
cryptography

Article

New Family of Stream Ciphers as Physically
Clone-Resistant VLSI-Structures

Ayoub Mars * and Wael Adi

Institute of Computer and Network Engineering, Technical University of Braunschweig, Hans-Sommer Str. 66,
D-38106 Braunschweig, Germany; w.adi@tu-bs.de
* Correspondence: a.mars@tu-bs.de

Received: 22 January 2019; Accepted: 30 March 2019; Published: 6 April 2019
����������
�������

Abstract: A concept for creating a large class of lightweight stream ciphers as Key Stream Generators
KSGs is presented. The resulting class-size exceeds 2323 possible different KSGs. If one unknown cipher
from the KSG-class is randomly picked-up and stored irreversibly within a VLSI device, the device
becomes physically hard-to-clone. The selected cipher is only usable by the device itself, therefore
cloning it requires an invasive attack on that particular device. Being an unknown selection out of
2323 possible KSGs, the resulting cipher is seen as a Secret Unknown Cipher (SUC). The SUC concept
was presented a decade ago as a digital alternative to the inconsistent traditional analog Physically
Unclonable Functions (PUFs). This work presents one possible practical self-creation technique
for such PUFs as hard-to-clone unknown KSGs usable to re-identify VLSI devices. The proposed
sample cipher-structure is based on non-linear merging of randomly selected 16 Nonlinear Feedback
Shift Registers (NLFSRs). The created KSGs exhibit linear complexities exceeding 281 and a period
exceeding 2161. The worst-case device cloning time complexity approaches 2162. A simple lightweight
identification protocol for physically identifying such SUC structures in FPGA-devices is presented.
The required self-reconfiguring FPGAs for embedding such SUCs are not yet available, however,
expected to emerge in the near future. The security analysis and hardware complexities of the
resulting clone-resistant structures are evaluated and shown to offer scalable security levels to cope
even with the post-quantum cryptography.

Keywords: Stream Cipher; keystream generator; NLFSR; linear complexity; Secret Unknown Cipher;
Physical Unclonable Functions; Self-reconfiguring SoC FPGAs; authentication

1. Introduction

Physical Unclonable Functions (PUFs) [1,2] were increasingly proposed as central building blocks
in cryptographic protocols and security architectures. Their main usage is in secure physical device
identification/authentication [3,4], memoryless key storage [5] and intellectual property protection [6].
Most traditional PUFs as analog systems, exhibit noisy and inconsistent long-term response limiting
their entropy and usability. To remedy such drawbacks, fuzzy extractors [7,8] were proposed to filter
out noise and attain consistent long-term response. Fuzzy extractors as error correcting mechanisms
require helper redundant data and complex decoding algorithms. Such error correction mechanisms
are expensive and require large gate count [7,8]. SRAM based intrinsic PUFs are the most used in
practical VLSI applications and were recently exposed to efficient attacks to reveal the intrinsic state
of memory [9]. Promising modeling attacks were also proposed to clone strong PUFs [10]. In [11],
side channel attack was used to analyze PUFs architecture and fuzzy extractor implementations by
deploying power analysis. Recent trends combine both side channel and modeling attacks [12] to
facilitate machine learning in modeling attacks.

Cryptography 2019, 3, 11; doi:10.3390/cryptography3020011 www.mdpi.com/journal/cryptography

http://www.mdpi.com/journal/cryptography
http://www.mdpi.com
https://orcid.org/0000-0002-7478-1255
http://dx.doi.org/10.3390/cryptography3020011
http://www.mdpi.com/journal/cryptography
https://www.mdpi.com/2410-387X/3/2/11?type=check_update&version=2

Cryptography 2019, 3, 11 2 of 22

Traditional PUFs with perfect consistency are equivalent to unknown digital hash functions.
Clone-resistant units based on pseudo-random functions were proposed to overcome PUFs drawbacks,
mainly their inconsistency and the vulnerability of some PUFs to modelling attacks. They were coined
as Secret Unknown Cipher (SUC) [13]. SUC is defined as a randomly, internally and irreversibly
self-created cipher inside a non-volatile self-reconfiguring FPGA device fabric where the user has no
access or influence on its creation process. Even the VLSI manufacturer should not be able to back-trace
the creation process to disclose the created cipher. Creating such SUCs is a very challenging task,
it requires designing huge families of secure ciphers with hard to predict random components. In [14],
a SUC creation process based on random block ciphers was proposed, it is deploying random optimal
S-Boxes as source of randomness of the SUC design in addition to the secret key. In [15], a Random
Stream Cipher (RSC) based on single cycle T-Functions (Triangular Functions) class has been proposed
to construct a low-cost class of SUCs. The proposed RSC-SUC makes use of the DSP blocks embedded
in modern SoC FPGAs to implement single cycle T-Functions as keystream generators.

All proposed designs in [14,15] are possible variations to create SUCs using low hardware resources
as LUTs or Math-blocks. In this paper, we propose a new alternative SUC design template based on
combining well-selected NLFSRs having low complexity feedback functions. Locating the NLFSRs
within the FPGA fabric area is expected to be reachable as each NLFSR can be implemented in a
small free area of the FPGA and provide its single output bit to the combining function by one-bit
routing. This may allow a zero-cost SUC implementation in best-cases with a low-vulnerability to side
channel attacks.

The contributions of this work can be summarized as follows: firstly, a huge-class of low-complexity
KSGs is created. Any selected KSG/cipher, even when randomly selected, exhibits the same designed
security level. The cardinality of the cipher-class exceeds 2323 for a sample set of NLFSRs with a state
size of 223 bits. Secondly, the resulting ciphers are optimized to be embedded at low-cost in future
VLSI-devices to convert them into clone-resistant devices with long-term consistency. Finally, a simple
generic-lightweight identification/authentication protocol is shown for VLSI-devices when using such
SUC-based structures.

The remainder of this paper is organized as follows: Section 2 describes the state of the art of
digital clone-resistant units. It also discusses Kerckhoffs’s principles vs. SUC concept. Section 3
presents a detailed description of the proposed keystream generator architecture. In Section 4, the
security analysis of the proposed family of new stream ciphers is investigated. Section 5 describes
a concept for deploying this family to create SUCs and provide unique, robust and clone-resistant
physical identities within SoC units. Section 6 evaluates the hardware complexity of the proposed
SUC, and Section 7 concludes the results and provides some future perspectives.

2. Proposed Digital Clone-Resistant Physical VLSI Structure

2.1. The Concept of Secret Unknown Ciphers SUCs

To make the presentation self-contained, the concept of creating secret unknown ciphers was
reproduced with more details summarizing early publications.

Definition 1. A Secret Unknown Cipher (SUC) is a randomly and internally self-created unpredictable cipher
inside a chip, where the user has no influence on its created ciphering functions. The resulting cipher is permanent,
non-removable and tamper-proof. Even the device manufacturer should not be able to back trace the creation
process, nor predict or reveal the resulting cipher.

The best devices for embedding such ciphers are the non-volatile and self-reconfiguring System on
Chip (SoC) FPGA devices. Such technology does not exist yet, however, it is expected to emerge in the
near future as smart SoC FPGAs, such as those produced by Microsemi (Microchip) as programmable
non-volatile devices.

Cryptography 2019, 3, 11 3 of 22

Each generated SUC can be defined as an invertible Pseudo Random Function (PRF) in encryption
mode as:

SUC : {0, 1}n → {0, 1}m

X PRF
→ Y

(1)

And in decryption mode as:

SUC−1 : {0, 1}m → {0, 1}n

X PRF−1
→ Y

(2)

In the case that the SUC is designed as a block cipher, i.e. n = m. The optimum form is the
involutive SUC mappings, where SUC = SUC−1, that is:

SUC : {0, 1}n → {0, 1}n

Where SUC(SUC(X)) = X for any X ∈ {0, 1}n
(3)

Figure 1 describes the conceptual scenario for embedding a SUC in a System on Chip (SoC) FPGA
device. The device (SoC FPGA) personalization process proceeds as follows:

1. The Trusted Authority (TA) uploads a software package as a smart cipher designer called “GENIE”.
“The GENIE concept is taken from 1001-night miracles as a powerful, honest and obedient creature
which can realize any wishes after getting out of Aladdin’s lamp”.

2. The GENIE is then ordered to create a non-predictable cipher (SUC) with the help of the True
Random Number Generator (TRNG) located within the SoC to assure randomized, unpredictable
and unknown results. The GENIE stores the created SUC permanently at unknown location/s
within the FPGA fabric and makes it usable for encrypting and decrypting data.

3. The GENIE is then kicked-out (that is, deleted as a program and ordered to leave the device
forever). The end result is a usable cipher which nobody knows. Notice that the created ciphers are
basically different, even when having an unknown individual structure and unknown locations
for each individual device.

4. In this enrollment step, the TA (or any other TA’) challenges each SUCu by a set of
t-cleartext patterns {X} = (Xu,0 . . . Xu,t−1) to generate the corresponding t-ciphertext set
{Y} = (Yu,0 . . . Yu,t−1) where Yi = SUCu(Xi). Then, the TA stores the X/Y pairs on the
corresponding area in its Units Individual Records (UIR) labeled by the serial number of the
device SNu. The Xi/Yi pairs are to be used later by the TA/TA’ to identify and authenticate
devices. Notice that multiple TA’s can operate completely independently for their own individual
application by using the same SUC.

The concept is comparable to the conventional PUF, with the advantage that a SUC-based technique
is a collision-free one-to-one mapping. A SUC as a bijective cipher exhibits higher entropy compared
with a conventional PUF, which is equivalent to a collision-prone hash function. Invertibility is an
advantageous property that was deployed in [16] to build a strict chain of trust for a secured vehicular
software update protocol which is much more complex in traditional PUFs.

Notice that if the cardinality of the created cipher-class = |KSG| is huge, that is:

|KSG|→∞, then a randomly selected KSGi is deemed to be unpredictable.

And the probability of creating two equal KSGs approaches zero.

Cryptography 2019, 3, 11 4 of 22
Cryptography 2019, 4, x FOR PEER REVIEW 4 of 23

SNu

Xu,0 Yu,0

… …

Xu,i Yu,i

… …

Xu,t-1 Yu,t-1

SUCu

Created Secret Cipher
(known only to the Device)

1

2

Upload a Smart Cipher Creator

“GENIE” (Software package)

3

TRNG

TRNG

Xi

Yi

4

SoC FPGA SNu

Secured “Units Individual Records” UIRs
(to be kept secret!)

GENIE

GENIE

SN1

X1,0 Y1,0

… …

X1,i Y1,i

… …

X1,t-1 Y1,t-1

SNn

Xn,0 Yn,0

… …

Xn,i Yn,i

… …

Xn,t-1 Yn,t-1

Trusted Authority

SUCu KTA

KTA

Figure 1. The concept for creating SUCs in SoC FPGAs environment.

2.2. SUC Generic Use Protocol as Provable Physical Identity

At the end of the personalization process (4) in Figure 1, TA stores the X/Y pairs securely for
each unit as Units Individual Records (UIR).

Figure 2 shows how to make use of UIR to identify a physical unit u having label (SNu) in a two-
path protocol:

1. Path-1: TA randomly selects one of the , ,/u i u iX Y pairs and challenges unit u with ,u iY by
asking for Xu,i.

2. Path-2: Unit u deploys its 1
uSUC to decrypt ,u iY as ' 1

, ,()u i u u iX SUC Y and sends '
,u iX to TA.

The TA then checks if '
, ,u i u iX X , if true, then unit u is deemed as authentic. The used

, ,/u i u iX Y pair is marked as consumed or deleted, and should never be used again.

Trusted Authority

SUCu

SUCu
-1Yu,i X’u,i

Accept

X u,i = X’u,i

?

