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Abstract: Physical Unclonable Functions (PUFs) are designed to extract physical randomness from
the underlying silicon. This randomness depends on the manufacturing process. It differs for each
device. This enables chip-level authentication and key generation applications. We present an
encryption protocol using PUFs as primary encryption/decryption functions. Each party has a PUF
used for encryption and decryption. This PUF is constrained to be invertible and commutative.
The focus of the paper is an evaluation of an invertible and commutative PUF based on a primitive
shifting permutation network—a barrel shifter. Barrel shifter (BS) PUF captures the delay of
different shift paths. This delay is entangled with message bits before they are sent across an
insecure channel. BS-PUF is implemented using transmission gates for physical commutativity.
Post-layout simulations of a common centroid layout 8-level barrel shifter in 0.13 µm technology
assess uniqueness, stability, randomness and commutativity properties. BS-PUFs pass all selected
NIST statistical randomness tests. Stability similar to Ring Oscillator (RO) PUFs under environmental
variation is shown. Logistic regression of 100,000 plaintext–ciphertext pairs (PCPs) fails to successfully
model BS-PUF behavior.

Keywords: barrel shifter; physical unclonable function (PUF); encryption

1. Introduction

Encryption/decryption algorithms form the backbone of modern public key infrastructure,
which supports a broad set of activities such as e-commerce and digital currency. Mathematical
cryptosystems such as RSA can take millions of clock cycles. Even symmetric encryption/decryption
through AES takes 10–20 clock cycles. Moreover, even though their security is predicated on a
hard mathematical problem such as prime number factoring, a mathematical model exists for an
adversary [1]. Physical unclonable functions (PUFs) source physical randomness of a silicon foundry
with a potential appeal of unmodelable, physical functions. They have been used to generate unique
physical identities, and to seed key generation [2]. Such PUFs offer both inter-chip variability and
same-chip reproducibility. The variability ensures that distinct devices produce different outputs given
the same input. Reproducibility, on the other hand, is valuable for predictability and determinism
in device authentication behavior. As a result, PUFs based on complex physical systems provide
significantly higher physical security over the traditional systems that rely on storing secrets in
nonvolatile memory.

So far, the use of PUFs in cryptography is somewhat limited—the most common being key
generation or random number generation. Chen used analog circuits to support cryptography with
some elements of PUF-like randomness [3]. Choi et al. deployed a variant of arbiter PUF to replace
symmetric encryption in the RFID domain as an authentication mechanism [4]. This was based on
the earlier work of Suh et al. which deployed PUFs for anti-counterfeiting in RFIDs [5]. Che et al.
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described another authentication protocol based on PUFs [6]. Urbi Chatterjee et al. [7] developed
an IoT communication protocol based on PUFs. Several high-performance PUFs are designed for
IoT [8,9]. Kleber et al. [10] developed a code encryption engine based on PUFs for supporting a secure
execution environment similar to AEGIS. The key difference between a processor’s secure execution
environment and general encryption is that for the former scenario the processor platform is both
the source and destination for communications. In a processor’s secure execution environment, both
the sender and receiver have access to the same PUF on the same platform. However, for general
encryption, this assumption is violated. Both the sender and receiver possess distinct and different
PUFs. We show a general encryption protocol based on invertible and commutative PUFs.

The key contributions of this paper are: (1) exploration of a PUF-based encryption protocol;
(2) requiring PUFs to be both invertible and commutative. We develop a framework for invertible
and commutative PUFs based on shifting permutation networks; (3) we evaluate shifting permutation
networks based an invertible and commutative PUF framework with a primitive shifting network using
logarithmic barrel shifters; and (4) the results show good same chips, same path delay reproducibility;
good differentiation between different chips, same path delay and same chip, different path delay;
delays within 1-bit accuracy for the logic high and logic low propagation through the same path
demonstrates physical commutativity; and good pseudo-random number generation properties for the
delay. To the best of our knowledge, this is the first VLSI implementation evaluation of an invertible
and commutative PUF.

This paper is organized as follows: Section 2 introduces a general encryption protocol. Section 3
describes a mechanism for the BS-PUF based asymmetric and symmetric encryption. The BS circuit
design is presented in Sections 4 and 5. Variability, reproducibility, uniqueness, randomness and
commutativity test results based on post-layout simulations are presented in Section 6. Section 7
shows the behavior of BS-PUF encryption under a modeling attack. Section 8 discusses future work
and conclusions.

2. General Encryption Protocol

Figure 1 shows our proposed PUF-based general encryption protocol which depicts Bob as the
sender and Alice as the receiver. Both Bob and Alice have their own PUF. If Bob encrypts his message
m with his PUF as fBob(m), Alice has no way to decrypt it except to ask Bob to decrypt it for her.
The following protocol overcomes this asymmetry:

1. Bob encrypts the message m with fBob.
2. Bob sends fBob(m) to Alice.
3. Alice encrypts fBob(m) with fAlice (At this point, Alice does not know the message m).
4. Alice sends fAlice( fBob(m)) to Bob.
5. Bob decrypts fAlice( fBob(m)) with f−1

Bob and obtains fAlice(m).
6. Bob sends fAlice(m) to Alice.
7. Alice decrypts fAlice(m) with f−1

Alice and obtains the message m.

Message confidentiality is maintained by entangling message bits with physical randomness.
The entangling process must be both invertible and commutative so that: fBob and f−1

Bob can cancel
each other out; the order of fAlice and fBob can be changed. The entangled message m′ is designed
not to be linearly related with m; this makes it hard for an eavesdropper to learn m by examining
intermediate messages.
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Figure 1. Encryption protocol with message encryption based on invertible and commutative PUFs
fBob and fAlice.

3. Block Encryption Protocol

Encryption must entangle the physical randomness of BS-PUF with the message. Physical
randomness is extracted by measuring the delay of message bits along a shift path. An XOR of the
message bits and delay accomplishes entanglement; this allows for commutativity and reversibility.

A BS-PUF uses an n-bit key as the shift amount. This allows for a 2n-bit BS-PUF challenge
(message) resulting in a 2n-bit BS-PUF response. Alternately, one could view (n-bit key, 2n-bit message)
as a challenge. We take the former 2n-bit challenge view in this paper. For a barrel-shifter, practical
values for n are limited to be in the range 7–10 bits leading to a message block size of 128–1024 bits.
This means that a method of entanglement/encryption for plaintexts greater than 2n bits is needed.

Entanglement could occur by serializing the blocks of plaintext at BS-PUF input and concatenating
the generated ciphertexts. However, this approach reveals patterns in the plaintext; the same plaintext
will always encrypt to the same ciphertext. This leaks information by allowing an adversary to identify
plaintext patterns.

