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Abstract: We present the first linkable ring signature scheme with both unconditional anonymity and
forward-secure key update: a powerful tool which has direct applications in elegantly addressing a
number of simultaneous constraints in remote electronic voting. We propose a comprehensive security
model, and construct a scheme based on the hardness of finding discrete logarithms, and (for forward
security) inverting bilinear or multilinear maps of moderate degree to match the time granularity
of forward security. We prove efficient security reductions—which, of independent interest, apply
to, and are much tighter than, linkable ring signatures without forward security, thereby vastly
improving the provable security of these legacy schemes. If efficient multilinear maps should ever
admit a secure realisation, our contribution would elegantly address a number of problems heretofore
unsolved in the important application of (multi-election) practical Internet voting. Even if multilinear
maps are never obtained, our minimal two-epoch construction instantiated from bilinear maps can
be combinatorially boosted to synthesise a polynomial time granularity, which would be sufficient
for Internet voting and more.

Keywords: linkable ring signature; bilinear map; multilinear map; electronic voting; forward security;
unconditional anonymity

1. Introduction

Ring signatures, and especially linkable ring signatures, garner much interest in the applied
cryptographic community for their promise to simplify certain aspects of the notoriously hard
problem of remote electronic voting, which has conflicting and often frustrating security requirements.
In particular, linkability [1] or the closely related notion of traceability [2], make it easy to detect
when the same signer has signed twice on the same matter, thereby preventing double spending in an
electronic cash system, double voting in the same election. This, when combined with the anonymity
properties of ring signatures, provides a secure mechanism to validate votes without breaking privacy.
This paper is an extended version of our work in [3].

However, thus far, these signatures have not assisted in simultaneously resolving two critical
issues in electronic voting. These two issues are: (1) how to register voters; and (2) how to ensure
the voters’ long term privacy. Indeed, at present, most proposed electronic voting schemes use
cryptography which is likely to allow adversaries to break the privacy of the voters at some point in
the future.

To address these issues, an offline key update mechanism would allow the potentially costly
registration of a voter’s public key to happen once, whereafter the corresponding private key can be
refreshed or updated multiple times, efficiently and non-interactively, for use in subsequent elections.
In this context, forward security refers to the notion that the leakage or compromise of an updated
private key will not compromise one’s privacy in a past election—or let an attacker forge signatures
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ostensibly in the past, which could be linked to real votes. For practical electoral systems in particular,
it is important that the public-key update mechanism be efficient and non-interactive. The ideal
public-key update is the identity function, or “no-op.” The private-key update serves to provide
forward security to protect old elections against future data exposure and compromises.

The related but different notion of unconditional anonymity refers to the inability, even by
a computationally unbounded attacker, to identify a signer without knowledge of their private
key. This notion is important to protect the voter against future increases in computational power
(or cryptanalytic attacks, or quantum computers), once they have destroyed their private key after
it is no longer needed. Together with linkability, these features make substantially easier the task of
designing a secure and useable remote election protocol. Our forward-secure linkable ring signature
scheme, when dropped into a number of existing election protocols, directly results in a straightforward
and secure electronic voting solution without the cumbersome and procedurally risky steps that would
normally be necessary to manage a dedicated key for each election. The additional improvements we
detail in this extended version mean that, in many cases, the new scheme would also be more efficient.

Unfortunately—as often with the contradictory requirements of voting—it is easy to convince
oneself that anonymity can only hold unconditionally if no authentic private key for the relevant signing
ring is ever leaked, not even after having been updated. Indeed, if an adversary knows a voter’s
authentic private key, he can always trivially deanonymise their current and future votes using the
linkability feature. The same is true for past votes if a past private key can be recovered, by brute force
or by breaking a hardness assumption, from a current key. It is an interesting area of future research to
see if a key update mechanism, perhaps context dependent, could be developed which would prevent
the discovery of past private keys from future keys even for a computationally unbounded adversary.
However, such a mechanism would seem to have too many interesting applications to not have been
discovered already, unless it were highly non-trivial. In light of this, we deliberately choose to focus on
the problem of achieving unconditional anonymity against outsiders, but only computational forward
security against insiders in the sense of unforgeability and anonymity after key update.

1.1. Our Results

We present the first linkable ring signature with unconditional anonymity and forward-secure
key update, which is a tool that enables significantly more simple and secure remote electronic voting,
even within the framework of existing electronic voting protocols, and opens the door to a number of
simplified general anonymous authentication protocols for online systems.

To achieve our result, we construct a linkable ring signature from unconditionally hiding
commitments, and make sparing use of a bilinear pairing or multilinear map [4,5] to lift it to multiple
time periods or “epochs”. Without forward security or key update, our results are inspired by the
linkable ring scheme from [1]—which we incidentally vastly improve via much tighter security
reductions. (The original linkable ring signatures of Liu et al. [1,6] had proofs with losses exponential
in the number of users, due to nested use of the forking lemma [7] on Pedersen commitments [8] in the
random-oracle model. Our updated proofs and reductions are independent of the number of users,
thanks to a single consolidated use of the forking lemma, and the same techniques directly apply to
their construction.)

To get forward security, we build from an l-multilinear map an O(kl)-time one-way private-key
update mechanism which requires no public-key update—for some choice of k. We prove the scheme
information-theoretically anonymous, and its other security properties from Discrete Logarithm and
two multilinear-map hardness assumptions—one of which amounts to a natural generalisation of the
neo-classic Multilinear Decoding Problem [4] and the other is a natural generalisation of Decisional
Diffie–Hellman. Notably, a mere 2-linear map (also known as bilinear pairing) already gives us forward
security for O(k2) time periods.

This extended paper expands on our original [3] in numerous ways. The main new technical
contribution is a new combinatorial trick which allows us to gain a quadratic number of time
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periods from bilinear maps. This is accompanied by updated and improved definitions and proofs.
The updated definitions increase the adversary’s powers, to better model insider attacks in particular.
We have also taken advantage of the increased space available to provide more detailed discussion,
including complexity analysis.

1.2. Related Work

Group signatures were introduced by Chaum et al. [9]. They allow the members of a group to
generate signatures which can only be verified as emanating from one authorised signer within
that group, with the additional property that the signature can be “opened” to reveal the true
signer. The ability to open a signature is an important requirement in certain managed applications,
but presents an unacceptable privacy loophole in the context of electronic voting. (In the UK, there is a
requirement that a judge be able to order a voter’s ballot revealed. Group signatures would be perfect
for such subtle voter intimidation, although Continentals would of course disapprove.)

Ring signatures are a variation of group signatures which allow neither pre-authorisation of keys
nor deanonymisation of signatures, and hence, do not have those privacy issues. Ring signatures
were first presented by Rivest et al. [10] as a way to leak secrets anonymously. Rivest et al.’s initial
suggested application was the leaking of information by a cabinet minister. Their scheme also had the
nice property that the keys involved could belong to different public key schemes, which made setup
very flexible. Since then, many variants have been proposed to suit a large number of applications.
For elections, double voting is a major issue which vanilla ring signatures are not readily able to rectify.
Linkable ring signatures [6] and traceable ring signatures [2] have been proposed as a way to address
this issue. Nevertheless, neither of [2,6] or their variants provides forward security; hence, in a voting
application they would require impractically frequent re-registration of new keys to ensure acceptable
levels of privacy.

Subsequent notable results in that area include Liu et al. [1], who presented a linkable ring
signature with unconditional anonymity, but still without forward security. Our scheme addresses this
shortcoming, by providing an offline (non-interactive) private-key-update mechanism with forward
security (as well as much improved security reduction tightness over the previous schemes). There are
also emerging variants based on cryptographic accumulators as well as post-quantum variants.

1.2.1. Multilinear Maps

Following the blockbuster impact of bilinear maps on cryptography, the question of using
multilinear maps for cryptographic applications was first studied at a theoretical level by Boneh
and Silverberg [11]. Nearly a decade later, Garg et al. [4] proposed the first practical candidate
construction, based on lattice problems. There have since been several additional candidates from
lattice- and number-based assumptions, as well as attacks and repair attempts [5,12–15], with the side
of the “offence” presently having the upper hand.

Generally speaking, multilinear maps are useful in allowing more complicated structures in
cryptographic constructions. For instance, Diffie–Hellman key exchange in a group supports two
parities, with a bilinear map three parties, but on an l-linear map would support l parties. The added
structure also allows new techniques to be used which have no equivalence on bilinear maps or
standard groups.

Our basic scheme relies on a multilinear generalisation of the Discrete Logarithm problem,
which is a weaker assumption than the myriad of Diffie–Hellman variants and extensions typically
found in cryptographic constructions based on bilinear or multilinear maps. Our combinatorially
boosted version relies on natural generalisations of Computational and Decisional Diffie–Hellman.
However, it should be noted that there are no currently unbroken candidates for multilinear maps,
and hence the construction in this work is currently only realisable with bilinear pairings.

Our vastly improved security reductions for this class of unconditionally anonymous linkable
ring signature scheme with or without forward security still apply, although, providing substantial
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improvements to the concrete security of [1,6]. We discuss in Section 3.2 the major issues at hand
regarding the known multilinear-map candidate constructions.

