
  

Cryptography 2018, 2, 14; doi:10.3390/cryptography2030014 www.mdpi.com/journal/cryptography 

Article 

An Efficient Tate Pairing Algorithm for a 
Decentralized Key-Policy Attribute Based Encryption 
Scheme in Cloud Environments 
Balaji Chandrasekaran * and Ramadoss Balakrishnan 

Department of Computer Applications, National Institute of Technology, Tiruchirappalli 620015, India; 
brama@nitt.edu 
* Correspondence: cbalaji1988@gmail.com; Tel.: +91-948-994-9299 

Received: 25 May 2018; Accepted: 13 July 2018; Published: 15 July 2018 

Abstract: Attribute-based encryption (ABE) is used for achieving data confidentiality and access 
control in cloud environments. Most often ABE schemes are constructed using bilinear pairing 
which has a higher computational complexity, making algorithms inefficient to some extent. The 
motivation of this paper is on achieving user privacy during the interaction with attribute 
authorities by improving the efficiency of ABE schemes in terms of computational complexity. As a 
result the aim of this paper is two-fold; firstly, to propose an efficient Tate pairing algorithm based 
on multi-base number representation system using point halving (TP-MBNR-PH) with bases 1/2, 3, 
and 5 to reduce the cost of bilinear pairing operations and, secondly, the TP-MBNR-PH algorithm 
is applied in decentralized KP-ABE to compare its computational costs for encryption and 
decryption with existing schemes. 
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1. Introduction 

Cloud computing, as an emerging computing paradigm, empowers client to remotely store 
information on a cloud in order to access services on request. Over the past few years, it has been 
observed that cloud computing has become a full-fledged promising business idea for the IT sector. 
As data related to people and organizations resides in the cloud, to a large extent, a concern for 
security is addressed. This issue reduces the potentiality of cloud computing technologies in terms of 
giving protection and assurance to the end user information and, at the same time, it plaguies the 
market. In order to secure information from being disclosed, clients need to encipher their 
information before it is shared. Access control is elementary, as it is the primary line of defense that 
avoids unauthorized access to the shared information. In considering the above facts, attribute-based 
encryption (ABE) is given much more attention in providing information security and in 
comprehending fine-grained, one-to-numerous, and non-interactive access control. Thus it is evident 
that ABE supports both confidentiality and access control with a single encryption for data sharing 
in a cloud environment. 

In 2005, Sahai and Waters [1] proposed another sort of IBE scheme called fuzzy IBE (FIBE) which 
compliments identities as a collection of descriptive attributes. FIBE is viewed as the primary idea of 
ABE in which the information owner encrypts a message to all users having a specific collection of 
attributes. In the same period, Nali et al. [2] also proposed a threshold-based ABE technique to convey 
the fact that this technique forestalls the collusion attacks and opens a new weakness in which 
threshold semantics are restricted in planning broader frameworks that require expressive access 
control. Data user, data owner, attribute authority (AA), and cloud storage server are the four kinds 
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of parties involved in ABE. In the ABE scheme, attributes are assumed to be the critical part. 
Attributes use public keys for encrypting data and are also utilized as an access policy for controlling 
users’ access. It is realized in healthcare and smart grid applications that ABE provides fine-grained 
access control and broadcasting of a single encrypted message to a specific group of users, 
respectively. In view of the access policy, ensuing studies are generally ordered [3] either as a key-
policy ABE (KP-ABE) or cipher text-policy ABE (CP-ABE). 

In 2006, Goyal et al. [3] introduced the concept of KP-ABE in which each secret key is associated 
with an access structure that specifies the type of cipher text which can be decrypted by this secret 
key. The cipher texts are labelled with a collection of descriptive attributes. In case the attribute set 
fulfils the access structure indicated in the secret key, the user can decrypt the cipher text. It is one of 
the prominent encryption techniques with fine-grained access control for applications, say, sharing 
audit log information. The major drawback in this technique is that no sooner is the access policy 
built into the secret key, the data owner in this scheme cannot choose the person who is decrypting 
the cipher text, but can only decide a collection of attributes controlling the access of cipher texts. 
Later, Ostrovsky et al. [4] proposed a scheme with a non-monotonic access structure where the secret 
keys are stamped with a collection of attributes comprising positive and negative attributes. 
Analogously, the ABE scheme with a non-monotonic access structure elicits a more convoluted access 
policy. Unfortunately, the main flaw in this mechanism is that it doubles the size of the cipher text, 
and secret key and adds encryption/decryption overheads at the same time. Attrapadung et al. [5] 
suggested the first KP-ABE scheme with non-monotonic access structures and constant cipher text 
size. The drawback is that the secret key has a quadratic size in the number of attributes. 

Goyal et al. [3] proposed the feasibility of a CP-ABE scheme, but not yet endeavored any 
constructions. In a CP-ABE scheme, a user’s secret key is associated with a subjective number of 
attributes representing strings, and cipher text with an access structure. A user may have the capacity 
to decrypt a cipher text if user’s attributes fulfil the access structure of the cipher text. In 2007, utilizing 
a monotonic access structure, Bethencourt et al. [6] proposed the main CP-ABE development. This 
technique sustains adaptable access control strategies like the KP-ABE [3] technique.  

Considering the security aspects under the standard model, Cheung and Newport [7] 
contributed a provably secure CPABE scheme which, in turn, boosted the security proof in 
Bethencourt et al. [6]. This scheme supported AND gate on positive and negative attributes as its 
access policy and is proved to be the chosen plain text attack (CPA), secure under the decisional 
bilinear Diffie-Hellman (DBDH) assumption. Even though it has some advantages, there are some 
disadvantages, too. Mostly, this scheme is not adequately expressive because it supports only policies 
with logical conjunction. The next one is that the size of the cipher text and the secret key increments 
in a linear fashion with the aggregate number of attributes in this scheme. These two weaknesses 
made this scheme less proficient than Bethencourt et al.’s [6].  

In view of Cheung and Newport’s scheme [7], Nishide et al. [8] enhanced the effectiveness and 
accomplished hidden policies by proposing a scheme with multi-value attributes as its access policy. 
Emura et al. [9] utilized a similar access policy and proposed an enhanced scheme accomplishing a 
steady length of cipher text and a consistent number of bilinear pairing operations. Liang et al. [10] 
enhanced the bounded CP-ABE (BCP-ABE) by improving the proficiency of the 
encryption/decryption algorithm and reducing the length of the public key, secret key, and cipher 
text. 

The initial ABE scheme was created utilizing single AA [1]. Later multiple-authority-based ABE 
(MA-ABE) was proposed in [11], since the single-authority ABE technique permitted a large volume 
of data at a single entity. In the MA-ABE technique, there are numerous AAs in charge of disjoint 
collections of attributes. In the customary MA-ABE technique, users co-operate with various AAs to 
obtain decryption credentials for their attributes. On the other hand, there is no security assurance 
for users; instead all AAs can share (collude) the specific user’s data (attributes) to uncover the user’s 
identity. Hence, the motivation of this paper is on achieving user privacy during the interaction with 
AAs by improving the efficiency of ABE schemes in terms of computational complexity. To the best 
of our knowledge, almost all the ABE schemes available are constructed from bilinear pairings. 
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However, bilinear pairing has a higher computational complexity, which makes algorithms 
inefficient to some extent. Therefore, the main focus of this paper is in reducing the cost of bilinear 
pairing operations to improve the efficiency of the ABE scheme. 

1.1. Our Contributions 

The main contributions of this paper are highlighted as follows: 

• An efficient Tate pairing algorithm based on multi-base number representation system using 
point halving (TP-MBNR-PH) with bases 1/2, 3, and 5 has been proposed. This scheme mitigates 
the cost of bilinear pairing when compared to existing Tate pairing schemes. The efficiency is 
calculated using the computational costs and pre-computed costs of addition, subtraction, 
halving, tripling, and quintupling operations. 

