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Abstract: We consider an authentication process that makes use of biometric data or the output of
a physical unclonable function (PUF), respectively, from an information theoretical point of view.
We analyse different definitions of achievability for the authentication model. For the secrecy of the
key generated for authentication, these definitions differ in their requirements. In the first work on
PUF based authentication, weak secrecy has been used and the corresponding capacity regions have
been characterized. The disadvantages of weak secrecy are well known. The ultimate performance
criteria for the key are perfect secrecy together with uniform distribution of the key. We derive the
corresponding capacity region. We show that, for perfect secrecy and uniform distribution of the key,
we can achieve the same rates as for weak secrecy together with a weaker requirement on the
distribution of the key. In the classical works on PUF based authentication, it is assumed that the
source statistics are known perfectly. This requirement is rarely met in applications. That is why the
model is generalized to a compound model, taking into account source uncertainty. We also derive
the capacity region for the compound model requiring perfect secrecy. Additionally, we consider
results for secure storage using a biometric or PUF source that follow directly from the results for
authentication. We also generalize known results for this problem by weakening the assumption
concerning the distribution of the data that shall be stored. This allows us to combine source
compression and secure storage.

Keywords: authentication; secure storage; perfect secrecy; privacy leakage

1. Introduction

The present work addresses two essential practical problems concerning secrecy in information
systems. The first problem is authentication in order to manage access to the system. The second
problem is secure storage in public databases. Both problems are of essential importance for further
development of future communication systems. The goal of this work is to derive a fundamental
characterization of the possible performance of such communication systems that meets very strict
secrecy requirements. We show that these strict requirements can be met without loss in performance
compared to known results with weaker secrecy requirements.

Information theoretic security has become a very active field of research in information theory in
the past ten years, with a large number of promising approaches. For a current presentation, see [1].
In [2], the paper first introducing information theoretic security, the authors suggest requiring perfect
secrecy [3] to guarantee security in communication. This means the data available to an attacker should
be stochastically independent of the message that should be kept secret (the data and the message are
modeled using random variables (RVs)). Thus, an attacker does not benefit from learning these data.
In [4], this notion of security is weakened. The authors use weak secrecy [3] instead of perfect secrecy to
guarantee secure communication. In many of the works on information theoretic security following [4],
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one considers weak secrecy or strong secrecy [3], which is yet another security requirement that
is also weaker than perfect secrecy. As the name suggests, perfect secrecy is the desired ideal
situation in cryptographic applications where an attacker does not get any information about the secret.
Considering the roots of information theoretic security and its intuitive motivation, it suggests itself to
require perfect secrecy for secure communications. Additionally, in [3], the recommendation is to not
use weak secrecy as a secrecy measure. In [5], there is an example of a protocol that is obviously not
secure, but meets the weak secrecy requirement.

The authors of the landmark paper [6] derive the capacity for secret key generation requiring perfect
secrecy. A different model in information theoretic security has as an essential feature a biometric source or
a PUF source. The outputs of biometric sources and the outputs of PUF sources both uniquely characterize
a person [7], or a device, respectively [8]. This property qualifies them for being used for authentication
as well as for secure storage. In [7,9], the authors consider a model for authentication using the output of
a biometric source. They also consider a model that can be interpreted as a model for secure storage using
a biometric source. Both of these models are very similar to the model for secret key generation and for
both of the models the authors require weak secrecy to hold when defining achievability.

In [6,7,9], the authors assume that the statistics of the (PUF) source are perfectly known. A simple
analysis of [6,7,9] shows that the protocols for authentication constructed there heavily depend on
the knowledge of the source statistics. Particularly, it is possible that small variations of the source
statistics influence the reliability and secrecy of the protocols for authentication or storage, respectively.
The assumption that the source statistics are perfectly known is too optimistic in applications. That is
why we are interested in considering the uncertainty of the source or PUF source. We assume that
we do not know the statistics of the source, but that we know a set of source statistics that contains
the actual source statistic. Thus, we consider a compound version of the source model. We want
to develop robust protocols that work for all source statistics in a given set. The compound model
also allows us to describe an attack scenario where the attacker is able to alter the source statistics.
There are relatively few results concerning compound sources. The compound version of the source
model from [6] is considered in [10].

One of our contributions in the present work is the generalization of the model for authentication
from [7], by considering authentication using a compound PUF source (or equivalently a biometric source).
Additionally, our work differs from the state of the art as we consider protocols for authentication that
achieve perfect secrecy.

We also consider secure data storage making use of a PUF source (or equivalently a biometric
source). The corresponding information theoretic model is very similar to the second model presented
in [7], but, in contrast to [7], we define achievability requiring perfect secrecy and we consider source
uncertainty of the PUF source. Our considerations concerning perfect secrecy in this work answer the
question posed in the conclusion of [11].

Some of the results for secure authentication described in this work have already been published
in [12]. Here, we additionally present the proofs that have been omitted in [12], i.e., the proofs of
Theorem 4 and Theorem 5 and some more discussion. The results concerning secure storage have been
presented in [13,14]. As these results heavily depend on [12], we briefly state them here (as well as the
corresponding definitions).

In Section 2, we describe the authentication process and define the corresponding information
theoretic model. We discuss different definitions of achievability for the model in Section 3. In this context,
protocols that achieve perfect secrecy are of special interest. We develop the corresponding definition
of achievability in this section. In Section 4, we prove capacity results for the model with respect to
the various definitions of achievability. The main result in this section is Theorem 2. In Section 5,
we generalize the model for authentication to the case with source uncertainty and define achievability
for this model in Section 6. In Section 7, we derive the capacity region for the compound storage model.
In Section 8, we consider some results for secure storage that follow from our results for authentication.
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The key result from authentication that we use for secure storage with perfect secrecy is Theorem 2.
In Section 9, we further discuss our results.

For the most part, we use the notation introduced in [3].

2. Authentication Model

At first, we consider authentication using biometric or PUF data. This means we consider a scenario
where a user enrolls in a system by giving a certain amount of biometric or PUF data to the system.
Later, when the user wants to be authenticated, he again gives biometric or PUF data to the system.
The system then decides if the user is accepted, i.e., if it is the same user that is enrolled in the system.
In our considerations, we assume that the system can store some data in a public database.

Figure 1 depicts the authentication process as described in [7]. The process consists of two phases.
In the first phase, the enrollment phase, the authentication system receives Xn from the PUF source
and the ID of a user. It generates a helper message M and a secret-key K from Xn. It then uses a
one-way function f on K and stores the result and M in a public database together with the user’s ID.
The second phase is the authentication phase. In this phase, the system receives Yn from the PUF
source and the ID of a user. It reads the corresponding helper message M and f (K) from the database.
From M and Yn, it generates a secret-key K̂. Then, the system compares f (K) and f (K̂). If they are
equal, the user is accepted; otherwise, the user is rejected.

Enrollment Phase Authentication Phase

Encoder Decoder

ID Xn ID Yn

Public Database

ID M

K

f (·)

ID

M
K̂

f (·)

==

f (K)

true/false

Data Source
System System

Figure 1. Authentication process considered in [7].

Now, we define an information theoretic model of the authentication process. We use random
variables (RVs) to model the data. In the first chapters of this work, we assume that the distribution of
the RVs is perfectly known. We drop this assumption in Section 5.

Definition 1. Let n ∈ N. The authentication model consists of a discrete memoryless multiple source
(DMMS) with generic variables XY [3], the (possibly randomized) encoders [3] Φ : X n →M, Θ : X n → K
and the deterministic decoder ψ : Yn ×M→ K̂. Let Xn and Yn be the output of the DMMS. The RVs M and
K are generated from Xn using Φ and Θ. The RV K̂ is generated from Yn and M using ψ. We use the term
authentication protocol for (Φ, Θ, ψ).

Remark 1. It is possible to define the authentication protocol in a more general way by permitting randomized
decoders Ψ, but one can argue that in our definition of achievability a randomized Ψ does not improve the
performance of the protocols ([3], Problem 17.11). For convenience, we use the less general definition.
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Remark 2. We model the PUF source as a DMMS. Due to physically induced distortions, we model the
biometric/PUF data read in the two phases as jointly distributed RVs.

Remark 3. The distribution of XY is assumed to be known and can be used for the generation of the RVs.
Thus, the encoders and the decoder are allowed to depend on the distribution.

3. Various Definitions of Achievability

For the authentication model, we define achievable secret-key rate versus privacy-leakage
rate pairs. Intuitively, we want the probability that a legitimate user is rejected in the authentication
phase to be small. Thus, Pr(K = K̂) should be large to fulfill this reliability condition. Additionally,
the probability that an attacker is accepted in the authentication phase should be as small as possible.
Thus, we consider the maximum false acceptance probability (mFAP) [15], which is the probability
that an attacker using the best possible attack strategy is accepted in the authentication phase averaged
over all public messages m ∈ M. As we want the mFAP to be as small as possible, we are interested in
the largest possible set of secret keys K. This reasoning is explained below. The system uses the output
of a PUF source as input so it should leak as little information about Xn as possible [7]. This motivates
the following definition of achievable rate pairs.

Definition 2. A tuple (R, L), R, L ≥ 0, is an achievable secret-key rate versus privacy-leakage rate pair for
the authentication model if for every δ > 0 there is an n0 = n0(δ) such that for all n ≥ n0 there exists an
authentication protocol such that

Pr(K = K̂) ≥ 1− δ,

mFAP ≤ 1
|K| ,

1
n log |K| ≥ R− δ,

1
n I(M; Xn) ≤ L + δ.