1.2.2. Voting Systems

In the world of election systems research, the recent Helios [16] protocol is, perhaps, the
best known secure Internet voting scheme. It has seen a significant variety of expansions and
applications [17,18], but one of its shortcomings is that the voters have to place (too) much trust on the
election authority. Our linkable ring signature construction would fit nicely within the Helios protocol
to enable powerful anonymous authentication and achieve privacy against the election authority,
a property which is not achieved by most implementations of Helios. (In its standardised version [19],
Helios relies on a mixnet technique to distribute the election authority’s ability to deanonymise.
Even for Helios implementations that use this technique, the ability to enforce anonymity in the
authentication mechanism itself would provide stronger privacy guarantees.) More generally, and
beyond election systems, our new signature scheme can be used as a general rate-limited (rate limitation
in the context of authentication refers to an intentional bound on the number of uses, typically one,
that can be made of a credential on a given target) anonymous authentication system with forward
secrecy and information-theoretic privacy.

2. Definitions

A forward secure linkable ring signature (FS-LRS) scheme is a tuple of three probabilistic polynomial
time algorithms (Setup, KeyGen, and Sign) and four deterministic polynomial time algorithms (Verify,
Link, PubKeyUpd, and PriKeyUpd). (Our definitions are fairly direct forward-secure variants of
Liu et al. [1].)

• param← Setup(λ, T ) on input security parameter λ and number of time periods T , returns a
public setup param.

• (ski, pki)←KeyGen(param) given param returns a key pair (ski, pki).
• σ ← Sign(param, event, n, ~pkt, sk, M, t) given an event-id event, a group size n, a set ~pkt of n

public keys, a private key sk whose corresponding public key is in ~pkt, a message M and a time t,
produces a signature σ.

• accept|reject← Verify(param, event, n, ~pkt, M, σ, t) given an event-id event, a group size n, a set
~pkt of n public keys, a message-signature pair (M, σ), and time t, returns accept or reject.
We define a signature σ as valid for (event, n, ~pkt, M, t) if Verify outputs accept.

• linked|unlinked← Link(param, event, t, n1, n2, ~pkt1 , ~pkt2 , M1, M2, σ1, σ2) given an event-id event,
time t, two group sizes n1, n2, two sets ~pkt1 , ~pkt2 of n1, n2 public keys respectively, and two valid
signature and message pairs (M1, σ1, M2, σ2), outputs linked or unlinked.

• Zt+1 ← PubKeyUpd(param, Zt) given a public key, Z at time t, produces a public key for time
t + 1.

• skt+1 ← PriKeyUpd(param, skt) given a private key sk at time t, produces the corresponding
private key for time t + 1.

We stress that in our current definitions PubKeyUpd and PriKeyUpd are deterministic functions.
While it is interesting to consider systems where these functions might be randomised, this would need
to be carefully considered. We are particularly concerned that randomised functions might severely
limit the applications in which the signatures could be deployed.

2.1. Correctness Notions

To be functional, an FS-LRS scheme must satisfy the following:

• Verification correctness: Signatures signed correctly will verify.
• Updating correctness: For any time period of the system, the secret key derived from the private-key

update function will create a valid signature on a ring, verifiable using the public key derived
using the public-key update.
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• Linking correctness: Two honestly created signatures on the same event and time period will link if
and only if they have the same signer. (This is implied by the two security notions of linkability
and non-slanderability; see below.)

2.2. Security Model

Security of FS-LRS has five aspects: unconditional anonymity, linkability, non-slanderability,
forward-secure unforgeability, and forward-secure anonymity. (Ideally, we would be able to achieve
forward-secure unconditional anonymity, and hence combine the first and last security properties.
However, intuitively this property appears to be too strong to be achievable.)

2.2.1. Reflections

In our initial paper, we presented our definitions following fairly directly from Liu et al. in [1].
In this paper, we have made a few changes; primarily, we have strengthened the adversary’s powers
in the anonymity definitions. We have also modified the signing oracle to allow the adversary access
to genuine signatures where the adversary does not know who the signer is. This is to better reflect the
real adversary’s powers in electronic voting. We note that our definitions and reductions are strictly
stronger and tighter than Liu et al.

If a forward-secure linkable ring signature could be developed with much stronger privacy than
any present solution, this would dramatically simply the security definitions. However, at present it is
difficult to write definitions which closely match the expected level of security without being overly
verbose. For instance, Liu et al.’s definition of privacy does not provide the adversary with access to
genuine signatures, other than the challenge. In any deployed scheme, the adversary would having
access to such signatures and hence the model clearly fails to capture reality. However, Liu et al.’s
scheme appears to have a minimal loss of privacy under a differential privacy attack. This case
highlights both the inadequacies of the model and the strength of the scheme. In summary, we believe
our definitions capture well the intuitive definition of security; nevertheless, it is an interesting area
of future research to present a scheme with stronger privacy that allows the simplification of the
security model.

2.2.2. Oracles

The following oracles model the ability of the adversary to break the scheme:

• pki,t ←JO(t). The Joining Oracle, upon request, adds a new user to the system, and returns the
public key pk of the new user at the time t.

• ski,t ←CO(pki, t). The Corruption Oracle, on input a previously joined public key pki, returns the
matching secret key ski at the time t.

• σ′ ←SO(event, n, ~pkt, ~pkΠ, M, t). The Signing Oracle, on input an event-id event, a group size n,
a set ~pkt of n public keys, a set of public keys of possible signers ~pkΠ ⊂ ~pkt, a message M, and a
time t, returns a valid signature σ′.

We omit the time and user subscripts t, i when clear from context. In particular, our public key
does not undergo updating, so pkt will be independent of t.

• h ←H(x). The Random Oracle, on input x, returns h independently and uniformly at random.
If an x is repeated, the same h will be returned again.

2.2.3. Unconditional Anonymity

It should not be possible for an adversary A to tell the public key of the signer with a probability
larger than 1/n′, where n′ is the number of uncorrupted keys in the ring, even if the adversary has
unlimited computing resources. Specifically, FS-LRS unconditional anonymity is defined in a game
between a challenger C and an unbounded adversary A with access to JO, SO, CO:
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1. C generates and gives A the system parameters param.
2. Amay query JO,SO, and CO according to any adaptive strategy.
3. A gives C an event-id e, a time t, a group size n, a set of ~pkt of n public keys such that all of the

public keys in ~pkt are query outputs of JO and no key in ~pkt has been input to SO in a set which
was not a superset of ~pkt, a message M, and a time t. Parsing the set ~pkt as {pk1, ..., pkn}, C picks
π ∈ {1, ..., n} uniformly from the uncorrupted subset and computes σπ = Sign(e, n, ~pkt, skπ , M, t),
where skπ is a valid private key corresponding to pkπ at time t. The signature σπ is given to A.

4. A outputs a guess π′ ∈ {1, ..., n}.

We denote the adversary’s advantage by AdvAnon
A (λ) = |Pr[π = π′]− 1

n′ |.

Definition 1. Unconditional Anonymity. An FS-LRS scheme is unconditionally anonymous if, for all
unbounded adversaries A, AdvAnon

A (λ) is zero.

2.2.4. Linkability

It should be infeasible for the same signer to generate two signatures for the same event and time,
such that they are determined to be unlinked. Linkability for an FS-LRS scheme is defined in a game
between a challenger C and an adversary A with access to oracles JO, CO, SO andH:

1. C generates and gives A the system parameters param.
2. Amay query the oracles according to any adaptive strategy.
3. A gives C an event-id event, a time t, two sets ~pkt1 , ~pkt2 of public keys of sizes n1, n2, two messages

M1, M2, and two signatures σ1, σ2.

A wins the game if:

• All of the public keys in ~pkti
are query outputs of JO;

• Verify(event, ni, ~pkti , Mi, σi,t) = accept for σ1, σ2 not outputs of SO;
• At most one query has been made to CO; and
• Link(σ1, σ2) = unlinked.

We denote the adversary’s advantage as AdvLink
A (λ) = Pr[A wins the game].

Definition 2. Linkability. An FS-LRS scheme is linkable if for all Probabilistic Polynomial-Time (PPT)
adversaries A, AdvLink

A (λ) is negligible.

2.2.5. Non-Slanderability

Non-slanderability ensures that no signer can generate a signature which is determined to be
linked with another signature not generated by the signer. FS-LRS non-slanderabilty is defined in a
game between a challenger C and an adversary A with access to the oracles JO, CO, SO andH:

1. C generates and gives A the system parameters param.
2. Amay query the oracles according to any adaptive strategy.
3. A gives C an event-id event, a time t, a group size n, a message M, a set of n public keys ~pkt,

and the public key of an insider pkπ ∈ ~pkt. C uses the private key skπ correspoing to pkπ to run
Sign(event, n, ~pkt, skπ , M, t) and to produce a signature σ′ given to A.

4. A queries oracles adaptively. In particular, A is allowed to query any public key which is not pkπ

to CO.
5. A outputs n∗, n∗ public keys ~pk

∗
t , a message M∗, and a signature σ∗ 6= σ′.

A wins the game if:

• Verify(event, n∗, ~pk
∗
t , M∗, σ∗, t) = accept on σ∗ not an output of SO;

• all of the public keys in ~pk
∗
t , ~pkt are query outputs of JO;

• pkπ has not been queried to CO; and
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• Link(σ∗, σ′) = linked.

We denote the adversary’s advantage by AdvNS
A (λ) = Pr[A wins the game].

Definition 3. Non-slanderabilty. An FS-LRS scheme is non-slanderable if for any PPT adversaries A,
AdvNS

A (λ) is negligible.

