
cryptography

Brief Report

Cryptanalysis of a Proposal Based on the Discrete
Logarithm Problem Inside Sn

María Isabel González Vasco 1,*,†, Angela Robinson 2,† and Rainer Steinwandt 2,†

1 MACIMTE, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain
2 Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA;

arobin65@my.fau.edu (A.R.); rsteinwa@fau.edu (R.S.)
* Correspondence: mariaisabel.vasco@urjc.es; Tel.: +34-91-488-7605
† These authors contributed equally to this work.

Received: 21 May 2018; Accepted: 16 July 201; Published: 19 July 2018
����������
�������

Abstract: In 2008, Doliskani et al. proposed an ElGamal-style encryption scheme using the symmetric
group Sn as mathematical platform. In 2012, an improvement of the cryptosystem’s memory
requirements was suggested by Othman. The proposal by Doliskani et al. in particular requires
the discrete logarithm problem in Sn, using its natural representation, to be hard. Making use of
the Chinese Remainder Theorem, we describe an efficient method to solve this discrete logarithm
problem, yielding a polynomial time secret key recovery attack against Doliskani et al.’s proposal.

Keywords: cryptanalysis; symmetric group; public key encryption

1. Introduction

Discrete logarithm problems in certain representations of cyclic groups, such as subgroups of
elliptic curves over prime fields, are a popular resource in the construction of cryptographic primitives.
Widely deployed solutions for digital signatures and key establishment rely on the computational
hardness of such discrete logarithm problems. Doliskani et al. proposed a cryptosystem in [1]
which relies on the discrete logarithm problem inside the symmetric group Sn, using its standard
representation, to be hard. The encryption scheme proposed in [1] is essentially an instantiation of the
classic ElGamal [2] encryption scheme, but using a cyclic subgroup of Sn in standard representation as
platform instead of a more traditional platform choice.

We show that this particular discrete logarithm problem is problematic for cryptographic purposes
by showing how to find such discrete logarithms in polynomial time. Consequently, in the proposal
from [1], secret keys can be recovered from public data in polynomial time. Our algorithm exploits the
permutation representation of a cyclic group that is used in [1]. Even though any finite cyclic group
is isomorphic to a subgroup of a suitably large symmetric group, our algorithm does not imply an
efficient solution for discrete logarithm problems in established cryptographic platform groups.

2. The Scheme of Doliskani et al.

In this section, we briefly recall the cryptosystem proposed by Doliskani et al. following the
description given in [1] (Section 4). The scheme has the same basic structure as ElGamal encryption:

Key Generation. The key generation algorithm, executed by the receiver, selects an appropriate index
n and a suitable permutation g ∈ Sn. The cyclic group generated by g will be denoted by 〈g〉,
and we represent its order by |g|. Further, an integer α is selected uniformly at random from
{1, . . . , |g| − 1}. The public key is the pair (g, gα), while the private key is the secret “exponent” α.
(Even though these points are not clarified by the authors, as is customary, we assume n is chosen
from an input security parameter `, and is polynomial in `.)

Cryptography 2018, 2, 16; doi:10.3390/cryptography2030016 www.mdpi.com/journal/cryptography

http://www.mdpi.com/journal/cryptography
http://www.mdpi.com
http://www.mdpi.com/2410-387X/2/3/16?type=check_update&version=1
http://dx.doi.org/10.3390/cryptography2030016
http://www.mdpi.com/journal/cryptography

Cryptography 2018, 2, 16 2 of 6

Encryption. On input of a plaintext m, which we may assume belongs to Sn (we omit the encoding
described in [1] (Section 3), which is irrelevant for our purposes), an integer k is chosen
uniformly at random from {1, . . . , n}. The ciphertext is computed as the pair of group elements
(g1, g2) := (gk, mgαk).

Decryption. The group element g1 is raised to the secret exponent α and further inverted to compute
m := g2(gα

1)
−1.

As made clear by the authors, this scheme essentially instantiates ElGamal encryption in the
symmetric group Sn. As such, some of the security concerns of the original ElGamal over finite fields
carry over. Given an encryption of m, one can trivially derive an encryption of hm for any h ∈ Sn, so we
observe that malleability is one such concern. Very limited plaintext leakage is another concern. It is
known that in a straightforward ElGamal implementation over Z∗2q+1 for a Sophie Germain prime q,
one bit of the message leaks. Indeed, if the cyclic group 〈g〉 has order q, it is possible to determine
from the ciphertext whether the underlying plaintext m is a quadratic residue mod 2q + 1 or not, as the
ciphertext leaks the Legendre symbol

(
m

2q+1

)
of m.

