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Abstract: In some wireless environments, minimizing the size of messages is paramount due to the
resulting significant energy savings. We present CMCC (CBC-MAC-CTR-CBC), an authenticated
encryption scheme with associated data (AEAD) that is also nonce misuse resistant. The main focus
for this work is minimizing ciphertext expansion, especially for short messages including plaintext
lengths less than the underlying block cipher length (e.g., 16 bytes). For many existing AEAD schemes,
a successful forgery leads directly to a loss of confidentiality. For CMCC, changes to the ciphertext
randomize the resulting plaintext, thus forgeries do not necessarily result in a loss of confidentiality
which allows us to reduce the length of the authentication tag. For protocols that send short messages,
our scheme is similar to Synthetic Initialization Vector (SIV) mode for computational overhead but
has much smaller expansion. We prove both a misuse resistant authenticated encryption (MRAE)
security bound and an authenticated encryption (AE) security bound for CMCC. We also present
a variation of CMCC, CWM (CMCC With MAC), which provides a further strengthening of the
security bounds.
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1. Introduction

The current paradigm of providing confidentiality and integrity protection for distributed
applications through the use of encryption combined with MAC’s (Message Authentication Codes)
is reasonably efficient for many environments. In particular, for network message sizes that range
from several hundred bytes or more, having MAC’s that utilize 8–20 bytes is not unduly inefficient.
For resource constrained environments, where message lengths are often less than one-hundred bytes,
existing MAC’s impose a more significant overhead. Since it requires more energy to send longer
messages, it is important to reduce message sizes in protocols used by wireless devices. This need
becomes even more critical for low bandwidth networks.

In this paper we present a new authenticated encryption mode, CMCC. CMCC utilizes
a pseudorandom function (PRF) (e.g., AES but other choices are possible). Our construction uses
multiple invocations of the PRF so that any modifications to ciphertext result in a randomized plaintext.

CBC-MAC-CTR-CBC (CMCC) mode is a general purpose authenticated encryption mode [1].
We apply CBC (Cipher Block Chaining) encryption in the first round, use a MAC followed by a CTR
(Counter) mode in the 2nd round, and CBC encryption again in the 3rd round (see Algorithms 1, 2,
and Figure 1). We prove that CMCC is misuse resistant [2]: encryptions using the same message
number, plaintext, and associated data are identifiable to the adversary as such, but security is
preserved if the same message number is reused where either the plaintext or associated data is
distinct. Since changes to the ciphertext randomize the resulting plaintext, with high probability,
we achieve authentication by appending a string consisting of τ bits set to zero to the plaintext prior to
encryption. Relative to SIV [2], CMCC has smaller ciphertext expansion.
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CMCCv1.0 was originally submitted to the Caesar competition on authenticated encryption.
Barwell [3] pointed out a vulnerability in the padding mechanism of CMCCv1.0 which was fixed in
CMCCv1.1. This paper presents the CMCC v1.1 algorithm and proves security in the MRAE and AE
security models.

We obtain MRAE and AE security with competitive security bounds using only a small number
of bytes of ciphertext expansion, for a full range of message sizes.

We will make use of variable length input pseudorandom functions fi. In order to better
understand the intuition behind our scheme, consider the case where the plaintext is the concatenation
of the strings P1 and P2 where each string’s length equals the pseudorandom function output size
(e.g., 16 bytes in the case of AES). Consider the scheme:

X = f3(W, P1)⊕ P2

X2 = f2(W, X)⊕ P1

X1 = f1(W, X2)⊕ X

where the ciphertext is X1, X2, and W is an unpredictable pseudorandom value. For maximum security,
W is unique, with high probability, for each message encrypted under a given key K. Then if the
adversary flips some bits in X1, the corresponding bits in X are flipped during decryption, and this
produces random changes to P1 during decryption (see 2nd equation). The first equation is then applied
which results in random changes to P2. A similar argument applies if we flip one or more bits in X2.
Since changes to any bits in the ciphertext result in random changes to the plaintext, we will see that
the authentication tag can be a string of zero bits appended to the plaintext, and that the corresponding
term in the security bound, due to this ciphertext expansion, is smaller than in comparable schemes.

1.1. Definitions for Authenticated Encryption (AE)

We give motivation for our definition of authenticated encryption.
Consider OCB [4] or a counter mode variant (e.g., GCM [5]) with a 4 byte authentication tag

(NIST guidance on GCM is that at most 211 messages, given a maximal packet size of 1024 bytes,
should be decrypted given a 4 byte tag). Then for the AE security game (see Section 2.2 for definition),
submit the message (plaintext) with all 1’s and also the message with all 0’s. The adversary obtains
a ciphertext response corresponding to one of the plaintexts. Then randomly flip bits in this ciphertext
for each new ciphertext query and attach a random authentication tag. Then the probability of winning
is q(2−32). The reason is that this bound is the probability that one of the submitted ciphertexts is valid.
If it’s valid then we get the plaintext back which shows us the bits that we flipped. And if the flipped
bits are zero, then the original message had all 1’s and vice versa. Now compare this to CMCC with
a 4 byte zero bit authentication string. Then our AE security bound is approximately q(q− 1)(2−65) for
a 12 byte message. Thus CMCC has stronger AE security given a short authentication tag. If we run the
same attack against CMCC as in the preceding paragraph, then the probability of a valid ciphertext is
approximately the same. But the corresponding plaintext would be randomized with high probability
and thus would give us no information about the challenge plaintext.

The MRAE–AE definition in [2] does not distinguish between the security levels in the two cases
above, but the PRI (Pseudo Random Injection) definition in [2] does distinguish them.

This distinction becomes more important given short authentication tags; in particular, classifying
a forgery as a a complete loss of security is not always appropriate. Depending on the application,
a single forgery may not be enough to disrupt the application (e.g., VoIP), and depending on the
encryption scheme, it may be detectable during higher layer protocol checks. Our security definition
should be general enough to handle the case of a valid ciphertext query where changes to the ciphertext
randomize the resulting plaintext so that the upper layer protocol checks detect and reject the message.
(None of our security bounds include any factor related to upper layer protocol checks.)
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Our definition gives the Adversary encryption and decryption oracles (real world) vs. a random
injection function and its inverse and asks the Adversary to distinguish between the two (see Section 2).
This definition is the same as the PRI definition in [2].

1.2. Applications

For CMCC, we can shorten our MAC tag since the adversary cannot make a predictable change
to the encrypted message, as in many counter-mode based schemes. (These other schemes depend on
the MAC to detect such a change). A change to a CMCC encrypted message is highly likely to cause
the message to be rejected due to a failure to satisfy application protocol checks. Another possibility
(e.g., Voice over IP (VoIP)) is that the randomized message will have a minimal effect. With only a small
probability can the adversary achieve a successful integrity attack. Since network transmission and
reception incurs significant energy utilization, it follows that we can expect to achieve significant
energy savings. For wireless sensor networks, energy utilization is proportional to packet length,
and the cryptographic computational processing impact on energy use is minor.

If we consider VoIP, a 20 byte payload is common. The transport and network layer headers
(IP, UDP, and RTP) bring another 40 bytes, but compression [6,7] is used to reduce these fields down
to 2–4 bytes. The link layer headers add another 6 bytes. Thus the total packet size is 30 bytes,
assuming the UDP checksum of 2 bytes is included. In this case, by omitting the recommended 10 byte
authentication tag and using CMCC with 2 bytes of expansion, we obtain a 1/5 savings in message
size and corresponding savings in energy utilization. Furthermore if the encryption boundary is just
after the CID field (which is used to identify the full headers), then the UDP checksum is encrypted
and acts as an additional 2 byte authentication tag. Even if the adversary was lucky enough to obtain
the correct checksum, the resulting Voice payload would be noise, with high probability.

Wireless sensor networks also use short packets [8] to maximize resource utilization; these packets
are often in the range of 10–30 bytes. For the adversary, large numbers of queries are likely to be either
impossible or highly anomalous in these constrained low bandwidth networks.

1.3. Our Contributions

Our contributions are as follows:

1. We give a new family of private key encryption schemes with minimal ciphertext expansion.
We obtain AE security with a competitive security bound using only a small number of bytes of
ciphertext expansion, for a full range of message sizes. When message numbers are not reused
for CMCC, we obtain a security bound which is dominated by q(q − 1)2−τ−1(1/β + 2−τ) +

2e(q − 1)/β where β = min{α, 2B}, B is the block cipher block length in bits, and α = 28m where
Len is the byte length of the minimal length plaintext query response, m = bLen/2c and τ is the
bit length of the authentication tag.

