ﬁ cryptography ﬁw\p\py

Article
Improved Sum of Residues Modular Multiplication
Algorithm

Mohamad Ali Mehrabi
Department of Computing, Macquarie University, Sydney 2109, Australia; mohamadali.mehrabi@mgq.edu.au
check for
Received: 26 April 2019; Accepted: 27 May 2019; Published: 29 May 2019 updates

Abstract: Modular reduction of large values is a core operation in most common public-key
cryptosystems that involves intensive computations in finite fields. Within such schemes, efficiency
is a critical issue for the effectiveness of practical implementation of modular reduction. Recently,
Residue Number Systems have drawn attention in cryptography application as they provide a
good means for extreme long integer arithmetic and their carry-free operations make parallel
implementation feasible. In this paper, we present an algorithm to calculate the precise value
of “X mod p “directly in the RNS representation of an integer. The pipe-lined, non-pipe-lined, and
parallel hardware architectures are proposed and implemented on XILINX FPGAs.

Keywords: modular reduction; modular multiplication; residue number systems (RNS); Elliptic
Curve Cryptography (ECC); sum of residues (SOR) reduction; montgomery modular reduction
(MMR)

1. Introduction

The residue number system (RNS) has been proposed by Svoboda and Valach in 1955 [1] and
independently by Garner in 1959 [2]. It uses a base of co-prime moduli {my,my, - - - ,my} to split an
integer X into small integers {x1,x2, - - - , x5} where x; is the residue of X divided by m; denoted as
x; = X mod m; or simply x; = <X>m[.

Conversion to RNS is straightforward. Reverse conversion is complex and uses the Chinese
Remainder Theorem (CRT) [3]. Addition, subtraction, and multiplication in RNS are very efficient.
These operations are performed on residues in parallel and independently, without carry propagation
between them. The natural parallelism and carry-free properties speed up computations in RNS and
provide a high level of design modularity and scalability.

One of the most interesting developments has been the applications of RNS in cryptography [3].
Some cryptographic algorithms which need big word lengths ranging from 2048 bits to 4096 bits like
RSA (Rivest-Shamir-Adleman) algorithm [4], have been implemented in RNS [5,6]. RNS is also an
appealing method in Elliptic Curve Cryptography (ECC) where the sizes range from 160 to 256 bits.

The modular reduction is the core function in public key cryptosystems, where all calculations
are done in a finite field with characteristic p.

The first RNS modular reduction proposed by Karl and Reinhard Posch [7] in 1995 was based on
the Montgomery reduction algorithm [8]. Their proposed algorithm needed two RNS base extension
operations. They used a floating point computation for correction of the base extension in their
architecture that was not compatible with the RNS representation.

The main advantage of the RNS Montgomery reduction method is its efficiency in using hardware
resources. In this algorithm, half of the RNS channels are involved at a time. Two base extension
operations are used to retrieve the other half of the RNS set. The base extension is a costly operation
and limits the speed of the algorithm. In 1998, Bajard et al. [9] introduced a new Montgomery RNS
reduction architecture using mixed radix system (MRS) [3] representation for base extensions. Due to

Cryptography 2019, 3, 14; d0i:10.3390/ cryptography3020014 www.mdpi.com/journal/cryptography

http://www.mdpi.com/journal/cryptography
http://www.mdpi.com
https://orcid.org/0000-0003-3984-5361
http://dx.doi.org/10.3390/cryptography3020014
http://www.mdpi.com/journal/cryptography
https://www.mdpi.com/2410-387X/3/2/14?type=check_update&version=2

Cryptography 2019, 3, 14 20f 16

the recursive nature of MRS, this method is hard to implement in the hardware. Based on Shenoy and
Kumaresan work in [10], Bajard et al. proposed a Montgomery RNS modular reduction algorithm in
1998, using residue recovery for the base extension [11]. In 2000, the floating point approach of [7] was
improved by Kawamura et al. [12] by introducing the cox-rower architecture that is well adapted to
hardware implementation. In 2014, Bajard and Merkiche [13] proposed an improvement in cox-rower
architecture by introducing a second level of Montgomery reduction within each RNS unit. Several
variants and improvements on the RNS montgomery modular reduction have been discussed in the
literature [2,14-17]. The most recent work in [18] proposed the application of quadratic residues in the
RNS Montgomery reduction algorithm.

Modular reduction based on the sum of residues (SOR) algorithm was first presented by
Phillips et al. [19] in 2010. The SOR algorithm hardware implementation was proposed later in [20].
A disadvantage of the SOR algorithm is that unlike the Montgomery reduction method, the output is
an unknown and variable factor of the “X mod p” value. Although this algorithm offers a high level
of parallelism in calculations, the proposed implementation in [20] is considerably big in area.

In this paper, we do an improvement to the sum of residues algorithm by introducing the
correction factor x to obtain a precise result. Using an efficient moduli set, we also propose a new
design to improve the area in comparison to [20]. The timing of our design is improved compared to
RNS Montgomery reduction as well. Two implementations are done for the 256-bit prime field of the
SEC2P256K1 [21] and the 255-bit prime field of the ED25519 [22] elliptic curves respectively. It can be
extended to other prime fields using the same methodology.

Section 2 of this paper is a quick review of the sum of residues reduction algorithm and the
related works already published in the literature. Section 3 is mainly our contribution to the correction
of the sum of residues algorithm and improving speed and area using efficient RNS base (moduli
set). Section 4 presents our proposed hardware architectures and implementation results. Table Al in
Appendix A summarises the notations applied in this paper.

2. Background

Representation of the integer X, 0 < X < M, using CRT (Chinese Reminder Theorem) is [3]:

M=

X = () (M), M), . 1)

I
—_

where, N is the number of moduli in moduli set of co-primes B = {my,my,--- ,myn}.
x; = X mod m;.