• The TP-MBNR-PH algorithm is applied in decentralized KP-ABE to show the reduction in 
computational costs for encryption and decryption when compared with existing schemes 
[12,13]. 

1.2. Paper Organization  

The rest of this paper is organized as follows: Section 2 covers the related work. Section 3 deals 
with the proposed work of this paper. It consists of two subsections: firstly, Section 3.1 describes the 
proposed work of an efficient Tate pairing algorithm based on a multi-base number representation 
system using point halving (TP-MBNR-PH) with bases 1/2, 3, and 5; secondly, Section 3.2 describes 
the applicability of the TP-MBNR-PH algorithm in decentralized KP-ABE. Section 4 concludes the 
paper. 

2. Related Work  

There are two fundamental sorts of ABE, particularly cipher text-policy ABE (CP-ABE) and key-
policy ABE (KP-ABE). The ABE scheme is categorized into two: single-authority ABE (SA-ABE) and 
multi-authority ABE (MA-ABE). In the MA-ABE scheme, there are two sub-categories; with a central 
authority (CA) and without a central authority. Chase introduced an MA-ABE scheme [14] utilizing 
a trusted CA for disbursing all the keys. The main drawback of utilizing a CA is that it increases the 
computation and communication cost. Lin et al. [15] resolved the secure threshold multi-authority 
fuzzy identity based encryption (threshold MA-FIBE) scheme in the absence of a central authority.  

In the same lines, Chase and Chow in [11] introduced an MA-ABE scheme removing the CA 
using distributed pseudorandom functions. In this scheme, every pair of AAs firmly exchange a 
shared secret among them in the setup process. Users must submit their global identities (GIDs) to 
every AA to get the decryption credentials in [14]. This cleaves the user protection since a collection 
of perverted AAs can pool together each of the attributes that belong to the specific GID. 

In [11], Chase and Chow introduced an anonymous key-issuing protocol to mitigate the privacy 
vulnerability in which a user can acquire the decryption keys from AAs without exposing his/her 
GID. Despite the fact that the scheme introduced by Chase and Chow avoids the central AA, all the 
AAs must be online and collude with each other to set up the ABE system. Thus, it is not fully 
decentralized. Furthermore, different protocols are proposed to decentralize the ABE scheme 
[11,14,16,17]; nonetheless, each scheme has its own benefits and bad marks. 

The first known completely decentralized MA-ABE scheme is suggested in [16] where any party 
can turn into an AA and there is no prerequisite for any global co-ordination other than the 
production of a pioneer collection of common reference parameters. This overcomes the collusion 
vulnerability without providing co-ordination between AAs with novel strategies to tie key parts 
together and anticipate collusion attacks between users with various global identifiers. This scheme 
does not protect the user privacy as attributes of users are gathered by AAs following users’ GIDs. 
The scheme in [11] considers privacy, however, it is not completely decentralized. Han et al. 
suggested a PP decentralized scheme for KP-ABE in [18] for preserving the user privacy based on the 
decisional bilinear Diffie-Hellman (DBDH) standard complexity assumption. 
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In [18], the GID of the user is utilized to tie all the decryption keys together, where blind key 
generation protocol has been used to issue the decryption keys. Subsequently, perverted AAs cannot 
pool the users’ attributes by following the GIDs’ of the users from the decryption keys. Unluckily, 
the scheme cannot counteract user collusion, thus, two users can pool their decryption keys to 
produce decryption keys for an unauthorized user [19]. This is because of weak binding between 
users’ GID and the decryption keys. 

Rahulamathavan et al. [12] constructed the privacy-preserving decentralized KP-ABE scheme in 
a cloud environment. It protects the users’ privacy when they communicate with multiple authorities 
to obtain decryption credentials. It reduces the user collusion vulnerability found in [19] and used an 
anonymous key-issuing protocol based on anonymous credentials. Thus, it cannot generate 
decryption credentials for malicious users even if two or more users collude their keys. It is both leak-
free and selective-failure blind. This scheme is verified using decisional bilinear Diffie-Hellman 
standard complexity assumption. Yang et al. [13] proposed a scheme to improve privacy and security 
in decentralizing multi-authority attribute-based encryption in cloud computing. Most often existing 
ABE schemes are constructed from bilinear pairings. This makes an algorithm inefficient due to its 
high computational complexity of bilinear pairing. In this paper, first, an efficient Tate pairing based 
on multi-base number representation system using point halving (TP-MBNR-PH) with point halving, 
tripling, and quintupling is proposed and then applied in decentralized KP-ABE [12] to determine its 
computational costs of encryption and decryption. 

3. Proposed Work  

The proposed work consists of two parts. Firstly, we propose an efficient Tate pairing algorithm 
based on multi-base number representation system using point halving (TP-MBNR-PH) with bases 
1/2, 3, and 5 with the aim to reduce the cost of bilinear pairing operations. Secondly, the TP-MBNR-
PH algorithm is applied in decentralized KP-ABE to determine its computational costs for encryption 
and decryption.  

3.1. Proposed Tate Pairing Algorithm Construction  

3.1.1. Bilinear Maps  

Let 𝐺𝐺1, 𝐺𝐺2, and 𝐺𝐺𝑇𝑇 be three cyclic groups of prime order q. 𝐺𝐺1 and 𝐺𝐺2 are a source group and 
𝐺𝐺𝑇𝑇 is a target group. Let 𝑔𝑔1 and 𝑔𝑔2 be generators of 𝐺𝐺1 and 𝐺𝐺2, respectively. A bilinear map 𝑒𝑒 is 
defined as 𝑒𝑒: 𝐺𝐺1  ×  𝐺𝐺2  →  𝐺𝐺𝑇𝑇 which has the following properties: 

• Bilinearity: 𝑒𝑒(𝑔𝑔1𝑎𝑎 ,𝑔𝑔2𝑏𝑏) = 𝑒𝑒(𝑔𝑔1,𝑔𝑔2)𝑎𝑎𝑎𝑎 , where 𝑎𝑎, 𝑏𝑏 ∈  𝑍𝑍. 
• Computability: The bilinear map e is efficiently computable by 𝐺𝐺1  ×  𝐺𝐺2 for any pairs. 
• Non-degeneracy: 𝑒𝑒(𝑔𝑔1,𝑔𝑔2) ≠  1. This means all pairs of the source group do not map to the 

identity of the target group. 

Note: If 𝐺𝐺1 = 𝐺𝐺2, then it is a symmetric map, otherwise it is an asymmetric map. 

3.1.2. Point Halving (PH)  

Fundamentally all the scalar multiplication is ascertained by utilizing the double and add 
method. However, Knuden (1999) and Schroeppel (2000), in parallel, proposed a strategy to speed 
up scalar multiplication on elliptic curves characterized over binary augmentation fields. Their 
technique depends on a novel elliptic curve primitive called point halving, which can be 
characterized as follows: Given a point Q of odd order, compute P such that  𝑄𝑄 =  2𝑃𝑃. The point  𝑃𝑃 
is denoted as  1/2 𝑄𝑄. That means, in this technique the previous double and add method is replaced 
by the half and add method, which is the exact inverse operation of point doubling. The strategies 
replaced all point doublings in the double-and-add algorithm with another operation called point 
halving. This technique is executed for conducting scalar multiplication on non-super singular elliptic 
curves in characteristic 2. Point halving is applied to the curves with minimal two-torsion. Since, 
hypothetically, point halving is up toward three times as quick as point doubling, it is conceivable to 
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enhance the execution of scalar multiplication calculation 𝑄𝑄 =  𝑛𝑛𝑛𝑛 by supplanting the double-and-
add algorithm. 