2. CMCC is a general purpose misuse resistant authenticated encryption mode. We define security
for misuse resistant authenticated encryption and prove a MRAE security bound for CMCC.
CMCC has less ciphertext expansion than SIV [2]. In particular, the ciphertext expansion τ due
to the SIV IV contributes a q(q − 1)/2τ term to the SIV security bound, whereas the CMCC
ciphertext expansion due to the authentication tag adds a q(q− 1)/22τ term to the CMCC AE
bound, and a q/2τ term to the CMCC MRAE security bound.

3. We present a variant of CMCC, CMCC with MAC, or CWM. CWM replaces the authentication tag
consisting of zero bits in CMCC with an authentication tag consisting of a MAC computed over the
plaintext in order to obtain a stronger security bound. When message numbers are not reused for
CWM, we obtain a security bound which is dominated by q2/23τ + q2/(22τ β) + q/(2τ−1β) and if
message numbers can be reused then we obtain a bound dominated by q2/22τ+1 + q3/23τ+2 +

q2/(22τ β) + q/(2τ β) + q2/β.
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1.4. Related Work

There was originally work in the IETF IPsec Working Group on a confidentiality-only mode;
the original version of ESP provided confidentiality without integrity protection [9]. However,
Bellovin [10] showed that CBC and stream-cipher like constructions were vulnerable to attacks that
could be prevented with a MAC.

Given a message with redundancy, the idea that authenticity can be obtained by enciphering it
with a strong pseudorandom permutation goes back to [11]. The authors formally prove a bound on
adversary advantage against authenticity which requires that the probability that an arbitrary string
decodes to a valid message is low. In [12], the authors show that public redundancy is not always
sufficient and that private (keyed) redundancy leads to stronger authentication properties. Struik [13]
presented application requirements and constraints, independently of this work at roughly the same
time this work was started.

In [14], Desai gives CCA-secure symmetric encryption algorithms that don’t use a MAC and
don’t provide explicit integrity protection outside of the CCA-security. The most efficient one is UFE
which utilizes variable length pseudorandom functions. Its ciphertext expansion is |r| bits where r is
a uniform random value; security can be compromised if the same r is used for multiple messages.
Since r is uniform random, collisions are likely after 2|r|/2 messages. The UFE security bound is
q(q + 1)/2|r|. If the adversary can make 220 queries, then Theorem 2 gives a security bound around
2−57 for CMCC with a 6 byte authentication string, given a 14 byte message. UFE would require
a 13 byte ciphertext expansion to assure the same security level.

Rogaway and Shrimpton introduced misuse resistant authenticated encryption (MRAE) in the
seminal paper [2], where they present the MRAE schemes SIV and PTE. SIV includes a MRAE scheme
where the expansion includes the block cipher block size (e.g., 16 byte) IV plus the nonce. Thus CMCC
is a MRAE scheme with smaller expansion (which is important for short messages), and comparable
security for applications that require less than a 16 byte MAC. The SIV ciphertext expansion adds
a q(q− 1)/2τ term to the SIV security bound, while the CMCC ciphertext expansion adds a q(q− 1)/22τ

term to the CMCC AE bound, and a q/2τ term to the CMCC MRAE security bound. SIV has roughly
the same number of block cipher invocations as CMCC (see Table 1). Our security definition is the
same as the PRI security definition [2].

Table 1. Number of Block Cipher Calls For CMCC, SIV, and CWM for Varying Message Sizes
(CMCC, CWM message sizes include message tag).

Message Length No. CMCC Prf Calls No. SIV Prf Calls No. CWM Prf Calls

1–16 bytes 5 4 6
17–32 bytes 5 6 7
33–48 bytes 9 8 12
49–64 bytes 9 10 13
65–80 bytes 13 12 18
81–96 bytes 13 14 19

CMCC uses the same authentication construction as PTE. However, the TES (Tweakable
Enciphering Scheme) that [2] recommends for PTE is not capable of encrypting messages with less
than the block size of the underlying block cipher.

Collisions in the IV [2] (or random message number in [14]) will result in loss of privacy for the
affected messages. Thus security is increased if the IV is long (e.g., 16 bytes for SIV). In other words,
decreasing ciphertext expansion results in less security. Security for our scheme is aided by message
length, so privacy is stronger when ciphertext expansion is minimal, given short message lengths.
The parameter X in our scheme is similar to the σ parameter in [14] and to the IV in [2]. These last two
parameters create ciphertext expansion whereas X does not. Our scheme is targeted at environments
where minimizing ciphertext expansion is a requirement.
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Other fully nonce-misuse resistant schemes include AEZ [15], HS1-SIV [16], Julius [17], MRO [18],
HBS [19], BTM [20], and GCM-SIV [21] with the first three being Caesar Authenticated Encryption
competitors along with CMCC. Of the above schemes, similarly to CMCC AEZ addresses smaller
length messages and minimal ciphertext expansion. The ciphertext expansion, or stretch, is a user
controlled parameter that is an input to the encryption function. The AEZ paper does not give a security
bound when message length plus stretch is less than 16 bytes. For some message/stretch sizes between
16 and 32 bytes, the CMCC security bounds are stronger. AEZ also makes use of a nonstandard 4 round
AES function.

Processing performance for CMCC is similar to SIV, whereas the above schemes are more efficient
(for processing but not energy usage) than SIV.

Bock [22] surveys Internet facing https servers and proxies to detect nonce reuse for AES-GCM in
TLS. Their study uncovered nonce reuse thus showing the value of nonce-misuse resistance.

Shrimpton and Terashima [23] use a 3 round unbalanced Feistel network approach to obtain
schemes TCT1 and TCT2 where the latter has BBB (Beyond Birthday Bound) security for longer
messages (messages of length ≥ 2n where the underlying blockcipher has length n. Both schemes are
STPRP’s (Strong Tweakable PRP’s, e.g., the adversary may reuse tweaks.)

There is recent work to address leakage from unverified plaintexts which is likely to occur when
handling large ciphertexts including RUP (Release of Unverified Plaintexts) by Andreeva et al. [24].
Security against RUP was one of the desired security properties listed for the Caesar competition [25].
RUP security is one of the properties of the APE AEAD algorithm [26,27].

Further work with respect to AEAD security definitions include SAE (Barwell et al.) [28], and RAE
(Robust Authenticated Encryption) (Hoang et al.) [15]. RIV (Abed et al.) [29] is a scheme based on
SIV that is provably secure when releasing unverified plaintexts. Badertscher [30] studies RAE within
the constructive cryptography framework of Maurer and Renner [31,32]. Boldyreva [33] models the
case where the adversary may receive one of a finite set of decryption failure errors. Earlier work
including [34,35] motivates the need for RUP security based on limited memory to hold the decrypted
ciphertext or real time requirements for processing encrypted data. Zhang et al. [36] consider the RUP
and nonce-misuse security of OCB and propose extensions.

Additional work in the area of small domain encryption includes [37].

1.5. Organization

In Section 2, we give cryptographic definitions. In Section 3, we present CMCC which is
an authenticated encryption scheme with minimal ciphertext expansion. Section 4 gives theorems and
proofs for the CMCC misuse resistant authenticated encryption (MRAE) and authenticated encryption
(AE) security bounds. We also present CWM in this section. In Section 5, we briefly discuss CMCC
performance. In Section 6 we draw conclusions.

2. Definitions

2.1. Pseudorandomness

All strings are binary strings (if S is a string, then S ∈ {0, 1}∗). The concatenation of two strings S
and T is denoted by S||T, or S, T where there is no danger of confusion. For a string S, |S| is its length
(in bits). If 1 ≤ i ≤ j ≤ |S|, then S[i . . . j] is the substring from the ith to the jth characters, inclusive.

We write w←W to denote selecting an element w from the set W using the uniform distribution.
We write x ← f () to denote assigning the output of the function f , or algorithm f , to x. SC denotes the
complement of set S.