The technique of cipher block chaining (CBC) is typically applied in block ciphers such as AES [11].
Like AES, BS-PUF encrypts a fixed number of plaintext bits. Thus, it can be viewed as a block cipher.
A practical barrel shifter or permutation network implementation might consist of 128–1024 bit blocks.

Figure 2 applies CBC to two blocks of plaintext. Before applying BS-PUF, the plaintext pi is
XOR’ed with the previous ciphertext ci−1. The output of BS-PUF using key K, BS-PUF(pi, K), is the
ciphertext, ci. Thus, encryption of the ith block is ci = BS-PUF(pi ⊕ ci−1, K). The result is a cipher text
c1||c2|| . . . ||cm for m blocks where || denotes concatenation.

c0 is an initialization vector (IV). This IV must be updated with each message; otherwise, the same
plaintext will encrypt to the same ciphertext. This would again allow an eavesdropper to identify
patterns. Unlike traditional CBC algorithms, IV for BS-PUFs based encryption does not need to be
public because ciphertext will be sent back to sender for decryption. It could be generated with any
PUF, e.g., SRAM PUFs [12].

Decryption utilizes BS-PUF’s inverse. pi is recovered by the reverse process. Ciphertext ci is given
to the inverse BS-PUF operation. The ⊕ of the output and ci−1 is then taken. Thus, decryption of the
ith block is pi = BS-PUF−1(ci, K)⊕ ci−1.

Message encryption requires a secret key. The key determines the bit shift path; it is used as the
shift amount. The BS-PUF response depends both on the challenge (plaintext) and the key. The key
does not change as frequently as the plaintext does.
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Figure 2. Cipher block chaining methods are used to encrypt (a) and decrypt (b) messages.
This prevents the adversary from identifying plaintext patterns; it ensures identical blocks of plaintext
encrypt to different ciphertexts.

3.1. Invertible and Commutative PUF

Section 2 dictates invertibility and commutativity as encryption protocol requirements.
PUF f must be a one-to-one function to achieve encryption and invertibility for decryption.

Many classical PUFs, such as RO-PUFs [13–16] and arbiter PUFs [17,18], cluster the challenges into
equivalence classes on a set of attributes resulting in the same response per challenge equivalence
class. Arbiter PUF uses relative bit arrival time as the clustering attribute. RO PUF uses relative
oscillator frequencies. The end result is that this makes these PUFs not invertible since the mapping
is many-to-one.

Further note that physical invertibility is distinct from logical invertibility. A mathematical
one-to-one function has logical invertibility but may not be physically invertible. Physical invertibility
is applicable to the PUF physical attribute measurement process. In the forward computation, inputs
traverse the computation paths to the output; physical measurements may take place at various points
along these paths. In the inverse computation, output bits travel to the inputs through the identical
computation paths in reverse. The physical measurements of the same physical attribute occur in the
inverse computation. These forward and inverse physical measurements need to be reproducible at all
measurement points from input to output.

Invertibility requires using a raw physical property such as delay. The reversible computation
principle states that any information loss makes a process irreversible [19]. Many PUFs derive their
response through the comparison of physical properties. Arbiter PUF uses a race between two paths.
RO-PUF uses a frequency comparison. These comparisons provide reproducibility by including a
wide margin of noise before comparison output changes, but information is lost.

Permutation functions provide the necessary one-to-one relationship. Permutations create a
nonlinear relationship from input bits to output bits. Due to this property, an adversary cannot create a
useful mathematical model describing the input, output relationship. For n data bits, there exist N = n!
permutations denoted by π0, π1, . . . , πN−1. Each πi captures some permutation (i0, i1, . . . , in−1), where
bit k 7→ ik. In other words, the bit at 0 is routed to bit position i0 in the output. A key K is used to select
this mapping. We call this a keyed PUF: Ri,K = f (K, Ci). The PUF response is derived from the shift
path delay.

The protocol also requires the entanglement procedure to be commutative. Entanglement
adds a bit from the delay of each path to the plaintext. Thus, entanglement is expressed as
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f (KBob, Pi) = Pi ⊕ DBob. This is commutative because ‘⊕’ is commutative. Note that the entanglement
between the physical delay attribute and logical bits can occur at multiple points during the flight of
message bits from input to output; each measurement point is also an entanglement point.

The proposed PUF is based on a barrel shifter. Constructing it with precisely sized transmission
gates makes its delay independent of bit state 0 or 1. Bit propagation delay for forward path and
inverse path is remarkably stable and consistent regardless of bit state. This is due to symmetric
physical structure of the MOSFET’s source and drain. As we discuss in the following, physical
commutativity and invertibility in our protocol is only achieved if the physical delay on the paths is a
bit state independent.

Step 5 of Figure 1, where Bob computes f−1
Bob, is dealing with a different bit pattern at Bob’s PUF

output than was computed in Step 1 at Bob’s PUF output. This is because the Step 5 bit pattern
has an additional permutation applied to it by Alice, which is unknown to Bob. An alternative
implementation might use pass transistors. However, it is hard to equalize the delay for 0 and 1
through a pass transistor. Thus, transmission gates are used to make the delay plaintext-independent.

Our proposed encryption protocol in Section 2 is based on invertible and commutative BS-PUFs,
which are defined as follows:

Invertible PUF: An invertible keyed PUF f on input x and key K: for f (K, x) = y =⇒
f−1(K, y) = x, where f−1 is computed on the same PUF in the reverse direction. Note that the PUF
function f entangles a logical component and a physical component, and both need to be invertible.

PUFs designed to be used directly for encryption need two input sequences: (1) a key for response
function selection as in a permutation selector and (2) plaintext to be encrypted.

Commutative PUF: Assume that there is a composition of two commutative PUFs: PUF1 and
PUF2. This means that PUF2(PUF1(x)) = PUF1(PUF2(x)). Note that both logical and physical
commutativity are needed for such a commutative PUF. For BS-PUF, the entanglement function must
be commutative for physical commutativity in addition to the physical measurements being the
same in PUF2(PUF1(x)) and PUF1(PUF2(x)); this requires the physical measurements to be bit state
independent. The physical measurements are completely defined by the key K for a given PUF.

3.2. Asymmetric Encryption

Encrypting without a shared key is ideal. In the first version of the design, each PUF fPUF1 and
fPUF2 is a permutation network keyed by key1 and key2, respectively. Key key1 selects a permutation
πkey1 from a large set of possible permutations—Keccak permutation [20,21] could be used for instance.
The implementation, however, needs to be physically and logically reversible consisting of transmission
gates. We assume that, for a permutation πkey1 which maps ith input bit to the i

′
th output bit and

jth input bit to j
′
th output bit, we capture the exact delays for each input-output path. Let D(i, i

′
)

denote the delay of the path from input i to output i
′

for πkey1 in fPUF1 . Let D(j, j
′
) be defined likewise.