Let 𝑃𝑃 =  (𝑥𝑥, 𝑦𝑦) be a point on the elliptic curve defined over binary field using affine coordinates. 
A point doubling requires calculating the coordinates of the point 𝑄𝑄 =  2𝑃𝑃 =  (𝑢𝑢, 𝑣𝑣)  using the 
following equations: 

𝜆𝜆 =  𝑥𝑥 +  
𝑦𝑦
𝑥𝑥

 (1) 

𝑢𝑢 =  𝜆𝜆2 +  𝜆𝜆 +  𝑎𝑎 (2) 

𝑣𝑣 =  𝑥𝑥2  +  𝑢𝑢 (𝜆𝜆 + 1) (3) 

Point halving is just the opposite, i.e., given 𝑄𝑄 =  (𝑢𝑢, 𝑣𝑣),  find 𝑃𝑃 =  (𝑥𝑥,𝑦𝑦) such that 𝑄𝑄 =  2𝑃𝑃.  
This is computed by solving Equation (2) for 𝜆𝜆, Equation (3) for  𝑥𝑥, and finally, Equation (1) for  𝑦𝑦. 
This means that we have to solve  𝜆𝜆2 +  𝜆𝜆 =  𝑢𝑢 +  𝑎𝑎, for  𝜆𝜆, 𝑣𝑣 =  𝑥𝑥2  +  𝑢𝑢 (𝜆𝜆 + 1)  for  𝑥𝑥, and finally 
obtain  𝑦𝑦 =  𝜆𝜆 𝑥𝑥 +  𝑥𝑥2. A detailed analysis of the computational complexity of point halving was 
made in [20]. It was reported that the point halving method is 15% to 24% faster than point doubling. 

3.1.3. The Double-Base Number System (DBNS) 

In [21], a ternary/binary methodology was proposed for fast Elliptic Curve Cryptography. An 
equivalent tactic was suggested in [22] where an integer k is represented in the double-base number 
system. The following definitions are needed [23]: 

Definition 1 (S-integer). Given a set of primes S, an S-integer is a positive integer whose prime factors all 
belong to S. 

Definition 2 (double-base number system). Given 𝑝𝑝, 𝑞𝑞, two relatively prime positive integers, the double-
base number system (DBNS) is a representation scheme into which every positive integer n is represented as 
the sum or difference of {𝑝𝑝, 𝑞𝑞} -integers, i.e., numbers of the form 𝑝𝑝𝑎𝑎𝑞𝑞𝑏𝑏 : 𝑛𝑛 = ∑ 𝑠𝑠𝑖𝑖 𝑚𝑚

𝑖𝑖=1 𝑝𝑝𝑏𝑏𝑖𝑖𝑞𝑞𝑡𝑡𝑖𝑖 , with 𝑠𝑠𝑖𝑖 ∈
 {−1, 1}, and  𝑏𝑏𝑖𝑖, 𝑡𝑡𝑖𝑖 ≥  0. 

If the sequences of binary and ternary exponents decrease monotonically, i.e., 𝑏𝑏1 ≥ 𝑏𝑏2 ≥  … ≥
𝑏𝑏𝑚𝑚 ≥ 0  and 𝑡𝑡1 ≥ 𝑡𝑡2 ≥ ⋯ ≥ 𝑡𝑡𝑚𝑚 ≥  0, a double-base chain is formed. 

Take the example of 314,159 as used in [24]. Its double-base chain representation is: 

314,159 =  21234  − 21132 + 2831 + 2431 – 2030  

3.1.4. Multi-Base Number Representation (MBNR)  

Let k be an integer and let B = {b1, …, bl} be a set of “small” integers. A representation of k as a 
sum of powers of elements of B is called a multi-base representation [25] of n using the base B. The 
base set size of the double-base representation, i.e., |𝐵𝐵| = 2,  and that of multi-base representation is 
greater than two, i.e., |𝐵𝐵| > 2. 

Definition: A multiple representation l = ∑ 𝑠𝑠𝑖𝑖 𝑚𝑚
𝑖𝑖=1 2𝑏𝑏𝑖𝑖3𝑡𝑡𝑖𝑖 5𝑟𝑟𝑖𝑖  using the bases {2, 3, 5} is called a step 

multi-base number representation, where each exponent {bi}, {ti}, and {ri} refes to separate monotonic 
decreasing sequences. 

The MBNR is compared to DBNS, which is shorter in length and more redundant. For example, 
in Table 1, 200 has 3027 DBNS representation (base 2 and 3), 316,557 representations using the bases 
2, 3 and 5 and has 4,827,147 representations using the bases 2, 3, 5, and 7. 
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Table 1. The number of MBNR of small numbers using various bases. 

N B = {2, 3} B = {2, 3, 5} B = {2, 3, 5, 7} 
10 5 8 10 
20 12 32 48 
50 72 489 1266 

100 402 8425 43,777 
150 1296 63,446 586,862 
200 3027 316,557 4,827,147 
300 11,820 4,016,749 142,196,718 

A multiple representation l = ∑ 𝑠𝑠𝑖𝑖 𝑚𝑚
𝑖𝑖=1 �1

2
�
𝑏𝑏𝑖𝑖

3𝑡𝑡𝑖𝑖 5𝑟𝑟𝑖𝑖  using the bases {�1
2
�, 3, 5} is called a modified 

multi-base number representation [26], where each exponent {bi}, {ti} and {ri} refers to separate 
monotonic decreasing sequences. 

Take the example of 314,159 as used in [26]. Its MBNR is represented as:  

314,159 = �
1
2
�
17

3351  − �
1
2
�
14

3351 + �
1
2
�
10

3151 + �
1
2
�
3

3150  

The advantages of MBNR over DBNS are it is very shorter and more redundant. In the number 
of base elements, the number of representations of n grows aggressively. For example, 300 has 11,820 
DBNS representations (base 2 and 3), 4,016,749 representations using the base 2, 3, and 5, and has 
142,196,718 representations using the base 2, 3, 5, and 7.  

In [26], mixed powers of 2, 3, and 5 have been proposed for representing the scalar. Instead, in 
[25], the authors proposed mixed powers of 1/2, 3, and 5 to obtain the faster elliptic curve 
cryptography (ECC) scalar multiplication. In this method, the point halving is used instead of point 
doubling and quadrupling while maintaining tripling and quintupling operations. 

3.1.5. Proposed Tate Pairing Algorithm Based on Multi-Base Number Representation System Using 
Point Halving (TP-MBNR-PH)  

We propose a Tate pairing algorithm based on multi-base number representation system using 
point halving. 

The proposed Tate Pairing algorithm is based on Point Halving Technique. It takes input as an 
integer of MBNR representation with bases 1/2, 3, and 5 along with points P and Q which should be 
within the finite field FQ. Let L and V represented as line and vertical line passes through the points. 
Ɲ1 be represented as function with the divisor. If the sign value s1 is 1, then set  Ɲ1 to 1 as is shown 
in step 3, else  Ɲ1 is set to Ɲ−1 as is shown in step 6. The computation of Ɲ−1 is shown in step 2. The 
variables b𝑖𝑖 ,  t𝑖𝑖, and r𝑖𝑖 represents the exponents of base 1/2, 3, and 5, respectively, while inside the 
main for loop, TP-MBNR-PH initially calculates α, β, and γ which are the exponents of 1/2, 3, and 5 
bases, as shown in steps 8–10. If the computed base 2 exponent α is equal to zero, then calculate the 
function  Ɲ1 as shown in step 13. If the computed base 3 exponent β is equal to zero, then compute 
the function  Ɲ1 as shown in step 17. If both of the computed bases α and β are equal to zero, then 
calculate  Ɲ1 as shown in step 21. If none of the above conditions are satisfied, then the algorithm 
computes  Ɲ1 as shown in steps 24, 26 and 28. In step 29, if the signed value si+1 is equal to 1, then 
 Ɲ1 and C is computed as shown in step 30, else  Ɲ1 and C is computed as shown in step 32. TP-

