
cryptography

Article

A New Class of Strongly Asymmetric PKA
Algorithms: SAA-5

Luigi Accardi 1,†, Satoshi Iriyama 2,† , Koki Jimbo 2,† and Massimo Regoli 3,*,†,‡

1 Centro Vito Volterra, Via Columbia, 2, 00133 Roma, Italy; accardi@volterra.uniroma2.it
2 Department of Information Science, Tokyo University of Science, Yamazaki 2641, Japan;

iriyama@is.noda.tus.ac.jp (S.I.); 7carmelooo@gmail.com (K.J.)
3 DICII, Engineering Faculty Via del Politecnico, Universitá di Roma Tor Vergata, 1, 00133 Roma, Italy
* Correspondence: regoli@uniroma2.it
† These authors contributed equally to this work.
‡ Current address: Viale del Politecnico, 2 00133 Roma, Italy.

Received: 23 January 2019; Accepted: 12 March 2019; Published: 20 March 2019
����������
�������

Abstract: A new class of public key agreement (PKA) algorithms called strongly-asymmetric
algorithms (SAA) was introduced in a previous paper by some of the present authors. This class can
be shown to include some of the best-known PKA algorithms, for example the Diffie–Hellman and
several of its variants. In this paper, we construct a new version of the previous construction, called
SAA-5, improving it in several points, as explained in the Introduction. In particular, the construction
complexity is reduced, and at the same time, robustness is increased. Intuitively, the main difference
between SAA-5 and the usual PKA consists of the fact that in the former class, B (Bob) has more than
one public key and A (Alice) uses some of them to produce her public key and others to produce the
secret shared key (SSK). This introduces an asymmetry between the sender of the message (B) and
the receiver (A) and motivates the name for this class of algorithms. After describing the main steps
of SAA-5, we discuss its breaking complexity assuming zero complexity of discrete logarithms and
the computational complexity for both A and B to create SSK.

Keywords: public key exchange; cryptography; security

1. Introduction

PKA algorithms play an important role in the protection of privacy in IoT. However, the standard
key length of usual PKA algorithms such as Diffie–Hellman or RSA [1,2], typically 512 bit, is not safe
with respect to the eavesdropper’s computational power [3]. On the other hand, increasing the key
length also increases the computational complexity of the algorithm, thus decreasing its performance.
After 40 more years since discovering the Diffie–Hellman, the study of modern PKA algorithms is
widely spread in various mathematical fields. PKA based on using matrices have been considered
in the literature, and they are based on the difficulty of solving a system of multivariate polynomial
equations [4,5]. A generalized PKA class based on lattices was proposed in [6–9] and is a matrix-based
cryptographic system, the attacks of which are reduced to the shortest vector problem. The application
of PKA over rings introduces the new class of cryptographic systems, such as a fully-homomorphic
encryption contributing to the development of a secure searchable encryption [10].

In the papers [11,12], a new scheme of public key agreement based on non-commutative algebra
called a strongly-asymmetric public key agreement (SAPKA) was introduced. This scheme is very
general, and in order to perform computational or estimate breaking complexity, concrete realizations
are needed. Concrete realizations of the above-mentioned general scheme, called strongly-asymmetric
algorithm 3 (SAA-3) and strongly-asymmetric algorithm 4 (SAA-4), were constructed in the [13].

Cryptography 2019, 3, 9; doi:10.3390/cryptography3010009 www.mdpi.com/journal/cryptography

http://www.mdpi.com/journal/cryptography
http://www.mdpi.com
https://orcid.org/0000-0002-2803-7783
https://orcid.org/0000-0002-4783-6468
http://www.mdpi.com/2410-387X/3/1/9?type=check_update&version=1
http://dx.doi.org/10.3390/cryptography3010009
http://www.mdpi.com/journal/cryptography

Cryptography 2019, 3, 9 2 of 13

The algorithms 3 (SAA-3) and 4 (SAA-4) are based on a public parameter α, and in them, a receiver
(B) is required to send a matrix basket to a sender (A) consisting of matrices commuting with one of
his secret keys xB. A has to choose her secret key xA from this basket.