Similarly, the construction in [1] leaks one bit, corresponding to the sign of the plaintext
permutation m. Recall that the sign of a permutation can be seen as a group homomorphism

ε : Sn −→ {−1, 1},

defined as ε(σ) = 1 if and only if σ can be written as the product of an even number of
transpositions. Otherwise, if σ is odd (and can thus only be decomposed as a product of an
odd number of transpositions), ε(σ) = −1. It is easy to see that ε is a group homomorphism,
hence ε(mgαk) = ε(m)ε(gαk). If any of the (public) g, gα, or gk are in the kernel of ε, then necessarily
the sign of the “mask” gαk is one, too, and the sign of the plaintext leaks. Information on the elements
in {1, . . . , n} not stabilized by the permutation m, known as the support of plaintext m, may leak if the
support of g is small. This follows from the fact that the elements in {1, . . . , n} not stabilized by any
permutation from 〈g〉 is always a subset of the support of g.

We include these remarks to emphasize that, when considering a concrete ElGamal instantiation,
a thorough analysis is essential. One must consider the specific group representation and parameters
in use.

In [1], the order of the public group element g is identified by the authors as the main relevant
parameter determining the security of the above scheme. Indeed, when approaching a generic instance
of the discrete logarithm problem in an arbitrary cyclic group, the order of the generator gives us
an idea of how successful standard methods such as those mentioned in [1] (Section 2) might be
when it comes to solving the associated discrete logarithm problem. This, however, does not rule
out the existence of more efficient algorithms for computing discrete logarithms exploiting a concrete
representation of the underlying group. As we show in the next section, this is the case for the
symmetric group.

3. Finding Discrete Logarithms in Cyclic Subgroups of Sn

Let Sn be the symmetric group on n points, with elements f ∈ Sn represented as a list of images
[f (1), . . . , f (n)] (or in standard cycle notation). Moreover, let g ∈ Sn, and h = gα some element in
the cyclic group 〈g〉 generated by g. For the encryption scheme put forward in [1], the pair (g, h)
represents a public key, and being able to recover α from the public key yields a successful recovery
of a user’s secret key. When applied to the input (g, h), the following procedure returns α (mod |g|),
thereby solving the discrete logarithm problem in 〈g〉.

Step 1. Decompose g and h into disjoint cycles

g = π1 ◦ . . . ◦ πr

h = σ1 ◦ . . . ◦ σs.

Cryptography 2018, 2, 16 3 of 6

Here, we include length-one cycles if needed, so that each i ∈ {1, . . . , n} occurs in exactly
one cycle.

Step 2. Compute arrays G and H, such that the ith entry G[i] stores:

• the index j of the cycle πj containing i; and
• the position of i within this cycle (1 ≤ i ≤ n).

That is, G[i] = (j, pos(i)) would indicate that element i appears in cycle πj at position pos(i).
Similarly, in H[i], we store:

• the index k of the cycle σk containing i; and
• the position of i within this cycle (1 ≤ i ≤ n).

Thus, H[i] = (k, pos(i)) would indicate that element i appears in cycle σk at position pos(i).
Step 3. Store the first element of each cycle σj of h as First[j] in an array. Analogously,

store the second element of σj as entry Second[j] in an array. (For a length-one cycle, we set
Second[j]=First[j].) Note that First[j] and Second[j] belong to the same cycle πj′ of g.

Step 4. Use the array G to find for each i ∈ {1, . . . , n} the cycle of g containing First[i]
and Second[i], and store the difference D[i] between their positions in an array D. Then,
D[i] = pos(Second[i])− pos(First[i]), for each i ∈ {1, . . . , n}. Further, compute the length of the
cycle containing element i and store it in an array L.

Step 5. The solution α is congruent to each residue D[i] modulo L[i] for 1 ≤ i ≤ |D|. Compute α with
the Chinese Remainder Theorem.

It may be worth noting that the last step of the above procedure uses a slightly more general
version of the Chinese Remainder Theorem than is commonly discussed in introductory computer
algebra courses. Instead of exploiting the availability of an efficiently computable isomorphism
between Z/(m1 · · · · ·mr) and Z/(m1)× · · · ×Z/(mr), with m1, . . . , mr being pairwise coprime natural
numbers, we face the more general situation of a linear system of congruences of the form

x ≡ x1 (mod m1)

...

x ≡ x2 (mod mr)

where m1, . . . , mr may have common factors. This situation is covered, e.,g., in [3] (Theorem 3.12) and
in [4], which show that a solution is unique modulo the least common multiple of m1, . . . , mr, and for
executing Step 5 we basically follow the proof given in [4]. Putting everything together, it turns out
that the running time of the above procedure is polynomial. (As is common, we use the (bit) length of
the group size as cost parameter. With the natural representation of Sn used, the running time is also
polynomial in the input length.)