Notice: !! never use the pair Xu,i,Yu,i again !!

Physical Unit u: SNu

Xu,i

KTA

Yu,i

One-time
ticket

1

2

yes

no

Reject

KTAKTA

SNu

Xu,0 Yu,0

… …

Xu,i Yu,i

… …

Xu,t-1 Yu,t-1

Secured “Units Individual Records” UIRs
(to be kept secret!)

SN1

X1,0 Y1,0

… …

X1,i Y1,i

… …

X1,t-1 Y1,t-1

SNn

Xn,0 Yn,0

… …

Xn,i Yn,i

… …

Xn,t-1 Yn,t-1

Figure 2. A generic simple authentication protocol for a Secret Unknown Cipher SUC.

The SUC invertibility property as a cipher proved to be very efficient in generic identification
and authentication protocols as in [13] allowing novel applications such as e-coin systems [17].
Particularly, in [13], two generic identification/authentication protocols were presented, exhibiting a
very efficient X/Y pairs management which eliminates the need to store a large number of pairs. The
device requires a very small memory of only t-bit to detect and manage t-consumed X/Y pairs. Further

Figure 1. The concept for creating SUCs in SoC FPGAs environment.

2.2. SUC Generic Use Protocol as Provable Physical Identity

At the end of the personalization process (4) in Figure 1, TA stores the X/Y pairs securely for each
unit as Units Individual Records (UIR).

Figure 2 shows how to make use of UIR to identify a physical unit u having label (SNu) in a
two-path protocol:

1. Path-1: TA randomly selects one of the Xu,i/Yu,i pairs and challenges unit u with Yu,i by asking
for Xu,i.

2. Path-2: Unit u deploys its SUC−1
u to decrypt Yu,i as X′u,i = SUC−1

u (Yu,i) and sends X′u,i to TA. The
TA then checks if Xu,i = X′u,i, if true, then unit u is deemed as authentic. The used Xu,i/Yu,i pair is
marked as consumed or deleted, and should never be used again.

Cryptography 2019, 4, x FOR PEER REVIEW 4 of 23

SNu

Xu,0 Yu,0

… …

Xu,i Yu,i

… …

Xu,t-1 Yu,t-1

SUCu

Created Secret Cipher
(known only to the Device)

1

2

Upload a Smart Cipher Creator

“GENIE” (Software package)

3

TRNG

TRNG

Xi

Yi

4

SoC FPGA SNu

Secured “Units Individual Records” UIRs
(to be kept secret!)

GENIE

GENIE

SN1

X1,0 Y1,0

… …

X1,i Y1,i

… …

X1,t-1 Y1,t-1

SNn

Xn,0 Yn,0

… …

Xn,i Yn,i

… …

Xn,t-1 Yn,t-1

Trusted Authority

SUCu KTA

KTA

Figure 1. The concept for creating SUCs in SoC FPGAs environment.

2.2. SUC Generic Use Protocol as Provable Physical Identity

At the end of the personalization process (4) in Figure 1, TA stores the X/Y pairs securely for
each unit as Units Individual Records (UIR).

Figure 2 shows how to make use of UIR to identify a physical unit u having label (SNu) in a two-
path protocol:

1. Path-1: TA randomly selects one of the , ,/u i u iX Y pairs and challenges unit u with ,u iY by
asking for Xu,i.

2. Path-2: Unit u deploys its 1
uSUC to decrypt ,u iY as ' 1

, ,()u i u u iX SUC Y and sends '
,u iX to TA.

The TA then checks if '
, ,u i u iX X , if true, then unit u is deemed as authentic. The used

, ,/u i u iX Y pair is marked as consumed or deleted, and should never be used again.

Trusted Authority

SUCu

SUCu
-1Yu,i X’u,i

Accept

X u,i = X’u,i

?

Notice: !! never use the pair Xu,i,Yu,i again !!

Physical Unit u: SNu

Xu,i

KTA

Yu,i

One-time
ticket

1

2

yes

no

Reject

KTAKTA

SNu

Xu,0 Yu,0

… …

Xu,i Yu,i

… …

Xu,t-1 Yu,t-1

Secured “Units Individual Records” UIRs
(to be kept secret!)

SN1

X1,0 Y1,0

… …

X1,i Y1,i

… …

X1,t-1 Y1,t-1

SNn

Xn,0 Yn,0

… …

Xn,i Yn,i

… …

Xn,t-1 Yn,t-1

Figure 2. A generic simple authentication protocol for a Secret Unknown Cipher SUC.

The SUC invertibility property as a cipher proved to be very efficient in generic identification
and authentication protocols as in [13] allowing novel applications such as e-coin systems [17].
Particularly, in [13], two generic identification/authentication protocols were presented, exhibiting a
very efficient X/Y pairs management which eliminates the need to store a large number of pairs. The
device requires a very small memory of only t-bit to detect and manage t-consumed X/Y pairs. Further

Figure 2. A generic simple authentication protocol for a Secret Unknown Cipher SUC.

The SUC invertibility property as a cipher proved to be very efficient in generic identification and
authentication protocols as in [13] allowing novel applications such as e-coin systems [17]. Particularly,
in [13], two generic identification/authentication protocols were presented, exhibiting a very efficient
X/Y pairs management which eliminates the need to store a large number of pairs. The device requires
a very small memory of only t-bit to detect and manage t-consumed X/Y pairs. Further refinements

Cryptography 2019, 3, 11 5 of 22

were shown to avoid the need of deleting the used pairs during communication with a unit as in [13].
All such efficient management strategies are not possible in the conventional PUFs environment, which
does not make them attractive for a large class of applications.

2.3. Kerckhoffs’s Principle (Shannon’s Maxim) and the SUC Concept

In [18], Kerckhoffs stated that the cipher should be secure, even if everything is known about the
cipher, except the user’s key. This should apply to any cryptosystem.

The SUC concept is assuming that the VLSI technology would offer the possibility of creating
unknown secrets and even unknown ciphers. Therefore, we claim that:

“The only perfect secret is the one which nobody knows”

The resulting system is actually quite new. Cryptographers never had practical means to create
unknown operational ciphers before. However, PUFs as mappings equivalent to hard-wired unknown
hash functions, were usable as unclonable physical entities. VLSI technology is offering new horizons
by allowing self-creation of hardwired one-way functions. These functions may become technologically
physical one-way functions, in such a way that an invasive attack on a VLSI structure to reach the
secret, would lead to destructing the secret itself. The 3-D VLSI architectures may soon offer such
capabilities when flash technology is integrated in 3-D VLSI structures. The fact that a SUC and its key
are only reachable by invasive attacks, is a frustrating fact facing attackers.

SUC concept do not contradicts with Kerckhoffs’s principles. Let us consider the two cases; the
case of published GENIE and the case of unpublished GENIE:

1. The Case of Published GENIE: In worst case, the GENIE is assumed to be published. That is,
the whole cipher design rules are known to the opponent. If the cipher class size = |SUC| is huge,
that is:

|SUC| = N and N is huge, that is N→∞

as the cipher is selected randomly, and each cipher is selected randomly equally. If the SUC has a
key size equal to k, then the total SUC cloning entropy CE is:

CE = Log2 N + k

As both the cipher and its key are unknown. Also, it is assumed that if the cipher designer is
using state-of-the-art crypto knowledge, then the minimum value is CEmin = k, in the case that
the attacker finds the cipher due to the design weakness of the GENIE. Assuming that the GENIE
designer is a good up to date cryptographer, then the cloning entropy approaches:

CEmax = Log2 N + k

2. The Case of Unpublished GENIE: To let SUC concept works, TA is not actually required to
publish the GENIE. In that case, the minimum CE is:

CEmin = Log2 N0 + k

where N0 is some unknown upper bound of the cipher class cardinality under consideration. The
security analysis of the proposed family of KSG/stream ciphers is investigated by considering
that the cipher design is publicly known. i.e. the NLFSRs’s feedback functions are known.

Cryptanalyzing SUCs in real fields would require two steps:

1. Revealing the secret cipher components: An adversary is forced to reveal the randomly selected
functions that are used in constructing the SUC.

Cryptography 2019, 3, 11 6 of 22

2. Breaking the resulting stream cipher: After revealing the SUC’s secret parameters, this SUC could
be considered as a publicly known cipher, and an adversary should apply known cryptanalytical
attack to break this SUC.

Since each SUC is assumed to be generated randomly, attacking each SUC requires to repeat the
same attack procedure with the same attack complexity. This is a major advantage over attacking
any published stream cipher with just a randomly generated secret key. For the latest case, the
attack complexity is based only on breaking the publicly known stream cipher. Another SUC security
advantage, is that unknown cipher structures and parameters as number of stages and configurations
may be distributed at unknown locations making SUCs highly resistant to side channel attacks.

2.4. State of the Art in Designing SUC Creating GENIEs

The most challenging and difficult task in creating SUCs to convert devices into clone-resistant
units, is the design of a low-cost and fast GENIE. The GENIE should be capable to create a high-quality
cipher with acceptable complexity within a short processing time. The main objective of this work is to
design such a GENIE with good performance profile for the targeted unknown cipher-classes.

In [14], a template based SUC GENIE-realization is presented, where a block cipher with random
components is designed as pre-casted SUC template. Optimal 4-bit S-Boxes are used as a source of
randomness. The GENIE selects few S-Boxes from the sets of all optimal 4-bit S-Boxes. Each resulting
SUC from this class has the same security level. Furthermore, in [15], Mars et al. proposed the first
attempt towards a digital clone-resistant function prototype based on Random Stream Cipher (RSC)
deploying a class of T-Functions (Triangular Functions) as key stream generators. SUC designs ensure
that it is secure against known mathematical cryptanalysis as in [14,15]. Each randomly created SUC
should exhibit the same security level. Since each device embeds a unique SUC, an adversary needs
to break each unit individually. That is, the same attack complexity is required for each unit. Hence,
break-one-break-all do not work against SUCs. Moreover, SUC can be implemented with zero cost if
unconsumed FPGA resources are deployed for that purpose. Most industrial applications do not make
full usage of the whole FPGA resources. Therefore, one of the main targets of the designed GENIEs is
to make use of unconsumed resources and hence create SUCs possibly at zero-cost.

3. Designing a GENIE for Creating Unknown Keystream Generators

A short review on the state of the art in designing stream ciphers is given, in order to introduce
the adopted GENIE design-strategy for creating the target system of this work.

3.1. Selected State of the Art on Key Stream Generators

In 2005, the European project ECRYPT launched a competition to design new stream ciphers that
might be suitable for widespread adoption. This project is called eSTREAM (ECRYPT Stream Cipher
Project) [19] and it received 35 submissions. When it came to its end in 2008, four of the proposals in
the final portfolio were suited to fast software encryption: HC-128, Rabbit, Salsa20/12 and Sosemanuk,
while other four stream ciphers offered particularly efficient hardware implementation: Grain v1,
MICKEY 2.0, Trivium and F-FCSR-H which were excluded later because of recent cryptanalytic results.
A number of NLFSR-based stream ciphers have been proposed to the eSTREAM project, such as
Achterbahn [20]. Achterbahn was one of the challenging new designs based on combining several
NLFSRs with a nonlinear combining function, which performs nonlinear operations on sequences with
distinct minimal polynomials. In [21], the authors highlighted some problems in the design principle
of Achterbahn addressing the small length of the NLFSRs and the weakness of the combining function.
The complexity of the attack presented in [20] depends exponentially on the number of shift registers
and their size, and to the number of shift registers outputs that would cancel the nonlinear part of the
combining function if they are equal to zero. The proposed family of stream ciphers design overcomes
the previous cryptanalytical attacks.