The present algorithm is an improved version of SAA-3 and SAA-4, called SAA-5, and the new
points in it with respect to the previous ones are:

• The public parameter α is removed;
• All constraints on the secret keys of B (see Conditions (1)–(4) in Section 1 of [13]) are reduced to

the requirement that certain matrices should not be invertible;
• the attack developed in the remark after Equation (15) does not use commutativity assumptions;
• In [13], the secret key is a scalar. In SAA-5, this is replaced by a matrix, which makes exhaustive

attacks impossible even in the case of low-dimensional matrices;
• all non-trivial constraints in the form of the secret key of B are removed;
• In SAA-5, the way to construct and combine the public and secret keys of both A and B is different

from [13];
• In SAA-5, B does not need to send a matrix basket, thus decreasing the computational complexity;
• The important remark on the indeterminacy of the equations that condensate the attacker’s

information (see Theorem 2) is new.

Attacks are discussed in Section 4. The remark after Equation (15) explains the reason for the
choice of the non-invertibility of some of the public keys of B.

Theorem 2 emphasizes another new feature of the present class of algorithms, namely that
robustness against attacks is guaranteed not only by the difficulty of a problem, but also by its intrinsic
indeterminacy: even if the attacker finds a solution, she still has to choose within a set of equivalent
solutions obtained applying to it simple transformations. This set is so large so as to make exhaustive
search impracticable.

An additional feature characterizing this class of algorithms is that the scheme on which they
are based is not rigid, as in most PKA algorithms, but subject to an infinity of variations whose
cryptographic merits are presently under investigation. An illustration of this statement is contained in
the last section of the paper. In fact, for the simplicity of exposition, in all the previous sections, we have
dealt with matrices with coefficients in a finite field (see the beginning of Section 2). However, looking
at the proofs, it is clear that the whole construction works for matrices with entries in a ringA provided
that there is the possibility of constructing invertible matrices with entries in A. This possibility exists
for a multiplicity of interesting rings, and in the numerical example discussed in Section 4.2, this
situation is illustrated choosingA = Zp−1 where p is a prime number of order 232. Even if the example
is simple and low-dimensional (d = 5), exhaustive search is impracticable, and we have not been able
to devise an alternative breaking strategy for it.

2. Steps of SAA-5

2.1. Public Parameters

The public parameters of the algorithm are:

• a natural integer d ∈ N;
• a finite field F (typically F := Zp, where p is a large prime number);
• a finite set I ⊂ N.

All scalar multiplications (in particular exponentiations) are meant in F, and we use the convention:

0x := 0 ; ∀x ∈ F

The d × d matrices with entries in F are denoted M(d;F), and the term matrix is used as a
synonym of element of M(d;F). Matrix multiplications are meant in the standard sense, while matrix

Cryptography 2019, 3, 9 3 of 13

exponentiations are meant in the Schur sense, i.e., element-wise: if c is either an element of F or a
matrix c = (cij) and M = (Ma,b) is a matrix, the symbol c◦M denoting the matrix:

(
c◦M

)
a,b

:=

{
cMa,b scalar case

cMa,b
a,b matrix case

; a, b ∈ {1, . . . , d}

is called the Schur exponentiation of c by M. Similarly, the Schur logarithm (in any basis) of a matrix M is
defined componentwise on the entries of M. Since in this paper, all logarithms considered are of the
Schur-type, we simply write log to denote the Schur logarithm.

2.2. Keys

2.2.1. Secret Keys of B

They are matrices:

1. the main secret key of B:
xB ∈ M(d;F)

2. additional secret keys of B:

{Aj ∈ M(d;F) : j ∈ I} ; NB ∈ M(d;F) ; c ∈ M(d;F)

The only conditions to be satisfied by the secret keys of B are:

• NB must be invertible;

• c = c◦c1
0 =: c◦ log c

0 with log c non Schur-invertible and:

ca,g = cb,g ; ∀a, b (1)

• The Aj (j ∈ I) are non-invertible (see the comments in Section 4).