N
M = [T m; (also called dynamic range of X).
i=1

M; = % and
M;!is the multiplicative inverse of M;. In other terms, M; - M;~! mod m; = 1.

We assume that: 2" > my > --- > my > 2"~1. As a result, the dynamic range is 2V ("1 < M <
oN-n

The values of M, M;, and M; ! are known and pre-computed for hardware implementation.
Consider two [-bit integer X and Y. The multiplication result Z = X -Y is a 2/-bit integer.
The representation of Z in RNS is :

RNS(Z) = {erZZI' . /ZN}' (2)

where, z; = (x; 'yi>m,--

Cryptography 2019, 3, 14 30f16

The CRT enforces condition Z < M. Otherwise, the N-tuple RNS set in (2) do not represent the
correct integer Z. In other terms, the bit length of the moduli (1) and the number of moduli (N) must
be chosen such that the condition 2/ < [log, M| < N - n is satisfied.

Introducing ; = <ZiMi_1>mi/ the integer Z can be presented as:

N
Z= () viMi)m. ®3)
=1

An integer coefficient « can be found such that [3]:
N
Z =Y viM;—aM. (4)
i=1
Reducing Z by the modulus p yields:
N
Z mod p = (Z)p = (L 7iMy)p — {aM),. ©)

The RNS multiplications (x;y;),, and (ziM; 1),
n x n multiplier and a modular reduction detailed in Section 2.1. Calculation of « is outlined in
Section 2.2.

. can be easily performed by an unsigned integer

2.1. Efficient RNS Modular Reduction

An RNS modular multiplication in the 256-bit prime field requires a dynamic range of at least
512 bits. In our design this is provided by eight 66-bit pseudo-Mersenne co-prime moduli as presented
in Table 1. This moduli set provides a 528-bit dynamic range.

Table 1. 66-bit co-prime moduli set 3.

2061 266271 266_23_7 266_2%_7
206251 266_26_7 266_p8_7 266_29_1

The optimal RNS bases are discussed in [23]. Modular reduction implementation using moduli
set in general form of m; = 2" — 2fi — 1 (here n = 66) is very fast and low-cost in hardware [24].
Suppose B is a 2n-bit integer (0 < B < 22"). It can be broken up into two n-bit most significant and
least significant integers denoted as By and By respectively. In other terms, B = By2" + By.
Since (2") ;1) = 2" + 1, then:

<BH2n + BL>(2,172t,-71) = <<BH2ti>(2n72ziil) + By + BL> 6)

(2n—2fi—1)"

Bp2'i has (n + t;) bits and can be re-written as B2 = Byy,2" + Byy,.
Let (by—1...by), bj € {0,1} be the binary representation of By;. Then we introduce By, as the most
significant t; bits of By, i.e. (by—1...b,_t,—2) and Byy, as the rest least significant bits (b, _¢,_1 ... bp)

left shifted t; times, i.e. Byr, = (by—t,—1...bo0---0).
t; zeroes
Similarly,
<BHH,‘2n>(2”72ti7]) = <BHHi2ti + BHH1>(2n,2ti,1)' (7)

Since By, is t; bits long, the term B HHz.Zti + By, can be rewritten as concatenation of By, to
itself, i.e., B HHizt’ + Byn, = Bun,||Bum,- ("||" denotes bit concatenation operation.)

Cryptography 2019, 3, 14 4of16

So, the final result is:
(2n,2f,',1) = <BHH1' | |BHH1' =+ BHLi + BH + BL>(2”—2’1'—1)' (8)

The modular reduction of 0 < B < 22" can be calculated at the cost of one 4-input n-bit CSA (Carry
Save Adder) compare to Barrett method [25] that requires two multipliers.

2.2. Calculation of «

By dividing both sides of (4) to M we obtain:

N
_a_mzzl_é

4 - M;
M —~ . M
i=0 """t

M ;)’Yi)

Since 0 < % < 1, then:
N oo
. {Z J (10)
i

It is known that: 0 < 77711 < 1, therefore:
0<a<N. (11)

Calculation of & has been discussed in [12,20]. It is shown that choosing proper constants g and A
and enforcing boundary condition of (12), « can be calculated using (13).

0<X<(1—A)M. (12)

i« = {21”’ (li u”'qJ +2‘7.A>J. (13)

Algorithm 1 is used to calculate the coefficient . A Maple program was written to find the
optimal g and A. Choosing q = 8, for the 66-bit moduli set in Table 1, we realised that A = 2% is
suitable for the whole effective dynamic range. The hardware realisation of (13) is an N-input g-bit
adder with offset 27 - A. Note that the effective dynamic range by applying boundary condition in (12),
isM=|(1- %)MJ, that is greater than the minimum required bit length (512 bits).

Algorithm 1: Calculation of «

input :{7yy,...yn} where, v; = (z;- M; 1), ,i € {1,...,N}.
input :g, A.

output:a.

A« 21.A;

fori =1to N do

A<—A+{ Vi J;

2n=q

end

A .
N < 27 ;

Cryptography 2019, 3, 14 50f 16

3. Improved Sum of Residues (SOR) Algorithm

Here, we introduce an integer V' as:

V= Z% i)y — (aM),. (14)

Comparing (5) and (14), it can be realised that the difference is a factor of modulus p. Recalling the fact
that for any integer Z we can find an integer « such that (Z), = Z —« - p.

V—(2)

Il
.MZ

I
—

Z%

Yi(M; —v-p) — Z%

p

I
Mz

(15)

I
&=L

I
—

Viv—p)-p

|
=
=

(v and p are constants such that: <M'>p M; —v-p,and <Z YiMi)p = Z YiM; —p-p).