(1)

We denote the corresponding authentication protocols by FAP-Protocols (False-Acceptance-
Probability-Protocols).

Remark 4. In [15], a very similar definition of achievability is used. Instead of considering the relation between
the mFAP and the set of secret-keys (1), the authors define the false-acceptance exponent that describes the
exponential decrease of the mFAP in n. A rate pair (R, L) that is achievable using FAP-protocols is also achievable
according to the definition in [15], R playing the role of the false-acceptance exponent.

We now clarify the bound on the mFAP in Inequality (1) and our interest in large secret-key rates.
For this purpose, we consider the following observation.

Lemma 1. For a communication protocol fulfilling the reliability condition, it holds that

mFAP ≥ 1−δ
|K| .

Proof. Introduce the RV E, setting E = 1 for K 6= K̂ and E = 0, otherwise. Thus,
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mFAP = ∑
m∈M

PM(m) max
yn∈Yn

PK|M(ψ(yn, m)|m)

≥ ∑
m∈M

PM(m) max
yn∈Yn

PK|ME(ψ(y
n, m)|m, 0)PE|M(0|m)

(a)
= ∑

m∈M
PME(m, 0)max

k∈K
PK|ME(k|m, 0)

≥ ∑
m∈M

PME(m, 0) 1
|K|

(b)
≥ (1− δ) 1

|K| .

Here, (a) follows as PK|ME(k|m, 0) = 0 if there is no yn ∈ Yn such that ψ(yn, m) = k and (b)
follows from the δ-recoverability of K from K̂.

Thus, Lemma 1 shows that requiring Inequality (1) is in fact equivalent to requiring the mFAP to
be as small as possible. It also justifies our interest in a large set K.

There is another way to define achievable secret-key rate versus privacy-leakage rate pairs for
the authentication model. Here, we want to keep the key secret from the attacker. H(K|M) can
be interpreted as the average information required to specify k when m is known ([16], Chapter 2).
Thus, we want H(K|M) to be as large as possible instead of requiring a small mFAP. This means we
require log |K| = H(K|M). This condition is equivalent to the combination of the perfect secrecy
condition I(K; M) = 0 [5] and the uniform distribution of the key, i.e., H(K) = log |K|. Thus, we define
achievability as follows.

Definition 3. A tuple (R, L), R, L ≥ 0, is an achievable secret-key rate versus privacy-leakage rate pair for
the authentication model if for every δ > 0 there is an n0 = n0(δ) such that for all n ≥ n0 there exists an
authentication protocol such that

Pr(K = K̂) ≥ 1− δ,

H(K) = log |K|, (2)

I(M; K) = 0, (3)
1
n log |K| ≥ R− δ,

1
n I(M; Xn) ≤ L + δ.

We denote the corresponding authentication protocols by PSA-Protocols (Perfect-Secrecy-
Authentication-Protocols).

Remark 5. In [6], the authors derive the secret-key capacity for the source model. They define achievability
requiring perfect secrecy and uniform distribution of the key. They do not consider the privacy-leakage in contrast
to our definition of achievability.

It is interesting to compare the rate pairs achievable with respect to the restrictive Definition 3 with
commonly used weaker requirements. In ([7], Definition 3.1), the authors give a different definition of
achievable secret-key rate versus privacy-leakage rate pairs. Instead of Eqation (2), they require

H(K) ≥ log |K| − δ

and instead of Equation (3) they require
1
n I(M; K) ≤ δ,
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which is called the weak secrecy condition [5]. Thus, we get a third definition of achievability.

Definition 4 ([7]). A tuple (R, L), R, L ≥ 0, is an achievable secret-key rate versus privacy-leakage rate pair
for the authentication model if for every δ > 0 there is an n0 = n0(δ) such that for all n ≥ n0 there exists an
authentication protocol such that

Pr(K = K̂) ≥ 1− δ,

H(K) ≥ log |K| − δ,
1
n I(M; K) ≤ δ,
1
n log |K| ≥ R− δ,

1
n I(M; Xn) ≤ L + δ.

We denote the corresponding authentication protocols by WSA-Protocols (Weak-Secrecy-
Authentication-Protocols).

Definition 5. The set of achievable rate pairs that are achievable using PSA-Protocols is called the capacity
region RPSA. The set of achievable rate pairs that are achievable using WSA-Protocols is called the capacity
regionRWSA and the set of achievable rate pairs that are achievable using FAP-Protocols is called the capacity
regionRFAP.

Now, we look at some straightforward relations between these capacity regions. We can directly see
that Definition 3 is more restrictive than Definition 4 so a PSA-Protocol is also a WSA-Protocol and thus

RPSA ⊂ RWSA. (4)

We now show that a PSA-Protocol is also a FAP-Protocol.

Lemma 2. It holds that

RPSA ⊂ RFAP.

Proof. As Equations (2) and (3) imply, PK|M(k|m) = 1
|K| for all (k, m) ∈ K ×M, we have

mFAP = ∑
m∈M

PM(m) max
yn∈Yn

PK|M(ψ(yn, m)|m)

≤ ∑
m∈M

PM(m)max
k∈K

PK|M(k|m) = 1
|K| .

4. Capacity Regions for the Authentication Model

In ([7], Theorem 3.1), the authors derive the capacity regionRWSA.

Theorem 1 ([7]). It holds that

RWSA =
⋃
U
{(R, L) : 0 ≤ R ≤ I(U; Y), L ≥ I(U; X)− I(U; Y)}.

The union is over all RVs U such that U − X−Y. We only have to consider RVs U with |U | ≤ |X |+ 1.
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Remark 6. The authors of [7] do not consider randomized encoders. In contrast, we permit randomization of the
encoders in the enrollment phase. Using the strategy described in ([3], Problem 17.15), one can use the converse
for deterministic encoders to prove the converse for randomized encoders with the same bounds on the secret-key
rate and the privacy-leakage rate. Thus, the converse in [7] also holds true when randomization is permitted.

The following theorem is one of our main results.

Theorem 2. It holds that

RPSA = RWSA.

Proof. We do not prove Theorem 2 here but prove a more general result in the remainder of the text.
This result is Theorem 5. It is more general as it is concerned with a compound version of the authentication
model. The authentication model is a special case of the compound authentication model where the
compound set consists of a single DMMS.

We now strengthen Lemma 2.

Theorem 3. It holds that

RPSA = RFAP.

Proof. The achievability result is implied by Lemma 2. For the converse, we use a result of [15].
As discussed in Remark 4, a rate pair (R, L), which is achievable according to Definition 2 is also
achievable according to the definition of achievability used in [15], where R plays the role of the false
acceptance exponent E. Thus, we use ([15], Theorem 4), which says that a rate pair (E, L) 6∈ RWSA is
not achievable. This implies our converse.

5. Compound Authentication Model

We now consider authentication when the data source is not perfectly known. Figure 2 shows the
corresponding authentication process. The only difference to the authentication process in Section 2
is the source uncertainty. As one can see in Figure 2, we even assume that an attacker can influence
the source in the sense that the state of the source is altered, i.e., it generates another statistic. If the
protocol for authentication is not robust, then authentication will not work.

Enrollment Phase Authentication Phase

Encoder Decoder

ID Xn ID Yn

Public Database

ID M

K

f (·)

ID

M
K̂

f (·)

==

f (K)

true/false

Data Source
with Source
Uncertainty Attacker

System System

Figure 2. Authentication process with source uncertainty (as considered in [12]).
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We define the following information theoretic model for this authentication process with
source uncertainty.

Definition 6. Let n ∈ N. The compound authentication model consists of a set S of DMMSs with generic
variables XsYs, s ∈ S , (all on the same alphabets X and Y), the (possibly randomized) encoders Φ : X n →M,
Θ : X n → K and the (possibly randomized) decoder Ψ : Yn ×M→ K̂. Let Xn and Yn be the output of one of
the DMMSs in S, i.e., PXY = PXsYs for an s ∈ S , but s is not known. The RVs M and K are generated from
Xn using Φ and Θ. The RV K̂ is generated from Yn and M using Ψ. We use the term compound authentication
protocol for (Φ, Θ, Ψ).

Remark 7. The uncertainty of the data source is modeled making use of a compound DMMS, that is, the DMMS
modeling the PUF source is not known, but we know a set of DMMSs to which the actual DMMS belongs.

Remark 8. S is assumed to be known and can be used for the generation of the RVs, that is, the encoder and
the decoder can depend on these distributions.

Definition 7. Given S, we define the set

I(ŝ) = {s ∈ S : ∑
y∈Y

PXsYs(x, y) = PXŝ(x) ∀x ∈ X}

for ŝ ∈ S . The sets I(ŝ), ŝ ∈ S , form a partition of S , as they form the equivalence classes for the corresponding
equivalence relation. We denote a set of representatives by Ŝ .

6. Achievability for the Compound Model

For the compound authentication model, we define achievable secret-key rate versus privacy-
leakage rate pairs.

Definition 8. A tuple (R, L), R, L ≥ 0, is an achievable secret-key rate versus privacy-leakage rate pair for
the compound authentication model if for every δ > 0 there is an n0 = n0(δ) such that, for all n ≥ n0, there
exists a compound authentication protocol such that, for all s ∈ S ,

Pr(K = K̂) ≥ 1− δ, (5)

H(K) = log |K|, (6)

I(M; K) = 0, (7)
1
n log |K| ≥ R− δ,

1
n I(M; Xn) ≤ L + δ,

where PXY = PXsYs . We denote the corresponding authentication protocols by PSCA-Protocols (Perfect-Secrecy-
Compound-Authentication-Protocols).