Cryptography 2019, 3, 11 7 of 22

3.2. Creating SUCs Based on Random Keystream Generators

Figure 3 describes a methodology for creating a class of SUCs based on combining NLFSRs. In this
sample design, the SUC-design template deploys 16 NLFSRs, where their outputs are combined with a
selected combining function. Each NLFSR is providing one bit per cycle to the combining function.
This allows to distribute NLFSRs over the whole FPGA where only one connection is required to
connect one NLFSR to the combining function. This constitutes an advantage over SUC based on block
cipher designs.

Cryptography 2019, 4, x FOR PEER REVIEW 7 of 23

The GENIE runs once in the microcontroller subsystem during the personalization process. For
each selected NLFSR length, the GENIE has a set of feedback functions. Referring to Figure 3, the
personalization of a SoC FPGAt proceeds as follows:

 The GENIE triggers the TRNG and gets random numbers
 The GENIE selects randomly, for each NLFSR, a feedback function from a pre-defined set and

loads it to the corresponding area in the FPGA fabric. Also, the GENIE generates a random initial
state for each NLFSR.

 Furthermore, the combining function can also be selected randomly by fulfilling some
conditions to ensure that the GENIE is going to generate SUCs with an acceptable minimum-
security level.
This process results in a creation of random and unpredictable cipher/KSG.

N1-bit

Z

Created SUC

Combining
Function

Feedback function 1

Ni-bit

Feedback function i

N16-bit

Feedback function 16TRNG

SoC FPGAt

Microcontroller
Subsystem

FPGA fabric

Random Cipher
Creator

GENIE

Figure 3. Creating KSG core as SUC based on combining NLFSRs.

3.3. Description of the Created Random Keystream Generator

The basic components of the KSG are 16 Non-Linear Feedback Shift Registers (NLFSRs) of lengths
6 to 17 and 19, 21, 22 and 23, combined by a balanced Boolean function F with algebraic degree 4,
correlation immunity 8 and algebraic immunity 4. Each NLFSR produces binary sequences of a
maximum period of 2 1N , where N is the length of the shift register. For each NLFSR, a feedback
function is selected internally and randomly by the GENIE from a set of selected nonlinear feedback
functions (see Table A1). The outputs of the 16 NLFSRs provide the 16 inputs to the combining function
F, which outputs the running key tZ . Figure 4 describes the proposed stream cipher design template.

The 5 4-bits Look Up Tables (4-LUTs) implement the Boolean combining function F. The total
number of all NLFSRs state bits is 223 bits. This design is hardware optimized to the target FPGA
environment, where the basic logic unit is a 4-LUT. The key-loading algorithm that determines the
initial internal states of the NLFSRs having a key size K (K ≥ 80 bits) and an initial vector (IV) will not
be investigated in this paper, since it is not required for the proposed SUC usage, i.e. the key can be
the initial NLFSRs states. A key scheduling algorithm can be added to the SUC design template;
however, additional overhead should be considered.

The resulting KSG sequence period is: lcm (26 − 1, 27 − 1, …, 223 − 1) ≈ 2161 which is considered as
adequate.

Figure 3. Creating KSG core as SUC based on combining NLFSRs.

The GENIE runs once in the microcontroller subsystem during the personalization process. For
each selected NLFSR length, the GENIE has a set of feedback functions. Referring to Figure 3, the
personalization of a SoC FPGAt proceeds as follows:

• The GENIE triggers the TRNG and gets random numbers
• The GENIE selects randomly, for each NLFSR, a feedback function from a pre-defined set and

loads it to the corresponding area in the FPGA fabric. Also, the GENIE generates a random initial
state for each NLFSR.

• Furthermore, the combining function can also be selected randomly by fulfilling some conditions
to ensure that the GENIE is going to generate SUCs with an acceptable minimum-security level.

This process results in a creation of random and unpredictable cipher/KSG.

3.3. Description of the Created Random Keystream Generator

The basic components of the KSG are 16 Non-Linear Feedback Shift Registers (NLFSRs) of lengths
6 to 17 and 19, 21, 22 and 23, combined by a balanced Boolean function F with algebraic degree
4, correlation immunity 8 and algebraic immunity 4. Each NLFSR produces binary sequences of a
maximum period of 2N

− 1, where N is the length of the shift register. For each NLFSR, a feedback
function is selected internally and randomly by the GENIE from a set of selected nonlinear feedback
functions (see Table A1). The outputs of the 16 NLFSRs provide the 16 inputs to the combining function
F, which outputs the running key Zt. Figure 4 describes the proposed stream cipher design template.

Cryptography 2019, 3, 11 8 of 22
Cryptography 2019, 4, x FOR PEER REVIEW 8 of 23

NLFSR A1

NLFSR A2

NLFSR A3

NLFSR A4

NLFSR A5

NLFSR A6

NLFSR A7

NLFSR A8

NLFSR A9

NLFSR A10

NLFSR A11

NLFSR A12

NLFSR A13

NLFSR A14

NLFSR A15

NLFSR A16

LUT1

LUT2

LUT3

LUT4

LUT5 Zt

Combining Function F

Fixed part of the designRandom part of the design

1x

2x

3x

4x

5x

6x

7x

8x

9x

10x

11x

12x

13x

14x

15x

16x

Figure 4. Description of the created keystream generator.

3.3.1. Selected Sets of Non-Linear Feedback Shift Registers

The principal components of KSG are the 16 NLFSRs with lengths from 6 to 17 and 19, 21, 23
and 24. Each N-bit NLFSR has a set of feedback functions ensuring a maximum period of 2N – 1 for
each one. This section describes in details the NLFSRs design methodology.

Definition 2. A feedback Shift Register generates pure cycle-loops if and only if its feedback function has the form:

0 1 1 0 1 1(, ,...,) (,...,)N Nf x x x x g x x (4)

where g is any Boolean function that does not depend on 0x .

Definition 3. A (binary) de Bruijn sequence is a sequence of period 2N, in which each N-bit tuple occurs exactly
once in one period of the sequence [xxx].

The linear complexities of order N de Bruijn sequences are bounded by 12N N and 2 1N [22].

Definition 4. A modified de Bruijn sequence is a sequence of period 2 1N , in which each N-bit tuple occurs
exactly once in one period of the sequence.

In [23], for each NLFSR iA with -bitiN where 4 24iN , a set of feedback functions ensuring

a maximum period of 2 1iN was presented. All feedback functions have the form of Equation (4).
The search covered three types of feedback functions with algebraic degree two:

1 0 1 1 0 1 0

2 0 1 1 0 2 0

3 0 1 1 0 3 0

(, ,...,) (, , ,)
(, ,...,) (, , , ,)
(, ,...,) (, , , , ,)

N a b c d a b c d

N a b c d e a b c d e

N a b c d e h a b c d e h

f x x x x g x x x x x x x x x
f x x x x g x x x x x x x x x x x
f x x x x g x x x x x x x x x x x x x

 (5)

Figure 4. Description of the created keystream generator.

The 5 4-bits Look Up Tables (4-LUTs) implement the Boolean combining function F. The total
number of all NLFSRs state bits is 223 bits. This design is hardware optimized to the target FPGA
environment, where the basic logic unit is a 4-LUT. The key-loading algorithm that determines the
initial internal states of the NLFSRs having a key size K (K ≥ 80 bits) and an initial vector (IV) will not
be investigated in this paper, since it is not required for the proposed SUC usage, i.e. the key can be the
initial NLFSRs states. A key scheduling algorithm can be added to the SUC design template; however,
additional overhead should be considered.

The resulting KSG sequence period is: lcm (26
− 1, 27

− 1, . . . , 223
− 1) ≈ 2161 which is considered

as adequate.

3.3.1. Selected Sets of Non-Linear Feedback Shift Registers

The principal components of KSG are the 16 NLFSRs with lengths from 6 to 17 and 19, 21, 23 and
24. Each N-bit NLFSR has a set of feedback functions ensuring a maximum period of 2N

− 1 for each
one. This section describes in details the NLFSRs design methodology.

Definition 2. A feedback Shift Register generates pure cycle-loops if and only if its feedback function has the
form:

f (x0, x1, . . . , xN−1) = x0 ⊕ g(x1, . . . , xN−1) (4)

where g is any Boolean function that does not depend on x0.

Definition 3. A (binary) de Bruijn sequence is a sequence of period 2N, in which each N-bit tuple occurs exactly
once in one period of the sequence [xxx].

Cryptography 2019, 3, 11 9 of 22

The linear complexities of order N de Bruijn sequences are bounded by 2N−1 + N and 2N
− 1 [22].

Definition 4. A modified de Bruijn sequence is a sequence of period 2N
− 1, in which each N-bit tuple occurs

exactly once in one period of the sequence.

In [23], for each NLFSR Ai with Ni−bit where 4 ≤ Ni ≤ 24, a set of feedback functions ensuring
a maximum period of 2Ni − 1 was presented. All feedback functions have the form of Equation (4).
The search covered three types of feedback functions with algebraic degree two:

f1(x0, x1, . . . , xN−1) = x0 ⊕ g1(xa, xb, xc, xd) = x0 ⊕ xa ⊕ xb ⊕ xcxd
f2(x0, x1, . . . , xN−1) = x0 ⊕ g2(xa, xb, xc, xd, xe) = x0 ⊕ xa ⊕ xbxc ⊕ xdxe

f3(x0, x1, . . . , xN−1) = x0 ⊕ g3(xa, xb, xc, xd, xe, xh) = x0 ⊕ xa ⊕ xb ⊕ xc ⊕ xd ⊕ xexh

(5)

where a, b, c, d, e, h ∈ {1, 2, . . . , N − 1}.
Any set of N-bit Fibonacci NLFSRs with the period 2N

− 1 can be partitioned into 4 subsets [23]:
basic, reverse of basic, complement of basic, and reverse complement of basic. In [23], only NLFSRs
with basic form were listed. The forms of the reverse, complement and reverse complement of the
basic form (Equation (4)) are described as follows:

• Reverse form: fr(x0, x1, . . . , xN−1) = x0 ⊕ g(xN−1, . . . , x1)

• Complement form: fc(x0, x1, . . . , xN−1) = x0 ⊕ 1⊕ g(x1, . . . , xN−1)

• Reverse complement form: frc(x0, x1, . . . , xN−1) = x0 ⊕ 1⊕ g(xN−1, . . . , x1)

Thus, for each listed feedback function in [23], three feedback functions generating the reverse,
complement or reverse complement sequence can be deduced.

For NLFSRs with Ni−bit, SNi denotes the set of Boolean functions g listed in [23] (by removing
the XORed x0) together with their reverse, complement and reverse complement form. We coin those
functions as Random Feedback Functions (RFFNi). The set SNi with only the functions having basic
form (by removing the XORed x0) are listed in Table A1.

Figure 5 describes the general structure of the used NLFSRs. For each NLFSR Ai of length Ni,
the feedback function contains a Random Feedback Function (RFFNi). Its general form is defined
as follows:

f (x0, x1, . . . , xN−1) = x0 ⊕RFFNi(x1, . . . , xN−1) (6)

where: for each NLFSR Ai of length Ni, a set of random feedback functions SNi is selected such that
each of its RFF j

Ni
allows the NLFSR Ai to attain a maximum period of 2Ni − 1. where:

RFFNi ∈ SNi =
{
RFF1

Ni
, . . . , RFF j

Ni
, . . . , RFF|Ai |

Ni

}
(7)

Cryptography 2019, 4, x FOR PEER REVIEW 9 of 23

where , , , , , {1,2,..., 1}a b c d e h N .
Any set of N-bit Fibonacci NLFSRs with the period 2 1N can be partitioned into 4 subsets [23]:

basic, reverse of basic, complement of basic, and reverse complement of basic. In [23], only NLFSRs
with basic form were listed. The forms of the reverse, complement and reverse complement of the
basic form (Equation (4)) are described as follows:

 Reverse form: 0 1 1 0 1 1(, ,...,) (,...,)r N Nf x x x x g x x

 Complement form: 0 1 1 0 1 1(, ,...,) 1 (,...,)c N Nf x x x x g x x

 Reverse complement form: 0 1 1 0 1 1(, ,...,) 1 (,...,)rc N Nf x x x x g x x

Thus, for each listed feedback function in [23], three feedback functions generating the reverse,
complement or reverse complement sequence can be deduced.

