωz
q|z + e〉.

3. Discard the first and last register, and apply the quantum Fourier transform QFT⊗n
Zq

.
4. Measure in the computational basis to obtain k ∈ Zn

q .
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Appendix A.

Appendix A.1. Bound for Quantum Random Access Codes

Recall that a quantum random access code (QRAC) is the following scenario involving two parties,
Alice and Bob [26]:

• Alice receives an N-bit string x and encodes it as a quantum state $x.
• Bob receives $x from Alice and is asked to recover the i-th bit of x, for some i ∈ {1, . . . , N},

by measuring the state.
• They win if Bob’s output agrees with xi and lose otherwise.

A variation of this scenario allows Alice and Bob to use shared randomness in their encoding and
decoding operations [27] (note that shared randomness per se does not allow them to communicate).
If we denote the shared random variable by λ, Alice’s can now produce $λ

x
We are interested in bounding the average bias ε = pwin − 1/2 of a quantum random access

code with shared randomness, where pwin is the winning probability averaged over x $←−{0, 1}N and
i $←−{1, . . . , N}.

Lemma A1. The average bias of a quantum random access code with shared randomness that encodes N bits
into a d-dimensional quantum state is O(

√
N−1 log d). In particular, if N = 2n and d = 2poly(n) the bias is

O(2−n/2 poly(n)).
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Proof. A quantum random access code with shared randomness that encodes N bits into
a d-dimensional quantum state is specified by the following:

• a shared random variable λ,
• for each x ∈ {0, 1}N , a d-dimensional quantum state $λ

x encoding x,
• for each i ∈ {0, . . . , N}, an observable Mλ

i for recovering the i-th bit.

Formally, $λ
x and Mλ

i are d× d Hermitian matrices such that $λ
x ≥ 0, Tr$λ

x = 1, and ‖Mλ
i ‖ ≤ 1

where ‖Mλ
i ‖ denotes the operator norm of Mλ

i . Note that both $λ
x and Mλ

i depend on the shared
random variable λ, meaning that Alice and Bob can coordinate their strategies.

The bias of correctly guessing xi, for a given x and i, is (−1)xi Tr($λ
x Mλ

i )/2. Moreover, if the average
bias of the code is ε, then Eλ Ex,i(−1)xi Tr($λ

x Mλ
i ) ≥ 2ε. We can rearrange this expression and

upper bound each term using its operator norm, and then apply the noncommutative Khintchine
inequality [34]:

Eλ Ex
1
N

Tr
(

$λ
x

N

∑
i=1

(−1)xi Mλ
i

)
≤ Eλ Ex

1
N
‖

N

∑
i=1

(−1)xi Mλ
i ‖

≤ Eλ
1
N

c
√

N log d

= c

√
log d

N
,

for some constant c. In other words, ε ≤ c
2

√
log d

N . in the particular case we are interested in, d = 2poly(n)

and N = 2n so ε ≤ c
2

√
poly(n)

2n , completing the proof.

Appendix A.2. Equivalence of QCCA Models

Recall that the IND-QCCA1 notion is based on the security game IndGame defined in Definition 3.
In the alternative security game IndGame′ (see Definition 4), the adversary provides only one plaintext
m and must decide if the challenge is an encryption of m or an encryption of a random string.
In this section, we prove the following:

Proposition A1. An encryption scheme Π is IND-QCCA1 if and only if for every QPT A,

Pr[a wins IndGame′(Π,A, n)] ≤ 1/2 + negl(n) .

Proof. Fix a scheme Π. For one direction, suppose Π is IND-QCCA1 and let A be an adversary against
IndGame′. Define an adversary A0 against IndGame as follows: (i.) run A until it outputs a challenge
plaintext m, (ii.) sample random r and output (m, r), (iii.) run the rest of A and output what it outputs.
The output distribution of IndGame′(Π,A, n) is then identical to IndGame(Π,A0, n), which in turn
must be negligibly close to uniform by IND-QCCA1 security of Π.

For the other direction, suppose no adversary can win IndGame′ with probability better than 1/2,
and let B be an adversary against IndGame. Now, define two adversaries B0 and B1 against IndGame′

as follows. The adversary Bc does: (i.) run B until it outputs a challenge (m0, m1), (ii.) output mc, (iii.)
run the rest of B and output what it outputs. Note that the pre-challenge algorithm is identical for
B, B0, and B1; define random variables M0, M1 and R given by the two challenges and a uniformly
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random plaintext, respectively. The post-challenge algorithm is also identical for all three adversaries;
call it C. The advantage of B over random guessing is then bounded by

‖C(Enck(M0))− C(Enck(M1))‖1

= ‖C(Enck(M0))− C(Enck(M1))− C(Enck(R)) + C(Enck(R))‖1

≤ ‖C(Enck(M0))− C(Enck(R))‖1 + ‖C(Enck(M1))− C(Enck(R))‖1

≤ negl(n) ,

where the last inequality follows from our initial assumption, applied to both B0 and B1. It follows
that Π is IND-QCCA1.

Lemma A2. Let n, m > 1 be integers. Then, the following holds where ω(m) is the prime omega function:

∑
1≤j≤n

gcd(j,m)=1

1 = n
ϕ(m)

m
+ O

(
2ω(m)

)
.

For completeness, we include a short and simple proof of the above statement.

Proof ([35]).
n

∑
j=1

gcd(j,m)=1

1 =
n

∑
j=1

∑
d|gcd(j,m)

µ(d) = ∑
d|m

µ(d)
n

∑
j=1

j≡0 (mod d)

1

Here, µ denotes the Möbius function. The sum over j = 1, . . . , n is equal to
⌊ n

d
⌋
= n

d + O(1).
Therefore,

n ∑
d|m

µ(d)
d

+ O

∑
d|m
|µ(d)|

 =
nϕ(m)

m
+ O(2ω(m)).

Putting everything together, we arrive at the equation,

∑
1≤j≤n

gcd(j,m)=1

1 = n
ϕ(m)

m
+ O

(
2ω(m)

)
,

thereby completing the proof.
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