We will describe how we can capture these delays by using timer capture and edge detector functions
in Section 5.

For each PUF, the output bit yi can be expressed as an entanglement function
e(x

π−1
key(j), D(π−1

key(j), j)). Here, e is an entanglement function between the input bit x
π−1

key(j) routed

to output j and the delay of this path from π−1
key(j) to j. The delay D(π−1

key(j), j) can be quantized to

any resolution of k bits. If we use all of the k bits of D(π−1
key(j), j) to do encryption at the jth output

bit, we expand the n-bit input to an nk-bit output. Assuming we want to retain the same output
resolution of n-bits, one option would be to perform an XOR (⊕) of the mth bit of D(π−1

key(j), j) with

the input bit x
π−1

key(j) to generate yj leading to the entanglement function yj = e(x
π−1

key(j), D(π−1
key(j), j)m).

XOR is a good choice because it is commutative and associative. Figure 3 shows a encryption flow
chart using XOR as the entanglement function. Since the least significant bit (LSB) and 2nd LSB of
D(π−1

key(j), j) is likely least correlated with the delay of other paths, we have used them in entanglement.
The corresponding simulation results are shown in Section 6.
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Let us assume that the delays of the permutation function πkey1 in fPUF1 are denoted by
D(π−1

key1
(j), j) for a path from input π−1

key1
(j) to output j and the delays of the permutation function

πkey2 in fPUF2 are denoted by d(j, πkey2(j)) for a path from input j to output πkey2(j). Assume that
π−1

key1
(j) = i, πkey2(j) = k; then, the output zk = (xi ⊕ D(i, j)m)⊕ d(j, k)m is generated. The mth least

significant bit of PUF2’s delay captured by the d function is XORed with fPUF1 ’s output.

Figure 3. Flowchart of 1-bit encryption; di(m) is the mth bit of signal delay in selected path. This path
depends on all bits of key k. Keyed path selection achieves confusion.

Clearly, the RHS of expression zk = (xi⊕D(i, j)m)⊕ d(j, k)m is commutative due to commutativity
of operator ⊕—it does not matter whether fPUF1 is applied first or fPUF2 is applied first. However,
this commutativity statement is only correct for a specific bit routing; it does not apply to
encrypted data.

In the following examples, we use a “shift” function instead of an arbitrary permutation. A “shift”
function is denoted as π = (i0, i1, . . . , in−1), which means that bit 0 goes to bit position i0 or 0 7→ i0;
1 7→ i1; . . . ; (n− 1) 7→ in−1. For Bob’s PUF, with permutation π = (i0, i1, . . . , in−1), the delay for a
path from input bit position l to output bit position il (l 7→ il) is quantized as D(l, il). The mth
bit of this quantized delay is denoted as D(l, il)m. Similarly, for Alice’s PUF, with permutation
π′ = (j0, j1, . . . , jn−1)d(l, jl)m represents the mth bit of the quantized delay for path l 7→ jl . Note that, in
the following protocol, we do not specify which mth bit of the delay is used for entanglement. We will
decide that later based on experimental entropy and reproducibility of the delay bits.

Consider PUF1 with πkey1 = (0 7→ 1, 1 7→ 2, 2 7→ 3, 3 7→ 0) for a 4-bit input x0, x1, x2, x3 and PUF2

with πkey2 = (0 7→ 2, 1 7→ 3, 2 7→ 0, 3 7→ 1). Composition of fPUF1 ◦ fPUF2 = (0 7→ 1, 1 7→ 2, 2 7→ 3, 3 7→
0) ◦(0 7→ 2, 1 7→ 3, 2 7→ 0, 3 7→ 1) = (0 7→ 3, 1 7→ 0, 2 7→ 1, 3 7→ 2). By going over the communication
protocol in Figure 1 step by step, a defect becomes apparent. The complete verification process is
shown in Figure 4.

• Step 1: Apply fPUF1 to (x0, x1, x2, x3) resulting in (1, 2, 3, 0)(x0, x1, x2, x3), which equals
(x3 ⊕ D(3, 0)m, x0 ⊕ D(0, 1)m, x1 ⊕ D(1, 2)m, x2 ⊕ D(2, 3)m).

• Step 3: Apply fPUF2 to fPUF1 ’s output as in (2, 3, 0, 1)(1, 2, 3, 0)(x0, x1, x2, x3). This equals (x1 ⊕
D(1, 2)m ⊕ d(2, 0)m, x2 ⊕ D(2, 3)m ⊕ d(3, 1)m, x3 ⊕ D(3, 0)m ⊕ d(0, 2)m, x0 ⊕ D(0, 1)m ⊕ d(1, 3)m).

• Step 5: Now invert the output. Apply f−1
PUF1

to (2, 3, 0, 1)(1, 2, 3, 0)(x0, x1, x2, x3). f−1
PUF1

results in (1, 2, 3, 0)−1(2, 3, 0, 1)(1, 2, 3, 0)(x0, x1, x2, x3), which equals (x2 ⊕ D(2, 3)m ⊕ d(3, 1)m ⊕
D
′
(0, 1)m, x3 ⊕ D(3, 0)m ⊕ d(0, 2)m ⊕ D

′
(1, 2)m, x0 ⊕ D(0, 1)m ⊕ d(1, 3)m ⊕ D

′
(2, 3)m, x1 ⊕

D(1, 2)m ⊕ d(2, 0)m ⊕ D
′
(3, 0)m). D

′
(i, i

′
) denotes the backward path delay from output i

′
to

input i. According to post-layout simulations, D
′
(i, i

′
) is always equal to D(i, i

′
) in BS-PUFs.

• Step 7: Further applying f−1
PUF2

as in (2, 3, 0, 1)−1(1, 2, 3, 0)−1(2, 3, 0, 1)(1, 2, 3, 0)(x0, x1, x2, x3)

results in (x0⊕D(0, 1)m⊕ d(1, 3)m⊕D
′
(2, 3)m⊕ d

′
(0, 2)m, x1⊕D(1, 2)m⊕ d(2, 0)m⊕D

′
(3, 0)m⊕

d
′
(1, 3)m, x2 ⊕ D(2, 3)m ⊕ d(3, 1)m ⊕ D

′
(0, 1)m ⊕ d

′
(2, 0)m, x3 ⊕ D(3, 0)m ⊕ d(0, 2)m ⊕ D

′
(1, 2)m ⊕

d
′
(3, 1)m). This logical result is correct in routing xi back to the ith bit position, but the physical

delay terms are completely mixed up and do not cancel each other.
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Figure 4. (1) Bob applies fBob and (2) sends the result to Alice. (3) Alice applies fAlice and (4) sends the
result to Bob. (5) Bob applies f−1

Bob and (6) returns the result to Alice. (7) Alice applies f−1
Alice hoping to

recover the message. Unfortunately, f−1 does not subtract delay from the correct bit in (5,7); the correct
message is not received by Alice. This scheme fails to be commutative.