For NLFSRs with -bitiN ,
iNS denotes the set of Boolean functions g listed in [23] (by removing

the XORed 0x) together with their reverse, complement and reverse complement form. We coin those

functions as Random Feedback Functions (
iNRFF). The set

iNS with only the functions having basic

form (by removing the XORed 0x) are listed in Table A1.

Figure 5 describes the general structure of the used NLFSRs. For each NLFSR iA of length iN , the

feedback function contains a Random Feedback Function (
iNRFF). Its general form is defined as follows:

0 1 1 0 1 1(, ,...,) (,...,)
iN N Nf x x x x RFF x x (6)

where: for each NLFSR iA of length iN , a set of random feedback functions
iNS is selected such that

each of its
i

j
NRFF allows the NLFSR iA to attain a maximum period of 2 1iN . where:

1{ ,..., ,..., }i

i i i i i

Aj
N N N N NRFF S RFF RFF RFF (7)

During the personalization process, one of the feedback functions is to be selected randomly
from a predefined set for each NLFSR iA .

NLFSR Ai

1

iN
RFF

2

iN
RFF

| |i
i

A
NRFF

: Set of random feedback
functions for NLFSR Ai

ix

(Ni -1)-bit

1iN 2 1 02iN 3iN

iNS

iNRFF

Ni -bit

Figure 5. General structure of the selected NLFSRs sets.

Each selected NLFSR iA in Figure 4 has a form of the general structure in Figure 5, and generates

a nonlinear sequence of period 2 1iN which is a nonlinear modified de Bruijn sequence. The linear
complexity iL of an NLFSR iA is bounded by:

12 2 1i iN N
i iN L (8)

The number of NLFSRs and their lengths are selected to satisfy the following basic security
requirements:

Figure 5. General structure of the selected NLFSRs sets.

Cryptography 2019, 3, 11 10 of 22

During the personalization process, one of the feedback functions is to be selected randomly from
a predefined set for each NLFSR Ai.

Each selected NLFSR Ai in Figure 4 has a form of the general structure in Figure 5, and generates
a nonlinear sequence of period 2Ni − 1 which is a nonlinear modified de Bruijn sequence. The linear
complexity Li of an NLFSR Ai is bounded by:

2Ni−1 + Ni ≤ Li ≤ 2Ni − 1 (8)

The number of NLFSRs and their lengths are selected to satisfy the following basic security
requirements:

• Berlekamp-Massey (B-M) Algorithm attack: In order to ensure that the attack complexity of B-M
Algorithm is over 280; in terms of time complexity. Where the attack complexity is defined as L2,
where L is the B-M linear complexity of the total key stream sequence which should exceed 240.

• Correlation immunity: If an adversary succeeds to recover the randomly selected feedback
functions, a correlation attack may be launched. As the designed correlation immunity of the
combining function is 8, the total size of the shortest 9 (8+1) NLFSRs should be larger than 80.
In that case the correlation attack complexity would become 280, which is considered as sufficiently
secure for contemporary non-post-quantum cryptography.

Following the two above constraints, optimal NLFSRs designs are always attained.
In the appendix, Table A1 shows the 16 sets SNi of the possible predefined random feedback

functions RFFNi having the basic form. The reverse, complement and reverse complement forms can be
deduced easily. In the format of the RFFNi , indexes of the variables of each product-term of a feedback
function are separated by commas. A round bracket around the indexes denotes that those indexes
belong to the same product-term. For example, 1,2,(2,4) represent the RFFNi :

RFFNi(x1, x2, x3, x4, x5) = x1 + x2 + x2x4 (9)

3.3.2. Cardinality of the Designed KSG Class

The proposed KSGs can be used to create a family of SUCs. In general, this design randomness
is based on deploying all possible feedback functions ensuring that any N-bit NLFSR generates a
sequence of period 2N

− 1.
In this design, the NLFSRs selected for the proposed structure can be made random, since for

each N-bit NLFSR there exist a number of possible feedback functions ensuring a maximum period of
2N
− 1. Hence, randomly selecting one of the feedback functions for each NLFSR Ai will ensure the

same security level of the resulting random KSG as will be shown later.
Table 1 presents the number of possible selections of the NLFSRs |Ai| for each deployed NLFSR Ai

having length Ni.

Table 1. Number of selectable NLFSRs for each Ni.

Ni 6 7 8 9 10 11 12 13 14 15 16 17 19 21 22 23

|Ai| 84 160 168 160 188 200 144 144 100 96 60 60 36 16 20 12

Theorem 1. Let Ni be the lengths of the NLFSRs of the KSG, where Ni ∈ S such as S = {6, . . . , 17, 19, 21, 22, 23}.

Let |Ai| denotes the number of usable NLFSRs Ai in the class Ai. The cardinality of all possible
creatable KSGs is then:

ς = 2

16∑
i=1

log2 |Ai |+
∑

Ni∈S
Ni

(10)

Cryptography 2019, 3, 11 11 of 22

In the sample case above,
16∑

i=1
log2|Ai| ≈ 100. As

∑
Ni∈S Ni refers to the size of the total initial states of

the deployed NLFSRs which is randomly selected. In that case, the key entropy is
∑

Ni∈S Ni = 223 bits.
This results with a total KSGs cardinality of: ς ≈ 2323.

3.3.3. Keystream Boolean Combining Function F

The Algebraic Normal Form (ANF) of the proposed Boolean combining function F is as follows:

F(x1, . . . , x16) = x1 + x2 + x3 + x4 + x6 + x7 + x8

+x9x11 + x10x11 + x10x12 + x13x15 + x14x15 + x14x16

+ x9x10x11 + x10x11x12 + x13x14x15x16

(11)

Referring to Figure 4, the function F consists of two parts:

• The linear part, which contains the monomials of degree one x1 to x8, which can be realized with
two 4-LUTs,

• The non-linear part containing monomials of degree two and three, related to the terms x9 to x16

which can also be realized with another two 4-LUTs. The outputs of all four 4-LUTs are combined
using one 4-LUT to generate the keystream Zt.

Definition 5. The Boolean combining function F can be described as follows:

F : {0, 1}16
→ {0, 1} (12)

A secure combining Boolean function should have the following properties: balanced, high
algebraic degree, high correlation immunity and high nonlinearity.

In the following, we present the analysis results of the Boolean combining function F.
a. Balancing the Construction of F
If the function F is not balanced, then the whole system would be vulnerable to cryptanalytic

attacks. A Boolean combining function is balanced if and only if the numbers of ‘1’s and
‘0’s in its truth table are equal. Since the LFSRs/NLFSRs are supposed to be randomly i.i.d.
(independently identically distributed), the resulting combining function are then balanced satisfying
the pseudo-randomness requirement.

b. Algebraic degree of F
The algebraic degree of F is the degree of ANF of the Boolean combining function. Since the ANF

of the Boolean combining function has degree 4, the algebraic degree of F is 4.
c. Correlation immunity of F
Before we introduce the correlation immunity, an introduction to Walsh Transformation is needed.

Definition 6. Let x = {x1, x2, . . . , xn} and ω = {ω1,ω2, . . . ,ωn} be n-tuples over {0,1}, and the dot product of
x and ω is defined as:

x.ω = x1.ω1 + x2.ω2 + . . .+ xn.ωn (13)

The Walsh Transformation on a n-variable Boolean function f (x) is defined as:

F(ω) =
∑

x
f (x)(−1)x.ω (14)

The Correlation immunity can be calculated based on the Walsh Transformation as follows: if for
all 1 ≤ wt(ω) ≤ t, where wt(ω) is the weight of ω, and the Walsh Transformation F(ω) = 0, then the
integer t is called the correlation immunity.

Cryptography 2019, 3, 11 12 of 22

The correlation immunity of the designed Boolean combining function F is 8.
d. Nonlinearity of F
The nonlinearity is the distance from the combining function F to the set of affine functions having

n-variables (An):
NL(F) = minh∈And(F, h) (15)

The nonlinearity of the designed combining function F is then found to be: NL(F) = 26624.
e. Algebraic immunity of F
For F : {0, 1}m → {0, 1} , define AN(F) =

{
g : {0, 1}m → {0, 1}/F.g = 0

}
, any function g ∈ AN(F) is

called the annihilator of F. The algebraic immunity of F is the minimum degree of all the nonzero
annihilators of F and of all those of F + 1. In [24], it was proved that the algebraic immunity is less
than, or equal to n/2 for any n-variable Boolean function F. The simulation showed that the algebraic
immunity of the Boolean combining function F is 4.

In summary, the designed Boolean combining function F is balanced with algebraic degree = 4,
correlation immunity = 8, nonlinearity = 26,624 and algebraic immunity = 4.

4. Security Analysis

The security analysis of the resulting stream ciphers/KSGs is evaluated considering the following
attacks: Brute force attack, correlation attack, algebraic attack and parity check attack.

4.1. Brute Force Attack

4.1.1. Exhaustive Search Attack on the NLFSRs Initial States as Secret Key Seeds

The first brute force attack is an exhaustive search of all the internal states in NLFSRs and all
possible NLFSRs selections. The Adversary should enumerate all possible states, then generate the
corresponding sequence in each possible NLFSR selection and compare it with a known portion of the
keystream. If the generated sequence and the keystream match, then the internal states of the NLFSR
are found and the cipher is broken with a relatively high probability.

The complexity of the attack is:

2

i=16∑
i=1

Ni+
∑

i∈S log2(|Ai |)
(16)

As he total length of the NLFSRs is 223 bits and the cardinality of the KSG is about 2100, the
resulting complexity is of the order of 2323. We conclude that the complexity of a brute force attack to
guess all possible internal states is beyond the possible state of the art computational power. Therefore,
the cipher is secure against such attacks.

4.1.2. Stream Ciphers Linear Complexity and Berlekamp-Massey Algorithm

In order to analyze the complexity of the B-M algorithm on the proposed cipher, it is necessary to
compute the lower bound of the total linear complexity of the output bitstream. The time complexity
of the B-M algorithm attack is the square of the total linear complexity. If the lengths N1, . . . , Nt of the
t-shift registers are pairwise relatively prime, then the linear complexity L(ζ) of the keystream z is
known to be bounded as:

L(ζ) ≥ F(L1, . . . , Lt) (17)

If the lengths of the primitive NLFSRs are not pairwise relatively prime, then the above bound
does not hold. In this case, F(L1, . . . ,Lt) provides only an upper bound for L(ζ). However, in the
following corollary cases, it is still possible to derive a reasonable lower bound for the linear complexity
of ζ.

Lemma 1. [25] Let σ1, . . . ,σt be nonzero output sequences of primitive binary NLFSRs of lengths N1, . . . ,Nt,
respectively, having the corresponding linear complexities L1, . . . ,Lt. Let F(x1, . . . ,xt) be a Boolean function of

Cryptography 2019, 3, 11 13 of 22

algebraic degree d ≥ 1. A lower bound for the linear complexity of the sequence ζ = F(σ1, . . . ,σt) is reached if the
following two conditions are fulfilled:

1. The algebraic normal form (ANF) of F(x1, . . . ,xt) contains a monomial xi1 , . . . , xid of degree d for which
the corresponding shift register lengths Ni1 , . . . , Nid are pairwise relatively prime.