2.2.2. Secret Key of A

A chooses arbitrarily her secret key:

xA ≡ (xA,j)j∈I ; xA,j ∈ M(d;F) , ∀j ∈ I (2)

2.2.3. SSK

The SSK is:
κ := c◦(Q(xA)xB)

where Q ≡ (Aj)j∈I is the linear map given by:

x ≡ (xj)j∈I ∈ M(d;F)|I| 7→ Q(x) := ∑
j∈I

xj Aj ∈ M(d;F)

where here and in the following, |I| denotes the cardinality of the set I. Thus, the coefficients of κ are:

κa,g := c[Q(xA)xB]a,g =
(

c◦Q(xA)xB
)

a,g
; a, g ∈ {1, . . . , d}

Cryptography 2019, 3, 9 4 of 13

2.2.4. Public Keys of B

The public keys of B are given by the finite set of matrices:

{yB,2;j , yB,3;j ∈ M(d;F) : j ∈ I}

constructed, using the secret keys of B, as follows.
For all j ∈ I and a, b ∈ {1, . . . , d}:

yB,2;j;a,b := c(Aj NB)a,b =
(

c◦Aj NB
)

a,b

yB,3;j;a,b := c(AjxB)a,b =
(

c◦AjxB
)

a,b

2.2.5. Public Key of A

yA := (yA;a,g) ∈ M(d;F) ; yA;a,g = c[Q(xA)NB]a,g =
(

c◦Q(xA)NB
)

a,g
, a, g ∈ {1, . . . , d}

can be computed uniquely in terms of the public keys (yB,2;j) of B and of the secret key of A as follows.
For each a, g ∈ {1, . . . , d}, A computes:

yA;a,g = ∏
j∈I

∏
b∈{1,...,d}

(yB,2;j;b,g)
(xA,j)a,b = ∏

j∈I
∏

b∈{1,...,d}
(c(Aj NB)b,g)(xA,j)a,b

= ∏
j∈I

∏
b∈{1,...,d}

(c(xA,j)a,b(Aj NB)b,g) = c∑j∈I ∑b∈{1,...,d} [xA,j)]a,b(Aj NB)b,g = c∑j∈I [xA,j Aj NB]a,g

= c[∑j xA,j Aj NB]a,g = c[Q(xA)NB]a,g =
(

c◦Q(xA)NB
)

a,g

3. Protocol

B computes the SSK using the public key of A and his own secret keys.

First step: B uses his secret key NB to clean the noise calculating, for each a, g ∈ {1, . . . , d}:

∏
b∈{1,...,d}

(yA;a,b)
(N−1

B)b,g = ∏
b∈{1,...,d}

(
c[Q(xA)NB]a,b

)(N−1
B)b,g

= ∏
b∈{1,...,d}

(
c[Q(xA)NB]a,b(N−1

B)b,g
)
= c∑b [Q(xA)NB]a,b(N−1

B)b,g

= c([Q(xA)NB]N−1
B)a,g = c(Q(xA))a,g =

(
c◦Q(xA)

)
a,g

(3)

Second step: Starting from (3), B inserts his main secret key calculating, for each a, g ∈ {1, . . . , d}:

∏
b∈{1,...,d}

((
c◦Q(xA)

)
a,b

)(xB)b,g

= ∏
b∈{1,...,d}

cQ(xA)a,b(xB)b,g = c∑b∈{1,...,d} Q(xA)a,b(xB)b,g

= c(Q(xA)xB)a,g =
(

c◦Q(xA)xB
)

a,g
= κa,g

Cryptography 2019, 3, 9 5 of 13

Using the public keys (yB,3;j) of B and her own secret key, A computes the SSK calculating, for
each a, g ∈ {1, . . . , d}:

∏
j∈I

∏
b∈{1,...,d}

(yB,3;j;b,g)
(xA,j)a,b = ∏

j∈I
∏

b∈{1,...,d}
(c(AjxB)b,g)(xA,j)a,b = ∏

j∈I
∏

b∈{1,...,d}
(c(xA,j)a,b(AjxB)b,g)

= ∏
j∈I

∏
b∈{1,...,d}

c(xA,j)a,b(AjxB)b,g = ∏
j∈I

c∑b(xA,j)a,b(AjxB)b,g

= ∏
j∈I

c[xA,j AjxB]a,g = c∑j∈I [xA,j AjxB]a,g =
(

c∑j∈I xA,j AjxB
)

a,g
=
(

cQ(xA)xB
)

a,g

4. Attacks

In this section, we discuss the breaking complexity of the algorithm. We know that the
eavesdropper (E) knows the public parameters, public keys, and the structure of public keys:

• d,F (p), I
• yB,2;j, yB,3;j
• yA

Etries to recover the SSK:

κa,g =
(

c◦Q(xA)xB
)

a,g
; a, g ∈ {1, . . . , d}

In the following, all logarithms will be referred to a fixed, but arbitrary basis. Assuming zero cost
logarithms, E computes for all a, g ∈ {1, . . . , d}:

log(yA)a,g = (Q(xA)NB)a,g(log ca,g)

log(yB,2;j)a,g = (AjNB)a,g(log ca,g)

log(yB,3;j)a,g = (AjxB)a,g(log ca,g)

Moreover, E knows that:

log(κ)a,g = (Q(xA)xB)a,g(log ca,g)

In matrix notations and recalling that all logarithms are Schur logarithms, i.e., matrix logarithms
are meant entry-wise:

log yA = (Q(xA)NB) ◦ (log c) (4)

log yB;2;j = (AjNB) ◦ (log c) ; j ∈ I (5)

log yB;3;j = (AjxB) ◦ (log c) ; j ∈ I (6)

log κ = (Q(xA)xB) ◦ (log c) (7)

Theorem 1. Suppose that:
(i) for some j ∈ I, Aj is invertible in the matrix sense,
(ii) for the same j as in (i),

(
(log c)◦−1 ◦ log yB;2;j

)
is invertible in the matrix sense,

(iii) log c is Schur-invertible.
Then, the SSK satisfies the equation:

log κ =

((
(log c)◦−1 ◦ log yA

) (
(log c)◦−1 ◦ log yB;2;j

)−1 (
log yB;3;j ◦ (log c)◦−1

))
◦ (log c) (8)

where (log c)◦−1 denotes the Schur inverse of log c.

Cryptography 2019, 3, 9 6 of 13

Remark 1. Since NB is matrix-invertible by assumption, Condition (i) implies that the product AjNB is
matrix-invertible. However, the product of a matrix-invertible and a Schur-invertible matrix need not be
matrix-invertible. Therefore Assumption (ii) is necessary for the proof of (8).

Proof. Since by Assumption (iii) log c is Schur-invertible, (4) is equivalent to:

log yA ◦ (log c)◦−1 = Q(xA)NB ⇐⇒
(
(log c)◦−1 ◦ log yA

)
N−1

B = Q(xA)

Under Assumptions (i) and (ii), (5) is equivalent to:

log yB;2;j ◦ (log c)◦−1 = AjNB ⇐⇒ A−1
j

(
(log c)◦−1 ◦ log yB;2;j

)
= NB

⇐⇒
(
(log c)◦−1 ◦ log yB;2;j

)−1
Aj = N−1

B

and combining the two results:

Q(xA) =
(
(log c)◦−1 ◦ log yA

)((
(log c)◦−1 ◦ log yB;2;j

)−1
Aj

)

=
(
(log c)◦−1 ◦ log yA

) (
(log c)◦−1 ◦ log yB;2;j

)−1
Aj

Finally, from (6) and Assumption (i), we get:

log yB;3;j ◦ (log c)◦−1 = AjxB ⇐⇒ A−1
j

(
log yB;3;j ◦ (log c)◦−1

)
= xB

Inserting in (7) these two results, one gets

log κ =
(((

(log c)◦−1 ◦ log yA
) (

(log c)◦−1 ◦ log yB;2;j
)−1 Aj

) (
A−1

j
(
log yB;3;j ◦ (log c)◦−1))) ◦ (log c)((

(log c)◦−1 ◦ log yA
) (

(log c)◦−1 ◦ log yB;2;j
)−1 Aj A−1

j
(
log yB;3;j ◦ (log c)◦−1)) ◦ (log c)((

(log c)◦−1 ◦ log yA
) (

(log c)◦−1 ◦ log yB;2;j
)−1 (log yB;3;j ◦ (log c)◦−1)) ◦ (log c)

which is (8).