Definition 9. The set of achievable secret-key versus privacy-leakage rate pairs that are achievable using
PSCA-Protocols is called the compound capacity regionRPSCA(S).

7. Capacity Regions for the Compound Authentication Model

We now derive the compound capacity regionRPSCA(S) for the compound authentication model.
We only consider compound sets S such that |Ŝ | < ∞. For the proof, we need the following theorem,
which is a generalization of ([3], Theorem 6.10).
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Theorem 4. Given a (possibly infinite) set W of channels W : X → Y , a set A ⊂ X n with Pn(A) > η,
P ∈ P(X ), η > 0 and ε > 0. Then, for every τ > 0 and all n large enough, there is a pair of mappings ( f , φ),
f : M f → X n, φ : Yn →M f , such that ( f , φ) is an (n, ε)-code for all W ∈ W with codewords in A and

1
n log |M f | ≥ inf

W∈W
I(P; W)− τ.

We call this pair of mappings a compound (n, ε)-code forW .

Even though the proof of Theorem 4 is very similar to the proof of ([3], Theorem 6.10), the proof of
([17], Theorem 4.3) and the proof of the results in [18], we prove Theorem 4 for the sake of completeness.
The proof can be found in Appendix A.

Theorem 5. It holds that

RPSCA(S) =
⋂

ŝ∈Ŝ

⋃
Uŝ

{(R, L) : 0 ≤ R ≤ inf
s∈I(ŝ)

I(Uŝ; Ys), L ≥ sup
s∈I(ŝ)

I(Uŝ; Xs)− I(Uŝ; Ys)}

a)
=
⋂

ŝ∈Ŝ

⋃
Uŝ

R(PSCA)
ŝ (S, Uŝ),

where, for (a), we defineR(PSCA)
ŝ (S, Uŝ) appropriately. For all ŝ ∈ Ŝ , the union is over all RVs Uŝ such that, for

all s ∈ I(ŝ), we have Uŝ − Xs −Ys. For |S| < ∞, we only have to consider RVs Uŝ with |Uŝ| ≤ |X |+ |I(ŝ)|.

Proof. For all ŝ ∈ Ŝ and all s ∈ I(ŝ), let Uŝ, Xs and Ys be RVs where XsYs are the output of the DMMS
in S with index s and Xs and Uŝ are connected by the channel Vŝ : X → Uŝ. Thus, we have the Markov
chains Uŝ − Xs −Ys for all s ∈ I(ŝ). Let U =

⋃
ŝ∈Ŝ
Uŝ. We now show that, given δ > 0, for n large enough

we can choose a set C ⊂ Un that consists of |M| disjoint subsets Cm with the following properties.

• We consider a partition of the set of all sets Cm in |Ŝ | subsets. Thus, we denote the sets Cm by Cm,ŝ,
ŝ ∈ Ŝ , indicating to which subset they belong. We denote the set of indices m corresponding to ŝ
byMŝ. For each Cm,ŝ, we have

|Cm,ŝ| = d inf
s∈I(ŝ)

exp (n(I(Uŝ; Ys)− δ))e.

• Each Cm,ŝ consists of sequences of the same type.
• It holds that

Pn
Uŝ
(C) > 1− η (8)

for η > 0 and all ŝ ∈ Ŝ .
• For each ŝ ∈ Ŝ , one can define pairs of mappings that are compound (n, ε)-codes, ε > 0, for the

channels Ws : U → Y , Ws = PYs |Uŝ
for all s ∈ I(ŝ) in the following way. Define an (arbitrary)

bijective mapping fm : {1 · · · |Cm,ŝ|} → Cm,ŝ and an appropriate mapping φm : Yn → {1 · · · |Cm,ŝ|}.
Then, ( fm, φm) is such a code. This means

Wn
s (φ

−1
m ( f−1

m (un))|un) ≥ 1− ε (9)

for all s ∈ I(ŝ) and for all codewords un in Cm,ŝ. This is possible for all m ∈ Mŝ.

Let δ′ > 0. We denote the elements of Ŝ by ŝ1, ŝ2, · · · , ŝ|Ŝ|. We consider T n
PUŝ1

,ξ ,T n
PUŝ2

,ξ , · · · ,T n
PUŝ|Ŝ|

,ξ ,

ξ > 0, which are disjoint subsets of Un. We show that they are in fact disjoint subsets of Un for ξ small
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enough. This can be seen as follows. For ŝi, ŝj ∈ Ŝ , ŝi 6= ŝj, it holds that PUŝi
(u) 6= PUŝj

(u) for at least

one u ∈ U . Thus, there is a u ∈ U with

|PUŝi
(u)− PUŝj

(u)| > α

for some α > 0.
Now, assume that there is a un ∈ T n

PUŝi
,ξ ∩ T n

PUŝj
,ξ . Denote the type of un by pun . Thus, there is a

u ∈ U with

α < |PUŝi
(u)− PUŝj

(u)|

= |PUŝi
(u)− Pun(u) + Pun(u)− PUŝj

(u)|

≤ |PUŝi
(u)− Pun(u)|+ |PUŝj

(u)− Pun(u)| ≤ 2ξ,

where the last inequality follows from the assumption that un ∈ T n
PUŝi

,ξ ∩ T n
PUŝj

,ξ . Thus, for ξ < α/2,

this is a contradiction and we know T n
PUŝi

,ξ and T n
PUŝj

,ξ are disjoint.

We start the construction of C by choosing a set A1,ŝ1 ⊂ T n
PUŝ1

,ξ with Pn
Uŝ1

(A1,ŝ1) ≥ η′ with

η > η′ > 0. According to Theorem 4, there is a compound (n, ε)-code for the channels Ws, s ∈ I(ŝ1)

with at least

d inf
s∈I(ŝ1)

exp
(
n(I(Uŝ1 ; Ys)− δ′)

)
e

codewords un ∈ A1,ŝ1 for n large enough. We denote the set of these codewords by C ′1,ŝ1
. As there are

less than (n + 1)|U | types, we know that there is a set of at least⌈
dinfs∈I(ŝ1)

exp(n(I(Uŝ1 ;Ys)−δ′))e
(n+1)|U |

⌉
codewords in C ′1,ŝ1

with the same type. We only pick these codewords. There are at least⌈
inf

s∈I(ŝ1)
exp

(
n(I(Uŝ1 ; Ys)− δ′ − |U| log(n+1)

n )
)⌉
≥ d inf

s∈I(ŝ1)
exp

(
n(I(Uŝ1 ; Ys)− δ)

)
e

of them for n large enough. We now pick exactly

d inf
s∈I(ŝ1)

exp
(
n(I(Uŝ1 ; Ys)− δ)

)
e

of these codewords and we denote this set by C1,ŝ1 . Now, we choose a set A2,ŝ1 ⊂ T n
PUŝ1

,ξ \ C1,ŝ1 with

Pn
U(A2,ŝ1) ≥ η′. We construct the set C2,ŝ1 in the same way as C1,ŝ1 . Thus, C2,ŝ1 is a set of

d inf
s∈I(ŝ1)

exp
(
n(I(Uŝ1 ; Ys)− δ)

)
e

codewords of the same type corresponding to an (n, ε)-code. We continue this process until we can
not find a set

A|Mŝ1 |+1,ŝ1
⊂ T n

PUŝ1
,ξ \

⋃
i∈Mŝ1

Ci,ŝ1

with

Pn
Uŝ1

(A|Mŝ1 |+1,ŝ1
) ≥ η′.
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This means

Pn
Uŝ1

((
⋃

i∈Mŝ1

Ci,ŝ1)
c ∩ T n

PUŝ1
,ξ) < η′.

We repeat this process for all ŝ 6= ŝ1, ŝ ∈ Ŝ . Thus, we have for all ŝ ∈ Ŝ

Pn
Uŝ
(C) ≥ Pn

Uŝ
(
⋃

i∈Mŝ

Ci,ŝ)

= 1− Pn
Uŝ
((
⋃

i∈Mŝ

Ci,ŝ)
c)

= 1− Pn
Uŝ
((
⋃

i∈Mŝ

Ci,ŝ)
c ∩ T n

PUŝ ,ξ)− Pn
Uŝ
((
⋃

i∈Mŝ

Ci,ŝ)
c ∩ (T n

PUŝ ,ξ)
c)

≥ 1− Pn
Uŝ
((
⋃

i∈Mŝ

Ci,ŝ)
c ∩ T n

PUŝ ,ξ)− Pn
Uŝ
((T n

PUŝ ,ξ)
c).

Thus, we have Inequality (8) for n large enough.
We now can define the encoders/decoders Φ, Θ and Ψ.

• We define Φ and Θ as follows. The system gets a sequence xn. It checks if xn ∈ T n
PXŝ ,ξ ′ , ξ ′ > 0,

for an ŝ ∈ Ŝ (We can choose ξ ′ small enough and n large enough such that the T n
PXŝ ,ξ ′ are disjoint).