2. For all monomials of degree d, which have the form xi1 . . . xi j−1xik xi j+1 . . . xid , the following holds:
gcd(Ni j , Nk) = 1.

If both conditions are true, then:

L(ζ) ≥ Li1Li2 . . . Lid (18)

The Boolean combining function F has the algebraic degree 4, its ANF contains the following
monomial with degree d = 4:x13x14x15x16.

• The monomial x13x14x15x16 satisfies condition 1 in the previous lemma: The lengths of the
corresponding shift registers contributing in a monomial having d = 4 are N13 = 19, N14 =

21, N15 = 22, N16 = 23 which are pairwise relatively prime.
• The other monomials in the ANF of the Boolean combining function are of degree less than the

degree 4 of the monomial x13x14x15x16. therefore, condition 2 holds.

We conclude that the linear complexity of the keystream ζ is:

L(ζ) ≥ L13L14L15L16 > (218 + 19)(220 + 21)(221 + 22)(222 + 23) ≈ 281 (19)

B-M algorithm requires a time complexity of 2162 and a 282 = 2L disclosed KSG bits to break a
created KSG.

4.2. Correlation Attacks

The correlation attack was firstly proposed by T. Siegenthaler in 1984 [26], then improved by
W. Meier and O. Staffelbach in 1989 as fast correlation attack [27]. The main idea of the correlation
attack is to focus on the Boolean combining function of the KSG, and find the correlation between
the combination of several LFSRs/NLFSRs and the output keystream. This requires having previous
knowledge about the used NLFSRs, i.e. an adversary should reveal the randomly selected feedback
functions before applying this attack. Since, there are more than 2100 possible combinations of feedback
functions and about 2223 initial states, trying to reveal the feedback functions is not feasible.

Considering that an adversary knows the used feedback functions, in this case, the adversary can
apply correlation attack to recover the NLFSRs initial states. Applying the classical fast-correlation
attack and assuming that the Boolean combining function has a correlation immunity n, the adversary
needs at least n + 1 shift registers at the same time. Knowing that the correlation immunity of the
Boolean combining function F is 8; results with the total length of the shortest 9 NLFSRs as:

i=14∑
i=6

i = 90 (20)

Thus, if an adversary discloses the used feedback functions of a SUC, the time complexity of
the correlation attack is at least 290. However, this attack cannot be practically realized, since for
each SUC the random feedback functions are unpredictable and are securely located inside the chip’s
hardwired structure.

Cryptography 2019, 3, 11 14 of 22

4.3. Algebraic Attacks

Algebraic attack [28] is another important attack against stream ciphers. It is targeting to find
a well-chosen multivariate polynomial G(s), such that G.F is of substantially lower degree, where
F(s) is the combining Boolean function and s is the current state. To examine the degree of the linear
polynomial equations system, an assertion for the degree of the algebraic equations from [29] will be
used. It is described in the following fact:

Fact 1. [29]. For 2N j ≤ 2N j −N j, the kth entry in the monomial spectrum of the shift registers A j, with
1 ≤ j ≤ 16, contains 2N j−1 different monomials having in general a degree of N j − 1.

According to [29], 2N j − 2 different monomials are required to express the bits of the sequence by
the initial state of each register. So, we need:

A = (2N13 − 2)(2N14 − 2)(2N15 − 2)(2N16 − 2) ≈ 281 (21)

different monomials in order to express the bits of the sequence from the highest degree term. Excluding
the complexity of the remaining different monomials, the minimum complexity for solving the system
of equations is:

O((A)ω) = O(2192.78) (22)

where ω ≈ 2.38 is the exponent of the fast matrix multiplication [29]. The complexity of solving the
system of equations is at least as in (22), this ensures that the proposed algorithm is secure against
algebraic attack.

4.4. Parity Check Attack

The parity check attack was firstly proposed in [21], which can successfully break the Achterbahn
stream cipher. It starts attacking the weakness of the Achterbahn Boolean combining function; when
two terms are equal to 0, then the whole nonlinear part would be 0, therefore the Boolean combining
function is purely linear. After the linearization of the Boolean combining function, a parity check is
applied in order to retrieve possible inner states of some certain registers. A parity check attack is very
sensitive to the number of terms in the combining function after linearization.

In the following, the security analysis of the proposed algorithm against parity check attack is
investigated. The ANF of the Boolean combining function F is known to the attacker as:

F(x1, . . . , x16) = x1 + x2 + x3 + x4 + x6 + x7 + x8

+x9x11 + x10x11 + x10x12 + x13x15 + x14x15 + x14x16

+ x9x10x11 + x10x11x12 + x13x14x15x16

(23)

It has a linear part and a nonlinear part. When we examine the common terms of the nonlinear
part, if x9 = x10 = x13 = x14 = 0, then the Boolean combining function would degenerate into a pure
linear Boolean combining function, that is:

l(x1, . . . , x16) = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 (24)

The upper bound of the linear complexity in that case is then relatively low:

L ≥
i=8∑
i=1

Li ≈ 214.9 (25)

So, an LFSR with length L can be built, and parity check can be applied on the sequence output of
the sequence from the linear Boolean combining function.

Cryptography 2019, 3, 11 15 of 22

The periods of the 8 participating NLFSRs in (24) are as follows:

T1 = 26
− 1; T2 = 27

− 1; T3 = 28
− 1; T4 = 29

− 1; T5 = 210
− 1;

T6 = 211
− 1; T7 = 212

− 1; T8 = 213
− 1;

(26)

where Ti denotes the period of NLFSR Ai.
Let:

ll(t) = l(t) ⊕ l(t + T1) (27)

Since the period of the first register is T1, this expression does not contain any term of x1.
Similarly, let:

lll(t) = ll(t) ⊕ ll(t + T2)

llll(t) = lll(t) ⊕ lll(t + T3)

lllll(t) = llll(t) ⊕ llll(t + T4)

llllll(t) = lllll(t) ⊕ lllll(t + T5)

lllllll(t) = llllll(t) ⊕ llllll(t + T6)

llllllll(t) = lllllll(t) ⊕ lllllll(t + T7)

(28)

Therefore, llllllll(t) contains only terms of x8. Thus, it satisfies:

llllllll(t) = lllllll(t) ⊕ lllllll(t + T8)

In terms of the l(i) output bits, the following should hold:

l(t) + l(t + T1) + l(t + T2) + l(t + T3) + l(t + T4) + l(t + T5) + l(t + T6) + l(t + T7)+

l(t + T8) + l(t + T1 + T2) + . . .+ l(t + T1 + T8) + l(t + T2 + T3) + . . .+ l(t + T2 + T8) + . . .
+l(t + T1 + T2 + T3) + . . .+ l(t + T1 + T2 + T8) + . . .
+ . . .
+l(t + T1 + T2 + T3 + T4 + T5 + T6 + T7 + T8) = 0

(29)
This is the basic parity check on l(t) that can be used to attack the KSG, it is the XOR between 256

bits from the sequence, within the time interval:

Tmax = T1 + T2 + T3 + T4 + T5 + T6 + T7 + T8 ≈ 215

It is the complexity required for the parity check attack, but the degeneration happens under the
condition x9 = x10 = x13 = x14 = 0 and the complexity to satisfy this condition should be considered.
Consider the x9 register first, which x9 = 0 is the condition for further parity check attack. For every
bit used in parity check, totally 256 bits, they should all satisfy the condition in Equation (29), i.e.,
x9(t) = 0 and x9(t + T1) = 0 and . . . and x9(t + T1 + T2 + T3 + T4 + T5 + T6 + T7 + T8) = 0. The
number of all the possible internal states in register x9 is 214. Since the output should be independent
and identically distributed, the expected number of cases that satisfy this condition in Equation (29) is:

214
× 2−256 = 2−242 (30)

At this stage, the attack cannot continue, since the possibility of finding a case satisfying the
condition x9 = 0 is too small. Similar results can be derived for x10, x13 and x14.

4.5. Side Channel Attacks

In this section, we provide a discussion about the vulnerability of the proposed family of stream
ciphers to side channel attacks. In [30], the stream ciphers candidates of the eSTREAM phase-3 in
respect to side channel analysis were discussed. For SUC concept, it is assumed that the ciphers are
generated randomly and internally inside the SoC FPGA, as depicted in Figure 3. For the purpose

Cryptography 2019, 3, 11 16 of 22

of authentication use-case in the next section, a resynchronization process of the initial vector or
any additional key is not required. In the following, we present a discussion on the security of the
SUC-based stream cipher design against side channel attacks:

1. Timing analysis: It exploits dependencies between the execution time of an algorithm and
the secret key bits. The proposed stream cipher design template does not include conditional
branches, and hence any randomly generated stream cipher inside the FPGA will provide the
response time for any key. Therefore, timing attacks are not feasible.

2. Power analysis: Two major categories are discussed; Simple power analysis (SPA) uses a single
measurement to reveal a secret key by searching for key dependent patterns in the power trace,
while Differential Power Analysis (DPA) uses many power measurements that are evaluated
by statistical analysis to reveal the secret key. In [31], a power analysis of stream ciphers which
requires frequent resynchronization is investigated. Since, in SUC case, the internal state is
selected randomly and unpredictably just once during the personalization of the SoC FPGA, there
is no initial vector or key to manipulate from outside to allow such attacks.

5. Generic Use-Case of the Created Random KSG Structures for Authentication

Secret Unknown Cipher (SUC) is a digital clone-resistant unit that can be deployed as a security
anchor in wide spectrum of applications such as automotive security [16]. Recently, all published generic
protocols deploying SUC [13] so far are designed to be used for SUC based on block ciphers. In the
following, a generic simple identification/authentication protocol of a physical device incorporating
keystream-generator-based SUCs is demonstrated:

5.1. Protocol’s Enrollment Phase

During the enrollment process, the Trusted Authority (TA) challenges a unit A to generate a set
of t k-bit responses set Y0, . . . , Yt−1. Each response set represents t k-bit vector from the KSG after
k-cycles for each vector. The initial register states are fixed and unknown as a part of the unknown
KSG unit’s structure.

5.2. Identification Protocol

Figure 6 describes a possible simple 3-path identification protocol, it proceeds as follows:

1. Unit A sends its serial number SNA to the TA that checks for its existence in the TA unit’s
identification records (UIR). If SNA ∈ UIR, then TA accepts and continues otherwise it rejects and
aborts the communication.

2. The TA selects the next unused Yi and generates a random nonce RT. Then, encrypts RT with
a standard cipher by using Yi as a key and sends it concatenated to RT as EYi(RT)

∣∣∣∣∣∣RT . Unit
A generates the next response Yi and decrypts the received message as E−1

Yi
(EYi(RT)) = R′T. If

R′T , RT, unit A rejects TA and keeps its state Si−1. this retains system synchronization. Otherwise,
R′T = RT and TA is authentic.

3. Unit A generates a random nonce RA, encrypts it by the same Yi and sends it concatenated to RA
as a response back to TA. TA decrypts the received message as E−1

Yi
(EYi(RA)) = R′A. If RA = R′A,

then unit A is deemed as authentic. Yi should never be used again.

Cryptography 2019, 3, 11 17 of 22

Cryptography 2019, 4, x FOR PEER REVIEW 17 of 23

1 '(())
i iY Y A AE E R R . If '

A AR R , then unit A is deemed as authentic. Yi should never be

used again.

sequentiallyiYSelect

ASN

()
iY T TE R R

1 '

'

(())

If then accept
else reject

i iY Y T T T

T T

E E R R R

R R

()
iY A AE R R

1 '

'

(())

then accept
else reject

i iY Y A A A

A A

E E R R R

If R R

Trusted Authority

TRGenerate random nonce

ARGenerate random nonce

Unit A

Figure 6. Identification protocol of SUC based on random stream cipher.