Throughout the paper, the adversary is an algorithm which we denote as A.
We follow [38] as explained in [39] for the definition of a pseudo-random function: Let l1 and l2

be positive integers, and let F = {hL}L∈K be a family of keyed functions where each function hL maps
{0, 1}l1 into {0, 1}l2 . Let Hl1,l2 denote the set of functions from {0, 1}l1 to {0, 1}l2 .
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Given an adversary A which has oracle access to a function in Hl1,l2 or F . The adversary will
output a bit and attempt to distinguish between a function uniformly randomly selected from F and
a function uniformly randomly selected from Hl1,l2 . We define the PRF-advantage of A to be

Advpr f
F (A) = |Pr[L← K : AhL() = 1]− Pr[ f ← Hl1,l2 : A f () = 1]|

Advpr f
F (q, t) = max

A
{Advpr f

F (A)}

where the maximum is over adversaries that submit at most q queries and run in time t.
Intuitively, F is pseudo-random if it is hard to distinguish a random function selected from F

from a random function selected from Hl1,l2 .
We also define Advprp

F (q, t) in the same manner where the comparison is with a random
permutation and F is a family of keyed permutations.

2.2. Authenticated Encryption (AE) and Misuse Resistant Authenticated Encryption (MRAE)

Given plaintext (message) set P , associated data set AD, ciphertext set C, key set K, header
string set H, and message number set N . An authenticated encryption scheme (AE) is a tuple
Π = (K, E ,D) such that E : K ×H ×N ×AD × P → C, D : K ×H ×N ×AD × C → P ∪ {⊥},
and D(K, H, N, A, E(K, H, N, A, P)) = P for all H ∈ H, N ∈ N , A ∈ AD, P ∈ P . If there is no P ∈ P
such that C = E(K, H, N, A, P), then D(K, H, N, A, C) =⊥ . We write DK and EK in place of D(K, ...)
and E(K, ...).

For our security definition, we define the ideal world object as a random injective function.
The expansion function is e : H×N ×AD ×P → N. The expansion function depends only on the
length of its arguments. Let InjH,N ,AD

e (P , C) be the set of injective functions f fromH×N ×AD×P
into C such that | f (H, N, A, P)| = |P|+ e(|H|, |N|, |A|, |P|).

Let Π = (K, E ,D) be an AE with message space P , associated data set AD, header string setH,
message number set N , and expansion e. The AE-advantage of adversary A against Π is

AdvAE
Π (A) = Pr[K ← K : AEK(.,.,.)DK(.,.,.) ⇒ 1]−

Pr[ f ← InjH,N ,AD
e (P , C) : A f (.,.,.), f−1(.,.,.) ⇒ 1]

where encryption oracle queries use unique message numbers. f−1(H, N, A, C) = P if f (H, N, A, P) = C
and returns ⊥ if no such tuple (H, N, A, P) exists. We define MRAE-advantage and AdvMRAE

Π (A)
analogously except encryption oracle queries are allowed to repeat message numbers. We also define
AdvAE

Π (q, t, µ) = max AdvAE
Π (A) over all adversaries A that ask at most q queries totaling µ blocks

in time t. We define AdvMRAE
Π (q, t, µ) = max AdvMRAE

Π (A) over all adversaries A that ask at most
q queries totaling µ blocks in time t for the MRAE environment where message numbers may be
repeated in encryption oracle queries. We will also consider the case where the game is restricted if the
adversary submits a decryption oracle query which returns ⊥; in this case, the adversary will not be
allowed to make additional oracle queries prior to its output. We define Advpriv

E (A) = |Pr[L ← K :
AEL() = 1]− Pr[A$ = 1]| for encryption scheme E with expansion τ where $ returns a random string
with τ bits plus the input string’s bitlength. We also define Advpriv

E (q, t, µ) = max Advpriv
E (A) over

all adversaries A that ask q queries totaling µ blocks in time t. CTRK(N, P) denotes Counter Mode
encryption with key K, nonce N, and plaintext P.

TimeCTR(µ) is the sum of the worst case times to select key K, compute CTRK(IV, P) on plaintext
P inputs of total length µ, and to compute CTRK(IV, C) on ciphertext C inputs of total length µ.
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3. CMCC

We now present CBC-MAC-Counter-CBC (CMCC) mode. CMCC is a general purpose
authenticated encryption mode which is misuse resistant and optimized for energy constrained
environments.

3.1. Overview

We initially utilize CBC mode and obtain the value X. Here we utilize EK̄ to create the CBC IV W
from the message number M. This prevents the adversary from being able to manipulate M and P1

in a way that allows collisions in X values to be created. Then we apply a MAC algorithm to W, X
and use the result as the IV for counter mode encryption to encrypt P1 and obtain X2. Note that if the
message has length less than or equal to 32 bytes, then the output of the MAC function is xor’d with
P1 to obtain X2 and additional counter blocks are not needed. Finally we create the other half of the
ciphertext, X1 using CBC mode applied to X2 and exclusive-or with X.

Algorithms 1, 2, and Figure 1 describe CMCC.

Algorithm 1 CMCC Encryption: Encryption inputs are plaintext P, key K = K̄, L3, L2, L̄2, L1, public
message number N, and associated data A. CBC(IV, P, Key) is CBC encryption with initialization
vector IV, plaintext P, and key Key. A choice for MAC(P, Key) is the CMAC MAC algorithm [40] with
plaintext P and key Key. pad() is the padding algorithm defined in Section 3.3. EK̄ is the block cipher
with key K̄. |P|, the bitlength of P, is a multiple of 8, as is τ. U is obtained from V by zeroing bits 31 and
63 to enable faster addition (prevent carries) [41]. U + j is integer addition, 1 ≤ j ≤ i. When xor’ing
two strings of different length, the longer string is first truncated to the length of the shorter string.

CMCC Encrypt(P, K̄, L3, L2, L̄2, L1, N, A)
1: M← (10110110)16−|N|/8||N

2: Z ← 0τ

3: W ← EK̄(M)

4: Q← P||Z

5: L← |Q|/8

6: if L = 0 mod 2 then
7: P1 ← MSBL/2(Q)

8: P2 ← LSBL/2(Q)

9: else
10: P1 ← MSB(L−1)/2(Q)

11: P2 ← LSB(L+1)/2(Q)

12: end if

13: X ← CBC(W, pad(P1)P2 , L3)⊕ P2

14: Y ← X||A

15: V ← MAC(W||Y, L2)

16: i← b|P1|/Bc

17: P1 = P̄1,1|| . . . ||P̄1,i||P̄1,i+1 where |P̄1,1| = . . . = |P̄1,i| = B and |P̄1,i+1| = |P1| mod B.

18: U ← V and (164||01||131||01||131)

19: X2 ← V ⊕ P̄1,1||EL̄2
(U + 1)⊕ P̄1,2|| . . . ||EL̄2

(U + i)⊕ P̄1,i+1

20: X1 ← CBC(W, pad(X2)X , L1)⊕ X
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Algorithm 2 CMCC Decryption: Decryption inputs are ciphertext X1X2, key K = K̄, L3, L2, L̄2, L1,
public message number N, and associated data A.

CMCC Decrypt(X1, X2, K̄, L3, L2, L̄2, L1, N, A)
1: M← (10110110)16−|N|/8||N

2: Z ← 0τ

3: W ← EK̄(M)

4: X ← CBC(W, pad(X2)X1 , L1)⊕ X1

5: Y ← X||A

6: V ← MAC(W||Y, L2)

7: i← b|X2|/Bc

8: X2 = X̄2,1|| . . . ||X̄2,i||X̄2,i+1 where |X̄2,1| = . . . = |X̄2,i| = B and |X̄2,i+1| = |X2| mod B.

9: U ← V and (164||01||131||01||131)

10: P1 ← V ⊕ X̄2,1||EL̄2
(U + 1)⊕ X̄2,2|| . . . ||EL̄2

(U + i)⊕ X̄2,i+1

11: P2 ← CBC(W, pad(P1)X , L3)⊕ X

12: Q = P1||P2,

13: U = LSBτ/8(Q)

14: if (U ! = Z) then
15: return ⊥

16: else
17: Q = P̃||Z

18: return Plaintext P̃

19: end if
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Plaintext Z = {0}τ

||

divide into 2 strings where |P1| = |P2| or 

|P2| is one byte longer

Pad

MAC

P1,1
P1,2 P1,i+1

L3

L2

L1

||

{0xb6}16-|N|/8

Ciphertext: X1, X2

M

W||X||A

Q

Pad(P1)P2

N

EK

CBC

W

W

P1

Pad||

||A

X

CBC

U = V and 

164||01||131||01||131

EL4 (U+1) EL4 (U+i)

X2 Pad(X2)x

P2

X1

V

V

Figure 1. CMCC Stateless Encryption: L4 = L̄2.