The factor (k) is a function of ;, not a constant. Therefore the value of V — which is actually the
output of SOR algorithm introduced in [19,20] — is not presenting the true reduction of (Z),. In fact:

N

V=x-p+(Z), =) 7M),+ (—aM),. (16)
i

The values of (M;), and («M),, for a € {0,1,--,N — 1} are known and can be implemented in
hardware as pre-computed constants.
The RNS form of V resulted from (14) is:

V) ({Mi)p),, (—a(M)),

Wy _(%% (),)+ ey, | W
: i=1 : :

(Vg (M), (—a(M),),

If (17) deducted by {(x - p),, , (€ p),,, -+, (K- p),,} the accurate value of Z, in RNS will be
obtained.

(Zp) ({Mi)y),, (—a(M)y), (KD,
Zpdwy | n [(Miy), (—a(M),), (D)

E = (El% :)+ 2 - e (18)
(Zp) iy {Mi)y),,, (—a(M),), {K-P)

3.1. Calculation of k

Dividing two sides of (16) by p yields:

K+ =) P+ P (19)

Cryptography 2019, 3, 14 6 of 16

z —aM
The coefficient «x is an integer. Reminding that % < land # < 1, x can be calculated as:

o [0 (20)

The modulus p is considered to be a pseudo Mersenne prime in general form of p = 2V — ¢
where 2V > €. For example: pg = 225 — 232 29 28 27 26 2% _1and pg = 22 — 19 are the
field modulus for the NIST recommended curve SECP256K1 [21] and the Twisted Edwards Curve
ED25519 [22], respectively.

Substitution of fractional equation ﬁ = ziw(l + sw—) in (20) results:

. & %-<21\V4Vi>p(1+ (2W€_6)>J' a2

i=1

Considering that (M), < p and 7; < 2", if we choose:

2an
22
€<= (22)
N o (M.
Then, }Zl Ti <2AV/IV’>” (zwe,e) < 1, and the value of « resulted from (21) is:
i=
N . .
¥i{M;)
i=

The condition in (22) provides a new boundary for choosing the field modulus p. It is a valid
condition for most known prime modulus p used practically in cryptography. Table 2 shows the
validity of x for some standard curves based on (23).

Table 2. Checking validity of x for some standard curves [21,22].

zwfn

CURVE Modulus p N =n N €

ED25519 22% 19 8§ 66 2186 19
SECP160K1 2160 _ 232 _ 21389 5 66 252 2%2 4 21389
SECP160R1 2160 _ 232 _q 5 66 % 232 41
SECP192K1 2192 _ 232 _ 4553 6 66 % 232 4 4553
SECP192R1 2192 264 _q 6 66 %ﬁ 264 41
SECP224K1 2224 _ 232 _ 6803 7 66 g 232 + 6803
SECP224R1 2224 9% 41 7 66 @ 2% 1
SECP256K1 2256 _ 232 _ 977 8 66 2187 232 4977

ﬂ

SECP2384R1 2384 _ 2128 _ 7% 4 231 _1 12 46 3 2128 4 296 _ 231 4 q
SECP521R1 2521 _ 1 16 66 2%1 1

Cryptography 2019, 3, 14 7 of 16

The hardware implementation of (23) needs a 66 x 256-bit multiplier. For an efficient hardware
implementation, it is essential to avoid such a big multiplier. To compute the value of x in hardware,

we used: N (M)
1 i
< [wEolel] &

The integer T must be selected such that the equality of (23) and (24) is guaranteed. Using a
MAPLE program, we realised that T = 72 for SECP256K1 and T = 71 for ED25519 are the best

solutions for an area efficient hardware. In this case, as the term {;ﬂv/f’){fJ is 55 bits for SECP256K1 and

44 bits for ED25519, the 66 x 55-bit and 66 x 44-bit multipliers are required to compute «, respectively.
Therefore, the coefficient of x for SECP256K1 can be calculated efficiently by the following equation:

Similarly, for ED25519, k can be calculated using the below formula:

1Y (M),
K= {2711; 7{218417 H (26)

The value of {%J can be pre-computed and saved in the hardware for i = 1 to N. The integer

x is maximum 52-bit long for SECP256K1 and 42-bit long for ED25519. As a result, RNS conversion is
not required. (x; = x mod m; = x) and x can be directly used in RNS calculations.

Calculation of x can be done in parallel and will not impose extra delay in the design. Finally, to
findz = X mod p weneed to compute - (p),, . Note that (p)
as well. So, we get:

., 18 @ constant and can be pre-computed
1

2= (V) — (k)) 7

mi mi'
The number of operations can be reduced by pre-computing (—p),, instead of (p),, .
(A modular subtraction consists of two operations: Va,b < m;, (a —b)p, = (a+ (m; — b))m,).
Then z; is calculated directly by:

zi = (V) + (- {=p) (28)

i il

Algorithm 2 presents the RNS modulo p multiplication {x1,x2,---,xn} X {y1,¥2,- - ,yn}
mod p over moduli base B using improved sum of residues method. The calculations at stages
4 and 5 are done in parallel. Different levels of parallelism can be achieved in hardware by adding on
or more RNS multipliers to perform stage 5.3 calculations in a shorter time.

As discussed, the coefficient x is a 52-bit(42-bit) integer for SECP256K1(ED25519) design.
Consequently, the output of the original SOR algorithm [19] represented in (16) is as big as 308(297)
bits. In conclusion, the hardware introduced in [20,26,27] cannot calculate two tandem modular
multiplications while the product of the second stage inputs has a higher bit number than the dynamic
range that violates the CRT. In cryptographic applications, it is generally required to do multiple

Cryptography 2019, 3, 14

8 of 16

modular multiplications. Our correction to the SOR algorithm ensures that the inputs of the next

multiplication stage are in range.