MBNR-PH finally returns Ɲ1
�qk−1�/l. 
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Algorithm 1. TP-MBNR-PH 

Input: An integer 𝑙𝑙 = ∑ 𝑠𝑠𝑖𝑖 𝑚𝑚
𝑖𝑖=1 �1

2
�
𝑏𝑏𝑖𝑖

3𝑡𝑡𝑖𝑖 5𝑟𝑟𝑖𝑖 , 𝑠𝑠𝑖𝑖 ∈ {−1,1} , 𝑏𝑏1 ≥ 𝑏𝑏2  ≥  … ≥ 𝑏𝑏𝑚𝑚  ≥ 0, 𝑡𝑡1 ≥  𝑡𝑡2  ≥
⋯ ≥ 𝑡𝑡𝑚𝑚 ≥  0 and 𝑟𝑟1 ≥ 𝑟𝑟2 ≥ ⋯ ≥ 𝑟𝑟𝑚𝑚 ≥  0, 𝑃𝑃 = (𝑥𝑥𝑃𝑃 , 𝑦𝑦𝑃𝑃) ∈ 𝐸𝐸�𝐹𝐹𝑞𝑞�[𝑙𝑙],  𝑄𝑄 = (𝑥𝑥𝑄𝑄 , 𝑦𝑦𝑄𝑄) ∈ 𝐸𝐸�𝐹𝐹𝑞𝑞𝑘𝑘�[𝑙𝑙] 

Output: el(P, Q) 
1. 𝐶𝐶 ⟵ 𝑃𝑃 

2. Ɲ−1 ⟵
1

𝑥𝑥𝑄𝑄 − 𝑥𝑥𝑃𝑃
 

3. 𝐼𝐼𝐼𝐼 𝑠𝑠1 = 1, then 
4.   Ɲ1 ⟵ 1 
5. 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
6.  Ɲ1 ⟵ Ɲ−1 
7. for i = 1, 2, . . . , n − 1 do 
8. 𝛼𝛼 ⟵ 𝑏𝑏𝑖𝑖 − 𝑏𝑏𝑖𝑖+1 
9. 𝛽𝛽 ⟵ 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖+1 
10. 𝛾𝛾 ⟵ 𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑖𝑖+1 
11. 𝐼𝐼𝐼𝐼 𝛼𝛼 = 0 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 
12. for j = 1, 2, . . . . . ,𝛽𝛽 do 

13. 
Ɲ1 ⟵  Ɲ13

𝐿𝐿𝐶𝐶/4,𝐶𝐶/4(𝑄𝑄)𝐿𝐿𝐶𝐶/2,5𝐶𝐶/2(𝑄𝑄)
𝑉𝑉𝐶𝐶/2(𝑄𝑄)𝑉𝑉3𝐶𝐶(𝑄𝑄) ,  

𝐶𝐶 ⟵ 3C 
14. 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝛽𝛽 = 0 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 
15. for j = 1, 2, . . . . . ,𝛼𝛼 do 

16.  Ɲ1 ⟵  Ɲ12
𝐿𝐿𝐶𝐶/4,𝐶𝐶/4(𝑄𝑄)
𝑉𝑉𝐶𝐶/2(𝑄𝑄) ,𝐶𝐶 ⟵

1
2

C 

17. 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐼𝐼𝐼𝐼 𝛼𝛼 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽 = 0 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 
18. for j = 1, 2, . . . . . , 𝛾𝛾 do 

19. Ɲ1 ⟵  Ɲ15
𝐿𝐿𝐶𝐶/4,𝐶𝐶/4
2 (𝑄𝑄)𝐿𝐿𝐶𝐶/2,5𝐶𝐶/2(𝑄𝑄)𝐿𝐿5𝐶𝐶/2,5𝐶𝐶/2(𝑄𝑄)

𝑉𝑉𝐶𝐶/2
2 (𝑄𝑄)𝑉𝑉3𝐶𝐶(𝑄𝑄)𝑉𝑉5𝐶𝐶(𝑄𝑄)

, 

 𝐶𝐶 ⟵ 5C 
20. 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 
21. for j = 1, 2, . . . ,𝛼𝛼 do 

22. Ɲ1 ⟵  Ɲ12
𝐿𝐿𝐶𝐶/4,𝐶𝐶/4(𝑄𝑄)
𝑉𝑉𝐶𝐶/2(𝑄𝑄) ,𝐶𝐶 ⟵

1
2

C 

23. for j = 1, 2, . . . ,𝛽𝛽 do 

24. 
Ɲ1 ⟵  Ɲ13

𝐿𝐿𝐶𝐶/4,𝐶𝐶/4(𝑄𝑄)𝐿𝐿𝐶𝐶/2,5𝐶𝐶/2(𝑄𝑄)
𝑉𝑉𝐶𝐶/2(𝑄𝑄)𝑉𝑉3𝐶𝐶(𝑄𝑄) ,  

𝐶𝐶 ⟵ 3C 
25.  for j = 1, 2, . . . , 𝛾𝛾 do 

26. 
Ɲ1 ⟵  Ɲ15

𝐿𝐿𝐶𝐶/4,𝐶𝐶/4
2 (𝑄𝑄)𝐿𝐿𝐶𝐶/2,5𝐶𝐶/2(𝑄𝑄)𝐿𝐿5𝐶𝐶/2,5𝐶𝐶/2(𝑄𝑄)

𝑉𝑉𝐶𝐶/2
2 (𝑄𝑄)𝑉𝑉3𝐶𝐶(𝑄𝑄)𝑉𝑉5𝐶𝐶(𝑄𝑄)

, 

 𝐶𝐶 ⟵ 5C 
27.    𝐼𝐼𝐼𝐼 𝑠𝑠𝑖𝑖+1 = 1 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 

28. Ɲ1 ⟵ Ɲ1
𝐿𝐿𝐶𝐶 ,𝑃𝑃(𝑄𝑄)
𝑉𝑉𝐶𝐶+𝑃𝑃(𝑄𝑄) ,𝐶𝐶 ⟵ C + P 

29. 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 

30. Ɲ1 ⟵ Ɲ1.Ɲ−1
𝐿𝐿𝐶𝐶,𝑃𝑃(𝑄𝑄)
𝑉𝑉𝐶𝐶−𝑃𝑃(𝑄𝑄) ,𝐶𝐶 ⟵ C − P 

31. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 Ɲ1
�𝑞𝑞𝑘𝑘−1�/𝑙𝑙 
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3.1.6. Experimental Results  

To obtain the results of the proposed TP-MBNR-PH, initially we have to apply the formula for 
computing the Tate pairing of elliptic curves over finite fields. Integers with at least 160 bit size which 
are represented with bases 1/2, 3, and 5 are used in Miller’s algorithm. Table 2 shows the cost and 
pre-computed cost for the operations TADD, TSUB, THAL, TTRL, and TQNT in the proposed TP-
MBNR-PH. Let TADD, TSUB, THAL, TTRL, and TQNT denote the addition, subtraction, halving, 
tripling, and quintupling operations, respectively, as shown in Table 2. Figure 1 and Table 3 shows 
the number of multiplication operation to compute Tate pairing using different methods. Let 𝐼𝐼, 𝑆𝑆 and 
 𝑀𝑀 denote the cost of inversion, squaring and multiplication in 𝐹𝐹𝑞𝑞∗ respectively as shown in Table 1. 
Let 𝐼𝐼𝑘𝑘 , 𝑆𝑆𝑘𝑘  and 𝑀𝑀𝑘𝑘(≈ 𝑘𝑘1.6𝑀𝑀)  denote the cost of inversion, squaring, and multiplication in 𝐹𝐹𝑞𝑞𝑘𝑘

∗ , 
respectively, as shown in Table 1. Let 𝑀𝑀𝑏𝑏(≈ 𝑘𝑘𝑘𝑘) denote the cost of multiplication between 𝐹𝐹𝑞𝑞∗ and 
 𝐹𝐹𝑞𝑞𝑘𝑘

∗ . An embedding degree denoted as 𝑘𝑘, which takes the values of 4, 6, and 8 [27]. In Table 4, we 
significantly improves the proposed TP-MBNR-PH and show the comparison of the proposed TP-
MBNR-PH with an existing algorithm. 