Corollary 1. In the assumptions of Theorem 1, suppose that the Schur products in (8) coincide with the matrix
products. Then, the SSK satisfies the equation:

log κ = (log c)−1 log yA log y−1
B;2;j(log c) log yB;3;j (9)

Proof. Under the assumptions of the corollary, (8) becomes:

log κ =

((
(log c)◦−1 ◦ log yA

) (
(log c)◦−1 ◦ log yB;2;j

)−1 (
log yB;3;j ◦ (log c)◦−1

))
◦ (log c)

= (log c)−1 log yA

(
(log c)−1 log yB;2;j

)−1
log yB;3;j(log c)−1 log c

= (log c)−1 log yA log y−1
B;2;j(log c) log yB;3;j(log c)−1 log c

= (log c)−1 log yA log y−1
B;2;j(log c) log yB;3;j

Cryptography 2019, 3, 9 7 of 13

Corollary 2. If the conditions of both Theorem 1 and Corollary 1 are satisfied and, in addition, (log c) commutes
with log yA log y−1

B;2;j, then:

log κ = log yA log y−1
B;2;j log yB;3;j (10)

Proof. Under the given assumptions, Equation (9) becomes:

log κ = (log c)−1 log yA log y−1
B;2;j(log c) log yB;3;j = log yA log y−1

B;2;j log yB;3;j

which is (10)

Remark 2. If log c is a scalar 6= 0, Condition (iii) of Theorem 1 and the conditions of Corollary 1 and Corollary
2 are automatically satisfied. Therefore, in this case, under Conditions (i) and (ii) of Theorem 1, Equation (10)
says that the SSK is a function of the public parameters, i.e., the algorithm is breakable. However, it is easy for B
to construct his secret keys so that either Condition (i) or (ii) of Theorem 1 is violated. For example, B can choose
all the Aj (j ∈ I) so that they are not matrix-invertible, thus violating Condition (ii).

If log c is a matrix, it is sufficient that it has a single zero entry to violate Condition (iii) of Theorem 1.

Equations (4)–(7) are 2 + 2|I| cubic matrix equations depending on the 5 + |I|matrix unknowns:

Q(xA) =: x1 ; NB =: x2 ; Aj =: x3;j ; xB =: x4 ; log κ =: x5 , log c

where the left-hand sides of Equations (4)–(6) are known to E:

α1 := log yA ; α2;j := log yB,2;j ; α3;j := log yB,3;j (11)

With these notations, E finds the system of cubic equations:

α1 = (x1x2) ◦ log c (12)

α2;j = (x3;jx2) ◦ log c ; j ∈ I (13)

α3;j = (x3;jx4) ◦ log c ; j ∈ I (14)

x5 = (x1x4) ◦ log c (15)

from which she wants to derive x5.

Remark 3. Theorem 1 explains why it is convenient to choose the x3;j = Aj not invertible for all j ∈ I and
why it is convenient to choose log c to be a non-Schur-invertible matrix.

In fact, in this case, the direct attack to the SSK of Theorem 1 is not applicable, and E faces the
problem of solving the cubic system given by Equations (12)–(15). Since the cubic non-linearity is
given by matrix multiplication, the scalar unknowns are strongly entangled, and it is known that this
brings the complexity of the application of Groebner-type algorithms near the upper bound, which is
super-exponential.

In addition to this, there is another more substantial difficulty for E given by the fact that, as
shown by the following theorem, the above-mentioned system is intrinsically indeterminate.

Theorem 2. Suppose that (x1, x2, (x3,j)j∈I , x4, log c, x5) is a solution of the system (12)–(15). Then, for any
pair (u, v) of invertible d× d matrices, (x1u−1, ux2v−1, (x3,ju−1)j∈I , ux4v−1, v log c, x5) is a solution of the
same system.

Cryptography 2019, 3, 9 8 of 13

Proof. It is sufficient to prove that the change of variables:
x1 → x1u−1

x2 → ux2

x3,j → x3,ju−1

x4 → ux4

leaves the right-hand sides of Equations (12)–(15) unaltered. In fact:

(x1x2) ◦ log c→ (x1u−1ux2) ◦ log c = (x1x2) ◦ log c

(x3;jx2) ◦ log c→ (x3,ju−1ux2) ◦ log c = (x3;jx2) ◦ log c

(x3;jx4) ◦ log c→ (x3,ju−1ux4) ◦ log c = (x3;jx4) ◦ log c

(x1x4) ◦ log c→ (x1u−1ux4) ◦ log c = (x1x4) ◦ log c

An additional indeterminacy, with respect to the one described by Theorem 1, is the one arising
in Equations (13) and (14) from the non-invertibility of Aj = x3;j. However, even neglecting this one,
Theorem 2 means that, even if E finds a solution of the system (12)–(15), she has to choose among all
the solutions obtained from it applying the transformations described in Theorem 2. Exhaustive search
among these solutions, which are equi-probable for E given her level of information, are impracticable
even for F = Zp with p a relatively small prime (say of the order 232) because their cardinality is of the
same order as the cardinality of M(d;F).