Theorem 1. Let g ∈ Sn. Then, the discrete logarithm problem in the group generated by g can be solved in
time O(log4 |g|) = O(n2 log2 n).

Proof. Let g ∈ Sn. It is easy to see that Step 1 from the above description can be completed in time
O(n). Indeed, to express g in cycle notation, we assume (without loss of generality) it acts on {1, . . . , n}.
Thus, we start from i = 1, perform a look-up and find the image of i under g. If the image is equal to i,
close the cycle and increment the index i moving ahead to i + 1. Otherwise, append g(i) at the end of
the cycle and repeat the process for this index. There will be at most n look-ups and n stored integers
between 1 and n. The arrays G, H each contain 2n integers.

Further, Step 2 can also be completed in time O(n). As there are at most n cycles in gα, the arrays
First, Second are at most n integers long. Thus, the construction of these two arrays requires storing
at most 2n integers.

Cryptography 2018, 2, 16 4 of 6

Let us now move ahead to Steps 3 and 4. For each 1 ≤ i ≤ |First|, perform a look-up in array G

to determine to which cycle of g the value First[i] belongs. This requires at most n look-ups. Look up
the position numbers of Second[i] and First[i] and subtract. This requires at most O(n) computations
plus O(n) look-ups.

The final step requires that we solve a system with at most |D| modular arithmetic equations,
where the moduli are not necessarily coprime. We have |D| ≤ n/2, so let k = dn/2e, and let

α ≡ D[1] mod L[1]

α ≡ D[2] mod L[2]
...

α ≡ D[k] mod L[k]

denote the system of congruences found in Step 5, where each L[i] is the length of a cycle of g. As in [4],
let m = lcm(L[1], L[2], . . . , L[k]). Now, we can closely follow the the proof of [4, Theorem 2]:

Compute the solution to the first two congruences

α ≡ D[1] mod L[1]

α ≡ D[2] mod L[2],

and call this solution α1. There are t, s ∈ Z with gcd(L[1], L[2]) = t · L[1] + s · L[2]. By [4], we know the
solution is α1 = D[1] + t · L[1], which is unique mod lcm(L[1], L[2]). According to [5], this application
of the Extended Euclidean Algorithm has a cost of O(log L[1] · log L[2]). We upper-bound this by
O(log2 n).

Next, consider the two equivalences

α ≡ α1 mod lcm(L[1], L[2])

α ≡ D[3] mod L[3].

Compute the solution to this pair of congruences as above, and call this solution α2. The cost of
computing α2 is

O(log(lcm(L[1], L[[2])) · log L[3]) = O(2 log n log n)

= O(log2 n).

Iterate this step until the k equivalences are reduced to 2. The solution to the last pair of
equivalences is the solution, α.

There will be at most n − 1 applications of the Extended Euclidean Algorithm, with total
complexity in O(∑n−1

k=1 k · log2 n) = O(n2 log2 n). From [6–8], we know that, for any g ∈ Sn, it holds
that log |g| = O(

√
n log n), and the claim follows.

Correctness of the above procedure is not hard to verify:

Proposition 1. For any g ∈ Sn and h ∈ 〈g〉 such that h = gα, the above procedure computes α (mod |g|),
given g, h, and n.

Proof. Let g = π1 ◦ · · · ◦ πr and suppose the algorithm returns ᾱ ≡ D[i] mod L[i] for all i as in the
proof of Theorem 1. We proceed by showing that gᾱ = h. Since the πi are disjoint,

Cryptography 2018, 2, 16 5 of 6

gᾱ = (π1 ◦ · · · ◦ πr)
ᾱ

= πᾱ
1 ◦ · · · ◦ πᾱ

r . (1)

There exist ki ∈ Z such that ᾱ = ki · L[i] + D[i] for all i, so (1) is equal to

π
k1L[1]+D[1]
1 ◦ · · · ◦ π

krL[r]+D[r]
r . (2)

The order of πi is L[i] for each i, so Equation (2) simplifies to

π
D[1]
1 ◦ · · · ◦ π

D[r]
r .