3.2.1. Revised Asymmetric Encryption

In order to ensure the correct routing and commutativity, we modify the original permutation
protocol by adding a permutation after each PUF. The primary function of this permutation is routing
xi back to the ith position from position πkey1(i) before sending the message at the end of Step 1.
The complementary key, key1, that results in the permutation π−1

key1
is used; it routes bits back to their

original position. Mathematically, (πkey1 ◦ (πkey1
= π−1

key1
)) = 1 where 1 is the identity permutation.

Bit shifting to restore the original message bit order is the only function of this permutation. No delay
is added.

An example of this protocol is shown in Figure 5 with the following detailed description:

• Step 1: fBob permutes x0, x1, x2, x3 as in (1, 2, 3, 0)(x0, x1, x2, x3). It computes the physical delay
encrypted bit vector, (x3 ⊕ D(3, 0)m, x0 ⊕ D(0, 1)m, x1 ⊕ D(1, 2)m, x2 ⊕ D(2, 3)m). Before sending
it to Alice, Bob’s complementary permutation, called permutator in Figure 5 is applied to generate
(x0 ⊕ D(0, 1)m, x1 ⊕ D(1, 2)m, x2 ⊕ D(2, 3)m, x3 ⊕ D(3, 0)m).

In this new permutation protocol, the logical permutation adds no confusion unlike the
permutations in AES and Keccak protocols. Confusion is achieved by the permuted physical
delay properties of the PUF. Which path delay bits are combined with each input bit is hidden
(through confusion) from the adversary through key driven π.

• Step 3: fAlice is applied as (2, 3, 0, 1)(x0 ⊕ D(0, 1)m, x1 ⊕ D(1, 2)m, x2 ⊕ D(2, 3)m, x3 ⊕ D(3, 0)m),
resulting in (x2 ⊕ D(2, 3)m ⊕ d(2, 0)m, x3 ⊕ D(3, 0)m ⊕ d(3, 1)m, x0 ⊕ D(0, 1)m ⊕ d(0, 2)m, x1 ⊕
D(1, 2)m ⊕ d(1, 3)m). Applying Alice’s complementary permutation results in (x0 ⊕ D(0, 1)m ⊕
d(0, 2)m, x1 ⊕ D(1, 2)m ⊕ d(1, 3)m, x2 ⊕ D(2, 3)m ⊕ d(2, 0)m, x3 ⊕ D(3, 0)m ⊕ d(3, 1)m).

• Step 5: Apply f−1
Bob to (x0 ⊕ D(0, 1)m ⊕ d(0, 2)m, x1 ⊕ D(1, 2)m ⊕ d(1, 3)m, x2 ⊕ D(2, 3)m ⊕

d(2, 0)m, x3 ⊕ D(3, 0)m ⊕ d(3, 1)m).

Decryption follows a similar process. However, the direction of message transmission is reversed
and the inverse permutations are used. Physical invertibility recovers the original forward delay
vector in the reverse direction.
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Thus, (1, 2, 3, 0)(2, 3, 0, 1)(x0, x1, x2, x3)) is rearranged by Bob’s permutator first. This is (x3 ⊕
D(3, 0)m ⊕ d(3, 1)m, x0 ⊕ D(0, 1)m ⊕ d(0, 2)m, x1 ⊕ D(1, 2)m ⊕ d(1, 3)m, x2 ⊕ D(2, 3)m ⊕ d(2, 0)m).
This rearranged result is given to to PUF1 resulting in (x0 ⊕ D(0, 1)m ⊕ d(0, 2)m ⊕ D

′
(0, 1)m, x1 ⊕

D(1, 2)m ⊕ d(1, 3)m ⊕ D
′
(1, 2)m, x2 ⊕ D(2, 3)m ⊕ d(2, 0)m ⊕ D

′
(2, 3)m, x3 ⊕ D(3, 0)m ⊕ d(3, 1)m ⊕

D
′
(3, 0)m).

Transmission gates show symmetric delays for forward and backward paths; D(i, j) always equals
D
′
(i, j). Thus, the delay terms cancel. The result after applying f−1

Bob is equal to (x0⊕ d(0, 2)m, x1⊕
d(1, 3)m, x2 ⊕ d(2, 0)m, x3 ⊕ d(3, 1)m).

• Step 7: f−1
Alice is applied. First, Alice’s permutator will rotate the bits giving (x2 ⊕ d(2, 0)m, x3 ⊕

d(3, 1)m, x0 ⊕ d(0, 2)m, x1 ⊕ d(1, 3)m). Rotated bits are then given to PUF2 in the reverse direction
resulting in (x0 ⊕ d(0, 2)m ⊕ d

′
(0, 2)m, x1 ⊕ d(1, 3)m ⊕ d

′
(1, 3)m, x2 ⊕ d(2, 0)m ⊕ d

′
(2, 0)m, x3 ⊕

d(3, 1)m ⊕ d
′
(3, 1)m). The delay terms cancel. Alice receives the original message (x0, x1, x2, x3)

sent by Bob.

The original protocol in Section 3.2 subtracted the delay from the incorrect bit in the inverse
permutation. The protocol shown in this section solves the original problem. However, it contains a
fatal flaw; using ⊕ for entanglement creates a linear relationship between messages in-flight between
Bob and Alice. An eavesdropper can retrieve the original message from the in-flight messages.

Consider Figure 5 as an example. The first bit in original message is x0. The encrypted first
bit sent from Bob to Alice in Step 2 is B′ = x0 ⊕ D(0, 1). Then, from Alice to Bob in Step 4,
B′′ = x0 ⊕ D(0, 1)⊕ d(0, 2). The decrypted first bit sent from Bob to Alice in Step 6 is B′′′ = x0⊕ d(0, 2).
B′, B′′ and B′′′ are all public messages. An eavesdropper can extract the original message by:

1. Inferring Bob’s PUF delay information by taking XOR of B′′ and B′′′. B′′ ⊕ B′′′ = x0 ⊕ D(0, 1)⊕
d(0, 2)⊕ x0 ⊕ d(0, 2) = D(0, 1).