Algorithm 2: Improved Sum of residues reduction

Require: p, A, q, B = {mq,---
W = [log,p], T, N > [2]
N

,mN}, mp>mpy > - >MN, N = [logﬂnﬂ,

Require: M = [m;, M= (1-A)M, M; = Mfori=1to N
i=1 !

Require: pre-computed tables

Require: pre-computed table

Require: pre-computed table

input :Integers Xand Y, 0 <
output:Presentation of Z = X
1. fori =1to N do

| xyi < (X Yi)
end
2. fori =1to N do

‘ Vi (M),
end
3.fori =1to N do

m,v'

forj=1to N do
‘ Yjj 7i<<Mi>p>mj-
end
end
4. fori =1to N do
N .
41a+ H(z quJ +
i=1
N M »
42K {;T‘Zl ¥ VZW»%J
1=
end

5. fori =1to N do
5.1 Calculate (x - (—p),,)
5.2 Read <“<7M>p>m‘ fro
N
5.3 sum; < (¥ Yji)m, -
j=1
end

6. fori =1to N do
‘ zi = (sum; + a(—M),)

end

<_p>ml
_F? "1 and

<7P>mN

fori=1to N.

ny

my

fora =1toN -1

L mN

X,Y < M in form of RNS: {xq,- -+, xn} and {y1,
-Y mod pinRNS: {zq,---,zn}.

za)|.
|

mi
m the table.

L /]/N}'

Cryptography 2019, 3, 14 9of 16

4. New SOR Algorithm Implementation and Performance

The required memory to implement pre-computed parameters of Algorithm 2 is

N((2N +2)n + n’) bits, where n’ is the biggest bit number of D]\V/VIZ)]EJ ,i € {1---N}. In our case

n' = 55 for SECP256K1 and n’ = 44 for ED25519. Therefore, the required memory is 9944 and 9856
bits for the SECP256K1 and ED25519 respectively.

In our design, FPGA DSP modules are used for the realisation of eight 66 x 66 bit multipliers
that are followed by a combinational reduction logic to build an RNS multiplier. The total number of
128 DSP resources are used for an RNS multiplier. Table 3 lists maximum logic and net delays of the
RNS multiplier and the RNS adder(accumulator) implemented on the different FPGA platforms used
in this survey. These delays determine the overall design latency and performance. The maximum
RNS adder logic and routing latency are less than half of the RNS multiplier logic and net delays. The
system clock cycle is chosen such that an RNS addition is complete in one clock period and an RNS
multiplication result is ready in two clock periods.

Table 3. Implementation results of SOR components on different FPGAs.

Unit Device Max. Logic Delay Max. Net Delay = Max Achieved Freq. on Core

(ns) (ns) MHz

RNS Multiplier ARTIX7 16.206 5.112 109.00
RNS Adder ARTIX7 6.017 2.303 109.00
RNS Multiplier VIRTEX 7 11.525 3.793 125.00
RNS Adder VIRTEX 7 3.931 1.469 125.00
RNS Multiplier ~ VIRTEX UltraScale+ 5.910 4.099 185.18
RNS Adder VIRTEX UltraScale+ 2.139 2.454 185.18
RNS Multiplier KINTEX 7 11.964 4.711 116.27
RNS Adder KINTEX 7 4.613 1.599 116.27
RNS Multiplier ~ KINTEX UltraScale+ 5.789 4.099 187.13
RNS Adder KINTEX UltraScale+ 2.018 2.454 187.13

Figure 1 presents a simplified block diagram of the Algorithm 2 with non-pipe-lined architecture.
We name this architecture as SOR_1M_N. The sequencer state machine provides select signals of the
multiplexers and clocks for internal registers. The inputs of the circuit are two 256-bit integers X and Y
in RNS representation over base B ; i.e., {x1,---,xny} and {y1,- - - ,yn} respectively.

[¥oms

E@

[-aMp |

0 RNS Multiplier
€b RNS ADDER

X1,X2,...X8 >
Yu¥2,...Ys
M 1'1,---,Ma'1}

5
{1IM1]pl e [M1]p|me} S
{1IMa]plme. | [M3]p|me}
{1IMalpl | [Map|me}
{IIM5|p|mee | [M5|p|me} L
Sequencer

{1IMz]plmee | [M2|p| me}
{1IMé|plme | [Me|plme}

{11M7]p]mte-| [M3]p| me} state machine
{l |ME|P|m1;---| |ME|P|mE} Address
{|'P|m1‘---|'p|ms} counter 0-9

ROM

Figure 1. Sum of residues reduction block diagram non-pipe-lined (SOR_1M_N) design.

Cryptography 2019, 3, 14 10 of 16

The RNS multiplier inputs are selected by multiplexers MUX1 and MUX2. At the second clock
cycle the output of multiplier ie., xy; = (x;- yi>mi is latched by register Q1. At the fourth clock
cycle, v; = (xy; - Mi_1>m,v is calculated and latched by register Q1. The calculation of « starts after
the fourth clock cycle, by adding the eight most significant bits of v to g to the offset 21A = 2%.
The 3 most significant bits of the result are used to select the value of (—a - (M)), from the Look
up table. Figure 2 illustrates the hardware implementation of (—a - (M)p),. At the next 3N clock
cycles (7y; <Mi>r’>m,- will be calculated and accumulated in register Q2. The RNS multiplier must be

idle for one clock cycle, letting the RNS adder of the accumulator be completed and latched whenever
accumulation of the results is required. The value of « is calculated in parallel using the hardware
shown in Figure 3. The (—«xp),, is calculated at the (3N +5) and (3N + 6) cycles and will be added
to the accumulator Q2 at the last clock cycle. The sum of moduli reduction is completed in (3N + 7)
clock cycles. Figure Al in appendix A shows the data flow diagram of SOR_1IM_N architecture at
every clock cycle.