3.2. Notation

We use ⊕ to denote bitwise xor. When we xor two strings with different lengths, the longer string
is first truncated to the length of the shorter string. bj is the bit b repeated j times. Sj denotes the bit
string S repeated j times. Thus (0110)2 = 01100110. A and B is the logical AND operation on two equal
length strings A and B. The notation R128 = 012010000111 denotes the bit string with 120 zero bits,
followed by the bits 1,0,0,0,0,1,1, and 1. x << n denotes the left shift operator (filling vacated bits with
zero bits), after shifting the string x by n bits to the left. B denotes the block length of the underlying
block cipher (128 bits for AES). Ek denotes encryption using the block cipher and input key k.

LSBj(x) and MSBj(x) denote the j least significant bytes and j most significant bytes of byte
string x respectively.

3.3. Padding (Definition of Pad Function)

We will apply the padding scheme from the AES-CMAC algorithm to our mode when CBC
encryption is performed. One difference is that we will sometimes need to pad by a full block length
(B/8 bytes). (If S1 is a multiple of B and S2 is one byte longer, than we pad S1 with B/8 bytes. If both
strings are the same length which is a multiple of B then we do not add any padding bytes.)
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1. Given the CBC encryption key K, and byte strings S1 and S2, where |S1| ≤ |S2|. We define
pad(S1)S2 as follows:

2. pad_length is the number of bits (which is a multiple of 8) needed to bring S1 up to the length of
S2 and then bring S1 up to a multiple of the block size. More formally,

pad_length = |S2| − |S1|+ B− (|S2| mod B)

where mod values are taken between 1 and B.
3. We define L = EK(0B). If the most significant bit of L is zero, then define K1 = L << 1,

otherwise, we define K1 = (L << 1)⊕ R128. If the most significant bit of K1 is zero, then define
K2 = K1 << 1. Otherwise, we define K2 = (K1 << 1)⊕ R128.

If pad_length = 0, then |S1| is a multiple of B; let L be the last block of S1 : S1 = F||L.
Then pad(S1)S2 = F||(L⊕ K1).

If 8 ≤ pad_length ≤ B, then we append the following string to S1 : 10pad_length−1 : S̄1 =

S1||10pad_length−1. Let S̄1 = F||L where L has B bits. Then pad(S1)S2 = F||(L⊕ K2).

4. Proof of Security

We first give some examples illustrating attacks against CMCC. We will then prove a MRAE
security bound for CMCC (see Theorem 1). A key point is that ciphertext queries that do not return
invalid can be used to create new plaintexts that satisfy a relation (see examples below) that is less
likely to be satisfied given a random injection. Of course the MRAE security bound is also an AE
security bound for CMCC, but we prove a smaller AE security bound in Theorem 2.

To give more insight into the best attacks and security properties of CMCC, we utilize the
following examples.

Example 1. Without the encoding step (for the zero bit authentication tag), CMCC is not MRAE secure
(the adversary advantage is large in the MRAE security game). To illustrate this fact, the adversary submits
a plaintext query followed by a ciphertext query using the same message number M and value X2. Both queries
are twice the block length of the underlying block cipher. The adversary can compute X1 ⊕ X̄1 = X ⊕ X̄.
The adversary then creates two new plaintexts by modifying both P2 and P̄2 so that the two corresponding
ciphertexts have equal X values. Note that the two plaintexts have distinct P1 values (P11 and P12). The adversary
submits both plaintexts along with the message number M and receives the two ciphertexts whose X2 values xor
to P11 ⊕ P12. This relation is only satisfied with probability 1/α for a random injection and thus the adversary
advantage is large.

Example 2. Given a collision of X values for two plaintext queries in the MRAE security game (message
numbers may be reused). Then the adversary can modify the respective P2 values to create two new plaintexts such
that the corresponding ciphertexts have equal X values. Then the adversary can win with high probability as in
the preceding example. This attack works even if the zero bit authentication tag is being used. Thus q(q− 1)/2α

will be part of the security bound for CMCC MRAE security.

Lemma 1. ([2]—Theorems 2 and 7) SIV has MRAE security bound

AdvMRAE
SIV (q, t, µ) ≤ Advpr f

CMAC(q, t́) + Advpriv
CTR(q, t́, µ) + 5q/2B + q2/2B+9

where t́ = t + cµ + TimeCTR(µ) and c is a constant.

Lemma 2. Consider the following generalization of the SIV [2] algorithm, SIV-G: We include a distinguished
string T as part of the header H. We replace the plaintext P in the PRF calculation with f (P, T) where f is
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an injective function (thus f (P, T) = f (P̄, T̄) implies P = P̄ and T = T̄.) See Algorithms 3 and 4. The security
bound for SIV-G is unchanged from SIV: SIV-G has MRAE security bound

AdvMRAE
SIV−G(q, t, µ) ≤ Advpr f

CMAC(q, t́) + Advpriv
CTR(q, t́, µ) + 5q/2B + q2/2B+9.

where t́ = t + cµ + TimeCTR(µ) and c is a constant.

Algorithm 3 SIV-G Encryption: Encryption inputs are header H = T, nonce N, associated data A,
and plaintext P.
SIV-G Encrypt EL2,L̄2

(H, N, A, P)
1: X ← f (P, T)

2: IV ← CMACL2(N||X||A)

3: C ← CTRL̄2
(IV, P)

4: return Y = IV||C

Algorithm 4 SIV-G Decryption: Decryption inputs are header H = T, nonce N, associated data A,
and Y.
SIV-G Decrypt DL2,L̄2

(H, N, A, Y)
1: if |Y| < B then
2: return ⊥

3: else
4: IV ← Y[1 . . . B]

5: C ← [B + 1 . . . |Y|]

6: P← CTRL̄2
(IV, C)

7: X ← f (P, T)

8: IV2 ← CMACL2(N||X||A)

9: if IV = IV2 then
10: return P

11: else
12: return ⊥

13: end if

14: end if

Theorem 1. Let bi =number of bytes in ith query response, 1 ≤ i ≤ q. Let µ = ∑
q
i=1dbi/32e. B is the cipher

block length. Let β = min{α, 2B}. Let the CMCC MAC function be CMAC [40]. Let s be the maximum number
of CMAC blocks in a query; c1 is a constant. CMCC is a misuse resistant authenticated encryption scheme with
MRAE-advantage bounded by

q(q− 1)/β + 1− (1− 1/β− 2−τ)x + (5s2 + 1)q2/2B+

Advprp
E (sq + 1, t + c1sq + TimeCTR(µ)) + Advprp

E (sq, t) + sq(sq− 1)/2B+1 + µ(µ− 1)/2B+1+

Advpriv
CTR(q, t́, µ) + 5q/2B + q2/2B+9 + 3q(q− 1)/2B+1 + Advprp

E (q, t)

given that the adversary is restricted to q queries and t time, E is the underlying block cipher for CMAC (e.g.,
AES), α = 28m where Len is the byte length of the minimal length plaintext query response, m = bLen/2c,
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assuming up to x invalid ciphertexts do not result in session termination, and τ is the number of bits in the
authentication tag. We also assume q− 1 ≤ 2τ .

Remark 1. Intuitively, there are two types of relations that distinguish CMCC from a random injection:

1. For messages where |α| is shorter than the block length, and M = M̄, we have the relation X2 ⊕ X̄2 =

P1⊕ P̄1 with higher probability equal to 1/α+ (α− 1)/α2 for CMCC versus 1/α for the random injection.
The reason is that we may have a collision of X values with probability 1/α and if that does not occur, the
resulting V values may still be equal in the first log2(α) bits.

2. If M = M̄, X2 = X̄2, and P1 = P̄1, then X1 ⊕ X̄1 = P2 ⊕ P̄2. The latter occurs with probability 1/β for
CMCC but it occurs with probability 1/β2 for a random injection.

Proof. Case I: All plaintexts have length ≤ 2 ∗ B + 8− τ bits: We use a games based proof to establish
the bound claim for the theorem. Game G0 is depicted in Algorithm 5. Game G0 gives the adversary
the CMCC encryption and decryption oracles and the adversary’s probability of success is equal to the
adversary’s MRAE-advantage against CMCC.