2. Then the original message can be extracted by an XOR of B′ and Bob’s PUF’s delay,
B′ ⊕ D(0, 1) = x0 ⊕ D(0, 1)⊕ D(0, 1) = x0.

Figure 5. Invertible and Commutative PUF protocol: PUF1( fBob) and PUF2( fAlice) illustrate the PUF
composition and how barrel shifter PUF is used for encryption and decryption processes. Assume both
PUF1 and PUF2 are two-stage BS-PUFs, key1(PUF1) is (1, 0), key2(PUF2) is (0, 1). For PUF1, bit x0 (x1)
goes to output bit position y1 (y2). The encrypted bit output at y1 (y2) is x0 ⊕ D(0, 1)m (x1 ⊕ D(1, 2)m).
D(i, i

′
)m is the mth least significant bit of the delay from input bit i to the output bit i

′
. A permutator is

added after each PUF to shift each bit back to its original position after encryption.
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In order to eliminate this problem, BS-PUF must permute bits in public messages, which we could
not do and yet preserve commutativity and invertibility. One possible solution that allows permuted
public messages while preserving commutativity and invertibility is to let Bob and Alice share the
same key.

3.2.2. Symmetric Encryption

BS-PUF must preserve plaintext message bit positions in the ciphertext to meet the commutativity
requirement of encryption protocol with no shared key. Otherwise, the bit delay vector cannot be
recovered correctly. The shift permutation is deployed for generating quantized physical delays.
If the ciphertext message bits are permuted, they present a stronger challenge for man-in-the-middle
attacks. In order to deploy permuted public messages, Bob and Alice must share the same key.
The corresponding protocol is shown in Figure 6.

Figure 6. Sharing a key allows both parties to perform the same permutation. This ensures that the
delay is subtracted from the correct bit when performing the inverse f−1

PUFn
. Shifting the public message

adds entropy.

A key sharing protocol such as Diffie–Hellman key exchange scheme can be used to share a secret
as needed in the following symmetric encryption protocol. In the symmetric encryption protocol,
Bob permutes the input message with π entangling it with his delay. Alice reverses the permutation
using π−1 entangling it with her delay. Thus, the bits are in their original positions in the message
sent to Bob for decryption. Note that entanglement with both PUFs’ delays protects this message.
The delay will be un-entangled from the correct bits in the subsequent decryption steps.

Details of the shared key scheme presented in Figure 6 are as follows:

• Step 1: Bob permutes x0, x1, x2, x3 with π = (1, 2, 3, 0) and gets (x3 ⊕ D(3, 0)m, x0 ⊕ D(0, 1)m,
x1⊕D(1, 2)m, x2⊕D(2, 3)m). It is sent to Alice without any further bit-level routing; this achieves
bit-level confusion of the public message.

• Step 3: fAlice performs the reverse permutation π−1 of fBob and simultaneously applies Alice’s
delay (π−1 = (3, 0, 1, 2)). After fAlice is applied, all bits are rotated back to their original position,
but each bit is encrypted with two physical delay values. In this example, after applying fAlice, we
get (x0 ⊕ D(0, 1)m ⊕ d(1, 0)m, x1 ⊕ D(1, 2)m ⊕ d(2, 1)m, x2 ⊕ D(2, 3)m ⊕ d(3, 2)m, x3 ⊕ D(3, 0)m ⊕
d(0, 3)m).
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• Step 5: f−1
Bob is applied. Permutation π is applied again and the delay added in Step 1 is negated

by XOR. Then, the message sent to Alice is converted to (x3 ⊕ D(3, 0)m ⊕ d(0, 3)m ⊕ D(3, 0)m,
x0 ⊕ D(0, 1)m ⊕ d(1, 0)m ⊕ D(0, 1)m, x1 ⊕ D(1, 2)m ⊕ d(2, 1)m ⊕ D(1, 2)m, x2 ⊕ D(2, 3)m ⊕ d(3, 2)m

⊕D(2, 3)m), which is (x3 ⊕ d(0, 3)m, x0 ⊕ d(1, 0)m, x1 ⊕ d(2, 1)m, x2 ⊕ d(3, 2)m)

• Step 7: f−1
Alice is applied, bit positions are rotated back again, and the delay added in Step

3 is negated by XOR. The message from the previous step is converted to (x0 ⊕ d(1, 0)m ⊕
d(1, 0)m, x1 ⊕ d(2, 1)m ⊕ d(2, 1)m, x2 ⊕ d(3, 2)m ⊕ d(3, 2)m, x3⊕ d(0, 3)m ⊕ d(0, 3)m), which equals
the original message x0, x1, x2, x3.

Evaluating all messages crossing the insecure channel, M′ = (x3 ⊕ D(3, 0)m, x0 ⊕ D(0, 1)m, x1 ⊕
D(1, 2)m, x2 ⊕ D(2, 3)m), M′′ = (x0 ⊕ D(0, 1)m ⊕ d(1, 0)m, x1 ⊕ D(1, 2)m ⊕ d(2, 1)m, x2 ⊕ D(2, 3)m ⊕
d(3, 2)m, x3 ⊕ D(3, 0)m ⊕ d(0, 3)m), M′′′ = (x3 ⊕ d(0, 3)m, x0 ⊕ d(1, 0)m, x1 ⊕ d(2, 1)m, x2 ⊕ d(3, 2)m).

Linear equations such as M′ ⊕M′′ do not reveal any useful information due to the additional
shifting performed using the shared key. There is no way to retrieve the original message from the in
flight messages without the shared key and access to Bob and Alice’s PUFs. All messages are protected
while traversing the insecure channel.

4. Barrel Shifter PUF Design

We evaluate a barrel shifter as a potential invertible and commutative PUF. The block diagram of
a barrel shifter is shown in Figure 7. For simplicity, only two shift levels are shown. In a BS-PUF, text
(plaintext/ciphertext) input are the bits to be shifted; the key input determines the shift path for the
text input.

Output logic is added to capture path delay D(i, i′). An event counter is initialized to 0. The RST
signal simultaneously starts the event counter and releases the input message. The delay is captured by
reading the event counter when the output logic detects a voltage transition. Finally, an entanglement
block in the output logic entangles delay with the message bit.

Each shift stage is logically similar to an arbiter PUF stage. Barrel shifter PUF is designed to
implement rotation functions. Key bits determine the shift amount s = ∑k

i=0(keyies2i). Thus, keyi is
applied from LSB to MSB, from left to right. Figure 7 provides an example; key = {key0 = 0, key1 = 1}
encodes for right shift by 2 in the second stage. Consequently, the same text bit traverses a different
path providing a different delay value for different keys.