4.1. Computational Complexity

The computational complexity for A is given by:

• computation of yA
• computation of the SSK

In the computation of yA, A computes for each element a, g ∈ {1, . . . , d}:

yA;a,g = ∏
j∈I

∏
b∈{1,...,d}

(yB,2;j;b,g)
(xA,j)a,b

The number of total scalar exponentiations is:

exponentiations: d3|I|

and the number of total scalar multiplications is:

scalar multiplication: d2(d− 1)(|I| − 1)

A computes the SSK as:

(κ)a,g = ∏
j∈I

∏
b∈{1,...,d}

(yB,3;j;b,g)
(xA,j)a,b

The number of total scalar exponentiations is:

exponentiations: d3|I|

Cryptography 2019, 3, 9 9 of 13

the number of total scalar multiplications is:

scalar multiplication: d2(d− 1)(|I| − 1)

Therefore, the total number of exponentiations is:

2d3|I| ∼ d3|I|

The total number of scalar multiplications is:

2d2(d− 1)(|I| − 1) ∼ d3|I|

The computational complexity for B is given by:

• computation of yB,2;j
• computation of yB,3;j
• computation of the SSK

The calculation of each (yB,2;j)a,b = c(Aj NB)a,b or (yB,3;j)a,b = c(AjxB)a,b requires d2|I| scalar
exponentiations and |I|matrix products.

The calculation for SSK has two parts. The first part is the calculation of:

(κ′)a,g = ∏
b∈{1,...,d}

(yA;a,b)
(N−1

B)b,g

The second part is given by:

(κ)a,g = ∏
b∈{1,...,d}

((
κ′)a,b

))(xB)b,g

Each part contains d3 scalar exponentiations and d2(d− 1) scalar multiplications. Therefore, the
total number of scalar exponentiations is:

2d2|I|+ 2d3 ∼ d2(d + |I|)

The total number of scalar multiplications is:

2d2(d− 1) ∼ d3

The total number of matrix multiplications is:

2|I| ∼ |I|

4.2. A Numerical Example

Here, we construct a numerical example of SAA5. The setting is the following:

• d = 5: (dimension)
• F = Zp
• p = 4294967291: a prime number, 231 < p < 232

• c = 1234567891: a prime number such that g.c.d(c, p) = 1
• I = {1, 2, 3}: a set, |I| = 3

Since g.c.d(c, p) = 1, the parameter c has period p− 1. Therefore, the function fc,p(x) = cx is
periodic with period p− 1. Therefore, to avoid large numbers and keep the computations within the
32-bit domain, it is convenient to perform all operations that involve exponents of c modulo p− 1,
while the multiplication of exponentials should be performed modulo p.

Cryptography 2019, 3, 9 10 of 13

To avoid the use of a double module, we choose the coefficients of all secret keys in Zp−1, and all
operations are made in this ring. This has also the advantage that, since Zp−1 is a ring and not a field,
all invertibility issues become more difficult in this framework. This fact will be exploited in greater
generality in a future publication.

Bob chooses the secret key xB ∈ M(d,Zp−1) as:

xb,3 =


1302223311 3036102706 1950911555 1588574439 4205392019
475199933 1588871204 3380984642 2028686256 1410372785
84237198 331418214 377622969 94920131 1897882575

1264609458 2047942517 2633489909 2475676273 3402425250
2609452388 906983806 438577591 1027462714 922571658


and additional secret keys:

A1 =


0 3788905542 2222785513 2073815497 3603745241

3105694558 0 4265220769 1017644232 3445055000
2572706715 3038815660 0 3146135139 4131986064
1041303085 1727576570 148785315 0 3474561565
338748084 3560001775 248998463 2247690485 0



A2 =


0 4188102984 4261217150 3173675344 3453829986

2184532822 0 3044136815 1979293276 2532458993
157875694 1185021703 0 2332943479 629241533