2.2.6. Forward-Secure Unforgeability

Forward-secure unforgeability ensures that it is not feasible for an adversary with a private key
for a time period strictly greater than t to create valid signatures for any period less than or equal
to t. Forward-secure unforgeability is defined in the following game between a challenger C and an
adversary A given access to the oracles JO, CO, SO andH:

1. C generates and gives A the system parameters param.
2. Amay query the oracles according to any adaptive strategy.
3. A gives C an event-id e, a group size n, a set ~pkt of n public keys, a message M, a time t and a

signature σ.

A wins the game if:

• Verify(e, n, ~pkt, M, σ, t) = accept;
• all of the public keys in ~pkt are query outputs of JO;
• no public keys in ~pkt have been input to CO at time t or earlier; and
• σ is not a query output of SO.

We denote the adversary’s advantage by AdvFS−Un f
A (λ) = Pr[A wins the game].

Definition 4. Forward-Secure Unforgability. An FS-LRS scheme is forward-secure against forgeries if for
PPT adversaries A, AdvFS−Un f

A (λ) is negligible.

2.2.7. Forward-Secure Anonymity

Forward-secure anonymity ensures that it is not feasible for an adversary with a private key for a
time period strictly greater than t to de-anonymise signatures for any time period less than or equal to
t. Forward-secure anonymity is defined in a game between a challenger C and an adversary A given
access to oracles JO, CO, and SO and the random oracle:

1. C generates and gives A the system parameters param.
2. Amay query the oracles according to any adaptive strategy.
3. A gives C an event-id e, a time t, a group size n, a set of ~pkt of n public keys such that all of the

public keys in ~pkt are query outputs of JO, and a message M, Parsing the set ~pkt as {pk1, ..., pkn}.
C randomly picks π ∈ {1, ..., n}, and computes σπ = Sign(e, n, ~pkt, skπ , M, t), where skπ is a valid
private key corresponding to pkπ at time t. The signature σπ is given to A.

4. A outputs a guess π′ ∈ {1, ..., n}.

A wins the game if:

• π = π′;
• e and t have never been input together to SO; and
• no public keys in ~pkt have been input to CO at time t or earlier.

We denote the adversary’s advantage by AdvFS−Anon
A (λ) = Pr[A wins the game].

Definition 5. Forward-Secure Anonymity. An FS-LRS scheme is forward-secure anonymous if for any
PPT adversaries A, AdvFS−Anon

A (λ) is negligible.
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3. Multilinear Maps

Since multilinear maps can be naturally presented as a generalisation of bilinear maps, and
conversely bilinear maps as a concrete case of multilinear maps, we present the rest of our work using
the the following multilinear map notation.

Our notation is similar to that used by Zhandry in [20]. Let E be an l−linear map over additive
cyclic groups [G]1, .., [G]l of prime order q, where [G]0 = Zq and all [G]i for i = 1, ..., l are homomorphic
to (Zq,+). Let [α]i denote the element α ∈ Zq raised to the level-i group [G]i, for i ∈ (0, .., l).
Let α ∈R [G]i denote the random sampling of an element in [G]i. We have access to efficient functions:

Addition, Add or +: Given two elements [α]i, [β]i returns [α + β]i.
Negation, Neg or −: Given one element [α]i returns [−α]i.
Cross-level multiplication or multilinear Map, denoted E : Given two elements [α]i, [β]j,
returns [α ∗ β]i+j.

The cryptographic security of multilinear maps requires, among other things, that multiplication
within any [G]i be hard for i > 0.

We generalise the notation above and denote by [~a]i ∈ [Gn]i a vector of n elements in [G]i. Such a
vector [~a]i is then also denoted by ([a1]i, ..., [an]i).

3.1. Multilinear Assumptions

The discrete log problem when stated using multilinear map notation is as follows:

Definition 6 (Multilinear Discrete-log Problem (MDLP) [4]). For any PPT algorithm A, the probability
Pr[A([α]1) = [α]0] is negligible, where α ∈R Zq.

This definition generalises to i-Decoding Problem (i-DP) to which the unforgability of our initial
results reduced.

Definition 7 (i-Decoding Problem (i-DP) [4]). For any PPT algorithmA, the probability Pr[A([δ]i) = [δ]j]

is negligible, where j < i and δ ∈R Zq.

A related assumption to i-Decoding Problem is the k-Sub-exponent Multilinear Decoding Problem
(k-SMDP). We note in passing that a specific case of k-SMDP where k = 3 on a Bilinear pairing is the
Bilinear Computational Diffie–Hellman Problem.

Definition 8 (k-Sub-exponent Multilinear Decoding Problem.). For any PPT algorithm A, the probability
Pr[A([~α]1) = ([~e]0, [∏ aei

i ]∑ ei−1)] is negligible, where [~α]1 ∈R [Gk]1, and ∑ ei ≤ l. The adversary A is given
access to an oracleHO which given [~w]0 returns [awi

i ]∑ wi−1. A only wins if [~e] cannot be trivially derived from
any [~w].

It is to the k-Sub-exponent Multilinear Decoding Problem that our combinatorial boosted
variant’s unforgability reduces. All three of the definitions presented so far are specific cases of
the (k, b)-Generalised Multilinear Decoding Problem ((k, b)-GMDP).

Definition 9 ((k, b)-Generalised Multilinear Decoding Problem.). For any PPT algorithmA, the probability
Pr[A([~α]b) = ([~e]0, [∏ aei

i ]b∗∑ ei−1)] is negligible, where [~α]b ∈R [Gk]b and b ∗∑ ei ≤ l. The adversary A
is given access to an oracle HO which given [~w, q]0 returns [awi

i ]q. A only wins if [∏ aei
i ]b∗∑ ei−1 cannot be

trivially derived from any [awi
i ]q.

In our unforgeability-related reductions, we reduce to the (k, b)-Generalised Multilinear Decoding
Problem for convenience and conciseness. Depending on the parameters with which our scheme was
instantiated, this means the proof implies a reduction to one of the three specific cases:
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1. If configured similar to Liu et al. [1], it reduces to MDLP.
2. If configured similar to our initial results, it reduces to i-DP.
3. If configured to exploit the combinatorial trick, it reduces to k-SMDP.

In the same way that the Discrete Log Problem is generalised to Multilinear Discrete Log Problem
(MDLP), the Decisional Diffie–Hellman problem generalises to Multilinear Decisional Diffie–Hellman
(MDDH) problem. Intuitively, given three group elements, it is infeasible to tell if one is the product of
the others, provided that the sum of any two levels is greater than maximum allowed.

Definition 10 (Multilinear Decisional Diffie–Hellman Problem i-(MDDH)). For any PPT A, the
distinguishing probability Pr[A([α]i, [β]l−i+1, [γ]l) = “true” − A([α]i, [β]l−i+1, [αβ]l) = “true”] is
negligible, where α, β, γ ∈R Zq and i ≥ 1.

The parallel to k-SMDP for anonymity is k-Sub-exponent Multilinear Decisional Diffie–Hellman.
We, again, note in passing that a specific case of k-SMDDH where k = 3 on a Bilinear pairing is the
Bilinear Decisional Diffie–Hellman Problem.

Definition 11 (Sub-exponent Multilinear Decisional Diffie–Hellman Problem k-(SMDDH)).
For any PPT A, the distinguishing probability Pr[A([~e]0, [~α]1, [β]l−∑ ei+1, [γ]l) = “true” −
A([~e]0, [~α]1, [β]l−∑ ei+1, [αei

i β]l) = “true”] is negligible, where [~α]1 ∈r [Gk]1 and β, γ ∈R Zq and ∑ ei ≥ 1.
The adversary A is given access to an oracle HO which given [~w]0 returns [awi

i ]∑ wi−1. A only wins if [~e]
cannot be trivially derived from any [~w].

As with the previous set of assumptions we present a generalised assumption which includes both
MDDH and SMDDH as specific cases. We call this assumption Generalised Sub-exponent Multilinear
Decisional Diffie–Hellman Problem (k, b).

Definition 12 (Generalised Sub-exponent Multilinear Decisional Diffie–Hellman Problem
(k, b)-(GMDDH)). For any PPT A, the distinguishing probability Pr[A([~e]0, [~α]b, [β]l−b∗∑ ei+1, [γ]l) =

“true”−A([~e]0, [~α]b, [β]l−b∗∑ ei+1, [αei
i β]l) = “true”] is negligible, where [~α]b ∈r [Gk]b and β, γ ∈R Zq and

b ∗∑ ei ≥ 1. The adversary A is given access to an oracleHO which given [~w, q]0 returns [awi
i ]q. A only wins

if [∏ aei
i ]b∗∑ ei−1 cannot be trivially derived from any [awi

i ]q.

In our forward-anonymity reduction, we reduce to the (k, b)-Generalised Sub-exponent Multilinear
Decisional Diffie–Hellman Problem for convenience and conciseness. Depending on the parameters
with which our scheme was instantiated, this means the proof implies a reduction to one of the three
specific cases:

1. If configured similar to Liu et al. [1], it reduces to DDH.
2. If configured similar to our initial results, it reduces to i-MDDH.
3. If configured to exploit the combinatorial trick, it reduces to k-SMDDH.

3.2. Is Multilinearity Achievable?

Three major multilinear map candidates have been proposed in [4,14,15]. Since their introduction,
they have been the targets of many attacks, patches, and more attacks that remain unpatched.

One powerful class of attacks on multilinear maps are the so-called “zeroising” attacks; they run in
polynomial time but require the availability of an encoding of zero in the lower levels of the multilinear
ladder [4,21]. There are also sub-exponential and quantum attacks [22–24]. Further to this, recently
Miles et al. introduced a class of “annihilation” attacks on multilinear maps [25].