Figure 7. Block diagram of the delay test circuit with two propagation examples. When key0 = 1 and
key1 = 0, i0 passes through the dark grey path. There is one bit shift at the first level and no shift at
second level, i0 → o1. When key0 = 0 and key1 = 1, i0 passes through the light grey path. There is no
shift at the first level and there is a two-bit shift at the second level, i0 → o2.



Cryptography 2018, 2, 22 11 of 19

The delay variation is generated by transistor-level mismatch and doping variability. Variation
accumulates over several stages. Delay is then large enough to be detected by the output logic.

5. Circuit Implementation

An invertible and commutative PUF based on a barrel shifter is implemented in Cadence Spectre.
Transmission gates implement the shift paths. The circuit is subdivided into three components: input
logic, shift unit, and output logic.

5.1. Input Logic

Input logic is used to trigger the delay test system. It is a 3-input, 1-output circuit connecting the
input signal S or its inverse S to the output terminal (Figure 8a).

Figure 8. (a) schematic of 1-bit input logic. Each input bit is controlled by an input logic unit; (b) shift
unit of barrel shifter. If KEY = 1, N1/P1 is on (N2/P2 is off), then output equals inputA; otherwise,
output equals inputB.

RST (reset) is used to control ON/OFF status. When RST is high, S travels through the first gate
and arrives at an intermediate node. Otherwise, it is blocked. REV (reverse) determines whether S is
inverted. S will be inverted when REV = 1. The output of input logic should be RST ∧ (REV ⊕ S).

5.2. Shift Unit

Shift units implement the path selection and form shift stages. A shift unit schematic is shown in
Figure 8b. Either inputA or inputB is mapped to the output. The mapping is determined by the key.
A key value of 1 causes the upper transmission gate to open; output then becomes inputA. Otherwise,
output is driven by inputB.

A sequence of shift unit transmission gates composes a delay path. Each unit has a unique delay,
making the delay of each path unique.

BS-PUF uniqueness depends on how much delay variation is provided by the same path on
different chips. Modifying the transistor area is the main method for increasing the inter-chip variation.
Transistor delay variation is inversely proportional to transistor area [22]. Sizing transistors smaller
results in increased delay variation. However, BS-PUF requires a plaintext independent path delay to
maintain physical commutativity (Section 6.5). It is hard to balance 0 and 1 transmission delay with
minimum sized transistors. The minimum transistor size that preserves the physical commutativity is
obtained from Cadence Monte Carlo Simulation.
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5.3. Output Logic

Output logic measures and captures path delay. Output logic for each bit contains three parts:
Counter, Edge Detector Pulse Generator, and Entanglement Logic.

Counter takes CLK and RST as input producing a 10-bit output; it counts the number of rising
edges of CLK. Setting RST high resets the counter to 0. The path delay is expressed as (input clock
period) es (counter value).

Edge Detector Pulse Generator generates a pulse in response to a voltage transition at its input.
It includes an edge detector and a pulse generator. The edge detector converts a rising or falling edge
into a rising edge at its output. The pulse generator converts the rising edge from edge detector into
a pulse.

The output logic works as follows: first, a rising/falling edge at input produces a pulse at the
Edge Detector Pulse Generator output. This pulse enables the transmission gate in Figure 9 for a short
time period (2 ns). During this time, the counter output is captured; it must not change while being
captured. Thus, enable time period must be shorter than clock period (4 ns).

Figure 9. Schematic of output logic. Edge Detector Pulse Generator is composed of an edge detector
and a pulse generator. The edge detector detects a voltage transition; implemented by 2 D Flip-Flops
(DFFs). The output of a DFF is high when there is a rising edge at its input. Edge Detector Pulse Generator
converts a rising/falling edge at input to a pulse response. This pulse triggers a Counter read and
Entanglement Logic activation.

Finally, Entanglement Logic takes the mth LSB of delay D(i, i
′
). Computing XOR of this bit with

the input signal xi results in the entangled output bit.
The output logic works by detecting a voltage transition. A voltage transition occurs when the

current text bit differs from the previous text bit value. Thus, the output logic is incapable of detecting
unchanging/stationary text values. A voltage transition is forced by providing xi before xi at the
text input.

5.4. Path Delay Testing

The input logic, shift unit and output logic work together to capture the path delay. The following
five steps are necessary—the five steps shown in Figure 10 are necessary.

1. Set xi as text input and reset input logic.
2. Wait for xi to arrive at output logic.
3. Reset input logic and clock counter, set xi as text input.
4. Wait as xi travels the path determined by the key, triggering a transition at the output logic.
5. Encrypt using the captured counter value.
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Figure 10. The path delay capture unit tests for and stores the path delay. The edge detector detects an
output transition; S equal to output will not be detected. Consequently, the transmission path receives
S and S successively; a transition at output is guaranteed.

6. Post-Layout Simulation Results

The entanglement logic utilizes a 1-bit result from the path delay. The path delay capture logic
provides a multiple-bit delay counter. One bit must be chosen; it must be shown to have the requisite
properties for BS-PUF [23]: (1) inter-chip variability; (2) intra-chip reproducibility; (3) randomness;
(4) commutativity.

Cadence Spectre simulations are used to generate raw delay data. Delay variability assessment
is conducted by 3σ Monte Carlo sampling over process parameters. This test uses IBM 130 nm PDK.
A common centroid layout is employed to reduce linear gradient errors.

We construct an eight-stage barrel shifter accepting a 256-bit input with a 256-bit output. Path
delay is captured at the resolution of the counter’s clock period; a period of 4 ns is used. Delays must
be a reasonable multiple of the clock period to express variation.

In the following experiments, we primarily focus on raw data: (1) 200 Monte Carlo samples of the
path from input 0 to output 16, (2) 200 Monte Carlo samples of all 256 paths with no shifting.

6.1. Inter-Chip Variability

Shift path delay is a function of the silicon fabrication process; it potentially exhibits PUF
properties. Each shift path terminates with entanglement logic. A bit from the delay counter must be
selected. The chosen bit must exhibit sufficient variation.

Monte Carlo simulation captures single path delay variability as a proxy for inter-chip delay
variability. In 200 Monte Carlo samples for process parameters along the path x0 7→ y16, the delay
ranges from 85 ns to 145 ns with an average around 120 ns. It is a ±25% (±30 ns) variation. Counter
output varies about ±8. This indicates that roughly the least significant three bits of delay have
significant entropy in inter-PUF measurements. Thus, the LSB, 2nd LSB, and 3rd LSB are candidates
for entanglement.