Algorithm 5 CMCC MRAE proof Game G0.
Initialize: Select the CMCC key, using the uniform random distribution. Let Z be the bit string with τ
zero bits. bad4 = bad5 = f alse. Let set_o f _used_X = ∅.
Encrypt(P, A, N): See Algorithm 1 for definition.
Decrypt(C, A, N): See Algorithm 2 for definition.
Output: Return the adversary’s output.

Game G1 is the same as game G0 except we replace the CMAC MAC function with a random
function. Now consider an adversary AE ,D where E and D are either the game G0 encrypt and
decrypt oracles or the game G1 encrypt and decrypt oracles. When A submits P, A, N, then X1,
X2 is returned and we give the distinguisher D X2 ⊕ P1 = F(P, A, N) where F is either CMAC or
a random function. When A submits X1, X2, A, N then P is returned and we give the distinguisher D
X2⊕ P1 = F(P, A, N). WhenA outputs b, D also outputs b (b ∈ {0, 1}). ThenA′s probability of success
is bounded by the probability bound for any adversary to distinguish CMAC from a random function
which is (5s2 + 1)q2/2B + Advprp

E (sq + 1, t + c1sq + TimeCTR(µ)) [42] where E is the underlying block
cipher, e.g., AES, and s is the maximum number of blocks in any query.

Thus

|Pr[AG1 ⇒ 1]− Pr[AG0 ⇒ 1]| ≤ (5s2 + 1)q2/2B + Advprp
E (sq + 1, t + c1sq + TimeCTR(µ))

Game G2 is the same as game G1 except the block ciphers used in CBC encryption for computing
X1 and X are replaced with random functions. Consider the game F (see Algorithm 6) where prf game
adversary B has oracle access to functions f1 and f2 and distinguishes between the following:

1. f1 = EL3 , f2 = EL1 , and
2. f1 = g1 ∈ H128,128, f2 = g2 ∈ H128,128 (g1 and g2 are random functions.)

f1 = EL3 if and only if f2 = EL1 . B will run AGi as a subroutine, i = 1, 2. If f1 = EL3 , then A is in
game G1, and if f1 = g1 then A is in game G2.

Algorithm 6 Game F with PRF Adversary B.

Initialize: B selects keys K̄, L̄2, L2 using the uniform distribution. B has oracle access to f1 and f2.
Response to A′s encrypt query: B computes and returns X1, X2 to A.
Response to A′s decrypt query: B computes and returns P1, P2 to A.
Output: Return A’s output.
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Each encryption query from A results in B′s query of W ⊕ pad(P1)P2 to f1. A will output a bit
indicating whether it is in game G1 or game G2. B outputs the same bit for the prf game. Thus A′s
probability of success is bounded by B′s probability of success. Let q be the number of queries to f1.
Then Adv(A, q, t) ≤ Advpr f

E (q, t) where E is the block cipher.
Thus we obtain

|Pr[AG2 ⇒ 1]− Pr[AG1 ⇒ 1]| ≤ Advpr f
E (q, t) ≤ Advprp

E (q, t) + q(q− 1)/2B+1

Game G3 is the same as game G2 except:

1. Initialize is modified: Initially we set QD(N, A) = ∅ for all N, A. QD(N, A) is a subset of the
plaintexts.

2. The line: if (U! = Z) return ⊥; otherwise Q = P̃||Z and return Plaintext P̃, A, N is replaced with:
Q̄ is a random string of length |Q| such that the prefix of Q̄ of length |Q| − τ is in QD(N, A)C,
Ū = LSBτ/8(Q̄). If (Ū! = Z) return ⊥, else Q̄ = P̃||Z, return P̃, A, N.

3. If the adversary submits the encryption query P, A, N, then we set QD(N, A) = QD(N, A)∪ {P}.

Then the advantage of A in distinguishing G3 and G2 is bounded by the probability of obtaining
a valid response from the decryption oracle. Consider the adversary’s optimal strategy for obtaining
a valid ciphertext response in game G2; given the ciphertext query X̄1, X̄2, N̄. Clearly if no encryption
queries have been submitted (so no query responses have been received) then the probability of a valid
response is 2−τ . Suppose we have submitted one previous encryption query: P1, P2, N, A returning
X1, X2.

case a: N̄ = N and X̄2 6= X2.

Then the probability of a valid response is independent of this previous query since we evaluate
the random function at a new domain point. Thus X̄ is uniform random, and the value P2 will be
uniform random, so the probability of a valid response is 2−τ .

case b: N̄ 6= N and X̄2 = X2.

The argument as in case a applies; the probability of a valid response is 2−τ .

case c: N̄ 6= N and X̄2 6= X2.

The adversary may select X̄1 = X1. Then X = X̄ due to W̄ ⊕ X̄2 = W ⊕ X2 with probability
2−B. The input to the random function for computing P2 will also be the same with probability 2−B;
otherwise, the probability of a valid response will be 2−τ . Thus the probability of a valid response is
2−τ + 2−B(2−B + 2−τ).

case d: N̄ = N and X̄2 = X2.

We have Pr[P̄1 = P1] = 1/β and in that case if the last τ bits of X̄1 equal the last τ bits of X1 then
the query is valid. We have P̄1 6= P1 with probability (β− 1)/β. In this case, P2 is uniform random so the
probability that the query is valid is 2−τ . Thus the probability of a valid query is 1/β+ ((β− 1)/β)2−τ .

Case d maximizes the probability of a valid response. There are two strategies for additional
queries: multiple encryption queries followed by decryption queries or a single encryption query
followed by decryption queries. Multiple encryption queries are likely to result in distinct X2 values;
in any case, two responses with equal N and X2 values allows the Adversary to distinguish CMCC
from a PRI with high probability without any decryption queries (see Games G4 and G5.) Thus the
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optimal strategy for multiple queries using the case d strategy is a single encryption query followed by
decryption queries.

For cases a and b, multiple encryption queries followed by ciphertext queries does not increase
the probability of a valid decryption query beyond 2−τ . Thus these strategies are suboptimal in the
multiple queries case as well.

For case c, multiple encryption queries followed by multiple decryption queries does increase the
probability of a valid decryption query. The success probability is dominated by q2(2−B−τ) which is
less than the optimal case d strategy.

Thus the optimal adversary strategy is a single plaintext query followed by successive ciphertext
queries that match the N and X2 values from the plaintext query.

The bound for Adversary success, assuming at most x, 1 ≤ x ≤ q, invalid ciphertext queries prior
to session termination, is

|Pr[AG3 ⇒ 1]− Pr[AG2 ⇒ 1]| ≤ 1− (1− 1/β− 2−τ)x.

Game G4 is the same as game G3 except the line
X = CBC(W, pad(P1)P2 , L3)⊕ P2,
is replaced with
X = CBC(W, pad(P1)P2 , L3) ⊕ P2; if X ∈ set_o f _used_X, bad5 = true and reselect X : X ←
set_o f _used_XC. If X /∈ set_o f _used_X, set_o f _used_X = set_o f _used_X ∪ {X}. Then

|Pr[AG4 ⇒ 1]− Pr[AG3 ⇒ 1]| ≤ q(q− 1)/2β + q(q− 1)/2B.

Game G5 is depicted in Algorithm 7. Then game G5 and game G4 are indistinguishable except
that collisions are possible in the strings S2 where C includes S1||S2. When such a collision occurs,
the games are distinguishable; the bound on collisions is q(q− 1)/2β. It is possible in game G4 that a
ciphertext query that is not invalid will return a plaintext and another encrypt query with a different
plaintext returns the same ciphertext. This last sequence is not possible in game G5. However, the
bound from Game G3 allows us to assume that no valid ciphertext queries occur. Thus

|Pr[AG5 ⇒ 1]− Pr[AG4 ⇒ 1]| ≤ q(q− 1)/2β + q(q− 1)/2B+1.

Thus the bound claimed in the theorem statement holds.

Algorithm 7 CMCC MRAE proof Game G5.