Y (n-1 downto n-8)

Y1
Y2

(0,0} !
{I-Mp|m1,ee0|-Mp|mg} | !
{l'ZMleI:---:l'ZMleB} i

o (10 downto 8)

Y7 -
Y8

{1-7Melmt, oo | -7Mplimg } | |
|

CSA adder
LUT

Wy = |Mylp/ 2184

B = |M;|p/ 2184

|
i
I I
N i
Ya =5 ,
I |
| Ha 1
e [i
in ﬁD :
ops .
! K
Ys + | K |mi
.
.
YB A —

Figure 3. Implementation of (k{(—p))m
architecture SOR_2M (Down).

in architectures SOR_IM_N and SOR_IM_P (Up) and in

Cryptography 2019, 3, 14 110f 16

A pipe-lined design is depicted in Figure 4. Here, an extra register Q3 latches the RNS multiplier’s
output. So, The idle cycles in SOR_1M_N are removed. We call this design SOR_1M_P. The data flow
diagram of SOR_1M_P architecture is illustrated in Figure A2 in Appendix A. Algorithm 2 can be
performed in 2(N + 4) clock cycles using this architecture.

1] ms

E

[-aMp i

G

@2 RNS Multiplier
€P RrNS Adder

X1,X2,...,.X8 >
Y1¥z,...¥8

{l |M1|P|m1‘---| |M1|F|mE}

f1IM2|plmen | [M2]plms}

S~
g
P
\
g
=
{11M3]2lmem | [M3]p|ma}
{1 Mafplmtem | [M4]p[me}
{HMSllel;---”MSlleE} —

{11Mé]plm,en | [Me|p|me} Sequencer
{11M7pfmpee | [M7] | ms} state machine
flIMs el miee| Ml plma} Addvess
{|'P|m1.---|-p|mg} counter 0-9
ROM

Figure 4. Sum of residues reduction block diagram with pipe-lined (SOR_1IM_P) design.

Parallel designs are possible by adding RNS multipliers to the design. Figure 5 shows the
architecture of using two identical RNS multipliers in parallel to implement algorithm 2. We tag
this architecture as SOR_2M. The calculation of (7;(M;)p)m;, (i = 1--- N) is split between two RNS
multipliers. So, the required time to calculate all the N terms is halved. As shown in Figure 3, An
extra n x n’ multiplier is also required to calculate « in time. The latency of SOM_2M architecture is
2(% +5) clock cycles. Theoretically, the latency could be as small as 12 clock cycles using N parallel
RNS multipliers. Figure A3 in appendix A shows the data flow diagram of SOM_2M architecture.

Ml T eMelmi
I:B
-
B
» 5
=
X1,X2,000,X >
[
Wt Y1,Y2,.-.,¥8
My Mg} 3] I
(Ml e lmares | IM1 o] ms} E N
1 {HMelelmayee [IM2] 2] ms} 77 .
“IMsIlelr---||M3|P|ms} 1,£2,
{l

IMalelmse | IMale | ms}
{1-Plmi-|-Plme}
{0,0,...0}

{HMs ol | [Ms [o | me}
{HMs [l masee | [Ms [p | ms}

(1M Lol M s} oaencer

UM lolmgon] Mslnl s} | | L Soduencer
{0,0,...,0}

LUT2

Address counter
05

Figure 5. Sum of residues block diagram using two parallel pipe-lined (SOR_2M) design.

Table 4, shows implementation results on ARTIX 7, VIRTEX 7, KINTEX 7, VIRTEX UltraScale+™,
and KINTEX UltraScale+ FPGA series. VIVADO 2017.4 is used for VHDL codes synthesis. On a Xilinx

Cryptography 2019, 3, 14 12 0of 16

VIRTEX 7 platform, as shown in Table 3, a 66-bit modular multiplication was achieved in 11.525 ns
and a 66-bit RNS addition was performed in 3.93 ns. Considering the maximum net delays, clock
frequency 125 MHz is achievable. The fastest design is realised using KINTEX UltraScale+ that clock
frequency 187.13 MHz is reachable. Figure 6 summarises the latency and throughput of SOR_IM_N,
SOR_1IM_P, and SOR_2M on different Xilinx FPGA series for ease of comparison.

Table 4. Sum of residues reduction algorithm Implementation on Xilinx FPGAs.

Architecture Platform Clk Frequency Latency Area Throughput
FPGA (MHz) (ns) (KLUTs),(FFs),(DSPs) (Mbps)

SOR_IM_N ARTIX 7 92.5 335 (8.17),(3758),(140) 1671
SOR_IM_N VIRTEX 7 128.8 241 (8.17),(3758),(140) 2323
SOR_IM_N KINTEX 7 117.67 263 (8.29),(3758),(140) 2129
SOR_IM_N VIRTEX US+1! 192 157 (8.14),(3758),(140) 3567
SOR_IM_N KINTEX US+ 198 156.5 (8.29),(3758),(140) 3578
SOR_IM_P ARTIX 7 92.5 259.5 (8.73),(4279),(140) 2158
SOR_IM_P VIRTEX 7 138.8 173 (8.73),(4279),(140) 3237
SOR_1IM_P KINTEX 7 117.6 204 (8.89),(4279),(140) 2745
SOR_IM_P VIRTEX US+ 185.18 130 (8.71),(4279),(140) 4307
SOR_IM_P KINTEX US+ 187.13 128.3 (8.89),(4279),(140) 4364
SOR_2M ARTIX 7 92.5 194.6 (10.11),(4797),(280) 2877
SOR_2M VIRTEX 7 128.5 140 (10.11),(4797),(280) 3998
SOR_2M KINTEX 7 121.9 147.6 (10.27),(4797),(280) 3794
SOR_2M VIRTEX US+ 185.18 97.3 (10.11),(4797),(280) 5761
SOR_2M KINTEX US+ 187.13 96.3 (10.26),(4797),(280) 5821

1US+: Ultra Scale+ ™.