If this is true for ŝ, the channel Vŝ is used n times to generate un from xn. For Φ, the system
looks in C for un. If un ∈ C the system chooses for m the index of the subset Cm containing un.
If un /∈ C it chooses an arbitrary m ∈ M. In addition, if xn /∈ ⋃

ŝ∈Ŝ
T n

PXŝ ,ξ ′ , it chooses an arbitrary

m ∈ M. For Θ, the system looks in C for un. If un ∈ C, it considers the compound (n, ε)-code
corresponding to the subset Cm,ŝ containing un. If

|Cm,ŝ| > min
ŝ∈Ŝ
d inf

s∈I(ŝ)
exp (n(I(Uŝ; Ys)− δ))e,

we consider the following deterministic mapping hm : f−1
m (Cm)→ K∪ {k̃}. Here,

K = {1 · · ·min
ŝ∈Ŝ
d inf

s∈I(ŝ)
exp (n(I(Uŝ; Ys)− δ))e}.

The preimage of any k ∈ K under hm is a subset of f−1
m (Cm) of size⌊

|Cm,ŝ |
minŝ∈Ŝ dinfs∈I(ŝ) exp(n(I(Uŝ ;Ys)−δ))e

⌋
.

The rest of the k′ ∈ f−1
m (Cm) is mapped on k̃ /∈ K. If

|Cm,ŝ| = min
ŝ∈Ŝ
d inf

s∈I(ŝ)
exp (n(I(Uŝ; Ys)− δ))e,

the system chooses k = f−1
m (un). In this case, we also define hm : f−1

m (Cm)→ K∪ {k̃} where hm

is injective. If un /∈ C, k is chosen at random according to a uniform distribution on the alphabet.
The same holds if un is mapped on k̃ or if xn /∈ ⋃

ŝ∈Ŝ
T n

PX,ŝ ,ξ ′ .

• We define Ψ as follows. The system gets a sequence yn and m. It decodes yn using the code
corresponding to Cm,ŝ. Then, hm is used on the result. The result is k̂ if it differs from k̃. Otherwise,
an arbitrary k̂ ∈ K is chosen.

Using the properties of the communication protocol, we analyse the achievability conditions.
We denote the outputs of the DMMS by Xn and Yn and the output of the channel used on Xn by Un.
Assume the index of the DMMS is s ∈ I(ŝ), ŝ ∈ S . Thus, PXnYn = Pn

XsYs
.
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• We define the following events:

E1 ={(xn, yn, un) ∈ X n ×Yn ×Un : (xn, un) /∈ T n
PXsUŝ ,ξ ′′},

E2 ={(xn, yn, un) ∈ X n ×Yn ×Un : un /∈ C},
E3 =

⋃
m∈M

{(xn, yn, un) ∈ X n ×Yn ×Un : un ∈ Cm ∧ hm( f−1
m (un)) = k̃},

E4 =
⋃

m∈M
{(xn, yn, un) ∈ X n ×Yn ×Un : un ∈ Cm ∧ f−1

m (un) 6= φm(yn)}.

According to ([3], Lemma 2.10), we can choose ξ ′′ small enough such that (xn, un) ∈ T n
PXsUŝ ,ξ ′′

implies xn ∈ T n
PXs ,ξ ′ and un ∈ T n

PUŝ ,ξ . We have

PXnYnUn(E1) = 1− PXnYnUn(E c
1)

(a)
= 1− Pn

XsYsUŝ
(E c

1) = 1− Pn
XsUŝ

(T n
PXsUŝ ,ξ ′′)

= Pn
XsUŝ

((T n
PXsUŝ ,ξ ′′)

c).

Here, (a) follows as for xn ∈ T n
PXs ,ξ ′ the system uses Vŝ to generate un from xn. Thus,

Pr(K 6= K̂) ≤ PXnYnUn(E1 ∪ E2 ∪ E3 ∪ E4)

= PXnYnUn(E1) + PXnYnUn((E2 ∪ E3 ∪ E4) ∩ E c
1)

= Pn
XsUŝ

((T n
PXsUŝ ,ξ ′′)

c) + PXnYnUn(E2 ∩ E c
1) + PXnYnUn((E3 ∪ E4) ∩ E c

1 ∩ (E c
2 ∪ E1)).

Now, we use

PXnYnUn(E2 ∩ E c
1) ≤ ∑

(xn ,un) :
xn∈T n

PXs ,ξ′

∧un∈Cc

PXnUn(xn, un)

= ∑
(xn ,un) :

xn∈T n
PXs ,ξ′

∧un∈Cc

Pn
XsUŝ

(xn, un)

≤ ∑
(xn ,un) :
xn∈X n

∧un∈Cc

Pn
XsUŝ

(xn, un) = Pn
Uŝ
(Cc)

and get

Pr(K 6= K̂) ≤ Pn
XsUŝ

((T n
PXsUŝ ,ξ ′′)

c) + Pn
Uŝ
(Cc) + PXnYnUn((E3 ∪ E4) ∩ E c

1 ∩ E c
2)

≤ Pn
XsUŝ

((T n
PXsUŝ ,ξ ′′)

c) + Pn
Uŝ
(Cc) + PXnYnUn(E4 ∩ E c

1 ∩ E c
2) + PXnYnUn(E3 ∩ E c

1 ∩ E c
2).

Now, we define the RV E = e(Xn, Un) with e : X n ×Un → {0, 1}

e(xn, un) =

0, for un ∈ C ∧ xn ∈ ⋃ŝ∈Ŝ T
n

PXŝ ,ξ ′ ,

1, otherwise.
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We have

Pr(K 6= K̂) ≤ Pn
XsUŝ

((T n
PXsUŝ ,ξ ′′)

c) + Pn
Uŝ
(Cc)

+ ∑
m∈M

PM(m)PXnYnUn |M(E4 ∩ E c
1 ∩ E c

2 |m)

+ ∑
m∈M

PME(m, 0)PXnYnUn |ME(E3 ∩ E c
1 ∩ E c

2 |m, 0)

as for all m ∈ M

PXnYnUn |ME(E3 ∩ E c
1 ∩ E c

2 |m, 1) = 0.

As un ∈ C and un ∈ T n
PUŝ ,ξ imply un ∈ Cm for an m ∈ Mŝ, we know

PXnYnUn |M(E4 ∩ E c
1 ∩ E c

2 |m) = 0

and

PXnYnUn |M(E3 ∩ E c
1 ∩ E c

2 |m) = 0

for m /∈ Mŝ. Thus, we have

Pr(K 6= K̂) ≤ Pn
XsUŝ

((T n
PXsUŝ ,ξ ′′)

c) + Pn
Uŝ
(Cc)

+ ∑
m∈Mŝ

PM(m)PXnYnUn |M(E4 ∩ E c
1 ∩ E c

2 |m)

+ ∑
m∈Mŝ

PME(m, 0)PXnYnUn |ME(E3 ∩ E c
1 ∩ E c

2 |m, 0).

We know for m ∈ Mŝ

PXnYnUn |M(E4 ∩ E c
1 ∩ E c

2 |m)

≤ ∑
(xn ,yn ,un) :

f−1
m (un) 6=φm(yn)

∧un∈Cm∧xn∈T n
PXs ,ξ′

PXnYnUn |M(xn, yn, un|m)

= ∑
(xn ,yn ,un) :

f−1
m (un) 6=φm(yn)

∧un∈Cm∧xn∈T n
PXs ,ξ′

PXn |UnYn M(xn|un, yn, m)PYn |Un M(yn|un, m)PUn |M(un|m).

Using M−Un −Yn, we have
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PXnYnUn |M(E4 ∩ E c
1 ∩ E c

2 |m)

≤ ∑
(xn ,yn ,un) :

f−1
m (un) 6=φm(yn)

∧un∈Cm∧xn∈T n
PXs ,ξ′

PXn |UnYn M(xn|un, yn, m)PYn |Un(yn|un)PUn |M(un|m)

= ∑
(xn ,yn ,un) :

f−1
m (un) 6=φm(yn)

∧un∈Cm∧xn∈T n
PXs ,ξ′

PXn |UnYn M(xn|un, yn, m)Wn
s (y

n|un)PUn |M(un|m)

≤ ∑
(xn ,yn ,un) :

f−1
m (un) 6=φm(yn)
∧un∈Cm

PXn |UnYn M(xn|un, yn, m)Wn
s (y

n|un)PUn |M(un|m)

= ∑
(yn ,un) :

f−1
m (un) 6=φm(yn)
∧un∈Cm

Wn
s (y

n|un)PUn |M(un|m)

= ∑
un∈Cm

Wn
s ((φ

−1
m ( f−1

m (un)))c|un)PUn |M(un|m).

Thus, using Inequality (9), we have

∑
m∈Mŝ

PM(m)PXnYnUn |M(E4 ∩ E c
1 ∩ E c

2 |m) ≤ ε

for n large enough. Now, consider un ∈ Cm, m ∈ M. We get

PUn |ME(u
n|m, 0) = ∑

xn∈X n
PUnXn |ME(u

n, xn|m, 0)

= ∑
ŝ∈Ŝ

∑
xn∈T n

PXŝ
,ξ′

PUnXn |ME(u
n, xn|m, 0)

as

PUnXn |ME(u
n, xn|m, 0) = 0

for xn /∈ ⋃ŝ∈Ŝ T
n

PXŝ ,ξ ′ . We realize that, for un ∈ Cm and xn ∈ ⋃ŝ∈Ŝ T
n

PXŝ ,ξ ′ ,

PUnXn |ME(u
n, xn|m, 0) = PUnXn ME(u

n ,xn ,m,0)
PME(m,0)

=
PUnXn (un ,xn)

PME(m,0) PME|UnXn(m, 0|un, xn) =
PUnXn (un ,xn)

PME(m,0) ,

where the last step follows as

PME|UnXn(m, 0|un, xn) = 1.