There are reasons to believe that multilinear maps may be unrealisable. In particular, their
near-equivalence to indistinguishability obfuscation [26]—an extremely powerful tool which in an
even stronger variant is known not to exist [27]—is worrying. Furthermore, Boneh and Silverberg [11],
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in their original paper on applications of hypothetical multilinear maps, presented several results
which cast doubt on the likeliness of multilinear maps’ existence, and soberingly conclude that “such
maps might have to either come from outside the realm of algebraic geometry, or occur as ‘unnatural’
computable maps arising from geometry.”

If multilinear maps fail to be repaired, bilinear maps still give us an efficient two-period FS-LRS
scheme that can be combinatorially boosted to multiple periods.

4. Construction

4.1. Notation

For conciseness, we use a number of specific notations. We use a mod b to denote the remainder
of a divided by b. Given two vectors of group elements of equal length~a1 and~a2 we will use~aδ to refer
to (a1

1 − a2
1, ..., a1

n − a2
n), we also let~aδ′ refer to (a2

1 − a1
1, ..., a2

n − a1
n).

4.2. Intuition

We now give the basic intuition of the scheme. We note that the first two paragraphs apply to
almost all schemes following from Liu et al. [1]. The formal details follow in Section 4.6.

To ensure unconditional anonymity in spite of linkability, a Pedersen commitment can provide
unconditional hiding with computational binding of the private key in the public key. The Pedersen
commitment uses a common reference string consisting of two elements [g] and [h] of unknown relation.
The private key is a pair [x] and [y] whose commitment, [gx + hy] is the public key. A multilinear map
can then raise and ratchet the private key at each time period, which provides forward security.

In the signature, we use the Fiat–Shamir heuristic on two knowledge-of-discrete-logarithm proofs,
rolled into one. Using a topic specific value d, the signer proves firstly that they know x behind f = dx,
and secondly that they know x and y such that gx + hy is one of the public keys. Random challenges
ci serve as decoys for the other public keys. Since both the real challenge c and the decoy challenges ci
are uniformly random, an adversary is unable to discern which party signed.

This basic system, described above, is adapted with a combinatorial trick which, for a choice of k,
leverages an l-linear map for ∑l

i=1 (
k+i−1

i ) time periods. (See our preliminary results in [3] for a clean
presentation of the basic system with full details. We stress that the general system, presented here,
implies the preliminary results but is more complicated in its presentation.) The value k ≥ 1 may be
freely chosen but the public key and private key sizes are linear in k.

4.3. Explanation of Parameters

We wish to avoid presenting, and proving, the generalised version—based on the combinatorial
trick—separately from our initial result. For this reason, the presentation that follows is deliberately
abstract and parameterised so that both the general version and the original result are special cases.
This is necessary since neither version is a special cases of the other. The abstract presentation also
means that the proofs are the same for both. We parameterise on four inputs:

1. The multilinear map size l
2. The combinatorial constant k
3. The initial public key level b
4. The number of time periods T

Our initial result in [3] is a special case of the following construction where k = 1 and b = l.
The variant including the combinatorial trick is a special case where b = 1. To make the paper easier to
read, we present a slightly simplified construction which requires that b is either 1 or l. We believe
that the more general construction for an arbitrary choice of b ≤ l works but since it significantly
complicates the presentation we omit the details.
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4.4. Time t to Key Indices

The public key for a time period t is a particular multiplicative combination of public key vector.
For instance, for the case of l = 2, k = 3, b = 1, the initial public key vector is [Z1]1, [Z2]1, [Z3]1
and private key vector is ([x1]0, [y1]0), ([x2]0, [y2]0),([x3]0, [y3]0). After the signer generates the initial
private key vector, they store [x1]1, [x2]1, [x3]1, [x1h]1, [x2h]1, [x3h]1, [y1]0, [y2]0, [y3]0 for the length of the
election, and temporally store [x1]0, [x2]0, [x3]0. We call the vector stored for the length of the election
the semi-private key vector since it need only be kept secret for unconditional anonymity but even if it
where public, it would not allow an adversary to break privacy without breaking (k,b)-GMDDH.

To sign at time t, the signer needs the private key for that time and the semi-private key vector.
The nine time periods have the following states, shown in Table 1.

Table 1. Overview of state changes.

Time Period Public Key Private Key Private Store

0 [Z1]1 [x1]0 [x2
1]1, [x2]0, [x3]0

1 [Z2
1 ]2 [x2

1]1 [x2]0, [x3]0
2 [Z2]1 [x2] [x2x1]1, [x2

2]1[x3]0
3 [Z2Z1]2 [x2x1] [x2

2]1[x3]0
4 [Z2

2 ]2 [x2
2] [x3]0

5 [Z3]1 [x3]0 [x3x1]1, [x3x2]1, [x2
3]1

6 [Z3Z1]2 [x3x1]1 [x3x2]1, [x2
3]1

7 [Z3Z2]2 [x3x2]1 [x2
3]1

8 [Z2
3 ]2 [x2

3]1

We denote PK(t ∈ T ) the function which when given a time period t returns the set of indices
needed to generate public key for that time period. We denote the output of PK(t) as τ and
the cardinality of τ as κ. This function is very easy to evaluate if the value for t − 1 is known,
so in high-use situations it would be practical to remember the previous value and increment.
However, if a more direct method is desirable, one possible implementation follows in Algorithm 1.

Algorithm 1: Index generation for time period t.
Data: t
Result: indices
indices = ∅;
temp = t
while temp ≥ 0 do

find the smallest i ∈ (1, ...,k) where t < bi + ∑i
s=1 ∑l

j=b(
i+j−1

j )

indices = indices ∪{i}
temp = temp−∑i−1

s=1 ∑l−1
j=b (

i+j−1
j ) −b

end

4.5. Public Key Structure

When b = l, as in our original results, the public keys have a very simple structure. However,
the public key in the extended version, for a time t and τ = PK(t), is of the form [∏i∈τ Zi]κ . For example,
if τ = (1, 2), then the public key is [g2x1x2 + gx1hy2 + gx2hy1 + h2y1y2]. To simply the presentation,
we let KP(i, τ,~x,~y) = ∑j∈(τ

i )j′∈(τ/j
k−i)

(∏ι∈j xι ∏ι∈j′ yι). In the example above, KP(0, (1, 2),~x, ~y) = y1y2,

KP(1, (1, 2),~x,~y) = x1y2 + x2y1 and KP(2, (1, 2),~x,~y) = x1x2. The public key can be generated as
∑κ

i=0 gihκ−iKP(i, τ,~x,~y). We sometimes just write KP(i), when τ,~x,~y are clear from context.
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4.6. Formal Description

4.6.1. Setup(λ, T )(k,l,b)

Take as input: The multilinear map size l, the combinatorial constant k, the initial key
level b, and the number of time periods T ≥ 1. It is required that bk+∑l

i=b+1 (
k+i−1

i ) ≥ T .
Denote by t ∈ (0, 1, 2, ...,T −1) the current time period. Run a multilinear map setup algorithm
to construct a bounded-level l-multilinear map and obtain its public parameters mmpp. Let
Hi denote the ith element in a family of hash functions H such that Hi: {0, 1}∗ → [G]i.
Construct [g]0 = H0(“Generator-g”) and [h]b = Hb(“Generator-h”). The public param are
(mmpp, k, b, [g]0, [h]b, H,“Generator-g”,“Generator-h”).

4.6.2. KeyGen(param)

Sample [~x]0, [~y]0 ∈R [Gk]0 and let [~Z]b = ([Z1]b, ..., [Zk]b), where [Zi]b = E(E([g]0, [xi]0), [1]b) +
E([h]b, [yi]0) = [g ∗ xi + h ∗ yi]b. The public key is pk = [~Z]b and initial secret key sk = ([~x]0, [~y]0).
Store ([~x]b, ([x0h]b, ..., [xkh]b), [~y]0) for the duration of the election and [~x]0 temporarily.

4.6.3. Sign(param, event, n, ~pkt, skπ , M, t)

On input (event, n, ~pkt, skπ , M, t), with: event some description, n the ring size,
~pk = {pk1, ..., pkn} = {[~Z1]b, ..., [~Zn]b} the ring public keys, skπ the signer’s secret key with public key
pkπ ∈ ~pkt (without loss of generality (w.l.o.g.) π ∈ [1, n]), M the message, and t the time period. The
signer runs PK(t) and gets τ whose cardinality we denote κ, and generates the specific public keys
for time t as [~pk

′
]κ∗b where [pk′i]κ∗b = [∏j∈τ Zi,j]κ∗b. Let ν = κ + (T mod b) − 1. The signer (holder of

skπ = ([∏j∈τ xj]ν, ..., [∏j∈τ yj]0) does the following:

1. Hash [d]l−ν = Hl−ν(t||event), and multilinearly map [ f ]l = E([d]l−ν, [∑κ
i=1 gi−κhκ−iKP(i)]ν).

2. For i ∈ (0, ..., κ) sample [ri]0 ∈R [G]0 and [c1]0, ..., [cπ−1]0, [cπ+1]0, ..., [cn]0 ∈R [G]0.
3. Compute [K]l = ∑κ

i=0 E([ri]i, [gihκ−i]l−i) + ∑n
i=1,i 6=π E([pk′i]l , [ci]0),

and [K′]l = E([d]l−ν, [∑κ
i=1 gi−κhκ−iri]ν) + E([ f ]l , ∑n

i=1,i 6=π [ci]0).
4. Find [cπ ]0 s.t. [cπ ]0 = H0(~pkt||event||[ f ]l ||M||[K]l ||[K′]l ||t)−∑n

i=1,i 6=π [ci]0.
5. Compute [r̃0]0 = [r0 − cπKP(0)]0 and [r̃1]ν = ∑κ

i=1 E([gi−κhκ−i], [ri − cπKP(i)]).
6. Output the signature σ = ([ f ]l , [r̃0]0, [r̃1]ν, [c1]0, ..., [cn]0).