350 ‘
ARTIX 7 ARTIX 7
300 |- —=— KINTEX7 || 6,000 | |-~ KINTEX 7 i
—— VIRTEX 7 "8: —— VIRTEX 7
—~ 250 VIRTEX US+ | | § 5,000 | VIRTEX US+ |
£ —+— KINTEX US+ =3 —«— KINTEX US+
B 2. 4,000 |- .
E 200 + o 2_‘
5 %D
3 150 - N g 3,000 |- B
[_1
100 | | 2,000 |- |
50— w L ,000 L !
QOR_lM_N SOR_IM_P SOR_2M SOR_IM_N SOR_IM_P SOR_2M
Architecture

Architecture

Figure 6. SOR architectures Latency and Throughput on Xilinx FPGAs.

4.1. Comparison

In Table 5, we have outlined implementation results of recent similar works in the context of
RNS. The design in [20] and [27] are based on the SOR algorithm in [19]. Both of them use forty 14-bit
co-prime moduli as RNS base to provide a 560-bit dynamic range. Barrett reduction method [25] is
used for moduli multiplication at each channel. The Barrett reduction algorithm costs 2 multiplications
and one subtraction which is not an optimised method for high-speed designs. The design in [20]
is a combinational logic and performs an RNS modular reduction in one clock cycles. The area of
this design is reported in [27] which is equivalent to (34.34 KLUTs, 2016 DSPs) for non pipe-lined
and (36.5 KLUTs, 2016 DSPs) for pipe-lined architectures. The MM_SPA design in [27], is a more

Cryptography 2019, 3, 14 13 of 16

reasonable design in terms of the logic size (11.43 KLUT, 512 DSPs). However, in contrast to our
SOR_2M design on VIRTEX-7, it consumes more hardware resources and in terms of speed, it is
considerably slower. These designs, are based on SOR algorithm in [19] that is not performing a
complete reduction. As discussed in Section 3.1, their outputs can exceed the RNS dynamic range and
give out completely incorrect results.

A survey on RNS Montgomery reduction algorithm and the improvements in this context is
presented in [18]. The application of quadratic residues in RNS modular reduction is then presented
and two algorithms sQ-RNS and dQ-RNS are proposed. The authors used eight 65-bit moduli base
for their RNS hardware which is similar to our design. The achieved clock frequencies for these two
designs are 139.5 MHz and 142.7 MHz, respectively. The input considered for the algorithms is the
RNS presentation of “K? - x”; where “x” is equivalent to Z in our notations in Equation (2) and “K?”
is a constant. To do a fair comparison, it is required to consider two initial RNS multiplications to
get the input ready for the algorithms sQ-RNS and dQ-RNS. This adds two stages of full range RNS
multiplication to the design.

Table 5. Comparison of our design with recent similar works.

Design Platform Clk Frequency Latency Area Throughput
(MHz) (ns) (KLUT),(DSP) (Mbps)

MM_PA_P [20] VIRTEX 6 71.40 14.20 (36.5),(2016) * 14798
MM_PA_N [20] VIRTEX 6 21.16 47.25 (34.34),(2016) 1 5120
MM_PA_P [27] VIRTEX 7 62.11 48.3 (29.17),(2799) 15900
MM_SPA [27] VIRTEX 7 54.34 239.2 (11.43),(512) 1391
(Ours) SOR_IM_P VIRTEX 7 138.8 173 (8.73),(140) 3237
(Ours) SOR_2M VIRTEX 7 128.5 140 (10.11),(280) 3998
sQ-RNS 2 KINTEX US+ 139.5 107.53(150.53) (4.247),(84) 48352
dQ-RNS [18] KINTEX US+ 142.7 126.14(168.18) 2 (4.076),(84) 41222
(Ours) SOR_IM_P KINTEX US+ 187.13 128.3 (8.89),(140) 4364
(Ours) SOR_2M KINTEX US+ 187.13 96.3 (10.26),(280) 5821

1 Area reported in [27]; 2 Our estimation.

As illustrated on Figure 13 of [18] it takes 3 clock cycles to perform one multiplication and
reduction. So, at the maximum working clock frequency, 42 ns will be added to the latency of the
proposed RNS modular reduction circuit. As a result, the equivalent latency for an RNS reduction
for sQ-RNs and dQ-RNS reduction hardware is 150.53 ns and 168.18 ns, respectively. Consider that
the output of these algorithms is a factor of “(x - M _1>p”, not the precise value of “(x),”. The RNS
Montgomery reduction algorithms use half of moduli set. This makes the hardware area efficient, but
it still full moduli range multiplication are required for computations. On the same FPGA platform
used in [18], i.e., KINTEX Ultra Scale+ ™, we achieved the latency of 128.3 ns and 96.3 ns with our
SOR_IM_P and SOR_2M designs, respectively. The latency of SOR_2M showed 36% improvement
compare to sQ-RNS and 41.1% improvement in contrast to MM_SPA on similar FPGA platforms.
Similarly, there is 14.9% and 27.6% improvement of SOR_IM_P latency in compare to sQ-RNS and
MM_SPA designs, respectively. The latency of our SOR_M_N, however, is very close to sQ-RNS and
MM_SPA designs.

Cryptography 2019, 3, 14 14 of 16

5. Conclusions

We introduced a coefficient ¥ to make a correction on the SOR algorithm to compute the precise
value of modular reduction directly in Residue Number Systems for application in cryptography.
We also proposed three hardware architectures for the new SOR algorithm and implemented them on
different FPGA platforms. Comparing our implementation results to recent similar works showed
an improvement achieved in terms of the speed. The sum of residues algorithm is naturally modular
and can use parallel multipliers to speed up calculations. It fits for applications where high-speed
modular calculations are in demand. This algorithm uses more hardware resources in compare to
RNS Montgomery reduction method. Variants of the SOR algorithm can be studied in future works to
achieve an area efficient hardware.