Thus, we get
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PUn |ME(u
n|m, 0) = ∑

ŝ∈Ŝ
∑

xn∈T n
PXŝ

,ξ′

PUnXn (un ,xn)
PME(m,0)

= ∑
ŝ∈Ŝ

∑
xn∈T n

PXŝ
,ξ′

Pn
Xs (xn)Vn

ŝ (u
n |xn)

PME(m,0)

= ∑
ŝ∈Ŝ

∑
p∈P(n,X ) :

|p(x)−pXŝ (x)|≤ξ ′

∀x∈X

∑
xn∈T n

p

∏n
i=1 PXs (xi)Vŝ(ui |xi)

PME(m,0) .

The last term is constant for all un of the same type. Thus,

PUn |ME(u
n|m, 0) = pCm

is constant for un ∈ Cm. As

PUn |ME(u
n|m, 0) = 0

for un /∈ Cm, we have

PUn |ME(u
n|m, 0) = 1

|Cm |

for un ∈ Cm. Now, we get

PXnYnUn |ME(E3 ∪ E c
1 ∪ E c

2 |m, 0) ≤ ∑
(xn ,yn ,un) :

∧un∈Cm∧xn∈T n
PXs ,ξ′

∧hm( f−1
m (un))=k̃

PXnYnUn |ME(xn, yn, un|m, 0)

≤ ∑
un∈Cm

∧hm( f−1
m (un))=k̃

PUn |ME(u
n|m, 0) = |h−1

m (k̃)|pCm .

We have

|h−1
m (k̃)| = |Cm| −min

ŝ∈Ŝ
d inf

s∈I(ŝ)
exp (n(I(Uŝ; Ys)− δ))e

⌊
|Cm |

minŝ∈Ŝ dinfs∈I(ŝ) exp(n(I(Uŝ ;Ys)−δ))e

⌋
and get

PXnYnUn |ME(E3 ∪ E c
1 ∪ E c

2 |m, 0)

≤ 1
|Cm | (|Cm| −min

ŝ∈Ŝ
d inf

s∈I(ŝ)
exp (n(I(Uŝ; Ys)− δ))e( |Cm |

minŝ∈Ŝ dinfs∈I(ŝ) exp(n(I(Uŝ ;Ys)−δ))e − 1))

=
minŝ∈Ŝ dinfs∈I(ŝ) exp(n(I(Uŝ ;Ys)−δ))e

|Cm | ≤ 2
exp(nε̃)

or

PXnYnUn |ME(E3 ∪ E c
1 ∪ E c

2 |m, 0) = 0

respectively, if, for the source state s, it holds that s ∈ I(ŝ) for the ŝ corresponding to the smallest
Cm,ŝ. Here,

ε̃ = inf
s∈I(ŝ)

I(Uŝ; Ys)−min
ŝ′∈Ŝ

inf
s∈I(ŝ′)

I(Uŝ′ ; Ys).
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Thus, for n large enough,

Pe ≤ Pn
XsUŝ

((T n
PXsUŝ ,ξ ′′)

c) + η + ε + 2
exp(nε̃)

and Inequality (5) is fulfilled for small enough constants and n large enough.
• We define k̃ : Un ×M→ {0, 1}

k̃(un, m) =

{
1, for un ∈ fm(h−1

m (k̃)),

0, otherwise,

and the RV K̃ = k̃(Un, M). We have

PK|MEK̃(k|m, 0, 0) = PUn |MEK̃( fm(h−1
m (k))|m, 0, 0).

Now, consider un ∈ Cm. It holds that

PUn |MEK̃(u
n|m, 0, 0) =

PUn |ME(u
n |m,0)

PK̃|ME(0|m,0) PK̃|MEUn(0|m, 0, un).

We know

PK̃|MEUn(0|m, 0, un) = 1

for un /∈ fm(h−1
m (k̃)). Thus,

PK|MEK̃(k|m, 0, 0) =
PUn |ME(h

−1
m (k)|m,0)

PK̃|ME(0|m,0) =
pCm |h−1

m (k)|
PK̃|ME(0|m,0)

for all k ∈ K. This means

PK|MEK̃(k|m, 0, 0) = 1
|K| ,

as |h−1
m (k)| is constant for all k ∈ K. We also know

H(K|M = m, E = e, K̃ = k̃) = log |K|

for PMEK̃(m, e, k̃) > 0, (e, k̃) 6= (0, 0) as k is chosen according to a uniform distribution on K in
this case. Thus,

log |K| ≥ H(K|M) ≥ H(K|MEK̃)

= ∑
(m,e,k̃)

∈M×{0,1}×{0,1}

PMEK̃(m, e, k̃)H(K|M = m, E = e, K̃ = k̃) = log |K|.

This means Equations (6) and (7) are fulfilled.
• For the secret-key rate, we have

1
n log |K| ≥ min

ŝ∈Ŝ
inf

s∈I(ŝ)
I(Uŝ; Ys)− δ. (10)

• Finally, we analyse the privacy-leakage rate. We have

I(Xn; M) = H(M)− H(M|Xn)− H(M|Un) + H(M|Un)

= I(Un; M)− H(M|Xn),
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where we use H(M|Un) = 0 for the second equality (see ([3], Problem 3.1)). Now, we use

PME(Mŝ, 0) ≥ PXnYnUn(E c
1 ∪ E c

2) = Pn
XsYsUŝ

(E c
1 ∪ E c

2)

≥ Pn
XsYsUŝ

(E c
1) + Pn

XsYsUŝ
(E c

2)− 1

= Pn
XsUŝ

(T n
PXsUŝ ,ξ ′′) + Pn

Uŝ
(C)− 1

≥ 1− η − Pn
XsUŝ

((T n
PXsUŝ ,ξ ′′)

c) ≥ 1− ζ

for ζ > 0 and n large enough. We also use PUn |ME(un|m, 0) = 1
|Cm | for un ∈ Cm and get

H(Un|M) ≥ H(Un|ME)

≥ ∑
m∈Mŝ

PME(m, 0)H(Un|M = m, E = 0)

≥ (1− ζ)( min
s∈I(ŝ)

I(Uŝ; Ys)− δ)n.

Thus,

I(Xn; M) ≤ H(Un)− H(M|Xn)− n min
s∈I(ŝ)

I(Uŝ; Ys) + nδ + ζn min
s∈I(ŝ)

I(Uŝ; Ys).

We now use

I(Xn; Un) = H(Xn
s )− H(Xn|Un)

≤ H(Xn
s )− H(Xn|UnT)

≤ H(Xn
s )− H(Xn|UnT = 1)(1− ε′)

= H(Xn
s )− H(Xn

s |Un
ŝ T = 1)(1− ε′)

= H(Xn
s )− H(Xn

s |Un
ŝ T = 1)(1− ε′)− H(Xn

s |Un
ŝ T = 0)ε′ + H(Xn

s |Un
ŝ T = 0)ε′

≤ I(Xn
s ; Un

ŝ T) + ε′ log |X |n
= ε′ log |X |n + I(Xn

s ; Un
ŝ ) + I(T; Xn

s |Un
ŝ )

≤ ε′ log |X |n + I(Xn
s ; Un

ŝ ) + log 2,

where T = t(Xn), t : X n → {0, 1}

t(xn) =

1, xn ∈ T n
PXs ,ξ ′ ,

0, else.

Thus, ε′ is arbitrarily small for large n.

Thus, we get

I(Xn; M) ≤ H(Un)− H(M|Xn)− n inf
s∈I(ŝ)

I(Uŝ; Ys)

+ nδ + ζn inf
s∈I(ŝ)

I(Uŝ; Ys) + ε′ log |X |n + I(Xn
s ; Un

ŝ ) + log 2− I(Xn; Un).
(11)

Again, using ([3], Problem 3.1), we get

H(Un)− H(M|Xn)− I(Xn; Un) = H(Un|Xn)− H(M|Xn)

= H(Un M|Xn)− H(M|Xn)

= H(Un|MXn).
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We also know that

0 ≤ I(Un; Yn|Xn M)

= H(Yn|Xn M)− H(Yn|XnUn M)

= H(Yn|Xn M)− H(Yn|XnUn)

≤ H(Yn|Xn)− H(Yn|XnUn)

= I(Yn; Un|Xn) = 0.

Here, we use ([3], Problem 3.1) and M− Xn −Yn. Thus,

I(Un; XnYn M) = I(Un; Xn M) = I(Un; Yn M) + I(Un; Xn|Yn M).

Thus,
I(Un; Xn M) ≥ I(Un; Yn M).

It follows that

H(Un|MXn) ≤ H(Un|MYn). (12)

Now, we bound the right hand side of Inequality (11) using Inequality (12) and use Fano’s
inequality. Thus, we have

1
n I(Xn; M) ≤ sup

s∈I(ŝ)
I(Xs; Uŝ)− I(Uŝ; Ys)

+ δ + ζ I(Uŝ; Ys) + ε′ log |X |+ 1
n log 2 + Pe log(|U | − 1) + h(Pe)

n . (13)

Here, we use

I(Xs; Uŝ)− inf
s∈I(ŝ)

I(Uŝ; Ys) = sup
s∈I(ŝ)

I(Xs; Uŝ)− I(Uŝ; Ys)

as I(Xs; Uŝ) is constant for all s ∈ I(ŝ).