Table 2. Operational costs in the proposed Tate pairing algorithm. 

Operation 
Cost Pre-Computed Cost 

𝑴𝑴𝒌𝒌 𝑺𝑺𝒌𝒌 𝑴𝑴𝒃𝒃 𝑰𝑰 𝑺𝑺 𝑴𝑴 𝑴𝑴𝒌𝒌 𝑺𝑺𝒌𝒌 𝑰𝑰𝒌𝒌 𝑴𝑴𝒌𝒌/𝟐𝟐 𝑰𝑰𝒌𝒌/𝟐𝟐 

TADD 1 - 2.5 1 1 3 2 - - 7 1 
TSUB 1 - - 1 1 2k+3 2 - 1 - - 
THAL 1 1 3.5 - - 4 2 - - - - 
TTRL 3 1 2 1 4 9 - 1 - - - 
TQNT 4 1 5 1 4 12 - 2 - - - 

Table 3. Number of multiplication operations of proposed Tate pairing algorithm and existing 
algorithms. 

Method 
Embedding Degree 

𝒌𝒌 = 𝟒𝟒 𝒌𝒌 = 𝟔𝟔 𝒌𝒌 = 𝟖𝟖 
Izu et al. [28] 12,328M 20,353M 28,379M 

Kobayashi et al. [29] 9196M 13,685M 18,121M 
Chang’an et al. [27] 8350M 12,554M 17,085M 

Proposed Algorithm 6978.8M 10,805.8M 1,4642.8M 

Table 4. Efficiency of proposed Tate pairing algorithm with the existing algorithms. 

Method 
Embedding Degree 

𝒌𝒌 = 𝟒𝟒 𝒌𝒌 = 𝟔𝟔 𝒌𝒌 = 𝟖𝟖 

Izu et al. [28] 43.4% 46.9% 48.4% 
Kobayashi et al. [29] 24.1% 21% 19.1% 
Chang’an et al. [27] 16.4% 13.9% 14.3% 
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Figure 1. Comparison of number of multiplication operations based on the embedding degree. 

3.1.7. Efficiency of the Proposed Algorithm  

The total pre-computed cost of the proposed TP-MBNR-PH is: 

𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝 = 6𝑀𝑀𝑘𝑘 + 3𝑆𝑆𝑘𝑘 + 𝐼𝐼𝑘𝑘 + 7𝑀𝑀𝑘𝑘/2 + 𝐼𝐼𝑘𝑘/2  

By taking 𝑀𝑀4 = 9𝑀𝑀, 𝑀𝑀6 = 18𝑀𝑀, 𝑀𝑀8 = 27𝑀𝑀, 𝑀𝑀𝑘𝑘 = 𝑘𝑘𝑘𝑘, 𝐼𝐼 = 10𝑀𝑀, 𝑆𝑆 = 0.8𝑀𝑀, 𝐼𝐼𝑘𝑘 = 𝐼𝐼 + 𝑘𝑘2𝑀𝑀. 
The total cost of the proposed algorithm is: 

𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 +
𝑛𝑛
2

(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) + 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝 

𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = (𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 + 3𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚+4𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑛𝑛 + 6) 𝑀𝑀𝑘𝑘 + (𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚+𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 + 3) 𝑆𝑆𝑘𝑘 + 

(
7
2
𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 + 2𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚+5𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 +

5
4
𝑛𝑛) 𝑀𝑀𝑏𝑏 + (4𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 + 9𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚+12𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 + (𝑘𝑘 + 3)𝑛𝑛) 𝑀𝑀 

+(𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚+𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑛𝑛) 𝐼𝐼 + (4𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚+4𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑛𝑛)𝑆𝑆 + 𝐼𝐼𝑘𝑘  + 7𝑀𝑀𝑘𝑘/2 + 𝐼𝐼𝑘𝑘/2 

 

3.2. Applying the Proposed TP-MBNR-PH in a Decentralized KP-ABE Scheme  

The TP-MBNR-PH algorithm is applied in a decentralized KP-ABE [12]. The detailed steps are 
as follows: 

• 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝐺𝐺𝐺𝐺): Take input as a security parameter  𝜆𝜆 and it generates the bilinear group 
𝐺𝐺1 𝑎𝑎𝑎𝑎𝑎𝑎 𝐺𝐺2�𝐺𝐺𝐺𝐺(1𝜆𝜆) → {𝐺𝐺1 ,𝐺𝐺2}�  with prime order 𝑃𝑃.  Let e:𝐺𝐺1 × 𝐺𝐺1  → 𝐺𝐺2  be the bilinear map 
and 𝑔𝑔1 ,  𝑔𝑔2,  𝑔𝑔3 are generators of the group 𝐺𝐺1. The  𝑁𝑁 number of authorities are denoted as 
{𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑁𝑁}: 𝐴𝐴𝑘𝑘 monitor  𝑛𝑛𝑘𝑘 attributes i.e., 𝐴̃𝐴𝑘𝑘 = �𝑎𝑎𝑘𝑘,1, … , 𝑎𝑎𝑘𝑘, 𝑛𝑛𝑘𝑘�,∀𝑘𝑘. 

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝐴𝐴𝐴𝐴𝐴𝐴): It is executed by each AA to randomly generate the Security 
parameter (𝑆𝑆𝑆𝑆𝑘𝑘)  of authority 𝐴𝐴𝑘𝑘 and public parameter (𝑃𝑃𝑃𝑃𝑘𝑘)  of authority 𝐴𝐴𝑘𝑘: 

ℤ𝑝𝑝
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑦𝑦
�⎯⎯⎯⎯⎯⎯� 𝑆𝑆𝑆𝑆𝑘𝑘 = �ϰk, ϱk, [ҷ𝑘𝑘,1, … , ҷ𝑘𝑘, 𝑛𝑛𝑘𝑘]�,∀ 𝑘𝑘  

𝑃𝑃𝑃𝑃𝑘𝑘 = �Yk =  eTP−MBNR−PH(𝑔𝑔1,𝑔𝑔1)ϰk , Zk = 𝑔𝑔1
ϱk , [Ҷ𝑘𝑘,1 = 𝑔𝑔1

ҷ𝑘𝑘,1 , … ,Ҷ𝑘𝑘, 𝑛𝑛𝑘𝑘 = 𝑔𝑔1
ҷ𝑘𝑘, 𝑛𝑛𝑘𝑘]� ,∀ 𝑘𝑘  

Each Ak  specifies  mk  as the minimum number of attributes required to satisfy the access 
structure  (mk < nk). 