Initialize: Select a random injection f ∈ InjN ,A
e (P , C) . Let Z be the bit string with τ zero bits.

e(N, A, P) = τ for all N, A, and P.
Encrypt(P, A, N): Return f (N, A, P).
Decrypt(C, A, N): f−1(N, A, C) = P if f (N, A, P) = C and return ⊥ if no such triple (N, A, P) exists.
Output: Return the adversary’s output.

case ii: Some plaintexts have length greater than or equal to 2 ∗ B + 16− τ bits:
We note that this case is a suboptimal strategy for the adversary. Game G1 is unchanged and for

game G2 the term Advprp
E (q, t) + q(q− 1)/2B+1 from above is generalized to Advprp

E (sq, t) + sq(sq−
1)/2B+1. The game G3 bound holds. For CBC(W, pad(X2)X) in game G3, if the every input to each
random function invocation is a previously unseen input (fresh input), then the output is random (the
function is a random function). This bound on failure here is µ(µ− 1)/2B+1 + q(q− 1)/2B+1.

Lemma 2 applies if all of the X values from the queries are distinct. For the function f in the
Lemma, we use P = 2nd block o f P1, . . . , last block o f P1, T = P2||1st block o f P1, and f (P, T) =

X = CBC(W, pad(P1)P2 , L3)⊕ P2. The probability that the X values from the queries is not distinct is
bounded by q(q− 1)/2β + q(q− 1)/2B. The X1 values and first block of X2 are random strings when
these failure events do not occur and thus the CMCC adversary’s advantage is the same as the SIV-G
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advantage. Thus the CMCC adversary’s advantage in distinguishing between games G3 and G5 is
bounded by the sum of the two terms above plus the SIV-G security bound.

We now prove a security bound for the CMCC AEAD algorithm; here message numbers are not
allowed to be repeated in encryption (plaintext) queries. In the following, games H0, H1, H2, and H3

are identical to games G0, G1, G2, and G5 respectively, except the Hi games are in the AE security game
where encryption queries may not reuse message numbers from previous encryption queries.

Lemma 3. Let q− 1 ≤ 2τ . Given the adversary strategy in game H2 (in the AE game) where the adversary
submits a plaintext query P1, P2, N and obtains the response X1, X2. The adversary then submits a succession
of ciphertext queries of the form X̄1, X2, N where the last τ bits of X̄1 are equal to the last τ bits of X1.
Given the relation

X̂1 ⊕ X̄1 = P̂2 ⊕ P̄2 (1)

Then
Pr[2 distinct queries P̂1, P̂2, N, X̂1, X2 and P̄1, P̄2, N, X̄1, X2 satis f y (1)] ≤

(q− 1)∑
q−2
i=0 (q−2

i )λ1/2iτ < λ1e(q− 1) < 2e(q− 1)/β

where λ1 = 1/β + (β− 1)/β2.

Proof. We use induction over the number of queries. If q = 2, we have Pr[(1) holds] = λ1 =

(q− 1)∑
q−2
i=0 (q−2

i )λ1/2iτ < λ1e. Suppose the lemma is valid for k = q− 1. We now prove the k = q
case. We have

Pr[(1) in H2 with q queries] = Pr[(1) in H2 with f irst q− 1 queries]+
Pr[not (1) in H2 with f irst q− 1 queries ∩ (1) in H2 with qth query] ≤
Pr[(1) in H2 with f irst q− 1 queries] + Pr[(1) in H2 with qth query] ≤

(q− 2)∑
q−3
i=0 (q−3

i )λ1/2iτ + λ1 + (1− λ1)
(

∑
q−2
i=0 (q−2

i )2−iτ(1− 2−τ)q−2−iiλ1

)
<

(q− 2)∑
q−3
i=0 (q−3

i )λ1/2iτ + λ1 + ∑
q−2
i=0 (q−2

i )iλ1/2iτ =

∑
q−3
i=0

(
(q−3

i )(q− 2)λ1/2iτ + (q−2
i )iλ1/2iτ

)
+ λ1 + (q− 2)λ1/2(q−2)τ =

∑
q−3
i=0 (q−2

i )(q− 2)λ1/2iτ + (q− 2)λ1/2(q−2)τ + λ1 =

λ1 + (q− 2)∑
q−2
i=0 (q−2

i )λ1/2iτ <

(q− 1)∑
q−2
i=0 (q−2

i )λ1/2iτ .

Also,
q−2

∑
i=0

(
q− 2

i

)
1/2iτ <

q−2

∑
i=0

1/i! < e

which completes the proof.

Lemma 4. Let q − 1 ≤ 2τ . Given the adversary strategy in game H3 above where the adversary submits
a plaintext query P1, P2, N and obtains the response X1, X2. The adversary then submits a succession of
ciphertext queries of the form X̄1, X2, N where the last τ bits of X̄1 are equal to the last τ bits of X1. Then

Pr[2 distinct queries P̂1, P̂2, N, X̂1, X2 and P̄1, P̄2, N, X̄1, X2 satis f y (1)] ≥
(q− 1)2−τ/β

Proof. The probability that (1) is satisfied is bounded below by

1− (1− 2−τ/β)q−1 =

1−∑
q−1
i=0 (q−1

i )(−2−τ/β)i ≥ 1− (1− (q− 1)2−τ/β) = (q− 1)2−τ/β
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Theorem 2. Let bi =number of bytes in ith query response, 1 ≤ i ≤ q. Let µ = ∑
q
i=1dbi/32e. B is the cipher

block length. Let β = min{α, 2B}. Let the CMCC MAC function be CMAC [40]. Let s be the maximum number
of CMAC blocks in a query; c1 is a constant. L = max1≤i≤q{bi}. CMCC encryption (stateless version) is an
authenticated encryption with associated data (AEAD) scheme with AE-advantage bounded by

q(q− 1)2−τ−1(1/β + 2−τ) + 2e(q− 1)(1/β + (L− 1)/2B+τ + 2−B)+

(5s2 + 1)q2/2B + Advprp
E (sq + 1, t + c1sq + TimeCTR(µ)) + Advprp

E (sq, t) + sq(sq− 1)/2B+1+

µ(µ− 1)/2B+1 + Advpriv
CTR(q, t́, µ) + 5q/2B + q2/2B+9

given that the adversary is restricted to q queries and t time, E is the underlying block cipher for CMAC
(e.g., AES), α = 28m where Len is the byte length of the minimal length plaintext query response, m = bLen/2c,
and τ > 0 is the number of bits in the authentication tag. We also assume q− 1 ≤ 2τ .

Proof. case 1: All plaintexts have length ≤ 2 ∗ B + 8− τ bits:
For the transition from game H2 to game H3 we have two mechanisms for the adversary to

distinguish between the two: X2 ⊕ X̄2 = P1 ⊕ P̄1, and X1 ⊕ X̄1 = P2 ⊕ P̄2 (1) for two distinct queries
X2, X1, N, P1, P2 and X̄2, X̄1, N̄, P̄1, P̄2. (If neither of the Equation (1) or Equation (2) hold in game H2,
then every invocation of the random functions is on a fresh point and thus is indistinguishable from
game H3.)

We first consider distinguishing between H2 and H3 via (1):

case a: Here the adversary uses the strategy from Lemma 3: the adversary submits a single plaintext
query with message number N and receives a response with X1 and X2, followed by ciphertext queries
with N̄ = N, and X̄2 = X2, where the last τ bits for X̄1 are equal to the last τ bits of X1 from the
plaintext query. Then we have

|Pr[AH2 ⇒ 1]− Pr[AH3 ⇒ 1]| ≤
2e(q− 1)/β− (q− 1)2−τ/β ≤ 2e(q− 1)/β

where we have applied both Lemma 3 and Lemma 4 from above.

case b: Games H2 and H3 can also be distinguished if a collision occurs on W ⊕ pad(P1)P2 and
W ⊕ pad(X2)X between 2 distinct plaintext queries in game H2 which gives a slightly higher
probability for the relation X1 ⊕ X̄1 = P2 ⊕ P̄2 in H2 versus H3. This probability is bounded by
q(q + 1)2−2B−1. We can ignore the corresponding case where one or both queries are ciphertext queries
since the probability would be less. Furthermore, this strategy is sub-optimal compared to the case
a strategy above.

case c: Neither of the above two cases: then at least one of the CBC random function replacements get
evaluated on a point distinct from the point in any other query. Thus the probability of (1) is the same
in both H2 and H3.