Using these results, we conclude from Inequalities (10) and (13) that

R(PSCA)(S) ⊇
⋃

Uŝ1 ,··· ,Uŝ|Ŝ |

⋂
ŝ∈Ŝ
R(PSCA)

ŝ (S, Uŝ).

Using the distributive law for sets, we can see that this is equivalent to

R(PSCA)(S) ⊇
⋂

ŝ∈Ŝ

⋃
Uŝ

R(PSCA)
ŝ (S, Uŝ)

(see Appendix B). We now consider the converse. Assume XnYn are distributed i.i.d. according to
PXsYs for an arbitrary s ∈ S . The following calculations hold for all s ∈ S . Similarly to the converse
part of the proof of ([7], Theorem 3.1), we have

log |K| a)
= H(K) = I(K; K̂) + H(K|K̂)
b)
≤ I(K; MYn) + F = I(K; M) + I(K; Yn|M) + F
c)
≤ I(Yn; MK) + F =

n

∑
i=1

I(KMYi−1; Yi) + F,
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where we use Equation (6) for (a), Fano’s inequality with F = δn log |K|+ 1 and the data processing
inequality in combination with K −MYn − K̂, which follows from the definition of the compound
authentication protocol for (b) and Equation (7) for (c). From the definition of the compound
authentication protocol, we also know that Yn − Xn −MK. Using the definition of Markov chains,
this implies Yi−1 − Xi−1 −MKYi for all i ∈ {2 · · · n} (see Appendix C). (From Yn − Xi−1Xn

i −MK,
we get Yi−1Yi − Xi−1 −MKXn

i using Implications (A11) and (A13). Then, we use Implication (A12) to
get Yi−1 − Xi−1Yi −MK and from this we get the desired result using Implication (A13).)

The equation

I(YiKM; Xi−1Yi−1) = I(YiKM; Xi−1)

is equivalent to Yi−1 − Xi−1 −MKYi ([3], Definition 3.9). This is equivalent to

H(Yi|KMXi−1Yi−1) = H(Yi|KMXi−1) + (H(KM|Xi−1)− H(KM|Xi−1Yi−1)).

Thus, H(Yi|KMYi−1) ≥ H(Yi|KMXi−1). Thus, we have

I(KMYi−1; Yi) ≤ I(KMXi−1; Yi), (14)

so

log |K| ≤
n

∑
i=1

I(KMXi−1; Yi) + F.

Now, we define Ui = KMXi−1 for all i ∈ {1 · · · n}. This implies Ui − Xi −Yi for all i ∈ {1 · · · n},
which can again be seen using the results from Appendix C. Let Q be a time sharing RV independent of
all others and uniformly distributed on Q = {1 · · · n} and let U = QUQ, X = XQ and Y = YQ. Then,

PUXY((u, q), x, y) = PQUqXqYq(q, u, x, y)
a)
= PQUq |Xq(u, q|x)PXqYq(x, y)

for all (u, q, x, y) ∈ Uq ×Q×X ×Y , where (a) follows from Uq − Xq −Yq and the independence of Q.
We have

PXY(x, y) = ∑
q,u

PQUqXqYq(q, u, x, y) =
n

∑
i=1

1
n PXiYi (x, y)

a)
= PXsYs(x, y) = PXqYq(x, y) (15)

for an arbitrary q ∈ Q and (x, y) ∈ X × Y , where a) follows as PXiYi = PXsYs for all i ∈ Q as the RVs
XnYn are generated i.i.d. We also have for all (u, q, x) ∈ Uq ×Q×X

PU|X(u, q|x) = ∑y∈Y PQUqXqYq (q,u,x,y)
PX(x) =

PQUqXq (q,u,x)
PXq (x) = PQUq |Xq(q, u|x).

Thus, PUXY((u, q), x, y) = PXY(x, y)PU|X(u, q|x), which means U − X−Y. We also have

log |K| ≤
n

∑
i=1

I(Ui, Yi) + F = n
n

∑
i=1

1
n I(UQ, Y|Q = i) + F

= nI(UQ; Y|Q) + F = nH(Y|Q)− H(Y|UQQ) + F

≤ n(H(Y)− H(Y|UQQ)) + F = nI(UQQ; Y) + F = nI(U; Y) + F.

Thus, using the definition of F, we get

1
n log |K| ≤ (1− δ)−1(I(U; Y) + 1

n ),

which implies
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1
n log |K| ≤ I(U; Y) + δ (16)

for δ > 0 and n large enough. We also consider

I(Xn; M) = H(M)− H(M|Xn)

≥ H(M|Yn)− H(KM|Xn)

= H(KM|Yn)− H(K|Yn M)− H(KM|Xn).

From the definition of the compound storage model, we know K −MYn − K̂. Using the data
processing inequality, we get I(K; MYn) ≥ I(K; K̂), which means H(K|MYn) ≤ H(K|K̂) ≤ F,
where the last inequality follows from Fano’s inequality. Thus,

I(Xn; M) ≥ H(KM|Yn)− H(KM|Xn)− F

= I(KM; Xn)− I(KM; Yn)− F

=
n

∑
i=1

I(KM; Xi|Xi−1)−
n

∑
i=1

I(KM; Yi|Yi−1)− F

a)
=

n

∑
i=1

I(KMXi−1; Xi)−
nk

∑
i=1

I(KMYi−1; Yi)− F

b)
≥

n

∑
i=1

I(KMXi−1; Xi)−
n

∑
i=1

I(KMXi−1; Yi)− F,

where (a) follows as Xi and Yi are i.i.d. and (b) follows from Inequality (14). With our definition of U,
X and Y and the same argumentation as before, we get

1
n I(Xn; M) ≥ I(U; X)− I(U; Y)− F

n
a)
≥ I(U; X)− I(U; Y)− δ

(17)

for n large enough, where, for (a), we use the definition of F and Inequality (16). We have for all
(u, q, x) ∈ Uq ×Q×X

PUX((q, u), x) = PQ(q)PUq Xq (u, x)

= PKMXq−1Xq
(k, m, xq−1, xq)PQ(q)

= PQ(q) ∑
xn

q+1

PKMXn (k, m, xn)

a)
= PQ(q) ∑

xn
q+1

PXn (xn)PM|Xn (m|xn)PK|Xn (k|xn)

= PQ(q) ∑
xn

q+1

PXn (xn)Θ(xn)Φ(xn),

(18)

where (a) follows from M−Xn−K, which follows from the definition of the compound authentication
protocol. As PXn is the same for all s ∈ I(ŝ), ŝ ∈ Ŝ , this result implies that PUX is the same for all
s ∈ I(ŝ), ŝ ∈ Ŝ . We get the bounds (16) and (17) for each s ∈ S . We denote the corresponding RVs
UXY by UsXsYs for all s ∈ S . The joint distribution of XsYs is PXsYs ∈ S as we see from Equation (15).
Thus, Equation (18) and the Inequalities (16) and (17) for all s ∈ S imply

RPSCS(S) ⊆
⋃

Uŝ1 ,··· ,Uŝ|Ŝ |

⋂
ŝ∈Ŝ
R(PSCA)

ŝ (S, Uŝ).

We again use the distributive law for sets to get our result. The bounds on the cardinality of the
alphabet of the auxiliary random variables can be derived as in [19].
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Remark 9. This result implies Theorem 2 as we use a deterministic decoder for the achievability proof.

Remark 10. In [19], the authors also derive the compound capacity region for |S| < ∞, but, in contrast to this
work, they consider deterministic protocols and require strong secrecy instead of perfect secrecy when defining
achievability. This compound capacity region equalsRPSCA(S).

8. Secure Storage

We now discuss some other applications of the already proven results apart from authentication.
For this purpose, we take a look at some results for secure storage from [13,14], which follow directly
from our results for authentication. Here, we again consider compound sets S with |Ŝ | < ∞.

In [13], we consider the following model for secure storage with source uncertainty, where the
corresponding scenario is depicted in Figure 3.

Write on public Database Read from public Database

Encoder DecoderDn

Xn Yn

Public Database

M
M

D̂n

PUF Source
with Source
Uncertainty Attacker

Figure 3. Secure storage process with source uncertainty (as considered in [13]).

Definition 10. Let n ∈ N. The compound storage model consists of a set S ⊆ P(X × Y) of DMMSs
with generic variables XsYs, s ∈ S , (all on the same alphabets X and Y), a source PDn ∈ P(Dn) that puts
out a RV Dn, the (possibly randomized) encoder Φn : X n ×Dn →M and the (possibly randomized) decoder
Ψn : Yn ×M → D̂n. Let Xn and Yn be the output of one of the DMMSs in S, i.e., PXY = PXsYs for an
s ∈ S , but s is not known. Dn is independent of XnYn. The RV M is generated from Xn and Dn using Φn.
The RV D̂n is generated from Yn and M using Ψn. We use the term compound storage protocol for (Φn, Ψn).
Additionally, it holds that, for all δ > 0, there is an n0 = n0(δ) such that for all n ≥ n0

1
n D(PDn‖UDn) < δ.

We define achievability for this model.