• 𝐾𝐾𝐾𝐾𝐾𝐾 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 (𝐾𝐾𝐾𝐾):  The attribute set of the user is 𝐴̃𝐴𝑢𝑢: 𝐴̃𝐴𝑢𝑢 ∩ 𝐴̃𝐴𝑘𝑘 = 𝐴̃𝐴𝑢𝑢𝑘𝑘 ,∀ 𝑘𝑘 . 𝐴𝐴𝑘𝑘  generates 
𝑟𝑟𝑘𝑘,𝑢𝑢 ∈𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ℤ𝑝𝑝 and polynomial 𝑞𝑞𝑥𝑥 for each node 𝑥𝑥 (including the leaves) 𝕋𝕋. For each node 
𝑥𝑥, the degree 𝑑𝑑𝑥𝑥 of the polynomial 𝑞𝑞𝑥𝑥 is 𝑑𝑑𝑥𝑥 = 𝑘𝑘𝑥𝑥 − 1  where 𝑘𝑘𝑥𝑥 is the threshold value of that 
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node. For the root node 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , set 𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0) = 𝑟𝑟𝑘𝑘,𝑢𝑢 . For any other node 𝑥𝑥 , 𝑞𝑞𝑥𝑥(0) =
𝑞𝑞𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥)�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥)�. Now decryption key for the user 𝑢𝑢 is generates as follows: 

𝐷𝐷𝐷𝐷 = 𝐷𝐷𝐷𝐷𝑘𝑘,𝑢𝑢 = 𝑔𝑔1
−ϰk𝑔𝑔2

ϱk
𝑟𝑟𝑘𝑘,𝑢𝑢+𝑢𝑢𝑔𝑔3

𝑟𝑟𝑘𝑘,𝑢𝑢
ϱk+𝑢𝑢,𝐷𝐷𝐷𝐷𝑘𝑘,𝑢𝑢

1 = 𝑔𝑔2

1
𝑟𝑟𝑘𝑘,𝑢𝑢+𝑢𝑢,𝐷𝐷𝐷𝐷𝑘𝑘,𝑢𝑢

𝑗𝑗 = 𝑔𝑔3

𝑞𝑞𝑎𝑎𝑘𝑘,𝑗𝑗(0)

�ϱk+𝑢𝑢�ҷ𝑘𝑘,𝑗𝑗 ,∀𝑎𝑎𝑘𝑘,𝑗𝑗 ∈ 𝐴̃𝐴𝑢𝑢𝑘𝑘   

• 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (𝐸𝐸):  Attribute set for the message m  is 𝐴̃𝐴𝑚𝑚: 𝐴̃𝐴𝑚𝑚 ∩ 𝐴̃𝐴𝑘𝑘 = 𝐴̃𝐴𝑚𝑚𝑘𝑘 ,∀𝑘𝑘, 𝑖𝑖. 𝑒𝑒. 𝐴̃𝐴𝑚𝑚 =
�𝐴̃𝐴𝑚𝑚1 , … , 𝐴̃𝐴𝑚𝑚𝑘𝑘 , … , 𝐴̃𝐴𝑚𝑚𝑁𝑁 �. Data owner of message m randomly chooses s ∈randomly ℤp, and output 
the ciphertext as follows: 

C =

⎩
⎨

⎧C1 = m.� eTP−MBNR−PH(g1, g1)ϰks,
k∈IC

C2 = g1s , C3 = � g1
ϱks

k∈IC

,

�Ck,j = Ҷk,j
s �

∀k∈IC,ak,j∈A�m
j ⎭

⎬

⎫
  

where 𝐼𝐼𝐶𝐶  denotes the index set of the authorities. 
• 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝐷𝐷): In order to decrypt 𝐶𝐶, the user 𝑢𝑢, computes 𝑋𝑋,𝑌𝑌, and 𝑆𝑆𝑘𝑘 as follows: 

 𝑆𝑆𝑘𝑘 = � 𝑒𝑒TP−MBNR−PH�𝐶𝐶𝑘𝑘,𝑗𝑗 ,𝐷𝐷𝐷𝐷𝑘𝑘 ,𝑢𝑢
𝑗𝑗 �

∆
𝑎𝑎𝑘𝑘,𝑗𝑗,𝐴𝐴�𝑚𝑚

𝑗𝑗 (0)

𝑎𝑎𝑘𝑘,𝑗𝑗∈𝐴𝐴�𝑚𝑚𝑘𝑘
 

𝑌𝑌 = �𝑒𝑒TP−MBNR−PH�𝐶𝐶3 ,𝐷𝐷𝐷𝐷𝑘𝑘 ,𝑢𝑢
1 �

𝑘𝑘∈𝐼𝐼𝐶𝐶

 

 𝑆𝑆𝑘𝑘 = � 𝑒𝑒TP−MBNR−PH�𝐶𝐶𝑘𝑘,𝑗𝑗 ,𝐷𝐷𝐷𝐷𝑘𝑘 ,𝑢𝑢
𝑗𝑗 �

∆
𝑎𝑎𝑘𝑘,𝑗𝑗,𝐴𝐴�𝑚𝑚

𝑗𝑗 (0)

𝑎𝑎𝑘𝑘,𝑗𝑗∈𝐴𝐴�𝑚𝑚𝑘𝑘
 

 

The user then decrypts the message 𝑚𝑚 as follows:  

𝑚𝑚 =
𝐶𝐶1𝑋𝑋

𝑌𝑌∏  𝑆𝑆𝑘𝑘𝑘𝑘∈𝐼𝐼𝐶𝐶
  

The 𝑁𝑁  number of AAs are denoted as {𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑁𝑁}. Let 𝐴̃𝐴𝑘𝑘 = �𝑎𝑎𝑘𝑘,1, … , 𝑎𝑎𝑘𝑘, 𝑛𝑛𝑘𝑘� be the attribute 
set managed by Attribute Authority (AA), which is denoted as 𝐴𝐴𝑘𝑘. The global setup algorithm takes 
the security parameter as input for generating bilinear group order 𝐺𝐺1 and 𝐺𝐺2. Each AA execute the 
𝐴𝐴𝐴𝐴𝐴𝐴 algorithm to randomly generate the public keys and the corresponding secret keys. The public-
secret key pair for 𝐴𝐴𝑘𝑘  is given as {𝑆𝑆𝑆𝑆𝑘𝑘 = �ϰk, ϱk, [ҷ𝑘𝑘,1, … , ҷ𝑘𝑘, 𝑛𝑛𝑘𝑘]�,∀ 𝑘𝑘,𝑃𝑃𝑃𝑃𝑘𝑘 =
�Yk, Zk, [Ҷ𝑘𝑘,1, … ,Ҷ𝑘𝑘, 𝑛𝑛𝑘𝑘]�,∀ 𝑘𝑘 }. 

The key-generation algorithm issues the decryption keys to user  𝑢𝑢 with a set of attributes, 𝐴̃𝐴𝑢𝑢. 
The output of the algorithm is a decryption key which permits the user to decrypt a message which 
is encrypted under a set of attributes 𝐴̃𝐴𝑢𝑢𝑘𝑘  which is based on the threshold policy, which relays on the 
tree-based access structure.  

In the encryption algorithm, let 𝐴̃𝐴𝑚𝑚 denotes the attribute set which is used to encrypt message 
𝑚𝑚 , 𝐴̃𝐴𝑚𝑚𝑘𝑘  denotes the set of common attributes between message 𝑚𝑚  and the 𝐴𝐴𝐴𝐴 , i.e., 𝐴̃𝐴𝑚𝑚 =
�𝐴̃𝐴𝑚𝑚1 , … , 𝐴̃𝐴𝑚𝑚𝑘𝑘 , … , 𝐴̃𝐴𝑚𝑚𝑁𝑁 �. Additionally, let 𝐼𝐼𝐶𝐶  denote the set of index of attribute authorities 𝐴𝐴𝐴𝐴𝐴𝐴 involved 
in the ciphertext of message 𝑚𝑚. To encrypt the message𝑚𝑚, the message owner has to generate 𝑠𝑠 
randomly and also he hast to calculate the cipher text 𝐶𝐶; 𝐶𝐶 = �𝐶𝐶1,𝐶𝐶2,𝐶𝐶3,𝐶𝐶𝑘𝑘,𝑗𝑗 ,∀𝑎𝑎𝑘𝑘,𝑗𝑗 ∈ 𝐴̃𝐴𝑚𝑚𝑘𝑘 �. To decrypt 
the message𝑚𝑚, the user should have access to the decryption keys for the attributes. By executing the 
decryption algorithm, by following the four steps he can obtain the message 𝑚𝑚 from the ciphertext 
as follows: (1) Initially the user has to compute 𝑋𝑋  using 𝐶𝐶2  and 𝐷𝐷𝐷𝐷𝑘𝑘,𝑢𝑢 . (2) Next, the user uses 
decryption key 𝐷𝐷𝐷𝐷𝑘𝑘,𝑢𝑢