6.2. Intra-Chip Reproducibility

The robustness of a single PUF is predicated on the consistency of its response to a challenge.
The response should be the same regardless of the environment. Tests are performed subjecting BS-PUF
to: (1) temperature variation and (2) voltage supply variation. The frequency of response bit flips
is quantified.
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Bit flip rate is the frequency of bit changes from 0 → 1 or 1 → 0. It is computed relative to a
baseline response. Gathering responses at common room temperature (25 ◦C) and supply voltage (5 V)
establishes this baseline. The percentage of path delays where a bit flips is the bit flip rate. For example,
the LSB flipping in 64/256 paths represents a 25% bit flip rate.

Path delays for all 256 bit paths are gathered with Monte Carlo sampling under different
temperatures and supply voltages. Temperature is varied from 0 ◦C to 50 ◦C and supply voltage from
4.64 V to 5 V. The corresponding test results are shown in Figures 11 and 12. Flip rates for the 2nd LSB
are smaller than 12% and 18% under temperature and voltage variation, respectively. On the contrary,
the flip rate of the LSB is significantly higher. The 2nd LSB provides better reproducibility. By taking
2nd LSB, the stability performance of BS-PUF is similar to traditional RO-PUFs [24].

Usually, an error caused by PUF reproducibility can be resolved by error correction code (ECC) [25].
ECC implementations usually need 3k–10k raw PUF response bits (with bit error rate of 15%) to a 128-bit
reproducible PUF response with a targeted key error rate less than 106 [26]. This implies that we need
to provide 23–80 raw bits to generate one single reproducible bit. The instability of BS-PUF responses
(18%) can also be compensated by generating a sufficient number of redundant bits. For instance, an
error detection capability based on the parity bits, as deployed in communication protocols, could
be incorporated into the encryption protocol. For a 128-bit message, nine additional parity bits—one
for each byte—can be computed. The actual message block to be encrypted is the concatenation of
the 128-bit message with nine parity bits, resulting in a 137-bit message block. After the proposed
encryption protocol delivers a message to the receiver, it also computes the parity bits on the 128-bit
message part. These computed parity bits are then compared against the received parity bits. If there is
an error, the receiver can ask the sender to resend the message. The error correction overhead can be
reduced by developing some stable keyed-PUF in the future.

A higher order bit could be selected. It would have comparatively better flip rates, but reduced
variability. Many feasible techniques exist to compensate for temperature and voltage variation [27,28].
These techniques would be helpful at the flip rates expressed by the 2nd LSB. Thus, the advantage
of choosing a higher order bit is minimal. All of the following evaluations are performed on the 2nd
LSB only.

Temperature (°C)
0 10 20 30 40 50

F
lip

 R
at

e 
(%

)

0

20

40

60

Figure 11. Percentage of bit flips under temperature variation. Flip rates demonstrate signal-to-noise
ratio (SNR) under different temperatures. Flip rates of LSB are shown in dark grey. Flip rates of 2nd
LSB are shown in grey. The flip rate of LSB is much higher than 2nd LSB.
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Figure 12. Percentage of bit flips under voltage variation. Flip rates of LSB are shown in dark grey. Flip
rates of 2nd LSB are shown in grey.
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6.3. Inter-Chip Uniqueness

The chosen path delay bit must exhibit inter-chip uniqueness. This requires significant variance
between responses on different chips. Pair-wise hamming distance (HD) is a metric for variability.

The HD of 200 path delay samples of 256-bit responses is computed. Table 1 shows the distribution
of inter-chip HD for 2nd LSB output.

The mean HD is 128.01 bits with a standard deviation of 9.99 bits. HD 128 means that roughly 50%
of the response bits differ. It is maximally unlikely that two BS-PUFs will generate the same output.

Table 1. Inter-chip HD of BS-PUFs 2nd LSB (HD: Hamming distance; %: percentage of bit-stream pairs
with certain HD).

HD [90, 100) [100, 110) [110, 120) [120, 130)

% 0.12% 2.57% 15.68% 37.12%

HD [130, 140) [140, 150) [150, 160)

% 37.29% 6.25% 0.97%

6.4. Randomness

Output of a good PUF should look like a pseudo-random generator so an attacker cannot model
it easily. Assessing randomness performance of BS-PUF uses data from Monte Carlo sampling of path
delays. Delay values are converted to binary responses by extracting the 2nd LSB from the delay.
Each 256-bit response (one bit from each path) is examined using an NIST statistical test suite.

Table 2 give the detailed test results for 2nd LSB of the BS-PUF output. The minimum pass rate for
each statistical test is 193 for a sample size of 200 binary sequences according to NIST documentation.
The 2nd LSB passes the randomness test; a proportion greater than 193 is achieved on all selected tests.

Table 2. NIST test results of the 2nd LSB response.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 p-Value Proportion Statistical Test

15 24 22 19 15 17 10 21 20 37 0.005166 200/200 Frequency
12 18 24 27 15 26 20 13 29 16 0.048716 200/200 BlockFrequency
11 21 20 26 16 22 19 9 24 32 0.012650 200/200 CumulativeSums
15 21 15 21 18 18 28 11 28 25 0.099513 200/200 CumulativeSums
22 25 26 20 18 20 16 18 19 16 0.807412 199/200 Runs
17 20 22 21 24 22 18 14 20 22 0.917870 197/200 Serial
24 19 20 19 21 17 18 25 14 23 0.825505 197/200 Serial

6.5. Commutativity

Encryption and decryption rely on function composition. Decrypting a message encrypted by
both oneself and another party is required. The other party may have changed the text bit (0 or 1).
Thus, delay variation must be independent from the text input. The transmission delay of 1 and 0
should not have a significant difference.

BS-PUF path delays depend only on the key input. Shift units are sized to achieve balanced
pullup and pulldown resistance. Transmission gate NMOS sizing is Wn/Ln = 4/3 PMOS sizing is
Wp/Lp = 4/1, where Ln = Lp.

Two tests are performed to verify physical commutativity of BS-PUF: (1) Testing rising/falling
edge delay in four different (FF, FS, SF, SS) process corners. Transmission time difference for 0 and 1
must be smaller than the counter period (4 ns); (2) Performing Monte Carlo sampling of path delay for
inputs 0 and 1. Delays are recorded for all paths without bit shifting. No bit flips should occur in the
path delay.
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According to corner test results, maximum transmission time difference for 0 and 1 is 2.34 ns;
this is much smaller than the 4 ns clock period. Consequently, there are no 2nd LSB flips in Monte
Carlo sampling.