4.6.4. Verify(param, event, n, ~pkt, M, σ, t)

On input (event, n, ~pkt, M, σ, t), first run PK(t) and get τ, and generate the specific public keys for

time t as [~pk
′
]κ∗b where [pk′i]κ∗b = [∏j∈τ Zi,j]κ∗b. Let ν = κ + (T mod b)− 1 and [d]l−ν = Hl−ν(t||event)

and, using the components of σ = ([ f ]l , [r̃0]0, [r̃1]ν, [c1]0, ..., [cn]0), compute

[K]l = E([r̃0]0, [hκ ]l) + E([r̃1]ν, [gκ ]l−ν+1) + ∑n
i=1 E([pk′i]l , [ci]0)

[K′]l = E([d]l−ν, [r̃1]ν) + E([ f ]l , ∑n
i=1[ci]0)

and [c0]0 = H0(~pkt||event||[ f ]l ||M||[K]l ||[K′]l ||t)

then check and output whether ∑n
i=1[ci]0 = [c0]0.

4.6.5. Link(param, event, t, n1, n2, ~pkt1 , ~pkt2 , M1, M2, σ1, σ2)

On input two signatures σ1 = ([ f1]l , ∗) and σ2 = ([ f2]l , ∗), two messages M1 and M2, an event
description event, and a time t, first check whether the two signatures are valid. If yes, output linked
if [ f1]l = [ f2]l ; else output unlinked.
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4.6.6. Private-Key Update(param, skt)

In a given time period t, to update the private key store for time period t + 1, run PK(t) and get τ.
Let ν = κ + (T mod b) − 1. Remove ([∏j∈τ xj]ν from the private key store and, if ν < l.

If b = 1, for all α ∈ (1, ..., τκ) add to the store [xα ∏j∈τ xj]ν+1, else add to the store
[∏j∈τ xj]ν+1. (We note again that this can be done very efficiently incrementally but we present
a more general approach).

If ν = l no update is required.

4.6.7. Public-Key Update(param, Zt)

The public key does not need to be updated in our scheme.

4.7. Space and Time Complexity

We briefly detail the complexity of the scheme when instantiated on bilinear maps. The complexity
is parameterised over the size of the ring n and the number of time periods T . The complexity is
shown in Table 2.

Table 2. Space and time complexity analysis.

Complexity Analysis

Property Complexity

Signature Size (Group Elements) n + 3
Public Key Size (Group Elements)

√
T

Secret Key Size (Group Elements) 3 ∗
√
T

Signing Complexity (Pairings and Multiplications) O(n)
Verifying Complexity (Pairings and Multiplications) O(n)
Link Complexity (on Verified Signatures) 1
Private-Key Update Complexity (Pairings and Multiplications)

√
T

Public-Key Update Complexity (Pairings and Multiplications) 0

The exact complexity of the signing and verifying algorithms depends on what optimisations are
used, which in turn depends on the context of deployment, in all cases the constant is small. The table
makes clear the main advantage of our construction; namely, that the key size is sublinear in the
number of time periods which preserving the asymptotic complexity of singing and verifying.

5. Correctness

5.1. Verification Correctness

For verification correctness, it suffices to show that the verification values K and K′ calculated
by each party are the same. We denote by [Ks] and [Kv], K as calculated by the signer and verifier
respectively; we adopt the same notation for K′. The equations below show that [Ks] = [Kv] and
[K′s] = [K′v] by applying the definitions of [r̃0] and [r̃1].

For K:

[Ks] =
κ

∑
i=0

[rigihκ−i] +
n

∑
i=1,i 6=π

[pk′ici]

= [r̃0hκ ] + [hκcπKP(0)] + [r̃1gκ ] + [
κ

∑
i=1

cπKP(i)gihκ−i] +
n

∑
i=1,i 6=π

[pk′ici]

= [r̃0hκ ] + [r̃1gκ ] +
n

∑
i=1

[pk′ici]

= [Kv]
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For K′:

[K′s] = [d
κ

∑
i=1

gi−κhκ−iri] + [ f
n

∑
i=1,i 6=π

ci])

= [dr̃1] + [cπd
κ

∑
i=1

gi−κhκ−iKP(i)] + [ f
n

∑
i=1,i 6=π

ci]

= [dr̃1] + [ f
n

∑
i=1

ci]

= [K′v]

5.2. Linking Correctness

For a given event event, time t, and private key, the linking component [ f ]l , computed from
[d]l−ν = Hl−ν(t||event), is completely deterministic. Since the linking component is deterministic,
under the above conditions, given any two signatures a simple equality check on the linking component
suffices. Conversely, for a given event event, time t, and two different private keys, the linking
element will be different. (While it is possible for two different private keys to have the same public
key, violating the assertion above, this would also break the Pedersen commitments and reveal the
relationship between g and h. It is also possible for the hash function to collide. These events are
assumed of negligible probability.)

5.3. Update Correctness

To simplify the presentation we present the argument for b= 1 and b = l separately.
If b = l, the “effective” public key for the first l time periods will be [x1g + y1h]l and then

[x2g + y2h]l for the next l and so on. At every time period, the signer must be able to calculate the
private key ([xt/l ]t mod l , [yt/l ]0). The private key update ensures the signer will always be able to
generate private keys for the remaining “effective” public keys. First, notice that the signer always
has [~y]0 and that they start with [~x]0. Secondly, the private key update for a time t removes [xt/l ]t mod l
from the private key store and, and adds to the store [xt/l ](t mod l)+1.

If b = 1, then the public keys are defined as a multiplicative combination of the initial public keys
([Z1]1, ..., [Zk]1). Although the order in which the keys are used is optimised to reduce the private key
size, the set of public keys for all time periods is composed of all the ways to choose k initial keys,
with replacement, at level k for all k ∈ (1, ..., l); we denote these combinations by τ. For each public
key denoted [∏j∈τ Zj]κ , the corresponding private key is ([∏j∈τ xj]ν, ..., [∏j∈τ yj]0). To see that private
key update ensures the signer will always be able to generate private key for the remaining public
keys: First, notice that the signer always has [~y]0 and that they start with [~x]0. Secondly, the private
key update removes the current private key [∏j∈τ xj]ν from the private key store, and adds to the store
[xα ∏j∈τ xj]ν+1 for α ∈ (1, ..., τκ).

6. Security

The proofs (other than the forward security ones) are similar to those of Liu et al. [1]. Despite the
structural similarities, all of our reductions are exponentially more efficient.

Theorem 1. The FS-LRS scheme is forward-secure against forgeries in the random-oracle model, if (k,b)-GMDP
is hard.

Proof. We show that the ability of the adversary to make corruption queries at times later than t does
not allow it to calculate the private key or forge signatures at time t, without breaking (k, b)-GMDP.

Given an (k, b)-GMDP instance ([~α]b), B is asked to output some ([~e]0, [αei
i ]b∗∑ ei−1) where ∑ ei ≤ l).

B picks [g]0, [h′]0 ∈R [G]0 and sets [h]b = E([h′g]0, [1]b) . B simulates the oracles thus:
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• Random Oracles Hi: For query input H0(“GENERATOR-g”), B returns [g]0. For query input
Hb(“GENERATOR-h”), B returns [h]b. For other queries, B randomly picks [λ]0 ∈R [G]0, sets
[a]i = E([λ]0, [1]i) and returns [a]i.

• Joining Oracle JO: AssumeA can only query JO for a maximum n′ times, where n′ ≥ n. W.l.o.g.,
(1, ..., n) will be the indices for which B does not know the private keys and embeds the challenge,
and (n + 1, ..., n′) be the indices for which a private key is known. For the first n indices, B
chooses [~x]0, [~y]0 ∈R [Gk]0 and sets [~Z]b = ([Z1]b, ..., [Zk]b) where [Zi]b = [gαixi]b + [hyi]b. For the
remaining indices it generates the public/private key pair as in the scheme. Upon the jth query,
B returns the matching public key.

• Corruption Oracle CO: On input a public key pki obtained from JO, and a time t, B checks
whether it is corresponding to [n + 1, n′], if yes, then B returns the private key. Otherwise, B calls
O(τ, ν) returns ski = ([∏j∈τ xi,jαj]ν, ..., [∏j∈τ yi,j]0).