Definition 11. A tuple (R, L), R, L ≥ 0, is an achievable storage rate versus privacy-leakage rate pair for
the compound storage model if for every δ > 0 there is an n0 = n0(δ) such that for all n ≥ n0 there exists a
compound storage protocol such that for all s ∈ S

Pr(Dn = D̂n) ≥ 1− δ,

I(M; Dn) = 0,
1
n log |Dn| ≥ R− δ,

1
n I(M; Xn) ≤ L + δ,

where PXY = PXsYs . We denote the corresponding storage protocols by PSCS-Protocols (Perfect-Secrecy-
Compound-Storage-Protocols).

Definition 12. The set of achievable rate pairs that are achievable using PSCS-Protocols is called the compound
capacity regionRPSCS(S).
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We then can prove the following result.

Theorem 6. It holds that

RPSCS(S) = RPSCA(S).

Remark 11. The compound storage model is essentially equivalent to a compound version of the chosen secret
system in [7]. For this reason, Theorem 6 follows using the same approach as the authors of [7].

We combine source compression and secure storage in [14] by considering the following model,
which models the scenario depicted in Figure 4.

Data Source
Vk

Encoder
M Public

Database
M

Decoder
V̂k

Xnk Ynk

PUF Source
with Source Uncertainty Attacker

Eavesdropper

read Data Source
and write on Database

read from Database
and reconstruction

Figure 4. Secure storage of a source (as considered in [14]).

Definition 13. Let k, nk ∈ N. The compound source storage model consists of a set S ⊆ P(X × Y) of
DMMSs with generic variables XsYs, s ∈ S , (all on the same alphabets X and Y), a general source V [20] that
fulfills the strong converse property, the (possibly randomized) encoder Φk : X nk × V k →M and the (possibly
randomized) decoder Ψk : Ynk ×M → V̂ k. Let Xnk and Ynk be the output of one of the DMMSs in S, i.e.,
PXY = PXsYs for an s ∈ S , but s is not known. The RV M is generated from Xnk and Vk using Φk. The RV V̂k

is generated from Ynk and M using Ψk. We use the term compound source storage protocol for (Φk, Ψk).

For this model, we define achievability where we consider the output of the PUF source as
a resource.

Definition 14. A tuple (B, L), B, L ≥ 0, is an achievable performance pair for the compound source storage
model if, for every δ > 0, there is a k0 = k0(δ) such that, for all k ≥ k0, there exists a compound source storage
protocol such that, for all s ∈ S ,

Pr(Vk = V̂k) ≥ 1− δ,

I(M; Vk) = 0,
nk
k ≤ B + δ,
1
nk

I(M; Xnk ) ≤ L + δ,

where PXY = PXsYs . We denote the corresponding compound source storage protocols by PSCSS-Protocols
(Perfect-Secrecy-Compound-Source-Storage-Protocols).

Definition 15. The set of achievable performance pairs that are achievable using PSCSS-Protocols is called the
optimal performance regionRPSCSS(S, V).

We then can prove the following results.
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Theorem 7. It holds that

RPSCSS(S, V) ⊇
⋂

ŝ∈Ŝ

⋃
Uŝ

{(B, L) : B ≥ H̄(V)
infs∈I(ŝ) I(Uŝ ;Ys)

, L ≥ sup
s∈I(ŝ)

I(Uŝ; Xs)− I(Uŝ; Ys)}

a)
=
⋂

ŝ∈Ŝ

⋃
Uŝ

R(PSCSS)
ŝ (S, V, Uŝ),

where for a) we defineR(PSCSS)
ŝ (S, V, Uŝ) appropriately. For all ŝ ∈ Ŝ , the union is over all RVs Uŝ such that,

for all s ∈ I(ŝ), we have Uŝ − Xs −Ys.

Theorem 8. For stationary ergodic sources V, it holds that

RPSCSS(S, V) =
⋂

ŝ∈Ŝ

⋃
Uŝ

R(PSCSS)
ŝ (S, V, Uŝ).

For all ŝ ∈ Ŝ , the union is over all RVs Uŝ such that, for all s ∈ I(ŝ), we have Uŝ−Xs−Ys. For |S| < ∞,
we only have to consider RVs Uŝ with |Uŝ| ≤ |X |+ |I(ŝ)|.

9. Conclusions

We derived the capacity region for the (compound) authentication model requiring perfect
secrecy and uniform distribution of the key generated for authentication and compared the result to
existing results where only strong secrecy and a weaker condition on the key distribution is required.
The two capacity regions are the same. We could prove this result by allowing for randomized
encoders, which are not necessarily used when deriving the capacity region corresponding to the
weaker definition of achievability. We saw that we can use the results for authentication to prove
corresponding results for secure storage.

As already mentioned, compound sources do not only model source uncertainty but also model
attacks where an attacker can influence parameters of the source while the legitimate parties do not
know which parameters the attacker chose. It is essential that in this scenario the parameter is constant
for all symbols read from the source. An attack where the parameter can be varied while the source
is used is fundamentally stronger. A characterization of achievable rates for this attack scenario is
not known, except for the source model for secret key generation, which has been derived in [21].
For an overview of these types of attacks, see [22]. Recently, the corresponding problem for wiretap
channels could be solved [23,24]. For the source model, the attacker can choose his strategy depending
on the public data, which is a difficulty that does not appear for wiretap channels. Nevertheless the
authors hope that, using techniques from the works concerning the wiretap channel, the open problem
for the source model can be solved.
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Appendix A. Proof of Theorem 4

Proof. We prove the result for compound codes with the additional constraint on the decoding sets
that, for ζ > 0, it holds that

φ−1(m) ⊂
⋃

W∈W
T n

W,ζ( f (m)) (A1)
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for all messages m ∈ M f . Additionally, for ζ ′ > 0, we require

f (m) ∈ Ã = A ∩ T n
P,ζ ′ (A2)

for all m ∈ M f . First, consider the case thatW is a finite set. Let ( f , φ) be such a code that can not be
extended. Thus, for all xn ∈ Ã, there is a W ∈ W such that

Wn(
⋃

W̃∈W
T n

W̃,ζ(xn) \ B|xn) < 1− ε, (A3)

where B =
⋃

m∈M f
φ−1(m). It also holds that

Pn(Ã) ≥ Pn(A) + Pn(T n
P,ζ ′)− 1 ≥ η/2

for n large enough. We now consider the set

ÃW = {xn ∈ Ã : Wn(
⋃

W̃∈W
T n

W̃,ζ(xn) \ B|xn) < 1− ε}.

We know
⋃

W∈W ÃW = Ã, as for all xn ∈ Ã there is at least one W ∈ W with Inequality (A3).
Thus,

η/2 ≤ Pn(
⋃

W∈W
ÃW) ≤ ∑

W∈W
Pn(ÃW) ≤ |W| max

W∈W
Pn(ÃW).

Thus, there is a W̄ ∈ W such that for all xn ∈ ÃW̄

W̄n(
⋃

W̃∈W
T n

W̃,ζ(xn) \ B|xn) < 1− ε

and

Pn(ÃW̄) ≥ η
2|W| .

Thus,

W̄n(Bc|xn) + W̄n(
⋃

W̃∈W
T n

W̃,ζ(xn)|xn)− W̄n(Bc ∪
⋃

W̃∈W
T n

W̃,ζ(xn)|xn)

= W̄n(
⋃

W̃∈W
T n

W̃,ζ(xn) \ B|xn) < 1− ε,

which means

W̄n(B|xn) > ε− δ

for all xn ∈ ÃW̄ as W̄n(Bc|xn) = 1− W̄n(B|xn), W̄n(
⋃

W̃∈W T n
W̃,ζ

(xn)|xn) ≥ 1− δ for δ > 0 and n large

enough and W̄n(Bc ∪⋃W̃∈W T n
W̃,ζ

(xn)|xn) ≤ 1. Thus, we have

W̄n(B ∩
⋃

x̄n∈T n
P,ζ′

Tn
W̄,ζ(x̄n)|xn) ≥ W̄n(B|xn) + W̄n(

⋃
x̄n∈T n

P,ζ′

Tn
W̄,ζ(x̄n)|xn)− 1

≥ ε− δ + (1− ξ)− 1 = ε− ξ − δ



Cryptography 2018, 2, 8 25 of 29

for all xn ∈ ÃW̄ , ξ > 0 and n large enough. (We choose ε, δ and ξ such that ε− ξ − δ > 0.) Thus,
B′ = B ∩⋃x̄n∈T n

P,ζ′
Tn

W̄,ζ(x̄n) is an ε− ξ − δ image of ÃW̄ (see [3]). Thus,

|B ∩
⋃

x̄n∈T n
P,ζ′

Tn
W̄,ζ(x̄n)| ≥ gW̄n(ÃW̄ , ε− ξ − δ),

where gW̄n(ÃW̄ , ε− ξ − δ) is defined as in [3]. We have

(PW̄)n(B′) = ∑
yn∈B′

n

∏
i=1

∑
a∈X

P(a)W̄(yi|a)

(a)
= ∑

yn∈B′
∑

xn∈X n

n

∏
i=1

P(xi)W̄(yi|xi)

≥ ∑
yn∈B′

∑
xn∈ÃW̄

Pn(xn)W̄n(yn|xn)

= ∑
xn∈ÃW̄

Pn(xn) ∑
yn∈B′

W̄n(yn|xn)

≥ (ε− δ− ξ)Pn(ÃW̄) ≥ η/2(ε− δ− ξ) 1
|W| ,

where (a) can be shown with induction. Using ([3], Lemma 2.14), we get for n large enough

1
n log |B′| ≥ H(PW̄)− (γ + 1

n log |W|) (A4)

with γ > 0. Additionally, we have

|B′| (a)
= |

⋃
m∈M f

φ−1(m) ∩
⋃

xn∈T n
P,ζ′

T n
W̄,ζ(xn)|

= |
⋃

m∈M f

φ−1(m) ∩
⋃

xn∈T n
P,ζ′

T n
W̄,ζ(xn)

 |
≤ ∑

m∈M f

|φ−1(m) ∩
⋃

xn∈T n
P,ζ′

T n
W̄,ζ(xn)|

(b)
≤ ∑

m∈M f

|
⋃

W∈W
T n

W,ζ( f (m)) ∩
⋃

xn∈T n
P,ζ′

T n
W̄,ζ(xn)|,

where (a) follows from the definition of B and (b) follows from Subset Relationship (A1). We now define

W∗m = {W ∈ W : T n
W,ζ( f (m)) ∩

⋃
xn∈T n

P,ζ′

T n
W̄,ζ(xn) 6= ∅}.