5.3. UIR Update Protocol

If all stored pairs are about to be consumed, the unit’s records need to be updated. Figure 7
describes a simple two-path update protocol. It proceeds as follows:

1. The TA and unit A authenticate each other by using the final response 1tY as in the
identification protocol above.

2. Unit A generates a random nonce RA and a new t-responses set vectors
* *

0 1 to tY Y . Then,

it sends the encrypted responses (ER) to TA. TA decrypts ER by using 1tY as

1 1

* * * '
0 1

1
1() , ,...,

t t tY Y AE E ER Y Y Y R

 . If '
A AR R , the new response set is accepted.

Trusted Authority Unit A

 -1

Authenticate by using
the last pair tY

1

* * *
0 1 1ER (, ,...,)

tY t A AE Y Y Y R R

Generate random nonce AR

1 1

1 * * * '
0 1 1

'

(ER) , ,...,

If accept
else reject and abort

t tY Y t A

A A

E E Y Y Y R

R R

ER

Figure 7. Update protocol of SUC based on random stream cipher.

6. Hardware Complexity

Mass production requires lightweight authentication mechanisms for economic reasons. SUC as
clone-resistant identity gains special interest as it may be implemented with zero-cost in some cases.
Most FPGA applications do not consume the total resources offered by the deployed FPGA. In such
cases, and if the created SUC requires very low FPGA resources, it may end up with a zero-cost SUCs.
The KSG described in Figure 4 is modeled in VHDL and synthesized to check its hardware complexity
and performance in Microsemi FPGA technology. Libero SoC with its integrated tools is used to
implement a sample prototype. Mentor Graphics Modelsim ME design tool was used for simulation
and Synplify pro ME for synthesis. Table 2 describes the consumed resources for different
SmartFusion®2 SoC FPGAs. The KSG required 37 LUTs and 223 DFFs, this can be considered as zero
cost in many real application cases. The practical realization mechanisms of the proposed family of new

Figure 6. Identification protocol of SUC based on random stream cipher.

5.3. UIR Update Protocol

If all stored pairs are about to be consumed, the unit’s records need to be updated. Figure 7
describes a simple two-path update protocol. It proceeds as follows:

1. The TA and unit A authenticate each other by using the final response Yt−1 as in the identification
protocol above.

2. Unit A generates a random nonce RA and a new t-responses set vectors Y∗0 to Y∗t−1. Then, it

sends the encrypted responses (ER) to TA. TA decrypts ER by using Yt−1 as E−1
Yt−1

(
EYt−1(ER)

)
=

Y∗0, Y∗1, . . . , Y∗t−1‖R
′

A. If RA = R′A, the new response set is accepted.

Cryptography 2019, 4, x FOR PEER REVIEW 17 of 23

1 '(())
i iY Y A AE E R R . If '

A AR R , then unit A is deemed as authentic. Yi should never be

used again.

sequentiallyiYSelect

ASN

()
iY T TE R R

1 '

'

(())

If then accept
else reject

i iY Y T T T

T T

E E R R R

R R

()
iY A AE R R

1 '

'

(())

then accept
else reject

i iY Y A A A

A A

E E R R R

If R R

Trusted Authority

TRGenerate random nonce

ARGenerate random nonce

Unit A

Figure 6. Identification protocol of SUC based on random stream cipher.

5.3. UIR Update Protocol

If all stored pairs are about to be consumed, the unit’s records need to be updated. Figure 7
describes a simple two-path update protocol. It proceeds as follows:

1. The TA and unit A authenticate each other by using the final response 1tY as in the
identification protocol above.

2. Unit A generates a random nonce RA and a new t-responses set vectors
* *

0 1 to tY Y . Then,

it sends the encrypted responses (ER) to TA. TA decrypts ER by using 1tY as

1 1

* * * '
0 1

1
1() , ,...,

t t tY Y AE E ER Y Y Y R

 . If '
A AR R , the new response set is accepted.

Trusted Authority Unit A

 -1

Authenticate by using
the last pair tY

1

* * *
0 1 1ER (, ,...,)

tY t A AE Y Y Y R R

Generate random nonce AR

1 1

1 * * * '
0 1 1

'

(ER) , ,...,

If accept
else reject and abort

t tY Y t A

A A

E E Y Y Y R

R R

ER

Figure 7. Update protocol of SUC based on random stream cipher.

6. Hardware Complexity

Mass production requires lightweight authentication mechanisms for economic reasons. SUC as
clone-resistant identity gains special interest as it may be implemented with zero-cost in some cases.
Most FPGA applications do not consume the total resources offered by the deployed FPGA. In such
cases, and if the created SUC requires very low FPGA resources, it may end up with a zero-cost SUCs.
The KSG described in Figure 4 is modeled in VHDL and synthesized to check its hardware complexity
and performance in Microsemi FPGA technology. Libero SoC with its integrated tools is used to
implement a sample prototype. Mentor Graphics Modelsim ME design tool was used for simulation
and Synplify pro ME for synthesis. Table 2 describes the consumed resources for different
SmartFusion®2 SoC FPGAs. The KSG required 37 LUTs and 223 DFFs, this can be considered as zero
cost in many real application cases. The practical realization mechanisms of the proposed family of new

Figure 7. Update protocol of SUC based on random stream cipher.

6. Hardware Complexity

Mass production requires lightweight authentication mechanisms for economic reasons. SUC as
clone-resistant identity gains special interest as it may be implemented with zero-cost in some cases.
Most FPGA applications do not consume the total resources offered by the deployed FPGA. In such
cases, and if the created SUC requires very low FPGA resources, it may end up with a zero-cost SUCs.

The KSG described in Figure 4 is modeled in VHDL and synthesized to check its hardware
complexity and performance in Microsemi FPGA technology. Libero SoC with its integrated tools
is used to implement a sample prototype. Mentor Graphics Modelsim ME design tool was used for
simulation and Synplify pro ME for synthesis. Table 2 describes the consumed resources for different
SmartFusion®2 SoC FPGAs. The KSG required 37 LUTs and 223 DFFs, this can be considered as zero
cost in many real application cases. The practical realization mechanisms of the proposed family of
new stream ciphers is out of the scope of this work. A concept for creating SUCs practically in real SoC
FPGAs is a very challenging task. A sample realization procedure is proposed to be published in [14].

Cryptography 2019, 3, 11 18 of 22

Table 2. Hardware complexity of the KSG in SmartFusion®2 SoC FPGAs.

KSG Components Resources Usage % of Usage for M2S005 % of Usage for M2S150

LUTs DFFs LUTs DFFs LUTs DFFs

NLFSRs
Shift

registers 0 223 0 3.71 0 0.15

Feedback
Functions 32 0 0.52 0 0.02 0

Feedback Functions 5 0 0.09 0 0.005 0

Total 37 223 0.61 3.71 0.025 0.15

To make a usable comparison with the state-of-the-art stream ciphers, the hardware complexity of
the proposed family of stream ciphers is compared with all profile-2 eSTREAM finalists: Grain v1 [32],
MICKEY2 [33] and Trivium [34].

To compute the required gate counts for a hardware design, estimations for each logical/arithmetic
in terms of NAND2 gates is necessary. Trivium inventors presented a detailed hardware complexity
estimates as gate counts in [34]. For Grain [32], 8 GEs (Gate Equivalents) were assumed for each DFF,
while 12 GEs were assumed Trivium in [34]. Table 3 shows our adopted GEs for each function to
estimate the required area for the proposed created stream ciphers (KSGs).

Table 3. The gate count used for different functions.

Function DFF AND2 XOR2

Gate Count 8 1.5 2.5

For our created KSGs, each NLFSR has a set of feedback functions, therefore, different hardware
complexities would result for each created KSG. Complexities may range from a best-case to a
worst-case hardware complexity. In a sample hardware compilation, the best case complexity was 223
DFFs, 63 XOR and 29 AND gates. Whereas, the worst-case hardware complexity had additional 32
XOR gates compared to the best-case.

Table 4 presents the hardware complexity and power consumption for our KSGs in comparison to
the eSTREAM portfolio-2 finalists. The complexity and power evaluations for eSTREAM portfolio-2
finalists are taken from [35].

Table 4. The gate count used for different functions.

Components Grain
Our KSGs

Trivium MICKEY2
Best Case Worst Case

Components
DFF (State Size) 160 223 223 288 200

XOR2 - 63 95 11 -

AND2 - 29 29 3 -

Gate count 1294 1985 2065 2580 3188

Total Power 109.4 120 120 175.1 196.5

7. Conclusions

In this paper, a new large class of Key Stream Generators KSGs as stream ciphers is presented.
The class was created by a random/unpredictable selection of a set of maximum-period NLFSRs with
different lengths. It was shown that any internal random selection of one Secret Unknown Cipher
(SUC)/KSG from this class, may serve to convert future VLSI-devices (in a post-fabrication process)
into clone-resistant entities. The security level of the proposed cipher class was evaluated against many

Cryptography 2019, 3, 11 19 of 22

attacks. The security levels are shown to be scalable to cope even with the post-quantum security
requirements (i.e. attack complexity exceeds 2160). The resulting randomized KSG-structures exhibit
moderate implementation complexities. A sample prototype case showed that one SUC structure
consumes relatively minor percentage of the FPGA resources; (0.61% of the LUTs, 3.71% of DFFs) for the
smallest Microsemi SmartFusion®2 SoC FPGA M2S005 devices. A simple use-case generic lightweight
identification/authentication protocol deploying such physical KSGs is also presented. Future work is
in progress to fine-tune and optimize such KSGs as SUC structures for emerging VLSI technologies.

Author Contributions: Conceptualization, A.M. and W.A.; methodology, A.M.; software, A.M.; validation, A.M.
and W.A.; formal analysis, A.M.; investigation, A.M.; resources, W.A.; data curation, A.M.; writing—original draft
preparation, A.M.; writing—review and editing, A.M. and W.A.; visualization, A.M.; supervision, W.A.; project
administration, W.A.; funding acquisition, W.A.

Funding: This research was supported by Volkswagen AG and Microsemi, a Microchip Company, San Jose USA
as well as the German Federal Foreign Office funding by DAAD combined scholarship and support program
(STIBET).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

SoC System on Chip
SUC Secret Unknown Cipher
PUF Physical(ly) Unclonable Function
KSG Key Stream Generator
NLFSR Nonlinear Feedback Shift Register
ANF Algebraic Normal Form
RFF Random Feedback Function
RSC Random Stream Cipher
UIR Users Individual Records
TA Trusted Authority

Appendix A

Table A1. Sets of selected random feedback functions for each NLFSR length.