• Signing Oracle SO: On input a signing query for event event, a set of public key
~pkt = {[~Z1]b, ..., [~Zn]b}, the public key for the signer [~Zπ ]b, where π ∈ [1, n], and a message
M, and time t, B simulates as follows:

1. If the query of Hl−ν(t||event) has not been made, carry out the H-query of t||event as
described above. Set [d]l−ν to Hl−ν(t||event). Note that B knows the [λ]0 that corresponds to
[d]l−ν. B sets [ f ]l = [d ∗∑κ

i=1 gi−κhκ−iKP(i)]l , which it can compute from the challenge [~α]b.
2. If π ∈ (n + 1, ..., n′), B knows the private key and computes the signature according to

the algorithm.
3. Otherwise, B randomly chooses [r̃0]0 ∈R [G]0 and [r̃1]ν ∈R [G]ν and [ci]0 ∈R [G]0 for all

i ∈ [1, n] and sets the H0 oracle output of

H0

(
~pkt||event||[ f ]l ||M||E([r̃0]0, [hκ ]1) + E([r̃1]ν, [gκ ]l−ν) +

∑n
i=1 E([pk′i]l , [ci]0)||E([d]l−ν, [r̃1]ν) + E([ f ]l , ∑n

i=1[ci]0)||t
)

4. B returns the signature σ = ([ f ]l , [r̃0]0, [r̃1]ν, [c1]0, ..., [cn]0). A cannot distinguish between
B’s simulation and real life.

For one successful simulation, suppose the forgery returned by A, on an event event,

time t and a set of public keys ~pk
′′

t ∈ [1, ..., n], is σ1 = ([ f ]l , [r̃1
0]0, [r̃1

1]ν, [c1
1]0, ..., [c1

n]0). In the
random-oracle model, A must have queried Hl−ν(t||event), denoted by [d]l−ν, and queried
H0(~pk

′′||event||[ f ]l ||M||[K]l ||[K′]l ||t) where

[K]l = E([r̃1
0]0, [hκ ]l) + E([r̃1

1]ν, [gκ ]l−ν) + ∑n
i=1 E([pk′i]l , [c

1
i ]0) and

[K′]l = E([d]l−ν, [r̃1
1]ν) + E([ f ]l , ∑n

i=1[c
1
i ]0)

After a successful rewind, we get another σ2 = ([ f ]l , [r̃2
0]0, [r̃2

1]ν, [c2
1]0, ..., [c2

n]0). Note that [ f ]l , [K]l ,
and [K′]l must be the same in both signatures since we rewind only to the point of random oracle query.
In the rewound execution, we force a change in the H0 oracle output to the query which determines
∑n

i=1[ci]. Let λ denote those points ∈ (1, ..., n) where c1
i 6= c2

i . We can the extract [∏j∈τ αj]ν as

[
r̃δ

0hκ+r̃δ
1gκ−∑i∈λ cδ′

i ∑κ−1
j=0 gjhκ−jKP(j)

gκ ∑i∈λ cδ′
i ∏j∈τ xi,j

]ν. We demonstrate the correctness of the extraction, below, by showing

that since [K] simultaneously satisfies two equations the correctness follows by simple algebraic
manipulation and the format of the keys.

[K] = [K]

We begin by substituting [K] for the two equations it satisfies,

[r̃1
0hκ ] + [r̃1

1gκ ] +
n

∑
i=1

[pk′ic
1
i ] = [r̃2

0hκ ] + [r̃2
1gκ ] +

n

∑
i=1

[pk′ic
2
i ]
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By subtraction, we have

[r̃δ
0hκ ] + [r̃δ

1gκ ] = [∑
i∈λ

pk′ic
δ′
i ]

By definition of pk′i,

[r̃δ
0hκ ] + [r̃δ

1gκ ] = [∑
i∈λ

cδ′
i (gκ ∏

j∈τ

xi,jaj +
κ−1

∑
j=0

gjhκ−jKP(j))]l

By subtraction, we have

[r̃δ
0hκ + r̃δ

1gκ −∑
i∈λ

cδ′
i

κ−1

∑
j=0

gjhκ−jKP(j)] = [∑
i∈λ

cδ′
i gκ ∏

j∈τ

xi,jαj]

By division,

[
r̃δ

0hκ + r̃δ
1gκ −∑i∈λ cδ′

i ∑κ−1
j=0 gjhκ−jKP(j)

gκ ∑i∈λ cδ′
i ∏j∈τ xi,j

]ν = [∏
j∈τ

αj]ν

By the forking lemma [7], the chance of each successful rewind simulation is at least ξ/4, where ξ

is the probability that A successfully forges a signature. Hence, the probability that for a given
adversary A we can extract [∏j∈τ αj]ν is ξ

4 times the probability that ~pk
′′
t ⊆ (1, ..., n).

Theorem 2. The FS-LRS scheme is unconditionally anonymous.

Proof. The proof of unconditional anonymity is largely unchanged from [1], since both schemes
rely on Pederson commitments. For each JO query, a value [~Z] = ([Z1], ..., [Zk]) where
[Zi] = (E([g], [xi]) + E([h], [yi]) is returned for some random pair ([~x], [~y]). The challenge signature is
created from the key of a random user in the ring. In contrast to Liu et al., we do allow the adversary
access to the signing oracle. The access we grant gives the adversary the ability to learn, and therefore
we assume knowledge of, the set of all genuine [~xi] in the challenge ring. Crucially, it does not grant
the ability to learn which key part belongs to which public key.

In what follows, we show that the advantage of the adversary is information- theoretically
zero. The proof is divided into three parts. First, we show that given a signature
σ = ([ f ]l , [r̃0]0, [r̃1]ν, [c1]0, ..., [cn]0) for a ring ([pk′1], ..., [pk′n]) on message M, event event and
time t, there exists a matching private key ([KP(κ)], ..., [KP(0)]) for each possible public
key [∏i∈τ Zπ,i], for any π ∈ {1, ..., n}, that can construct the linking tag [ f ]. That is,
[ f ] = E(Hl−ν(t||event), [∑κ

i=1 gi−κhκ−iKP(i)]ν) = E([d], [∑κ
i=1 gi−κhκ−iKP(i)]), where

[d] = Hl−ν(t||event). Second, given a private key ([∏i∈τ xπ,i], ..., [∏i∈τ yπ,i]), there exists a
tuple ([r0π ], ..., [rκπ ]) so that σ matches ([∏i∈τ xπ,i], ..., [∏i∈τ yπ,i]) using randomness ([r0π ], ..., [rκπ ]).
Finally, for any π ∈ {1, ..., n}, the distribution of the tuple ([∏i∈τ xπ,i], ..., [∏i∈τ yπ,i], [r0π ], ..., [rκπ ])
defined in parts one and two is identical.

Therefore, in the view of the adversary, the signature σ is independent to the value π, the index of
the actual signer. We conclude that even an unbounded adversary cannot guess the value of π better
than at random. In details:

1. Part I. Let x, y be so that [ f ] = E([d], [x]) and [g] = E([h], [y]). Let [zi] be so that [pk′i] = E([gκ ], [zi])

for i = 1 to n. For each π ∈ {1, ..., n}, consider the values

[∑κ
i=1 gi−κhκ−iKP(i)] = [x], and [g−κKP(0)] = E([zπ ]− [∑κ

i=1 gi−κhκ−iKP(i)], [yκ ])
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Obviously, ([∑κ
i=1 gi−κhκ−iKP(i)], [g−κKP(0)]) corresponds to the private key related to the

public key [pk′π ] (since [pk′π ] = E([gκ ], [zπ ]) = E([gκ ], [∑κ
i=1 gi−κhκ−iKP(i)] + [hκ g−κKP(0)]) =

[∑κ
i=0 gihk−iKP(i)])) and [ f ] = E([d], [x]]) = E([d], [∑κ

i=1 gi−κhk−iKP(i)]).
2. Part II. For each possible ([∑κ

i=1 gi−κhκ−iKP(i)], [g−κKP(0)]) defined in Part I, consider the values

[r0π ] := [r̃0] + E([cπ ], [g−κKP(0)]), and
[∑κ

i=1 gκ−ihκ−iriπ ] := [r̃1] + E([cπ ], [∑κ
i=1 gi−κhκ−iKP(i)]),

It can be seen that σ can be created by the private key ([∑κ
i=1 gi−κhκ−iKP(i)], [g−κKP(0)]) using

the randomness ([r0π ], [∑
κ
i=1 gκ−ihκ−iriπ ]), for any π ∈ {1, ..., n}.

3. Part III. The distribution of ([∑κ
i=1 gi−κhκ−iKP(i)], [g−κKP(0)], [r0π ], [∑

κ
i=1 gκ−ihκ−iriπ ]) for each

possible π is identical to that of a signature created by a signer with public key [pk′π ].

In other words, the signatures σ can be created by any signer equipped
with private key ([∑κ

i=1 gi−κhκ−iKP(i)], [g−κKP(0)]) for any π ∈ {1, ..., n} using
randomness ([r0π ], [∑

κ
i=1 gκ−ihκ−iriπ ]). Even if the unbounded adversary can compute

([∑κ
i=1 gi−κhκ−iKP(i)], [g−κKP(0)], [r0π ], [∑

κ
i=1 gκ−ihκ−iriπ ]) for all π ∈ [n], it cannot discern,

amongst the n′ possible unknown choices, who the signer is.
We use the fact that a public key in our construction corresponds to multiple secret keys. For each

public key in the ring of possible signers, there exists a unique corresponding private key, possibly
unknown, that fits the given linking tag.

Theorem 3. The FS-LRS scheme is linkable in the Random Oracle Model (ROM), if the (k,b)-GMDP is hard.

Proof. If A can produce two valid and unlinked signatures from just one private key, we can use this
successfully to break GMDP.