We now check the adversary’s optimal strategy to distinguish between H2 and H3 based on

X2 ⊕ X̄2 = P1 ⊕ P̄1 (2)

case d: Given two previous valid ciphertext queries with identical X2, N, and last τ bits of X1 values,
the adversary may leverage the technique from the examples above to create a new encryption query
that will have the same N value and which will match one of the previous query’s X value. Then this
query response can be used to distinguish between H2 and H3. The adversary advantage is bounded
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by q(q− 1)2−τ−1(1/β + 2−τ).

case e: Given a combination of zero or more plaintext queries and one or more ciphertext queries,
with at least two total queries. If we have a match on the last τ bits of X1 values for some queries as
well as a collision on W ⊕ pad(X2)X then the adversary can follow the approach in case d above and
distinguish between H2 and H3 based on (2) above. Note that the X2 and N values are distinct across
the queries. The probability of such a collision between two queries is at best 2−B and therefore this
strategy is suboptimal.

case f: The new query (either X̄1, X̄2, N̄ or P̄1, P̄2, N̄) is such that N̄ is distinct from the N in
previous queries. Then X2 ⊕ X̄2 = P1 ⊕ P̄1 occurs with the same probability in both H3 and H2

since N̄ results in a previously unseen point for the domain of the CMAC random function replacement.

case g: The new ciphertext query is such that X̄2 and N̄ match the corresponding values in a set of
previous queries: Then the corresponding X values are distinct. So X2 ⊕ X̄2 = P1 ⊕ P̄1 occurs with the
same probability in both H3 and H2. (Here we assume that the last τ bits of the X1 values are distinct,
or alternatively, that all of the previous queries are plaintext queries, to distinguish this case from case
d above.)

case h: The new ciphertext query is such that X̄2 is distinct from and N̄ matches the corresponding
values in a set of previous queries:

Note that only one of the previous queries is a plaintext query whereas the others must be
valid ciphertext queries. Then we have a similar scenario as for case a above, and we can apply
Lemma 3 with the collision bound 2−τ+1/β in place of 1/β + (β − 1)/β2. Since the latter value is
larger, this strategy is suboptimal.

case i: None of the above cases. Then the inputs to the CBC(W, pad(X2)X) random function
replacement are distinct across all queries. Thus the probability of X1 ⊕ X̄1 = X ⊕ X̄ is 1/β for
any two queries. Also, the above cases are exhaustive for (X, N) = (X̄, N̄). Thus the probability of (2)
is the same in both H2 and H3.
case 2: At least some plaintexts have length ≥ 2 ∗ B + 16− τ bits:
The case with longer plaintexts/ciphertexts is similar to the Theorem 1 case ii above. The term
2e(q− 1)/β is generalized to 2e(q− 1)(1/β + (L− 1)/2B+τ + 2−B).

4.1. CMCC with MAC (CWM)

In this section, we present a variant, CMCC with MAC (CWM). Algorithms 8 and 9 specify CWM.
For the proof of CWM AE security, the main distinction with CMCC above is that we no longer restrict
q− 1 ≤ τ. By requiring the MAC computation, CWM achieves a stronger security bound at the cost of
additional processing, when compared with CMCC.
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Algorithm 8 CWM Encryption: Encryption inputs are plaintext P, key K = K̄, K̃, L3, L2, L̄2, L1,
public message number N, and associated data A. CBC(IV, P, Key) is CBC encryption with
initialization vector IV, plaintext P, and key Key. One choice for MAC(P, Key) is the CMAC MAC
algorithm [40] with plaintext P and key Key. pad() is the padding algorithm defined in Section 3.3.
EK̄ is the block cipher with key K̄. |P|, the bitlength of P, is a multiple of 8, as is τ. U is obtained from
V by zeroing bits 31 and 63 to enable faster addition (prevent carries) [41]. U + j is integer addition,
1 ≤ j ≤ i. When xor’ing two strings of different length, the longer string is first truncated to the length
of the shorter string.

CWM Encrypt(P, K̄, K̃, L3, L2, L̄2, L1, N, A)
1: M← (10110110)16−|N|/8||N

2: Z ← MAC(P, K̃)

3: W ← EK̄(M)

4: Q← P||Z

5: L← |Q|/8

6: if L = 0 mod 2 then
7: P1 ← MSBL/2(Q)

8: P2 ← LSBL/2(Q)

9: else
10: P1 ← MSB(L−1)/2(Q)

11: P2 ← LSB(L+1)/2(Q)

12: end if

13: X ← CBC(W, pad(P1)P2 , L3)⊕ P2

14: Y ← X||A

15: V ← MAC(W||Y, L2)

16: i← b|P1|/Bc

17: P1 = P̄1,1|| . . . ||P̄1,i||P̄1,i+1 where |P̄1,1| = . . . = |P̄1,i| = B and |P̄1,i+1| = |P1| mod B.

18: U ← V and (164||01||131||01||131)

19: X2 ← V ⊕ P̄1,1||EL̄2
(U + 1)⊕ P̄1,2|| . . . ||EL̄2

(U + i)⊕ P̄1,i+1

20: X1 ← CBC(W, pad(X2)X , L1)⊕ X
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Algorithm 9 CWM Decryption: Decryption inputs are ciphertext X1X2, key K = K̄, K̃, L3, L2, L̄2, L1,
public message number N, and associated data A.

CWM Decrypt(X1, X2, K̄, K̃, L3, L2, L̄2, L1, N, A)
1: M← (10110110)16−|N|/8||N

2: W ← EK̄(M)

3: X ← CBC(W, pad(X2)X1 , L1)⊕ X1

4: Y ← X||A

5: V ← MAC(W||Y, L2)

6: i← b|X2|/Bc

7: X2 = X̄2,1|| . . . ||X̄2,i||X̄2,i+1 where |X̄2,1| = . . . = |X̄2,i| = B and |X̄2,i+1| = |X2| mod B.

8: U ← V and (164||01||131||01||131)

9: P1 ← V ⊕ X̄2,1||EL̄2
(U + 1)⊕ X̄2,2|| . . . ||EL̄2

(U + i)⊕ X̄2,i+1

10: P2 ← CBC(W, pad(P1)X , L3)⊕ X

11: Q = P1||P2,

12: U = LSBτ/8(Q)

13: Q = P̃||U

14: if (U ! = MAC(P̃, K̃) then
15: return ⊥

16: else
17: return Plaintext P̃

18: end if

We give the MRAE security bound and the AE security bound for CWM in the next two theorems.

Theorem 3. Let bi =number of bytes in ith query response, 1 ≤ i ≤ q. Let µ = ∑
q
i=1dbi/32e. B is the cipher

block length. Let β = min{α, 2B}. Let the CMCC MAC function be CMAC [40]. Let s be the maximum
number of CMAC blocks in a query; c1 is a constant. L = max1≤i≤q{bi}. CWM encryption (stateless version)
is a misuse resistant authenticated encryption scheme with MRAE-advantage bounded by

q(q− 1)/β + q/(2τ β) + (q− 1)(q− 2)/(22τ β)+

(L− 1)((q− 1)/(2B+τ−1) + (q− 1)(q− 2)/2B+2τ) + (q− 1)(q− 2)/22τ+1 + q(q− 1)(q− 2)/23τ+2+

(5s2 + 1)q2/2B + Advprp
E (sq + 1, t + c1sq + TimeCTR(µ)) + Advprp

E (sq, t) + sq(sq− 1)/2B+1+

µ(µ− 1)/2B+1 + Advpriv
CTR(q, t́, µ) + 5q/2B + q2/2B+9 + 3q2/2B+1 + Advprp

E (q, t)

given that the adversary is restricted to q queries and t time, E is the underlying block cipher for CMAC
(e.g., AES), α = 28m where Len is the byte length of the minimal length plaintext query response, m = bLen/2c,
assuming up to x invalid ciphertexts do not result in session termination, and τ is the number of bits in the
authentication tag.

Proof. The proof is similar to the proof of Theorem 1 above with the main difference being the bound
for the strategy in Lemma 3. Also, we use the game structure from Theorem 2, except we are in the
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MRAE security model. Consider the strategy from Lemma 3 for the case where plaintexts have short
length (≤ 2B + 1− τ). Then we have (in game H2):

Pr[(1)] = Pr[(1) with 1st query] + Pr[(1) without 1st query] =
(q− 1)(1/(2τ β) + (β− 1)/(2τ β2)) + (q−1

2 )(1/(22τ β) + (β− 1)/(β222τ)) <

q/(2τ β) + (q− 1)(q− 2)/(22τ β)

This term generalizes to

q/(2τ β) + (q− 1)(q− 2)/(22τ β) + (L− 1)((q− 1)/(2B+τ−1) + (q− 1)(q− 2)/2B+2τ)

for the arbitrary length messages case.
Also, we have that

Pr[(2)] = (q− 1)(q− 2)/22τ+1 + q(q− 1)(q− 2)/23τ+2

(Here we ignore the strategy consisting of a plaintext query followed by ciphertext queries, all with the
same nonce value, where the X1 and X2 values are randomly chosen. This strategy would add some
of the same terms to the security bound as the current strategy adds above for (1). But since the final
result is smaller, we ignore this strategy). We have

Pr[AH2 ⇒ 1] ≤ Pr[(1)] + Pr[(2)].