NLFSR Length Ni Set of Random Feedback Functions SNi

A1 6

1,2,(1,2); 1,2,(2,4); 1,3,(1,5); 1,4,(1,4); 2,3,(1,3); 2,3,(1,5); 2,3,(2,3); 2,3,(2,4);
1,(1,2),(4,5); 1,(1,3),(3,5); 1,(2,3),(2,5); 2,(1,3),(2,4); 2,(1,3),(3,4); 2,(1,3),(3,5);
2,(1,5),(2,4); 2,(1,5),(4,5); 2,(2,3),(3,5); 2,(3,4),(3,5); 3,(1,4),(2,3); 3,(1,4),(2,4);

3,(1,4),(3,4);

A2 7

1,2,(2,6); 1,4,(1,3); 1,5,(1,5); 1,5,(3,5); 1,5,(4,6); 2,4,(1,2); 2,4,(2,5); 1,(1,2),(5,6);
1,(1,5),(3,4); 1,(1,6),(4,5); 1,(2,3),(3,5); 1,(2,5),(3,5); 1,(2,5),(4,5); 1,(3,4),(4,5);
2,(1,2),(4,6); 2,(1,4),(3,4); 2,(1,5),(2,6); 2,(1,6),(2,4); 2,(1,6),(3,6); 2,(1,6),(5,6);
2,(2,4),(3,5); 2,(2,5),(4,6); 2,(2,6),(4,6); 2,(3,6),(5,6); 3,(1,2),(2,3); 3,(1,3),(1,6);
3,(1,4),(3,6); 3,(1,5),(3,5); 3,(1,6),(3,4); 3,(2,3),(4,5); 3,(2,5),(3,5); 1,2,3,4,(1,6);
1,2,3,4,(2,3); 1,2,3,4,(2,6); 1,2,3,6,(1,3); 1,2,3,6,(1,5); 1,2,3,6,(2,6); 1,2,4,5,(1,2);

1,2,4,5,(1,5); 1,2,4,5,(2,6)

A3 8

1,5,(1,5); 1,6,(1,2); 1,6,(1,7); 1,6,(2,4); 1,6,(4,5); 1,6,(5,6); 2,5,(2,4); 2,5,(3,7);
2,5,(4,5); 3,4,(2,4); 3,4,(2,7); 3,4,(3,4); 3,4,(4,6); 3,4,(4,7); 3,4,(6,7); 1,(1,4),(2,4);
1,(1,6),(2,5); 1,(2,3),(2,4); 1,(2,4),(6,7); 1,(3,4),(4,7); 2,(1,3),(4,6); 2,(1,3),(5,7);
2,(1,5),(6,7); 2,(1,7),(2,3); 2,(3,7),(6,7); 3,(1,2),(2,4); 3,(1,4),(2,4); 3,(1,6),(3,6);
3,(1,6),(4,6); 3,(1,6),(4,7); 3,(2,3),(5,6); 3,(2,4),(6,7); 3,(2,6),(3,7); 1,2,3,5,(2,6);
1,2,3,6,(3,5); 1,2,3,6,(5,7); 1,2,4,5,(2,4); 1,2,4,7,(1,5); 1,2,5,7,(2,4); 1,3,4,7,(1,4);

1,3,4,7,(1,6); 1,3,4,7,(3,7)

Cryptography 2019, 3, 11 20 of 22

Table A1. Cont.

NLFSR Length Ni Set of Random Feedback Functions SNi

A4 9

1,6,(4,6); 1,6,(4,8); 2,4,(4,5); 3,4,(3,7); 1,(1,5),(2,5); 1,(1,6),(6,7); 1,(1,8),(2,7);
1,(1,8),(5,6); 1,(2,3),(3,8); 1,(2,8),(3,7); 1,(3,4),(3,5); 1,(3,7),(5,8); 2,(1,5),(4,6);
2,(1,6),(2,7); 2,(1,8),(3,4); 2,(2,7),(4,6); 2,(4,7),(5,6); 3,(1,2),(4,7); 3,(1,6),(1,7);
3,(1,7),(4,8); 3,(2,3),(4,7); 4,(1,3),(2,8); 4,(1,6),(3,6); 4,(2,3),(5,8); 4,(2,5),(2,8);
4,(2,7),(3,8); 4,(2,8),(6,7); 4,(3,5),(3,7); 1,2,3,4,(3,7); 1,2,3,7,(4,6); 1,2,4,7,(1,6);
1,2,5,6,(1,6); 1,2,5,6,(2,6); 1,2,5,8,(2,6); 1,2,6,7,(3,6); 1,3,4,5,(3,7); 1,3,5,7,(5,6);

1,3,5,8,(3,5); 1,4,6,7,(1,7); 2,3,4,7,(2,8)

A5 10

1,2,(8,9); 1,4,(3,7); 1,8,(6,7); 2,5,(1,5); 4,5,(2,6); 4,5,(4,8); 4,5,(4,9); 1,(1,2),(3,4);
1,(2,4),(2,5); 1,(2,8),(7,9); 1,(3,8),(4,7); 1,(4,8),(6,7); 2,(1,3),(4,7); 2,(1,4),(3,7);
2,(1,5),(3,5); 2,(1,5),(4,9); 2,(1,6),(1,7); 2,(1,7),(4,6); 2,(1,9),(5,9); 2,(3,5),(3,7);
2,(3,9),(8,9); 3,(1,2),(2,8); 3,(1,3),(7,9); 3,(1,6),(3,8); 3,(1,6),(6,9); 3,(2,3),(2,6);
3,(2,7),(8,9); 3,(2,8),(7,9); 3,(6,7),(8,9); 4,(1,3),(1,7); 4,(1,3),(7,8); 4,(1,3),(7,9);
4,(1,5),(1,9); 4,(1,5),(7,9); 4,(7,8),(7,9); 1,2,4,8,(1,5); 1,2,4,8,(2,4); 1,2,5,8,(5,9);
1,3,4,7,(3,6); 1,3,6,7,(1,6); 1,4,5,9,(1,9); 1,4,5,9,(4,9); 1,4,5,9,(5,9); 1,5,6,7,(2,8);

2,3,4,6,(3,6); 2,4,5,8,(2,4); 2,4,6,7,(1,6)

A6 11

1,9,(1,4); 2,5,(1,9); 2,8,(6,9); 1,(1,7),(2,8); 1,(1,9),(2,7); 1,(2,3),(4,5); 1,(2,5),(3,4);
1,(2,7),(3,10); 1,(3,7),(3,8); 1,(3,7),(7,8); 2,(4,5),(6,10); 2,(4,6),(9,10);

2,(7,9),(8,10); 3,(1,6),(8,9); 3,(1,9),(5,10); 3,(2,7),(5,7); 3,(3,5),(6,9); 3,(3,6),(5,8);
3,(3,7),(7,10); 4,(1,2),(9,10); 4,(2,3),(2,10); 4,(3,7),(4,8); 5,(1,4),(6,9); 5,(2,8),(6,8);
5,(4,7),(6,7); 1,2,3,5,(4,6); 1,2,4,5,(4,6); 1,2,4,7,(2,3); 1,2,4,7,(4,9); 1,2,4,7,(8,9);

1,2,4,10,(1,9); 1,2,4,10,(3,9); 1,2,7,8,(1,9); 1,2,7,8,(9,10); 1,3,4,10,(6,10);
1,3,6,8,(6,8); 1,3,6,10,(7,9); 1,3,7,9,(1,8); 1,4,5,8,(5,7); 1,4,7,10,(1,9); 1,5,6,8,(5,9);

1,5,7,9,(2,8); 1,6,8,9,(2,6); 2,3,7,8,(4,10); 2,3,7,8,(6,10); 2,3,7,8,(7,10);
2,4,5,9,(5,9); 3,4,5,6,(2,10); 3,4,6,7,(2,3); 3,5,6,7,(4,8)

A7 12

3,8,(3,9); 4,7,(1,7); 4,7,(4,7); 1,(2,3),(3,4); 1,(2,5),(3,10); 1,(2,8),(6,10);
1,(7,8),(8,10); 1,(8,11),(9,10); 2,(1,3),(3,6); 2,(1,7),(2,8); 2,(1,10),(1,11);
2,(2,3),(7,9); 2,(3,9),(3,11); 2,(3,9),(5,9); 2,(5,11),(8,11); 2,(7,9),(7,11);

3,(1,8),(7,10); 3,(5,11),(6,10); 1,2,3,5,(5,9); 1,2,5,9,(7,11); 1,2,6,11,(2,6);
1,3,6,7,(4,10); 1,3,6,9,(1,9); 1,3,6,9,(4,10); 1,3,7,10,(4,5); 1,4,8,10,(2,5);
1,5,6,8,(4,6); 1,5,6,8,(6,10); 1,5,6,11,(7,8); 1,5,7,9,(1,11); 1,5,9,10,(6,7);

2,3,4,10,(3,8); 2,3,6,8,(3,6); 2,3,6,10,(2,6); 2,3,6,10,(4,10); 2,5,6,10,(2,10)

A8 13

1,11,(5,9); 4,8,(9,10); 1,(1,7),(3,7); 1,(2,3),(6,11); 1,(2,5),(5,11); 1,(2,6),(6,8);
1,(2,9),(4,5); 2,(1,6),(9,12); 2,(7,10),(10,12); 3,(1,9),(2,11); 3,(4,6),(9,11);

3,(8,9),(9,10); 4,(1,3),(4,6); 4,(1,3),(10,12); 4,(2,9),(8,10); 5,(1,5),(4,9);
5,(1,12),(7,11); 5,(2,9),(4,5); 5,(3,6),(4,9); 5,(3,12),(9,11); 6,(1,5),(2,12);
1,2,4,5,(1,7); 1,2,10,11,(6,12); 1,3,4,6,(6,10); 1,4,5,10,(4,8); 1,5,6,7,(5,9);

1,5,7,9,(8,9); 1,5,7,11,(8,10); 1,7,10,11,(2,6); 1,8,9,10,(8,9); 2,3,8,11,(1,10);
2,5,6,11,(8,11); 2,6,7,10,(8,12); 3,4,5,12,(4,5); 3,5,6,10,(8,11); 3,5,7,10,(2,10)

A9 14

1,2,(7,12); 1,(2,13),(4,12); 1,(5,12),(9,12); 2,(1,5),(3,11); 3,(1,6),(4,12);
3,(2,4),(6,12); 3,(2,12),(6,13); 3,(5,10),(7,12); 5,(2,4),(6,13); 6,(1,13),(5,9);

6,(5,9),(12,13); 1,2,3,5,(1,3); 1,2,4,7,(1,3); 1,4,5,8,(2,8); 1,4,5,13,(1,6);
1,4,7,11,(1,11); 1,6,10,12,(3,7); 1,6,10,12,(7,9); 1,7,9,12,(3,13); 2,3,5,7,(1,5);

2,3,10,12,(9,10); 2,5,6,12,(6,10); 2,7,9,11,(11,12); 4,5,6,8,(1,4); 4,6,7,10,(5,13)

A10 15

5,9,(2,11); 2,(6,8),(12,14); 4,(2,11),(7,10); 4,(5,6),(5,14); 4,(6,10),(9,10);
4,(7,8),(12,14); 6,(8,11),(12,13); 7,(2,11),(10,13); 7,(3,12),(3,13); 1,3,7,11,(9,10);
1,4,5,12,(3,4); 1,4,6,11,(2,14); 1,4,9,10,(7,10); 1,5,11,13,(5,11); 2,3,9,10,(6,10);

2,3,9,13,(3,7); 2,4,10,14,(4,10); 3,4,5,10,(3,7); 3,5,7,8,(3,13); 4,5,7,10,(1,14);
4,8,12,14,(5,6); 4,9,11,14,(1,13); 5,6,11,14,(5,8); 5,6,12,13,(5,9)

A11 16
2,13,(2,3); 3,(1,5),(5,7; 3,(2,13),(7,14); 5,(4,8),(6,12); 5,(4,12),(7,8); 7,(2,6),(10,13);

7,(8,14),(11,12); 1,2,3,9,(6,14); 1,5,13,14,(14,15); 1,11,12,13,(5,15);
2,5,10,14,(6,14); 2,6,11,12,(14,15); 2,7,8,10,(3,6); 2,7,8,13,(3,15); 4,8,9,10,(8,12)

A12 17

1,(7,10),(9,15); 3,(6,9),(13,14); 5,(4,7),(6,13); 6,(2,9),(7,12); 7,(1,8),(9,14);
8,(10,12),(11,16); 1,3,9,12,(7,13); 1,3,12,14,(2,10); 1,5,9,11,(1,13);

1,7,11,13,(6,14); 2,4,9,12,(6,16); 3,6,7,10,(9,15); 3,8,11,12,(3,11); 4,6,10,16,(3,11);
5,6,9,14,(6,14)

Cryptography 2019, 3, 11 21 of 22

Table A1. Cont.