To show that gᾱ = h, we evaluate gᾱ(First[i]) and show that the result is Second[i] for all
i. Let G[First[i]] = (l, pos(First[i])). As First[i] and Second[i] belong to the same cycle of g,
then G[Second[i]] = (l, pos(Second[i])). It follows that

π
D[i]
1 ◦ · · · ◦ π

D[r]
r (First[i]) = π

D[i]
l (First[i]).

The image of First[i] under π
D[i]
l is found by moving (cyclically) right by D[i] positions inside πl .

Thus, First[i] ends up being mapped to the cycle entry at position pos(First[i]) + (pos(Second[i])−
pos(First[i])]) = pos(Second[i]). Consequently, π

D[i]
l (First[i]) = Second[i]. As this holds for all i,

the resulting permutation satisfies gᾱ = h.

4. Experimental Validation

The proposed attack was implemented in Magma V2.21 on a personal computer. An example of
the attack in S100 is as follows. Let

g = (1, 12, 90, 19, 7, 30, 44, 72, 57, 55, 34, 81, 82, 17, 54, 21, 80, 94, 35, 11, 85, 100)

(2, 9, 83, 87, 45, 13, 67, 24, 78, 4, 16, 32, 65, 51, 29, 33, 22, 59, 50, 69, 56, 58, 43,

31, 47, 96, 91, 92, 15, 75, 86, 49, 68, 88, 95, 36, 63, 23, 71, 98, 42, 28, 64, 8, 38, 40)

(3, 10, 97, 48, 74, 39, 46, 60, 89, 5)(6, 26, 79, 25, 20, 76)(14, 84, 37, 53, 61, 70, 73)

(18, 99, 93, 66, 62, 27, 77, 41).

The order of g is 212,520. Given (g, g178,705), let us try to recover the secret exponent α =178,705.
Following the procedure presented above, we store

D = [21, 41, 5,−5, 1, 5, 2, 1, 5,−5, 0] and

L = [22, 46, 10, 10, 6, 10, 7, 8, 10, 10, 1].

Further, we know that α is congruent to D[i] modulo L[i] for each i. Applying the Chinese
Remainder Theorem yields the solution α = 178,705, as expected.

5. Conclusions

The above discussion provides a polynomial time solution for the discrete logarithm problem
inside the symmetric group Sn, using its standard presentation. On suitable elliptic curves, efficient
implementations of ElGamal are available, where (in the absence of quantum computers) no
polynomial time attacks on the secret key are known. With the availability of a polynomial-time
secret key recovery, it seems fair to consider the security assumption underlying Doliskani et al.’s
proposal as problematic.

Author Contributions: Conceptualization, Formal Analysis, and Writing: M.I.G.V, A.R., and R.S.; Software: A.R.

Cryptography 2018, 2, 16 6 of 6

Funding: This research was funded by Spanish MINECO grant number MTM2016-77213-R.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Doliskani, J.N.; Malekian, E.; Zakerolhosseini, A. A Cryptosystem Based on the Symmetric Group Sn.
IJCSNS Int. J. Comput. Sci. Netw. Secur. 2008, 8, 226–234.

2. Gamal, T.E. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans.
Inf. Theory 1985, 31, 469–472.

3. Jones, G.A.; Jones, J.M. Elementary Number Theory; Springer Undergraduate Mathematics Series; Springer:
Berlin, Germany, 1998.

4. Bogomolny, A. Chinese Remainder Theorem from Interactive Mathematics Miscellany and Puzzles. 2012.
Available online: http://www.cut-the-knot.org/blue/chinese.shtml (accessed on 1 May 2018).

5. von zur Gathen, J.; Gerhard, J. Chapter The Euclidean Algorithm. In Modern Computer Algebra; The Press
Syndicate of the University of Cambridge: Cambridge, UK, 1999; pp. 50–55.

6. Landau, E. Über die Maximalordnung der Permutationen gegebenen Grades. Arch. Math. Phys. 1903, 5, 92–103.
7. Massias, J.P. Majoration explicite de l’ordre Maximum d’un Élément du groupe symétrique. Ann. Fac. Sci.

Toulouse Math. 1984, 6, 269–280. [CrossRef]
8. Massias, J.P.; Nicolas, J.L.; Robin, G. Effective Bounds for the Maximal Order of an Element in the Symmetric

Group. Math. Comput. 1989, 53, 665–678. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.cut-the-knot.org/blue/chinese.shtml
http://dx.doi.org/10.5802/afst.612
http://dx.doi.org/10.1090/S0025-5718-1989-0979940-4
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Scheme of Doliskani et al.
	Finding Discrete Logarithms in Cyclic Subgroups of Sn
	Experimental Validation
	Conclusions
	References