3487714523 4162196921 3314231639 0 1094496175
202417627 2856466936 1387021057 389944647 0



A3 =


0 3301308627 3171841047 1901994323 3927695075

893545770 0 1019361737 3252355315 1995919988
79669926 3071982 0 4219791915 1400948265

4212083462 3039196150 3154904801 0 1562880115
2140484588 4129219179 1060549870 4167897854 0



NB =


1914362363 1917061405 1176808279 648676785 1764822838
4212500437 493998612 1018470348 659200518 4041739862
2425394518 1010843968 1551629103 3916843822 4115443575
480122131 3641672291 2759527160 1523231740 3385651728

3402493211 3829823144 1677835446 3072388584 1656686133


NB is invertible in Zp−1, and N−1

B is calculated as:

N−1
B =


1056670352 1752780917 1091186792 249921880 484074830
2519741046 3121847791 2664334830 155918887 2564514478
2875916262 676103283 1301763609 2178347744 1367832327
4158981885 2063040371 953376899 2272312361 1874512565
2507129114 981826659 1817535756 699581298 2543768509


In fact,

NBN−1
B = I mod p− 1

Cryptography 2019, 3, 9 11 of 13

Bob calculates the public keys yB,2,j and yB,3,j for j ∈ I:

yB,2;1 =


520755896 2629144795 598609158 3930924878 565565295
1005048396 136057902 803662542 3450162971 1782017006
313572865 2862336142 532367644 2658869746 1063794269
1133278001 514281167 3782874102 1501107275 2291906133
3747999327 958748864 4039733998 3623773602 221441433



yB,2;2 =


1100675738 2377306807 320310045 4183872877 3094588329
1858941337 2590258583 3019711351 504050841 3545977310
871154770 3112430422 2991114005 2307732604 1533414277
2575749561 2383342108 3906470091 1327027748 1942980649
4177738145 351928788 3414324786 2101677812 3606279630



yB,2;3 =


1211352515 2267569344 1018962528 3323274536 1724991904
1276774275 972135244 799382061 2659295349 2254929026
595742140 3824016846 3562771239 2559354870 557977523
1828792733 3028675089 1029846831 445923660 1942381250
776947273 3890081018 1690304752 3535197303 3228614369



yB,3;1 =


3192346363 3313915884 148849609 2067376731 1040074624
3767002677 4002437607 1213185627 2779519475 2749545589
1981484667 2883640587 1349676569 3826297559 1250751365
3988510025 924511781 3273249165 3498236201 4112494691
2523966937 239944636 1780986054 2452246615 139198803



yB,3;2 =


3487972825 2059946345 4149166921 1468549539 547514569
2888355633 501003547 985587578 3425801686 2614575952
1865561822 2914838138 3935514555 1461994052 2528354877
2466289308 2410324226 622706326 1831851213 502543542
223847409 4254497091 2741822882 1862234570 4293984694



yB,3;3 =


1887865820 105467147 3788887540 769774167 1287602684
571995438 620356231 2831953178 3695422732 1184503561
834453900 1318534845 830504770 3499684766 2702832283
3297267532 3289783332 2224144356 978328852 3590377270
1613472801 3559725977 1198572164 728404861 2448481277


Alice calculates the public key yA after receiving Bob’s public keys yB,2,j:

yA =


2654282219 3218104680 1840335336 281612527 871286734
3758875123 3123626985 1756470990 3091679784 3513893738
1605723039 2231283615 3496004106 51747848 2854303327
4057281561 3744174842 2830691803 2886194642 1545723227
3119611268 507195559 901862328 81086314 2422636784


In order to obtain the SSK, Bob first calculates x′B:

x′B =


1568885684 464596335 2461272026 449127471 1783528355
205414769 1535631617 1239746722 3825791910 317352834
253683714 144235286 3154427854 2969897183 3320441305
559112875 2542680230 3384129982 3734459150 3827314646

1283770816 2487602481 2851739705 3932446652 2790935753



Cryptography 2019, 3, 9 12 of 13

Finally, Bob calculates his SSK k(SSK)
B using Alice’s public key yA:

k(SSK)
B =


4118803775 3024367129 2201420160 2335335312 46065376
1384844995 607556554 2645672430 4136350896 3596845616
4209215563 1529533803 1525531379 781854571 2723231816
1625920071 3671248796 1470525740 3884958370 1972389092
2062666758 774480666 1689604710 2098990694 1929943712


Alice calculates the SSK k(SSK)

A using public key yB,3,j as:

k(SSK)
A =


4118803775 3024367129 2201420160 2335335312 46065376
1384844995 607556554 2645672430 4136350896 3596845616
4209215563 1529533803 1525531379 781854571 2723231816
1625920071 3671248796 1470525740 3884958370 1972389092
2062666758 774480666 1689604710 2098990694 1929943712


One can check that both secret keys k(SSK)

B and k(SSK)
A are same.