7. Modeling Attack

According to [29], all examined strong PUFs under a given size can be modeled with machine
learning with success rates above their stability in silicon. Stability in silicon captures the rate at which
a response can be reproduced faithfully for a given challenge. It models the native noise inherent in a
PUF design. Modeling attacks cannot overcome the inherent design noise. Consider the barrel shifter
in our encryption protocol to be a black box. Attackers know nothing about the key and physical delay
of the barrel shifter. An attacker should not be able to model the relationship between input and output
bits. Such a model provides an eavesdropper information about the plaintext given a ciphertext.

To investigate the resilience of BS-PUFs against modeling attacks, various ciphertexts are
generated with different keys and plaintexts for training and cross-validation.

Logistic Regression (LR) [30] and Evolution Strategies (ES) [31,32] are commonly used to model
PUF output. ES is specialized to model PUFs under noisy conditions [29]. It does not apply when
voltage supply and temperature are fixed and known.

Thus, only LR modeling is performed. Since the error rate of machine learning prediction
decreases with the size of training set, LR modeling is tested for 2nd LSB of the response with various
training set sizes.

Monte Carlo Sampling [33] utilizes randomness to generate n challenge response pairs (CRP).
n random keys, K = {K0, K1, . . . , Kn} are generated. Responses, R, are generated by entangling
plaintext, P, using these keys, Ri = BS-PUF(Ki, P). The adversary is interested in extracting the delay
from the response. Hence, we generate only the delay component in the Monte Carlo samples keeping
the same plaintext. This random CRP sample is assumed to be representative of the distribution of
all CRPs.

Simulating BS-PUF(Ki, P) requires computationally expensive Cadence Spectre simulations.
An efficient method for computing Ri given Ki is needed. Thus, we apply Monte Carlo Sampling to
create a delay matrix, D, modeling the delay of all shift paths. The delay of each shift unit is recorded.
Path delay is then computed by: (1) summing the delay of all shift units along a path, (2) dividing it by
4 ns capture logic resolution, and (3) extracting 2nd LSB (as discussed in Section 6, 2nd LSB is the best
candidate). Thus, D enables computations of path delays given Ki.

For example, Equation (1) is a sample delay matrix for a 4-input, two-stage BS-PUF. di,j represents
exact delay values of top and bottom transmission gates in the ith row, jth column shift unit:

D =


(d0,0,t, d0,0,b) (d0,1,t, d0,1,b)

(d1,0,t, d1,0,b) (d1,1,t, d1,1,b)

(d2,0,t, d2,0,b) (d2,1,t, d2,1,b)

(d3,0,t, d3,0,b) (d3,1,t, d3,1,b)

 . (1)

Plaintext–ciphertext pairs (PCP) are computed using D. For the delay matrix in Equation (1)
using a key = {1, 0} encoding for right shift in the first stage, the plaintext (i0, i1, i2, i3) generates the
response in Equation (2):

R =


i3 ⊕ ((d0,0,b + d0,1,t)/4)m

i0 ⊕ ((d1,0,b + d1,1,t)/4)m

i1 ⊕ ((d2,0,b + d2,1,t)/4)m

i2 ⊕ ((d3,0,b + d3,1,t)/4)m

 . (2)

This process makes extraction of all possible PCPs feasible.
For a BS-PUF with an input message length of 256-bit, there are 2256 possible input messages.

There are eight stages with 28 possible keys. It is infeasible to generate all 2264 PCPs. Linear Regression
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(LR) is performed with a training set of size n = {10, 100, 1000} PCPs per key. To obtain a representative
sample of PCPs, responses are computed with 100 keys and 10, 000 plaintexts. PCPs not part of the
training set are used for cross-validation.

Scalability experiments are conducted on a six-stage, 64-bit input BS-PUF; the delay matrix of
this BS-PUF is the top left 64es6 sub-matrix of the eight-stage delay matrix acquired from Monte Carlo
Sampling. The number of CRPs NCRP that are required to learn a k-stage arbiter PUF with error rate ε

is 0.5es(k + 1)/ε [29]. Thus, for a six-stage BS-PUF, we also scale down n to 8, 80 and 800 PCPs per key.
Table 3 shows the prediction accuracy of LR on 2nd LSB. LR is implemented by an iterative

program written in Matlab. The regression coefficients’ initial values are set to (0, 0) in all LR
applications. Silicon stability of BS-PUFs is 75%. Thus, all modeling reaching a higher prediction rate
should be considered a success. If 2nd LSB is used as the delay bit, then LR can successfully model
six-stage BS-PUF with a sufficient number of PCPs while eight-stage BS-PUF cannot be successfully
modeled without enlarging the training set.

Table 3. LR on the 2nd LSB with six- and eight-stage BS-PUFs.

ML Method Bit Length Prediction Rate PCPs Training Time

LR 64
43.2%
52.6%
79.5%

800
8000

80,000

0.0315 s
0.1658 s
1.0104 s

LR 256
32.4%
41.0%
62.8%

1000
10,000

100,000

0.0157 s
0.4620 s
1.6245 s

8. Conclusions and Future Work

In this work, we propose an encryption protocol based on invertible and commutative PUFs
and propose a circuit implementation of the required invertible and commutative PUF (BS-PUF).
Spectre Monte Carlo simulations indicate only less than 1 bit delay variation when the plaintext
changes. This ensures the commutativity of the system. The primary focus of this paper is to develop
a PUF-based encryption protocol; to define the requirements of such a protocol—an invertible and
commutative PUF; and to show that such an invertible and commutative PUF design is feasible.
Simulations that establish this PUF design provide good randomness, uniqueness and reproducibility
performance. These encryption PUFs have the potential to root encryption in hardware, hence
increasing robustness beyond current software-only solutions.

Much needs to be addressed to establish the practicality of invertible and commutative PUFs in
real silicon implementations. An evaluation of PUFs based on more relevant permutation families such
as the Keccak sponge family [20] is needed. There are many possible future directions to incorporate
asymmetric encryption with these PUFs. The proposed design uses raw PUF responses; it will therefore
be noisier than traditional PUFs. An error coding scheme using helper data and some form of fuzzy
extraction is required.
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Abbreviations

The following abbreviations are used in this manuscript:

PUF Physical Unclonable Function
BS-PUF Barrel Shifter Physical Unclonable Function
RO-PUF Ring Oscillator Physical Uncloable Function
CBC Cipher Block Chaining
IV Initialization Vector
LSB Least Significant Bit
DFF D Flip-Flop
HD Hamming Distance
LR Logistic Regression
ES Evolution Strategies
CRP Challenge Response Pairs
PCP Plaintext–Ciphertext Pairs
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