1  and 𝐶𝐶3 to calculate 𝑌𝑌. (3) Then the user has to use 𝐷𝐷𝐷𝐷𝑘𝑘,𝑢𝑢
𝑗𝑗  and 𝐶𝐶𝑘𝑘,𝑗𝑗 , 𝑎𝑎𝑘𝑘,𝑗𝑗 ∈ 𝐴̃𝐴𝑚𝑚

𝑗𝑗  
and polynomial interpolation to obtain 𝑟𝑟𝑘𝑘,𝑢𝑢. (4) Finally, the user can obtain the message 𝑚𝑚 using 𝐶𝐶1 
and pre-computed values 𝑋𝑋,𝑌𝑌 and 𝑆𝑆𝑘𝑘,  ∀𝑘𝑘. 
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3.2.1. Anonymous Key-Issuing Protocol  

In order to avoid user collusions, we have used anonymous key-issuing protocol which is based 
on anonymous credential system which, in turn, allows users to access decryption keys from the AAs 
without enlightening their GIDs. The user 𝑈𝑈 and the attribute authority 𝐴𝐴𝑘𝑘 jointly construct the key-
issuing protocol, which consists of the following steps: 

• The two-party protocol (2PC) is used for the interaction between the user  𝑢𝑢 and the attribute 
authority 𝐴𝐴𝑘𝑘 . The 2PC protocol takes 𝑢𝑢,ℌ1 and ℌ2  from user {𝑟𝑟𝑘𝑘,𝑢𝑢 , ϱk}  from 𝐴𝐴𝑘𝑘  and return 
𝑥𝑥 = (𝑢𝑢 + ϱk)ℌ1 mod 𝑝𝑝 and 𝑦𝑦 = �𝑢𝑢 + 𝑟𝑟𝑘𝑘,𝑢𝑢�ℌ2 mod 𝑝𝑝 to 𝐴𝐴𝑘𝑘. 

• Once the 2PC protocol gets executed, the user  𝑢𝑢 now computes 𝑃𝑃 = 𝑔𝑔1
1

ℌ1ℌ2,𝑄𝑄 = 𝑔𝑔2
1
ℌ2 and 𝑅𝑅 = 𝑔𝑔3

1
ℌ1 

and then sends to 𝐴𝐴𝑘𝑘.  
• Attribute Authority 𝐴𝐴𝑘𝑘 computes 𝐷𝐷𝑘𝑘,𝑢𝑢� , 𝐷𝐷𝑘𝑘,𝑢𝑢

1� , 𝐷𝐷𝑘𝑘,𝑢𝑢
𝚥𝚥� , ∀𝑎𝑎𝑘𝑘,𝑗𝑗 ∈ 𝐴̃𝐴𝑢𝑢𝑘𝑘  and proof of knowledge with the 

help of 𝑃𝑃, 𝑄𝑄, 𝑅𝑅, 𝑥𝑥, and 𝑦𝑦 and send them to the user: 

𝐷𝐷𝑘𝑘,𝑢𝑢� = 𝑃𝑃−ϰk𝑄𝑄
ϱk
𝑥𝑥 𝑅𝑅

𝑟𝑟𝑘𝑘,𝑢𝑢
𝑦𝑦   

𝐷𝐷𝑘𝑘,𝑢𝑢
1� = 𝑄𝑄

1
𝑥𝑥  

𝐷𝐷𝑘𝑘,𝑢𝑢
𝚥𝚥� = 𝑅𝑅

𝑟𝑟𝑘𝑘,𝑢𝑢(𝑎𝑎𝑘𝑘,𝑗𝑗)
𝑦𝑦ҷ𝑘𝑘,𝑗𝑗 ,∀𝑎𝑎𝑘𝑘,𝑗𝑗 ∈ 𝐴̃𝐴𝑢𝑢𝑘𝑘   

• User  𝑢𝑢 exponentiates the received values by ℌ1ℌ2 to get the decryption keys. 

The key advantage of the proposed key issuing protocol is both 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. Suppose for the message 𝑚𝑚, the attribute set is 𝐴̃𝐴𝑚𝑚 = {𝑎𝑎1, 𝑎𝑎2}. If the users 𝑈𝑈1 and 𝑈𝑈2 
with identifiers 𝑢𝑢1 and 𝑢𝑢2 respectively have access to decryption credential for attribute {𝑎𝑎1}, while 
another user 𝑈𝑈3 with identifier 𝑢𝑢3 has access to attribute {𝑎𝑎2} alone; none of the users can decrypt 
the ciphertext alone. However, there is a possibility that users can collude together so that they can 
generate the decryption credentials to decrypt the cipher text. This algorithm overcomes the user 
collusion vulnerability since 𝑢𝑢1 and 𝑢𝑢2 cannot be substituted with 𝑢𝑢3 without the knowledge of ϱ1,
𝑟𝑟1,𝑢𝑢1 , and 𝑟𝑟1,𝑢𝑢2 . 

3.2.2. Proposed Scheme: Proof of Security  

Decisional Bilinear Diffie-Hellman (DBDH) assumption: Let 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑧𝑧 ∈  ℤ𝑝𝑝  be chosen at 
random, 𝐺𝐺  be the group of prime order 𝑞𝑞  and 𝑔𝑔 is the generator of the group 𝐺𝐺 . The DBDH 
problem [30] is a problem that no polynomial time adversary is able to distinguish the tuple 
(𝑔𝑔𝑎𝑎,𝑔𝑔𝑏𝑏 ,𝑔𝑔𝑐𝑐 , 𝑒𝑒(𝑔𝑔,𝑔𝑔)𝑎𝑎𝑎𝑎𝑎𝑎) from the tuple (𝑔𝑔𝑎𝑎 ,𝑔𝑔𝑏𝑏 ,𝑔𝑔𝑐𝑐 , 𝑒𝑒(𝑔𝑔,𝑔𝑔)𝑧𝑧) with a non-negligible advantage. This can 
be formalized as follows: 

��Pr[𝒜𝒜(𝑔𝑔,𝑔𝑔𝑎𝑎,𝑔𝑔𝑏𝑏 ,𝑔𝑔𝑐𝑐 , 𝑒𝑒(𝑔𝑔,𝑔𝑔)𝑎𝑎𝑎𝑎𝑎𝑎) = 0] − Pr�𝒜𝒜�g, ga, gb, gc, e(g, g)z� = 0�� ≥ 𝜀𝜀�  

Theorem 1. Under Decisional Bilinear Diffie-Hellman (DBDH) assumptions, no polynomial time attacker 
can selectively break the proposed system. 

Proof. The security game is based on the hardness of the DBDH assumption. Suppose attacker 𝑎𝑎𝑎𝑎𝑎𝑎 
can win the FH-CP-ABE game with advantage 𝜀𝜀. We construct a simulator 𝑠𝑠𝑠𝑠𝑠𝑠 that can distinguish 
a DBDH tuple from a random tuple with advantage 𝜀𝜀

2
. Let 𝐺𝐺1 be the source group and 𝐺𝐺2 be the 

target group. Let 𝑔𝑔 be the generator of the group 𝐺𝐺1. The challenger chooses the fair binary coin ɦ ∈
{0,1} , 𝑔𝑔 ∈ 𝐺𝐺1 ,  𝑅𝑅 ∈ 𝐺𝐺2  and 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈  ℤ𝑝𝑝 . If ɦ = 0 , then the challenger defines 𝑇𝑇  to be 𝑒𝑒(𝑔𝑔,𝑔𝑔)𝑎𝑎𝑎𝑎𝑎𝑎 . 
Otherwise, he sets 𝑇𝑇 = 𝑒𝑒(𝑔𝑔,𝑔𝑔)𝑧𝑧 𝑜𝑜𝑜𝑜 𝑅𝑅. The challenger then gives the simulator the DBDH details and 
then simulator 𝑠𝑠𝑠𝑠𝑠𝑠 now plays the role of challenger in the security game.  

𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈: During the init phase, 𝑠𝑠𝑠𝑠𝑠𝑠 receives the challenge access structure 𝒜𝒜∗ from attacker 𝑎𝑎𝑎𝑎𝑎𝑎. 
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𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒: To provide a public key 𝑃𝑃𝑃𝑃  to 𝑎𝑎𝑎𝑎𝑎𝑎 , 𝑠𝑠𝑠𝑠𝑠𝑠  randomly chooses ϰk′ ∈ ℤ𝑝𝑝  and note ϰk =
ϰk′ + 𝑎𝑎𝑎𝑎 . It calculates 𝑒𝑒(𝑔𝑔,𝑔𝑔)ϰk  as: 𝑒𝑒(𝑔𝑔,𝑔𝑔)ϰk = 𝑒𝑒(𝑔𝑔,𝑔𝑔)ϰk′ . 𝑒𝑒(𝑔𝑔,𝑔𝑔)𝑎𝑎𝑎𝑎 . Finally, 𝑠𝑠𝑠𝑠𝑠𝑠  sends public key 
𝑃𝑃𝑃𝑃to 𝑎𝑎𝑎𝑎𝑎𝑎. 

𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝟏𝟏: During this phase, 𝑎𝑎𝑎𝑎𝑎𝑎 submits an attribute set 𝒲𝒲𝑗𝑗 ∈ 𝒜𝒜 such that 𝒲𝒲𝑗𝑗 ∉ 𝒜𝒜∗, to 𝑠𝑠𝑠𝑠𝑠𝑠. 

Simulator 𝑠𝑠𝑠𝑠𝑠𝑠chooses 𝑟𝑟𝑘𝑘,𝑢𝑢
′ ∈𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ℤ𝑝𝑝. It can be obtained as follows: 𝐷𝐷𝐷𝐷𝑘𝑘,𝑢𝑢 = 𝑔𝑔−ϰk𝑔𝑔

(γ+δ)ϱk
𝑟𝑟𝑘𝑘,𝑢𝑢′+𝑢𝑢𝑔𝑔

γη𝑟𝑟𝑘𝑘,𝑢𝑢
′

ϱk+𝑢𝑢 . 
For each attribute in 𝒲𝒲𝑗𝑗 , 𝑠𝑠𝑠𝑠𝑠𝑠 has to choose ҷ𝑘𝑘,𝑗𝑗 ∈𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ℤ𝑝𝑝. It computes the rest of the secret key 

as follows: 𝐷𝐷𝐷𝐷𝑘𝑘,𝑢𝑢
1 = 𝑔𝑔

(γ+δ)
𝑟𝑟𝑘𝑘,𝑢𝑢′+𝑢𝑢, 𝐷𝐷𝐷𝐷𝑘𝑘,𝑢𝑢

𝑗𝑗 = 𝑔𝑔

γη𝑞𝑞
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑎𝑎𝑘𝑘,𝑗𝑗�

�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝑎𝑎𝑘𝑘,𝑗𝑗��

�ϱk+𝑢𝑢�ҷ𝑘𝑘,𝑗𝑗 . Finally, 𝑠𝑠𝑠𝑠𝑠𝑠 sends the 𝑆𝑆𝑆𝑆 to 𝑎𝑎𝑎𝑎𝑎𝑎. 
𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 : The attacker 𝑎𝑎𝑎𝑎𝑎𝑎  submits two equal length messages m1  and m2  along with a 

challenge access structure 𝒜𝒜∗. 𝑠𝑠𝑠𝑠𝑠𝑠randomly generates a bit ɦ� ∈ {0,1} and computes 𝐶𝐶𝐶𝐶∗ as C1 =
𝑚𝑚ɦ�𝑌𝑌∏  𝑆𝑆𝑘𝑘𝑘𝑘∈𝐼𝐼𝐶𝐶

𝑋𝑋
. Finally, 𝑠𝑠𝑠𝑠𝑠𝑠 sends the 𝐶𝐶𝐶𝐶∗ to 𝑎𝑎𝑎𝑎𝑎𝑎. 

𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝟐𝟐: Same as Phase 1. 
𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆: The attacker 𝑎𝑎𝑎𝑎𝑎𝑎  outputs a guess ɦ�′of ɦ� . If ɦ� = ɦ�′ , simulator 𝑠𝑠𝑠𝑠𝑠𝑠  guesses that 𝑇𝑇 =

𝑒𝑒(𝑔𝑔,𝑔𝑔)𝑎𝑎𝑎𝑎𝑎𝑎. Otherwise, 𝑇𝑇 is a random target group element in 𝐺𝐺2. 
The advantage of the attacker is 𝜀𝜀, when 𝑇𝑇 = 𝑒𝑒(𝑔𝑔,𝑔𝑔)𝑎𝑎𝑎𝑎𝑎𝑎 . The advantage of the attacker is 1

2
, 

when 𝑇𝑇 is a random target group element in 𝐺𝐺2 . Finally, the advantage of the simulator in this 
security game is 𝜀𝜀

2
. 

3.2.3. Experimental Results  

In this section, we show the total computation cost of encryption and decryption for the MA-
ABE. The proposed Tate pairing algorithm is discussed in detail in Section 3. The proposed 
decentralized KP-ABE is constructed with the help of the proposed TP-MBNR-PH and compared 
with MA-ABE using an existing Tate pairing algorithm. In this experiment, we used an Intel Core i3-
3217U CPU processor (Intel, China) with 1.80 GHz and 8 GB RAM. Let us assume the number of 
attribute authorities, 𝑁𝑁 = 2, and say, attribute n varies from 10 to 50.  

Figure 2 depicts the comparison of total encryption cost of MA-ABE for the proposed scheme 
and [12,13]. The time complexity of proposed encryption algorithm increases linearly with respect to 
the attributes. Figure 2 clearly shows the significant improvement of the proposed encryption 
algorithm when compared with the existing schemes [12,13]. Figure 3 depicts the comparison of the 
total decryption cost of MA-ABE for the proposed scheme and [12,13]. The time complexity of the 
proposed decryption algorithm increases linearly with respect to the attributes. Figure 3 clearly 
shows the significant improvement of the proposed decryption algorithm when compared with the 
existing schemes [12,13]. 

 
Figure 2. Comparison of the computation cost for encryption based on the number of attributes. 
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Figure 3. Comparison of the computation cost for decryption based on the number of attributes. 

4. Conclusions 

In this paper, we presented an efficient Tate pairing algorithm based on multi-base number 
representation system using point halving (TP-MBNR-PH) with bases 1/2, 3, and 5 to reduce the cost 
of bilinear pairing operations. The efficiency of the proposed algorithm has been significantly 
improved when compared with the existing Tate pairing algorithms. In [12,13], the schemes have 
proved that an anonymous key issuing protocol is free from leaks, selective-failures, and avoids user 
collusion. The TP-MBNR-PH algorithm is then applied in decentralized KP-ABE [12] in cloud 
environment to compute the cost for encryption and decryption. It is inferred that the TP-MBNR-PH 
algorithm, when applied in a KP-ABE scheme, has shown a significant improvement than the existing 
schemes [12,13] in terms of computational cost for encryption and decryption.  
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