Funding: This research received no external funding

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Data flow diagram per clock cycle for the SOR architectures listed in Section 4 are illustrated in
Figures A1-A3.

CLK CYCLES 2 [2] 1 JaJa] ¢ Ja]a] 2 JafJa] 2 JaJa] a2 JaJa] v [aJa] 1 JaJa] 1 1 [1
RNS Mult. z |6 |1 L2 [E] L4 Ls L6 17 18 KP
ACCUMULATOR A=ALL A=A+L2] A=A+L3 A=A:L4 A=A:L5 A=A+L6) A=AHLT A=A+LB[A=AAL| |A=A+KP
MULTIPLIER [k ke | k3 K4 ks | ke K7 k8 |

ACCUMULATOR KoKKL | KKeK2 | K=KoK3 | KoKeKd | K=KeK5 | KKeK6 | K=KeK7 | K=K+K8

ADDER

ROM AL

Figure A1. Data flow of SOR non pipelined with one RNS multiplier architecture SOR_IM_N.

CLK CYCLES 2 [2] 2 2 2 2 2 2 2 2 1 2 1
RNS Mult. z [6]1n 12 13 14 [16 17 18 kP
ACCUMULATOR A=A+L] | A=A+L2 | A=A1L3 | A=A+L4 [A=A+L5 | A=A+L6 | A=A:L7 | A=A+L8 | A=A+AL | A=A:kP
MULTIPLIER [k] k2 k3 K4 K K6 K7 k8

ACCUMULATOR K=K+K1 | K=K+K2 [K=k+k3 | K=K+K4 | K=K+K5| K=k+K6 | K=K+K7 | K=K+K8

ADDER

ROM AL

Figure A2. Data flow of SOR with one pipelined RNS multiplier architecture SOR_1M_P.

CLK CYCLES 2 2 2 2 2 2 2 | 2] 2

RNS Mult. z 6 L1 [LS 7

RNS Mult. L2 L4 L6 [E kp

ACCUMULATOR A=A+L1+12|A=A+13+L4[A=A+L5+L6 [A=A+LT+L8 A=A+ALKP
MULTIPLIER K1 k3 Ks K7

MULTIPLIER k2 K4 K6 k8

ACCUMULATOR K=K+K1+K2|K=K+K3+K4| K=K+K5+K6 [K=K+KT7+K8

ADDER [a]

ROM [AL

Figure A3. Data flow of SOR with two RNS multiplier architecture SOR_2M.

Cryptography 2019, 3, 14

Table Al. The notations applied in this paper.

150f 16

Notation Description
P Field modulus. In this work considered as a 256-bit prime pg = 220 — 232 — 977 or 255-bit prime pg = 22 — 19.
m; RNS channel modulus. m; = 2" —2f —1,t; € {0,2,3,4,5,6,8,9}.
n Bit-length of modulus m;. (n = max[logom;|,i € {1,...,N}).
n' Is the maximum bit number of %'}{J ,ie{l---N}.
B set of RNS Moduli: B = {my,my,...,my}.
N Number of moduli in B (size of B).
B Is a 2n-bit integer, product of two RNS channels.
By Is the n most significant bits of B, i.e.,, By = zﬂn .
Br Is the n least significant bits of B, i.e., B = B mod 2".
Bym, Is the #; most significant bits of 2!/ By, i.e., Bun, = {%J .
Bur. Is the n least significant bits of 2/ By, i.e., By, = 2/iBy mod 2".
A denotes accumulator in Algorithm 1 and Figures A1-A3.
XY Integers that meet the condition0 < X - Y < M.
Z An integer considered as product of X and Y.
X; The residue of integer X in channel m; i.e., x; = X mod m;.
(Z)p Mod operation Z mod p.
RNS(X) The RNS function. Returns the RNS representation of integer X.
{x1,%2,...,xy} RNS representation of integer X.
X1
X2
. RNS representation of integer X.
Xn
(by—1by—1...by) Binary representation of an n-bit integer B. (b; € {0,1}).
|| Bit concatenation operation.
[u] The function ceil (u).
[ut] The function floor(u).
w Bit-length of modulus p, i.e., W = [logap].
M The dynamic range of RNS moduli. M = II\"][m;.
M; Is defined as M; = % -
M Is the effective dynamic range. M = M(1 — A).
A Correction factor used to calculate «. In our design A = 2%
Gi Is:y; = (zi- M; 1), i€{1,...,8}.
Li Is: {(Gi - <Mi>1”>ml"“' (Gi - <Mi>P>mN} .
Ki Is: {2%7,4 b"v@#J J :
K Is the x accumulator.
AL Is: {(zx-<7M>p)ml,...,<ot-<7M)p>mN}.
KP 15: (k- (=p1)s- e (—pa)}-
References

1. Svobod, A.; Valach, M. Circuit operators. Inf. Process. Mach. 1957, 3, 247-297.

2. Garner, HL. The Residue Number System. In Proceeding of the Western Joint Computer Conference,
Francisco, CA, USA, 3-5 March 1959.