As

T n
W̄,ξ( f (m)) ∩

⋃
xn∈T n

P,ζ′

T n
W̄,ζ(xn) 6= ∅

for all m ∈ M f , which follows form Relation (A2), we have

|B′| ≤ ∑
m∈M f

max
W∈W∗m

|T n
W,ζ( f (m))| · |W|.



Cryptography 2018, 2, 8 26 of 29

Let

W∗ = arg max
W∈⋃m∈M f

W∗m
|T n

W,ζ( f (m))|.

Thus, we get the upper bound

|B′| ≤ |M f | exp(n(H(W∗|P) + γ′ + log |W|
n )), (A5)

γ′ > 0 ([3], Lemma 2.13).
For all W ∈ W∗m and all m ∈ M f there is a yn ∈ Yn such that yn ∈ T n

W,ζ( f (m)) and yn ∈ T n
W̄,ζ(xn)

for a xn ∈ T n
P,ζ ′ . Using Relation (A2), we have yn ∈ T n

PW,(ζ+ζ ′)|X | and yn ∈ T n
PW̄,(ζ+ζ ′)|X | (see ([3],

Lemma 2.10)). Let ζ ′′ = (ζ + ζ ′)|X |. Thus,

‖PW − PW̄‖1 = ∑
b∈Y
|PW(b)− PW̄(b)|

= ∑
b∈Y
|PW(b)− N(b|yn)/n + N(b|yn)/n− PW̄(b)|

≤ ∑
b∈Y
|PW(b)− N(b|yn)/n|+ |N(b|yn)/n− PW̄(b)| ≤ 2|Y|ζ ′′.

Using ([3], Lemma 2.7), we have |H(PW)− H(PW̄)| ≤ 2|Y|ζ ′′ log 1
2ζ ′′ for all W ∈ W∗m and all

m ∈ M f . Using Inequalities (A4), (A5) and the fact that W∗ ∈ W∗m for a m ∈ M f , we get for γ, γ′, ζ

and ζ ′ small enough and n large enough

1
n log |M f | ≥ H(PW̄)− H(W∗|P)− γ− γ′ − 2 log |W|

n

≥ H(PW∗)− 2|Y|ζ ′′ log 1
2ζ ′′ − H(W∗|P)− γ− γ′ − 2 log |W|

n

≥ I(P; W∗)− τ ≥ min
W∈W

I(P; W)− τ.

(A6)

Now, consider the case of an infinite setW . Let M ∈ N, M ≥ 2|Y|2. We construct the setW∗ of
channels W∗ : X → Y with the following properties. For all W ∈ W , there is a W∗ ∈ W∗ with

|W(y|x)−W∗(y|x)| ≤ |Y|M (A7)

for all (x, y) ∈ X ×Y ,

W(y|x) ≤W∗(y|x)e2|Y|2/M (A8)

for all (x, y) ∈ X ×Y and

|W∗| ≤ (1 + M)|X ||Y|. (A9)

Such a construction is possible as described in [18]. Using Inequalities (A9) and (A6), we know
that there is a compound (n, ε′)-code, ε > ε′ > 0, forW∗ with

1
n log |M f | ≥ min

W∈W∗
I(P; W)− τ

if M depends on n polynomially. We now show that this code is a compound (n, ε)-code forW with

1
n log |M f | ≥ inf

W∈W
I(P; W)− τ.
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Let W∗ = arg minW∈W∗ I(P; W) and let W ∈ W be the W corresponding to W∗. Then, we have

inf
W∈W

I(P; W)
(a)
≤ I(P; W)

(b)
≤ I(P; W∗) + β

c)
= min

W∈W∗
I(P; W) + β,

β > 0, where (a) follows from the definition of the infimum, (b) follows as Inequality (A7) implies

‖W(·|a)−W∗(·|a)‖1 ≤ |Y|
2

M

for all a ∈ X . Thus, using ([3], Lemma 2.7), we have

|I(P; W)− I(P; W∗)| = |H(W|P)− H(W∗|P)|
= | ∑

a∈X
P(a)(H(W(·|a))− H(W∗(·|a)))|

≤ ∑
a∈X

P(a)|H(W(·|a))− H(W∗(·|a))| ≤ |Y|
2

M log M
|Y| .

For M = n2, we get (b) for n large enough. Finally, (c) follows from the choice of W∗. Additionally,
it holds that for each W ∈ W there is a W∗ ∈ W∗ with

Wn(yn|xn) ≤ e2|Y|2n/M(W∗)n(yn|xn),

which follows from Inequality (A8). Thus, for all m ∈ M f , we have

Wn((φ−1(m))c| f (m)) ≤ (W∗)n((φ−1(m))c| f (m))e2|Y|2n/M
a)
≤ e2|Y|2/nε′,

where (a) follows from our choice of M. Thus, for n large enough and ε′ small enough, we have

Wn((φ−1(m))c| f (m)) ≤ ε.

Appendix B. Equivalence of Rate Regions

We have

⋃
Uŝ1 ,··· ,Uŝ|Ŝ |

⋂
ŝ∈Ŝ
R(PSCA)

ŝ (S, Uŝ)
a)
=
⋃
Uŝ1

⋃
Uŝ2 ,··· ,Uŝ|Ŝ |

 ⋂
ŝ∈Ŝ\{ŝ1}

Rŝ(S, Uŝ) ∩Rŝ1(S, Uŝ1)

 ,

where we drop the (PSCA) for a shorter notation in a). We now use the distributive law for sets and get

⋃
Uŝ1

 ⋃
Uŝ2 ,··· ,Uŝ|Ŝ |

⋂
ŝ∈Ŝ\{ŝ1}

Rŝ(S, Uŝ) ∩Rŝ1(S, Uŝ1)

 .

Now, we use the distributive law again and get⋃
Uŝ2 ,··· ,Uŝ|Ŝ |

⋂
ŝ∈Ŝ\{ŝ1}

Rŝ(S, Uŝ) ∩
⋃
Uŝ1

Rŝ1(S, Uŝ1).

Following these steps for all ŝ ∈ Ŝ , we get⋂
ŝ∈Ŝ

⋃
Uŝ

R(PSCS)
ŝ (S, Uŝ).
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Appendix C. Modifying Markov Chains

Theorem A1. Let A,B,C and D be jointly distributed RVs. It holds that

A− B− C ⇔ C− B− A, (A10)

AB− C− D ⇒ B− C− D, (A11)

AB− C− D ⇒ A− BC− D, (A12)

PABC(a, b, c) = PAB(a, b)PC(c) ∀(a, b, c) ∈ A×B × C,

∧ A− BC− D ⇒ A− B− CD. (A13)

Proof. We give a proof for each of the statements.

• We have

PABC(a, b, c)
a)
= PA|B(a|b)PBC(b, c)

= PA|B(a|b)PC|B(c|b)PB(b) = PAB(a, b)PC|B(c|b)

for all (a, b, c) ∈ A× B × C. Here, (a) follows from A− B− C. Thus, we see that Equivalence
(A10) is true.

• We have PABCD(a, b, c, d) = PAB|C(a, b|c)PCD(c, d) for all (a, b, c, d) ∈ A×B × C ×D from AB−
C− D. Summing both sides over all b ∈ B, we get Implication (A11).

• We have

PABCD(a, b, c, d)
(a)
= PAB|C(a, b|c)PCD(c, d)

= PB|C(b, c)PA|BC(a|b, c)PCD(c, d)
(b)
= PA|BC(a|b, c)PB|CD(b|c, d)PCD(c, d)

= PA|BC(a|b, c)PBCD(b, c, d)

for all (a, b, c, d) ∈ A×B × C ×D, where (a) follows from AB− C− D and b) from Implication
(A11). This means Implication (A12) is true.

• We have

PABCD(a, b, c, d)
(a)
= PA|BC(a|b, c)PBCD(b, c, d)

= PA|BC(a|b, c)PD|BC(d|b, c)PBC(b, c)
(b)
= PAB(a, b)PC(c)PD|BC(d|b, c)

= PA|B(a|b)PB(b)PC(c)PD|BC(d|b, c)
(c)
= PA|B(a|b)PBC(b, c)PD|BC(d|b, c)

= PA|B(a|b)PBCD(b, c, d)

for all (a, b, c, d) ∈ A×B × C ×D, where (a) follows from A− BC− D and (b) and (c) follow as
C is independent of AB. Thus, we have Implication (A13).
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