Given an (1, b)-GMDP instance ([α]b), B is asked to output some ([e]0, [αe]b∗e−1) where e ≤ l).
B picks [g]0,∈R [G]0 and sets [h]b = E([α]b) . B simulates the oracles thus:

• Random Oracles Hi: For query input H0(“GENERATOR-g”), B returns [g]0. For query input
Hb(“GENERATOR-h”), B returns [h]b. For other queries, B randomly picks [λ]0 ∈R [G]0, sets
[a]i = E([λ]0, [1]i) and returns [a]i.

• Joining Oracle JO: B generates the public/private key pair as in the scheme. Upon the jth query,
B returns the matching public key.

• Corruption Oracle CO: On input a public key pki obtained from JO, and a time t, B returns the
private key.

• Signing Oracle SO: On input a signing query for event event, a set of public key
~pkt = {[~Z1]b, ..., [~Zn]b}, the public key for the signer [~Zπ ]b, where π ∈ [1, n], and a message
M, and time t, B simulates as follows:

1. If the query of Hl−ν(t||event) has not been made, carry out the H-query of t||event as
described above. Set [d]l−ν to Hl−ν(t||event). Note that B knows the [λ]0 that corresponds
to [d]l−ν. B sets [ f ]l = [d ∗∏j∈τ αjxπ,j]l , which it can compute from the challenge [~α]b.

2. B computes the signature according to the algorithm.

If given a pair of σi = ([ f i]l , [r̃i
0]0, [r̃i

1]ν, [ci
1]0, ..., [ci

n]0) on an event event, time t, two sets of public
keys ~pkti

, and two messages Mi, then, in the random-oracle model,Amust have queried Hl−ν(t||event)

which are denoted by [d]l−ν, and two queries H0(~pkti
||event||[ f ]l ||Mi||[Ki]l ||[K′i]l ||t) where

[Ki]l = E([r̃i
0]0, [hκ ]l) + E([r̃i

1]ν, [gκ ]l−ν) + ∑n
i=1 E([pk′tj

]l , [ci
j]0)

[K′i]l = E([d]l−ν, [r̃i
1]ν) + E([ f ]l , ∑n

j=1[c
i
j]0)



Cryptography 2018, 2, 35 18 of 23

Since σ1 6= σ2 and they are unlinked, by definition of linkability, we have [ f 1]l 6= [ f 2]l .
Since, by definition of the game, the σi are both valid for the same time and event,
[d1]l−ν = Hl−ν(t||event) = [d2]l−ν. Write [ f i]l as [dixi]l , where we have shown [d1]l−ν = [d2]l−ν.
Hence, [x1]ν 6= [x2]ν. Therefore, at most one [ f i]l , and hence σi, encodes the pair (∏i∈τ xπ,i, ..., ∏i∈τ yπ,i)

which we gave to the adversary. We extract on the unrelated signature. Therefore, we have
[r̃1

0]κ−1 6= [r̃2
0]κ−1 and find a response [α]κ−1 to the GMDP challenge as:

[ακ ]ν = [
∑i∈λ cδ′

i (∑
κ
j=1 gjhκ−jKP(j))− r̃δ

1gκ

r̃δ
0 −∑i∈λ cδ′

i KP(0)
]

We demonstrate the correctness of the extraction, below, by showing that since [K] simultaneously
satisfies two equations the correctness follows by simple algebraic manipulation and the format of
the keys.

[K] = [K]

We begin by substituting [K] for the two equations it satisfies,

[r̃1
0ακ ] + [r̃1

1gκ ] +
n

∑
i=1

[pk′ic
1
i ] = [r̃2

0ακ ] + [r̃2
1gκ ] +

n

∑
i=1

[pk′ic
2
i ]

By subtraction, we have

[r̃δ
0ακ ] + [r̃δ

1gκ ] = [∑
i∈λ

pk′ic
δ′
i ]

By definition of pk′i,

[r̃δ
0ακ ] + [r̃δ

1gκ ] = [∑
i∈λ

cδ′
i (α

κKP(0) +
κ

∑
j=1

gjhκ−jKP(j))]l

By subtraction, we have

[r̃δ
0ακ ]− [∑

i∈λ

cδ′
i (α

κKP(0))] = [∑
i∈λ

cδ′
i (

κ

∑
j=1

gjhκ−jKP(j))]− [r̃δ
1gκ ]

By distributivity, we have

[ακ(r̃δ
0 −∑

i∈λ

cδ′
i KP(0))] = [∑

i∈λ

cδ′
i (

κ

∑
j=1

gjhκ−jKP(j))− r̃δ
1gκ ]

By division, we have

[ακ ] = [
∑i∈λ cδ′

i (∑
κ
j=1 gjhκ−jKP(j))− r̃δ

1gκ

r̃δ
0 −∑i∈λ cδ′

i KP(0)
]

By the forking lemma [7], the chance of each successful rewind simulation is at least ξ/4, where
ξ is the probability that A successfully forges a signature. Hence, the probability that for a given
adversary A we can extract [∏j∈τ αj]ν is ξ

4
1
2 .

Theorem 4. The FS-LRS is non-slanderable in the ROM, if (k,b)-GMDP is hard.
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Proof. We use the setting of Theorem 1. A can query any oracle other than to submit a chosen public
key pkπ to CO or include pkπ ∈ ~pkπ to SO. It then gives B: the key pkπ , a list of public keys ~pkt 3 pkπ

(w.l.o.g., we have |~pkt| = n), a message M, a description event, and a time t. In return, B generates a
signature σ([ f ]l , ...) using the standard method for the signing oracle, and gives it back to A. Recall,
we let [ f ]l = [d ∗∏j∈τ ajxπ,j]l . A continues to query various oracles, expect that it is not allowed to
submit pkπ to CO.

Suppose A produces another valid signature σ∗ = ([ f ′]l , .) that was not an output from SO but is

linkable to σ. Since they are linkable, we have [ f ′]l = [ f ]l and hence [∏i∈τ aixπ,i ]l
[d]0

=
[∏i∈τ aixπ,i ]l

[d]0
. Recall

that, by definition of the game, σ∗ 6= σ
′

which implies that [r̃∗i ] 6= [r̃′i ] and hence [r∗i ] 6= [r
′
i ]. We then

extract [∏j∈τ αj]ν from σ∗ as outlined in Theorem 1.

The probability that, for a given adversary A, we can extract [∏j∈τ αj]ν is ξ
4n .

Theorem 5. The FS-LRS scheme is forward-secure anonymous in the random-oracle model, if MDDH is hard.

Proof. We show that the ability of the adversary to make corruption queries at times later than t does
not allow it to de-anonymise signatures at time t or earlier, without breaking (κ,b)-MDDH, and hence
the system achieves forward-secure anonymity. In this proof, we start by guessing the break point t at
which the adversary’s will choose to be challenged.

Given an MDDH instance ([~e]0, [~α]ν/κ , [β]l−ν, [γ]l), B is asked to decide whether
[γ]l = [∏i∈k α

ei
i β]l . Where~e produces the same selection of keys as τ = PK(t). B picks [g]0, [h]0 ∈R [G]0

and sets [h]b = E([h]0, [1]b). B simulates:

• Random Oracles Hi: For query input H0(“GENERATOR-g”), B returns [g]0. For query input
Hb(“GENERATOR-h”), B returns [h]b. For other queries, B randomly picks [λ]0 ∈R [G]0, sets
[a]i = E([λ]0, [1]i) and returns [a]i.

• Joining Oracle JO: AssumeA can only query JO for a maximum n′ times, where n′ ≥ n. W.l.o.g.,
(1, ..., n) will be the indices for which B does not know the private keys and embeds the challenge,
and (n + 1, ..., n′) be the indices for which a private key is known. For the first n indices, B
chooses [~x]0, [~y]0 ∈R [Gk]0 and sets [~Z]b = ([Z1]b, ..., [Zk]b) where [Zi]b = [gαixi]b + [hyi]b. For the
remaining indices it generates the public/private key pair as in the scheme. Upon the jth query,
B returns the matching public key.

• Corruption Oracle CO: On input a public key pki obtained from JO, and a time t, B checks
whether it is corresponding to [n + 1, n′], if yes, then B returns the private key. Otherwise, B calls
O(τ, ν) returns ski = ([∏j∈τ xi,jαj]ν, ..., [∏j∈τ yi,j]0).

• Signing Oracle SO: On input a signing query for event event, a set of public keys
~pkt = {[Z1]l , ..., [Zn]l}, the public key for the signer [Zπ ]l where π ∈ [1, n], a message M, and a
time t, B simulates as follows:

1. If the query of Hl−ν(t||event) has not been made, carry out the H-query of t||event as
described above. Set [d]l−ν to Hl−ν(t||event). Note that B knows the [λ]0 that corresponds
to [d]l−ν.

2. B randomly chooses [r̃0]0 ∈R [G]0 and [r̃1]ν ∈R [G]ν and [ci]0 ∈R [G]0 for all i ∈ [1, n] and
sets the H0 oracle output of

H0

(
~pkt||event||[ f ]l ||M||E([r̃0]0, [hκ ]l) + E([r̃1]ν, [gκ ]l−ν) +

∑n
i=1 E([pk′i]l , [ci]0)||E([d]l−ν, [r̃1]ν) + E([ f ]l , ∑n

i=1[ci]0)||t
)

3. B returns the signature σ = ([ f ]l , [r̃0]0, [r̃1]ν, [c1]0, ..., [cn]0). A cannot distinguish between
B’s simulation and real life.