3. Mohan, PV.A. Residue Number Systems: Theory and Applications; Springer: New York, NY, USA, 2016.

4. Rivest, R; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public key cryptosystems.
Comm. ACM 1978, 21, 120-126. [CrossRef]
5. Bajard, J.C.; Imbert, L. A full RNS implementation of RSA. IEEE Trans. Comput. 2004, 53, 769-774. [CrossRef]

http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1109/TC.2004.2

Cryptography 2019, 3, 14 16 of 16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Fadulilahi, L.R; Bankas, E.K.; Ansuura,].B.A.K. Efficient Algorithm for RNS Implementation of RSA. Int. |.
Comput. Appl. 2015, 127, 0975-8887. [CrossRef]

Posch, K.C.; Posch, R. Modulo reduction in residue number systems. IEEE Trans. Parallel Distrib. Syst. 1995,
6, 449-454. [CrossRef]

Montgomery, P. Modular Multiplication Without Trial Division. Math. Comput. 1985, 44, 519-521. [CrossRef]
Bajard, J.C.; Didier, L.S.; Kornerup, P. An RNS Montgomery modular multiplication algorithm. IEEE Trans.
Comput. 1998, 47, 766-776. [CrossRef]

Shenoy, P.P.; Kumaresan, R. Fast base extension using a redundant modulus in RNS. IEEE Trans. Comput.
1989, 38, 292-297. [CrossRef]

Bajard, J.C.; Didier, L.S.; Kornerup, P. Modular Multiplication and Base Extensions in Residue Number
Systems. In Proceedings of the 15th IEEE Symposium on Computer Arithmetic, Vail, CO, USA, 11-13 June
2001.

Kawamura, S.; Koike, M.; Sano, F.; Shimbo, A. Cox-Rower Architecture for Fast Parallel Montgomery
Multiplication. In Proceedings of the International Conference on the Theory and Applications of
Cryptographic Techniques, Bruges, Belgium, 14-18 May 2000.

Bajard, J.C.; Merkiche, N. Double Level Montgomery Cox-Rower Architecture, New Bounds. In Proceedings
of the 13th Smart Card Research and Advanced Application Conference, Paris, France, 5-7 November 2014.
Bajard, J.C.; Eynard, J.; Merkiche, N. Montgomery reduction within the context of residue number system
arithmetic. J. Cryptogr. Eng. 2018, 8, 189-200. [CrossRef]

Esmaeildoust, M.; Schinianakis, D.; Javashi, H.; Stouraitis T.; Navi, K. Efficient RNS implementation of
elliptic curve point multiplication over GF(p). IEEE Trans. Very Larg. Scale Integr. Syst. 2012, 21, 1545-1549.
[CrossRef]

Guillermin, N. A High Speed Coprocessor for Elliptic Curve Scalar Multiplications over Fp. In Proceedings
of the International Workshop on Cryptographic Hardware and Embedded Systems, Santa Barbara, CA,
USA, 17-20 August 2010.

Schinianakis, D.; Stouraitis, T. A RNS Montgomery Multiplication Architecture. In Proceedings of the IEEE
International Symposium of Circuits and Systems (ISCAS), Rio de Janeiro, Brazil, 15-18 May 2011.
Kawamura, S.; Komano, Y.; Shimizu, H.; Yonemura, T. RNS Montgomery reduction algorithms using
quadratic residutory. J. Cryptogr. Eng. 2018, 1, 1-19.

Phillips, B.; Kong, Y.; Lim, Z. Highly parallel modular multiplication in the residue number system using
sum of residues reduction. Appl. Algebra Eng. Commun. Comput. 2010, 21, 249-255. [CrossRef]

Asif, S.; Kong, Y. Highly Parallel Modular Multiplier for Elliptic Curve Cryptography in Residue Number
System. Circuits Syst. Signal Process. 2017, 36, 1027-1051. [CrossRef]

Standards for Efficient Cryptography SEC2: Recommended Elliptic Curve Domain Parameters. Version 2.0
CERTICOM Corp. 27 January 2010. Available online: https://www.secg.org/sec2-v2.pdf (accessed on 1
May 2019).

Ed25519: High-Speed High-Security Signatures. Available online: https://ed25519.cr.yp.to/ (accessed on 1
May 2019).

Bajard, J.C.; Kaihara, M.E.; Plantard, T. Selected RNS bases for modular multiplication. In Proceedings of the
19th IEEE Symposium on Computer Arithmetic, Portland, OR, USA, 8-10 June 2009.

Molahosseini, A.S.; de Sousa, L.S.; Chang, C.H. Embedded Systems Design with Special Arithmetic and Number
Systems; Springer: New York, NY, USA, 2017.

Barrett, P. Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard
Digital Signal Processor. In Proceedings of the Conference on the Theory and Application of Cryptographic
Techniques, Linkoping, Sweden, 20-22 May 1986.

Asif, S.; Hossain, M.S.; Kong, Y.; Abdul, W. A Fully RNS based ECC Processor. Integration 2018, 61, 138-149.
[CrossRef]

Asif, S. High-Speed Low-Power Modular Arithmetic for Elliptic Curve Cryptosystems Based on the Residue
Number System. Ph.D. Thesis, Macquarie University, Sydney, Australia, 2016.

® © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.5120/ijca2015906381
http://dx.doi.org/10.1109/71.382314
http://dx.doi.org/10.1090/S0025-5718-1985-0777282-X
http://dx.doi.org/10.1109/12.709376
http://dx.doi.org/10.1109/12.16508
http://dx.doi.org/10.1007/s13389-017-0154-9
http://dx.doi.org/10.1109/TVLSI.2012.2210916
http://dx.doi.org/10.1007/s00200-010-0124-2
http://dx.doi.org/10.1007/s00034-016-0336-1
https://www.secg.org/sec2-v2.pdf
https://ed25519.cr.yp.to/
http://dx.doi.org/10.1016/j.vlsi.2017.11.010
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Efficient RNS Modular Reduction
	Calculation of

	Improved Sum of Residues (SOR) Algorithm
	Calculation of

	New SOR Algorithm Implementation and Performance
	Comparison

	Conclusions
	
	References