NLFSR Length Ni Set of Random Feedback Functions SNi

A13 19 7,10,(6,18); 9,12,(1,13); 2,(6,8),(8,10); 4,(5,16),(7,14); 6,(4,8),(17,18);
1,4,5,8,(5,15); 1,4,8,17,(1,13); 3,7,9,16,(3,17); 5,6,12,14,(2,18)

A14 21 1,15,17,19,(13,15); 2,7,12,17,(4,10); 3,5,9,13,(15,17); 4,8,9,11,(3,11)

A15 22 1,(4,10),(11,18); 5,(4,12),(7,14); 1,6,8,12,(10,17); 1,10,16,18,(3,21);
5,6,11,15,(9,21)

A16 23 3,(13,19),(18,19); 2,6,10,14,(5,13); 3,11,16,18,(4,19)

References

1. Wael, A.; Ayoub, M. Physical and Mechatronic Security, Technologies and Future Trends for Vehicular
Environment. In Proceedings of the VDI-Fachtagung Automotive Security, VDI Berichte, Nürtingen,
Germany, 27 September 2017; Volume 2310, pp. 73–95.

2. Maes, R.; Verbauwhede, I. Physically Unclonable Functions: A Study on the State of the Art and Future
Research Directions. In Towards Hardware-Intrinsic Security; Springer: Berlin, Germany, 2010; pp. 3–37. ISBN
978-3-642-14451-6, 978-3-642-14452-3.

3. Sadeghi, A.-R.; Visconti, I.; Wachsmann, C. Enhancing RFID Security and Privacy by Physically Unclonable
Functions. In Towards Hardware-Intrinsic Security; Springer: Berlin/Heidelberg, Germany, 2010.

4. Tuyls, P.; Batina, L. RFID-tags for anti-counterfeiting. In Proceedings of the Cryptographers’ Track at the
RSA Conference, San Jose, CA, USA, 13–17 February 2006; pp. 115–131.

5. Škoric, B.; Tuyls, P.; Ophey, W. Robust key extraction from physical uncloneable functions. In Proceedings
of the Applied Cryptography and Network Security, New York, NY, USA, 7–10 June 2005; Volume 3531,
pp. 407–422.

6. Guajardo, J.; Kumar, S.S.; Schrijen, G.-J.; Tuyls, P. FPGA Intrinsic PUFs and Their Use for IP Protection.
In Proceedings of the Cryptographic Hardware and Embedded Systems—CHES 2007, Vienna, Austria, 10–13
September 2007; Volume 4727, pp. 63–80.

7. Bösch, C.; Guajardo, J.; Sadeghi, A.-R.; Shokrollahi, J.; Tuyls, P. Efficient Helper Data Key Extractor on FPGAs.
Cryptogr. Hardw. Embed. Syst. 2008, 5154, 181–197.

8. Dodis, Y.; Ostrovsky, R.; Reyzin, L.; Smith, A. Fuzzy Extractors: How to Generate Strong Keys from Biometrics
and Other Noisy Data. In Proceedings of the International Conference on the Theory and Applications of
Cryptographic Techniques, St. Petersburg, Russia, 28 May–1 June 2006.

9. Nedospasov, D.; Seifert, J.-P.; Helfmeier, C.; Boit, C. Invasive PUF Analysis. In Proceedings of the Fault
Diagnosis and Tolerance in Cryptography (FDTC), Washington, DC, USA, 20 August 2013; pp. 30–38.

10. Rührmair, U.; Sölter, J.; Sehnke, F.; Xu, X.; Mahmoud, A.; Stoyanova, V.; Dror, G.; Schmidhuber, J.; Burleson, W.;
Devadas, S. PUF modeling attacks on simulated and silicon data. IEEE Trans. Inf. Forensics Secur. 2013, 8,
1876–1891. [CrossRef]

11. Merli, D.; Schuster, D.; Stumpf, F.; Sigl, G. Side-Channel Analysis of PUFs and Fuzzy Extractors. In Proceedings
of the International Conference on Trust and Trustworthy Computing, Pittsburgh, PA, USA, 22–24 June 2011;
Springer: Berlin/Heidelberg, Germany, 2011; pp. 33–47.

12. Mahmoud, A.; Rührmair, U.; Majzoobi, M.; Koushanfar, F. Combined Modeling and Side Channel Attacks
on Strong PUFs. IACR Cryptol. ePrint Arch. 2013, 2013, 632.

13. Adi, W.; Mars, A.; Mulhem, S. Generic identification protocols by deploying Secret Unknown Ciphers (SUCs).
In Proceedings of the 2017 IEEE International Conference on Consumer Electronics—Taiwan (ICCE-TW),
Taipei, Taiwan, 12–14 June 2017; pp. 255–256.

14. Mars, A.; Adi, W. Converting NV-FPGAs into Physically Clone-Resistant Units by Digital Mutations. 2019;
submitted for publication.

15. Mars, A.; Adi, W.; Mulhem, S.; Hamadaqa, E. Random stream cipher as a PUF-like identity in FPGA
environment. In Proceedings of the Seventh International Conference on Emerging Security Technologies
(EST), Canterbury, UK, 6–8 September 2017; pp. 209–214.

16. Mars, A.; Adi, W. Clone-Resistant Entities for Vehicular Security. In Proceedings of the IEEE 13th International
Conference on Innovations in Information Technology (IIT), Al Ain, UAE, 18–19 November 2018.

http://dx.doi.org/10.1109/TIFS.2013.2279798

Cryptography 2019, 3, 11 22 of 22

17. Mars, A.; Adi, W. New Concept for Physically-Secured E-Coins Circulations. In Proceedings of the 2018
NASA/ESA Conference on Adaptive Hardware and Systems, Edinburgh, UK, 6–9 August 2018.

18. Kerckhoffs, A. LA CRYPTOGRAPHIE MILITAIRE. Available online: http://www.petitcolas.net/kerckhoffs/
la_cryptographie_militaire_i.htm (accessed on 2 April 2019).

19. eSTREAM, the ECRYPT Stream Cipher Project. Available online: http://www.ecrypt.eu.org/stream/ (accessed
on 2 April 2019).

20. Gammel, B.M.; Göttfert, R.; Kniffler, O. The Achterbahn stream cipher. eSTREAM 2005. submitted.
21. Johansson, T.; Meier, W.; Müller, F. Cryptanalysis of Achterbahn. In Proceedings of the International

Workshop on Fast Software Encryption, Graz, Austria, 15–17 March 2006; Springer: Berlin/Heidelberg,
Germany; Volume 4047, pp. 1–14.

22. Chan, A.H.; Games, R.A.; Key, E.L. On the complexities of de Bruijn sequences. J. Comb. Theory Ser. A 1982,
33, 233–246. [CrossRef]

23. Dubrova, E. A List of Maximum Period NLFSRs. IACR Cryptol. ePrint Arch. 2012, 2012, 166.
24. Courtois, N.T.; Meier, W. Algebraic Attacks on Stream Ciphers with Linear Feedback. In Proceedings of the

International Conference on the Theory and Applications of Cryptographic Techniques, Warsaw, Poland, 4–8
May 2003.

25. Gammel, B.M.; Göttfert, R.; Kniffler, O. Status of Achterbahn and Tweaks. In Proceedings of the SASC
2006-Stream Ciphers Revisited, Leuven, Belgium, 2–3 February 2006.

26. Siegenthaler, T. Correlation-immunity of nonlinear combining functions for cryptographic applications
(Corresp.). IEEE Trans. Inf. Theory 1984, 30, 776–780. [CrossRef]

27. Meier, W.; Staffelbach, O. Fast correlation attacks on certain stream ciphers. J. Cryptol. 1989, 1, 159–176.
[CrossRef]

28. Courtois, N.T. Fast Algebraic Attacks on Stream Ciphers with Linear Feedback. In Proceedings of the CRYPTO
2003: Advances in Cryptology, Santa Barbara, CA, USA, 17–21 August 2003; Volume 2729, pp. 176–194.

29. Gammel, B.; Göttfert, R.; Kniffler, O. Achterbahn-128/80: Design and analysis. In Proceedings of the ECRYPT
Workshop SASC 2007—The State of the Art of Stream Ciphers, Bochum, Germany, 31 January–1 February
2007.

30. Gierlichs, B.; Batina, L.; Clavier, C.; Eisenbarth, T.; Gouget, A.; Handschuh, H.; Kasper, T.; Lemke-Rust, K.;
Mangard, S.; Moradi, A.; et al. Susceptibility of eSTREAM Candidates towards Side Channel Analysis.
In Proceedings of the ECRYPT Workshop SASC 2008–The State of the Art of Stream Ciphers, Lausanne,
Switzerland, 13 February 2008.

31. Lano, J.; Mentens, N.; Preneel, B.; Verbauwhede, I. Power analysis of synchronous stream ciphers with
resynchronization mechanism. In Proceedings of the ECRYPT Workshop SASC 2004–The State of the Art of
Stream Ciphers, Brugge, Belgium, 14–15 October 2004; pp. 327–333.

32. Hell, M.; Johansson, T.; Meier, W. Grain-A Stream Cipher for Constrained Environments. Int. J. Wirel. Mob.
Comput. 2007, 2, 86–93. [CrossRef]

33. Babbage, S. The stream cipher MICKEY 2.0. In New Stream Cipher Designs; Springer: Berlin, Germany, 2006.
34. De Cannìere, C.; Preneel, B. TRIVIUM Specifications. eSTREAM: the ECRYPT Stream Cipher Project. 2006.

Available online: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.9030 (accessed on 6 April
2019).

35. Good, T.; Benaissa, M. Hardware performance of eStream phase-III stream cipher candidates. In Proceedings
of the ECRYPT Workshop SASC 2008–The State of the Art of Stream Ciphers, Lausanne, Switzerland, 13
February 2008; pp. 163–173.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.petitcolas.net/kerckhoffs/la_cryptographie_militaire_i.htm
http://www.petitcolas.net/kerckhoffs/la_cryptographie_militaire_i.htm
http://www.ecrypt.eu.org/stream/
http://dx.doi.org/10.1016/0097-3165(82)90038-3
http://dx.doi.org/10.1109/TIT.1984.1056949
http://dx.doi.org/10.1007/BF02252874
http://dx.doi.org/10.1504/IJWMC.2007.013798
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.9030
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Proposed Digital Clone-Resistant Physical VLSI Structure
	The Concept of Secret Unknown Ciphers SUCs
	SUC Generic Use Protocol as Provable Physical Identity
	Kerckhoffs’s Principle (Shannon’s Maxim) and the SUC Concept
	State of the Art in Designing SUC Creating GENIEs

	Designing a GENIE for Creating Unknown Keystream Generators
	Selected State of the Art on Key Stream Generators
	Creating SUCs Based on Random Keystream Generators
	Description of the Created Random Keystream Generator
	Selected Sets of Non-Linear Feedback Shift Registers
	Cardinality of the Designed KSG Class
	Keystream Boolean Combining Function F

	Security Analysis
	Brute Force Attack
	Exhaustive Search Attack on the NLFSRs Initial States as Secret Key Seeds
	Stream Ciphers Linear Complexity and Berlekamp-Massey Algorithm

	Correlation Attacks
	Algebraic Attacks
	Parity Check Attack
	Side Channel Attacks

	Generic Use-Case of the Created Random KSG Structures for Authentication
	Protocol’s Enrollment Phase
	Identification Protocol
	UIR Update Protocol

	Hardware Complexity
	Conclusions
	
	References