Thus
|Pr[AH2 ⇒ 1]− Pr[AH3 ⇒ 1]| ≤ Pr[(1)] + Pr[(2)]

Theorem 4. Let bi =number of bytes in ith query response, 1 ≤ i ≤ q. Let µ = ∑
q
i=1dbi/32e. B is the cipher

block length. Let β = min{α, 2B}. Let the CMCC MAC function be CMAC [40]. Let s be the maximum number
of CMAC blocks in a query; c1 is a constant. L = max1≤i≤q{bi}. CWM encryption (stateless version) is an
authenticated encryption with associated data (AEAD) scheme with AE-advantage bounded by

q(q− 1)2−3τ−1 + (q− 1)/(2τ−1β) + (q− 1)(q− 2)/(22τ β)+

(L− 1)((q− 1)/(2B+τ−1) + (q− 1)(q− 2)/2B+2τ) + (5s2 + 1)q2/2B+

Advprp
E (sq + 1, t + c1sq + TimeCTR(µ)) + Advprp

E (sq, t) + sq(sq− 1)/2B+1+

µ(µ− 1)/2B+1 + Advpriv
CTR(q, t́, µ) + 5q/2B + q2/2B+9 + 2q2/2B+1 + Advprp

E (q, t)

given that the adversary is restricted to q queries and t time, E is the underlying block cipher for CMAC
(e.g., AES), α = 28m where Len is the byte length of the minimal length plaintext query response, m = bLen/2c,
and τ > 0 is the number of bits in the authentication tag.

Proof. We use the game structure from Theorem 2. The proof is similar to the proof of Theorem 2
above with the main difference being the bound for the strategy in Lemma 3 and the bound for the
other potentially optimal strategy from case 1d in the proof of Theorem 2. The bound for the case 1d
strategy is

q(q− 1)2−3τ−1

which replaces
q(q− 1)2−2τ−1

in Theorem 2 above.
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For the strategy in Lemma 3, we have

(q− 1)/(2τ−1β) + (q− 1)(q− 2)/(22τ β) + (L− 1)((q− 1)/(2B+τ−1) + (q− 1)(q− 2)/2B+2τ)

which replaces the term 2e(q− 1)(1/β + (L− 1)/2B+τ + 2−B).

4.2. Security Bound Summary and Security Comparison

Table 2 summarizes the dominant terms from the security bounds for CMCC and CWM for short
messages (less than 2B + 16 bits), for both AE and MRAE security. We also include the GCM and SIV
authenticated encryption algorithms for comparison.

We compare the security of SIV, CMCC MRAE, CMCC AE, CWM MRAE, and CWM AE for
a 16 byte plaintext with a 4 byte authentication tag (SIV’s IV length is 16 bytes so a 4 byte IV length,
although possible, is not currently an option for SIV). Respectively, we obtain approximate security
bounds of q2/232, q/232, q2/264, q2/265, and q2/296.

Table 2. Dominant Terms for Security Bounds for GCM, SIV, CMCC and CWM (smaller message lengths).

Algorithm/Misuse Resistant? Ciphertext Expansion Security Bound (Confidentiality)

GCM/No τ q/2τ + . . .
SIV/Yes |IV| q(q− 1)/2|IV|+1 + . . .

CMCC (MRAE)/Yes τ q/2τ + q/β + q(q− 1)/β

CMCC (AE)/No τ q(q− 1)2−τ−1(1/β + 2−τ) + 2e(q− 1)/β

CWM (MRAE)/Yes τ q2/22τ+1 + q3/23τ+2 + q2/(22τ β) + q/(2τ β) + q(q− 1)/β

CWM (AE)/No τ q2/23τ + q2/(22τ β) + q/(2τ−1β)

5. Performance

Table 1 compares the number of block cipher calls for the CMCC, SIV, and CWM algorithms,
for varying message sizes. CMCC requires 3dLength/32e+ 2 + d(Length/32)− 1e block cipher calls,
where Length is the message length (including tag).

Table 3 compares the processing performance of GCM, OCB, HS1-SIV v2, and CMCC for two AMD
machines and two message sizes (64 and 1536 bytes). These numbers (cycles per byte) were obtained
as part of the Supercop performance testing for the Caesar competition. The results are the median for
many test runs of encrypting messages with the two sizes. Decryption results are omitted since they
are very similar to the encrypt numbers.

Table 3. Machine 1: AMD64 Zen 800f12 AMD EPYC 7601, 64 × 2200 MHz and Machine 2: AMD64;
Zen (800f11); 2017 AMD Ryzen 7 1700; 8 × 3000 MHz (cycles per byte).

Algorithm Machine 1: 1536 Bytes Machine 1: 64 Bytes Machine 2: 1536 Bytes Machine 2: 64 Bytes

OCB 0.56 5.84 0.84 7.97
GCM 1.13 8.94 1.80 24.84

HS1-SIV2 1.96 13.75 2.58 17.34
CMCC 7.63 20.62 9.00 27.19

Much of the cycles per byte disparity between CMCC and HS1-SIV v2 for 64 byte messages can
be explained by the block cipher for CMCC vs. stream cipher for HS1-SIV v2. There is not much
difference in processing for CMCC between a 64 byte plaintext (with a tag added on) and a 96 byte
message (including the tag). The number of block cipher operations is the same. A more favorable
comparison for CMCC would be a 60 byte plaintext plus a 4 byte authentication tag for a total size of
64 bytes.That reduces the number of block operations from 13 to 9.
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Scope and Limitations

CMCC (and CWM) are targeted for energy constrained environments where devices may only
have a single CPU and primarily send short messages. Cycles per byte performance cannot be improved
substantially given the use of AES underneath and the assumption of no parallelism (single CPU).

Also, the benefits of parallelism are less when messages are short as the supercop measurements
above show.

However, given parallelism and longer messages, we would expect the number of cycles per
byte to drop by about half if we replaced each round per the generalized PRF structure described in
Section 1 with the HS1 SIV v2 algorithm from Krovetz. This hypothesis is supported by the supercop
results above.

In other words, given parallelism and longer messages we expect CMCC cycles per byte to
drop to about 1.5 times as much as HS1 SIV v2, when replacing each CMCC round with HS1-SIV v2.
This follows since each CMCC round operates on half of the total bytes.

We now consider energy usage due to ciphertext expansion. In [43], the authors measure energy
utilization for a variety of cryptographic algorithms due to CPU utilization and networking for the
Berkeley/Crossbow motes platform, specifically on the Mica2dot sensor platform. Their measurements
show that 59.2 µJ (microJoules) are needed to transmit one byte. Only 1.6 µJ are needed per byte
for AES encryption including key setup. Given the CWM security bound of q2/296 for a 4 byte
authentication tag for a 12 byte plaintext, SIV requires a 12 byte IV for comparable security. Thus the
energy usage is roughly 1.5 times as much for SIV vs. CWM, to encrypt and send the message.

6. Conclusions

We have presented CMCC, a scheme providing provably secure misuse resistant authenticated
encryption, and it leverages existing modes such as CBC, Counter, and CMAC. The main focus for this
work is minimizing ciphertext expansion, especially for short messages including plaintext lengths
less than the underlying block cipher length (e.g., 16 bytes). Depending on the environment, we obtain
security with only 2–6 bytes of ciphertext expansion. Since changes to the ciphertext randomize the
plaintext, we can leverage the protocol checks in higher layer protocols as additional authentication
bits allowing us to reduce the length of the authentication tag. Our CWM variation provides a further
strengthening of the security bounds for the short messages scenario at the cost of an additional MAC
operation over the plaintext.

CMCC can achieve significant energy savings when applied to protocols that send short messages
due to its small ciphertext expansion.
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