At some point, A requests to be challenged on e, t, n, ~pkt, M. B sets Hl−ν(e||t) = [β]l−ν, samples
i ∈ [n], sets [ f ]l = [γ ∏i∈τ x′i + β ∑κ−1

i=1 gi−κhκ−iKP(i)]l , and then performs the remaining steps of
the signing oracle as above. Notice that if [γ]l is equal to [∏κ

i=1 aei
i β]l then this signature is normally
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formed; however, if [γ]l is a random group element than the linking element is random, while the rest
of the signature is independent of the signer. If A successfully guesses i then B guesses that [γ] = [αβ],
otherwise B guesses that [γ] is random.

7. Conclusions

We have presented the first linkable ring signature scheme with both unconditional anonymity and
forward-secure key update. By expanding upon of our work in [3], we have shown how a combinatorial
trick can allow bilinear pairings to synthesise a polynomial time granularity for forward security.
This is a powerful tool which has direct applications in elegantly addressing a number of simultaneous
constraints in remote electronic voting. We have also presented a comprehensive security model
which better reflects real requirements than existing definitions. We then proved our construction
secure under these definitions by reducing to natural bilinear or multilinear generalisations of the
computational and decisional Diffie–Hellman Problems.
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Funding: Xavier Boyen is a Future Fellow of the Australian Research Council, under ARC grant FT140101145.

Conflicts of Interest: The authors declare no conflict of interest.

List of Symbols

KP (i, τ,~x,~y) = ∑j∈(τ
i )j′∈(τ/j

k−i)
(∏ι∈j xι ∏ι∈j′ yι). We sometimes just write KP(i), when τ,~x,~y are clear

from context.
PK The function which when given a time period t returns the set of indices needed to generate the

public key for that time period.
κ The cardinality of τ.
CO The Corruption Oracle, on input a previously joined public key pki, returns the matching secret key

ski at the time t.
E An l−linear map over additive cyclic groups [G]1, .., [G]l of prime order q.
HO An Helper Oracle—Used in the definition of k-SMDP, (k,b)-GMDP, k-SMDDH and (k,b)-GMDDH.
H The Random Oracle, on input x, returns h independently and uniformly at random. If an x is

repeated, the same h will be returned again.
JO The Joining Oracle, upon request, adds a new user to the system, and returns the public key pk of

the new user at the time t.
O Landau’s symbol—An asymptoptic bound on the function’s growth.
SO The Signing Oracle, on input an event-id event, a group size n, a set ~pkt of n public keys, a set of

public keys of possible signers ~pkΠ ⊂ ~pkt, a message M, and a time t, returns a valid signature σ′.
T The number of time periods.
ν The level at which the genuine signer should know the secret key, κ + (T mod b) − 1.
τ The set of indices used to generate a public key for a given time period.
b The initial public key level.
k The combinatorial constant.
l The multilinear map size.
t The current time period.

References

1. Liu, J.K.; Au, M.H.; Susilo, W.; Zhou, J. Linkable ring signature with unconditional anonymity. IEEE Trans.
Knowl. Data Eng. 2014, 26, 157–165.

2. Fujisaki, E.; Suzuki, K. Traceable ring signature. In Proceedings of the 10th International Conference on
Practice and Theory in Public-Key Cryptography, Beijing, China, 16–20 April 2007; pp. 181–200.

3. Boyen, X.; Haines, T. Forward-Secure Linkable Ring Signatures. In Australasian Conference on Information
Security and Privacy Springer: Cham, Switzerland, 2018; pp. 245–264.



Cryptography 2018, 2, 35 21 of 23

4. Garg, S.; Gentry, C.; Halevi, S. Candidate multilinear maps from ideal lattices. In Proceedings of the 32nd
Annual International Conference on the Theory and Applications of Cryptographic Techniques, Athens,
Greece, 26–30 May 20132; pp. 1–17.

5. Langlois, A.; Stehlé, D.; Steinfeld, R. GGHlite: More efficient multilinear maps from ideal lattices.
In Proceedings of the 33rd Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Copenhagen, Denmark, 11–15 May 2014; pp. 239–256.

6. Liu, J.K.; Wei, V.K.; Wong, D.S. Linkable spontaneous anonymous group signature for ad hoc groups.
In Information Security and Privacy; Springer: Berlin, Germany, 2004.

7. Pointcheval, D.; Stern, J. Security proofs for signature schemes. In Eurocrypt; Springer: Berlin, Germany, 1996;
Volume 96, pp. 387–398.

8. Pedersen, T.P. Non-interactive and information-theoretic secure verifiable secret sharing. In Proceedings of
the Annual International Cryptology Conference (CRYPTO ’91), Santa Barbara, CA, USA, 11–15 August 1991.

9. Chaum, D.; van Heyst, E. Group signatures. In Lecture Notes in Computer Science; Davies, D.W., Ed.; Springer:
Berlin, Germany, 1991; Volume 547, pp. 257–265.

10. Rivest, R.L.; Shamir, A.; Tauman, Y. How to leak a secret. In Proceedings of the 7th International
Conference on the Theory and Application of Cryptology and Information Security, Gold Coast, Australia,
9–13 December 2001.

11. Boneh, D.; Silverberg, A. Applications of multilinear forms to cryptography. Contemp. Math. 2003, 324, 71–90.
12. Boneh, D.; Wu, D.J.; Zimmerman, J. Immunizing multilinear maps against zeroizing attacks. IACR Cryptol.

ePrint Arch. 2014, 2014, 930.
13. Cheon, J.H.; Han, K.; Lee, C.; Ryu, H.; Stehlé, D. Cryptanalysis of the multilinear map over the integers.

In Proceedings of the Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, 26–30 April 2015; pp. 3–12.

14. Coron, J.S.; Lepoint, T.; Tibouchi, M. Practical multilinear maps over the integers. In Advances in
Cryptology—CRYPTO; Springer: Berlin, Germany, 2013; pp. 476–493.

15. Gentry, C.; Gorbunov, S.; Halevi, S. Graph-induced multilinear maps from lattices. In Theory of Cryptography;
Springer: Berlin, Germany, 2015; pp. 498–527.

16. Adida, B. Helios: Web-based open-audit voting. In Proceedings of the USENIX Security, San Jose, CA, USA,
28 July–1 August 2008.

17. Demirel, D.; Van De Graaf, J.; Araújo, R. Improving helios with everlasting privacy towards the public.
In Proceedings of the eVOTE/Trustworthy Elections (USENIX), Bellevue, WA, USA, 6–7 August 2012.

18. Tsoukalas, G.; Papadimitriou, K.; Louridas, P.; Tsanakas, P. From helios to zeus. USENIX J. Elect. Technol. Syst.
2013, 1, 1–17.

19. Adida, B. Helios v3 Verification Specs; Technical Report; Helios Voting: Boston, MA, USA, 2010
20. Zhandry, M. Adaptively secure broadcast encryption with small system parameters. IACR Cryptol. ePrint Arch.

2014, 2014, 757.
21. Hu, Y.; Jia, H. Cryptanalysis of GGH map. In Proceedings of the 35th Annual International Conference on the

Theory and Applications of Cryptographic Techniques, Vienna, Austria, 8–12 May 2016; pp. 537–565.
22. Albrecht, M.R.; Bai, S.; Ducas, L. A subfield lattice attack on overstretched NTRU assumptions. In Proceedings

of the 36th Annual International Cryptology Conference, Santa Barbara, CA, USA, 14–18 August 2016.
23. Cheon, J.H.; Jeong, J.; Lee, C. An algorithm for NTRU problems and cryptanalysis of the GGH multilinear

map without a low level encoding of zero. LMS J. Comput. Math. 2016, 19, 255–266.
24. Cramer, R.; Ducas, L.; Peikert, C.; Regev, O. Recovering short generators of principal ideals in cyclotomic rings.

In Proceedings of the Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Vienna, Austria, 8–12 May 2016.

25. Miles, E.; Sahai, A.; Zhandry, M. Annihilation attacks for multilinear maps: Cryptanalysis of
indistinguishability obfuscation over GGH13. In Proceedings of the 36th Annual International Cryptology
Conference, Santa Barbara, CA, USA, 14–18 August 2016.



Cryptography 2018, 2, 35 22 of 23

26. Paneth, O.; Sahai, A. On the equivalence of obfuscation and multilinear maps. IACR Cryptol. ePrint Arch.
2015, 2015, 791.



Cryptography 2018, 2, 35 23 of 23

27. Barak, B.; Goldreich, O.; Impagliazzo, R.; Rudich, S.; Sahai, A.; Vadhan, S.P.; Yang, K. On the (im)possibility of
obfuscating programs. J. ACM 2012, 59, 6.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Our Results
	Related Work
	Multilinear Maps
	Voting Systems


	Definitions
	Correctness Notions
	Security Model
	Reflections
	Oracles
	Unconditional Anonymity
	Linkability
	Non-Slanderability
	Forward-Secure Unforgeability
	Forward-Secure Anonymity


	Multilinear Maps
	Multilinear Assumptions
	Is Multilinearity Achievable?

	Construction
	Notation
	Intuition
	Explanation of Parameters
	Time t to Key Indices
	Public Key Structure
	Formal Description
	Setup(, T)(k,l,b)
	KeyGen(param)
	Sign(param, event, n, t, sk, M, t)
	Verify(param, event, n, t, M, , t)
	Link(param, event, t, n1, n2, , , M1, M2, 1, 2)
	Private-Key Update(param, skt)
	Public-Key Update(param, Zt)

	Space and Time Complexity

	Correctness
	Verification Correctness
	Linking Correctness
	Update Correctness

	Security
	Conclusions
	List of Symbols
	References