Author Contributions: Conceptualization, L.A., S.I., M.R., K.J.; software, M.R.; validation, K.J.; formal analysis,
S.I., M.R. and K.J.; data curation, S.I.; writing—original draft preparation, S.I., K.J.; writing—review and editing,
L.A.; supervision, L.A.

Funding: This research received no external funding.

Acknowledgments: A special thanks goes to the memory of Masanori Ohya, friend, “Maestro” and colleague.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Diffie, W.; Hellman, M. New directions in cryptography. IEEE Trans. Inf. Theory 1976, 22, 644–654. [CrossRef]
2. Rivest, R.L.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public key cryptosystems.

Commun. ACM 1978, 21, 120–126. [CrossRef]
3. Adrian, D.; Bhargavan, K.; Durumeric, Z.; Gaudry, P.; Green, M.; Halderman, J.A.; Heninger, N.; Springall, D.;

Thome, E.; Valenta, L.; et al. Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, 12–16
October 2015; pp. 5–17.

4. Patarin, J. Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New Families of
Asymmetric Algorithms. In Proceedings of the International Conference on the Theory and Applications of
Cryptographic Techniques, Saragossa, Spain, 12–16 May 1996; pp. 33–48.

5. Porras, J.; Baena, J.; Ding, J. ZHFE, a New Multivariate Public Key Encryption Scheme. In Proceedings of
the International Workshop on Post-Quantum Cryptography, Waterloo, ON, Canada, 1–3 October 2014; pp.
229–245.

6. Ajtai, M.; Dwork, C. A Public-Key Cryptosystem with Worst-Case/Average-Case Equivalence. In Proceedings
of the 50th ACM Symposium on Theory of Computing, El Paso, TX, USA, 4–6 May 1997; pp. 284–293.

7. Khot, S. Hardness of approximating the shortest vector problem in lattices. J. ACM 2005, 52, 789–808.
[CrossRef]

8. Alkim, E.; Ducas, L.; Poppelmann, T.; Schwabe, P. Post-quantum key exchange—A new hope. In Proceedings
of the 25th USENIX Security Symposium (USENIX Security 16), Austin, TX, USA, 10–12 August 2016;
pp. 327–343.

9. Rueppel, R.; van Oorschot, P.C. Modern key agreement techniques. Commun. ACM 1994, 17, 458–465.
[CrossRef]

10. Gentry, C. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st ACM Symposium
on Theory of Computing (STOC), Bethesda, MD, USA, 31 May–2 June 2009; Volume 9, pp. 169–178.

http://dx.doi.org/10.1109/TIT.1976.1055638
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1145/1089023.1089027
http://dx.doi.org/10.1016/0140-3664(94)90100-7

Cryptography 2019, 3, 9 13 of 13

11. Accardi, L.; Iriyama, S.; Regoli, M.; Ohya, M. Strongly Asymmetric PKD Cryptographic Algorithms—An
Implementation Using the Matrix Model; Technical Report ISEC2011-20; IEICE: Tokyo, Japan, 2011; pp. 115–121.

12. Accardi, L.; Iriyama, S.; Regoli, M.; Ohya, M. Strongly Asymmetric Public Key Agreement Algorithms; Technical
Report ISEC2011-20; IEICE: Tokyo, Japan, 2011; pp. 111–114.

13. Accardi, L.; Regoli, M. On a class of strongly asymmetric PKA algorithms. J. Math. Crypt. 2015. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1515/jmc-2015-0019
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Steps of SAA-5
	Public Parameters
	Keys
	Secret Keys of B
	Secret Key of A
	SSK
	Public Keys of B
	Public Key of A

	Protocol
	Attacks
	Computational Complexity
	A Numerical Example

	References

