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Abstract: Biometric traits, such as fingerprints, faces and signatures have been employed in
bio-cryptosystems to secure cryptographic keys within digital security schemes. Reliable implementations
of these systems employ error correction codes formulated as simple distance thresholds, although they
may not effectively model the complex variability of behavioral biometrics like signatures. In this
paper, a Global-Local Distance Metric (GLDM) framework is proposed to learn cost-effective distance
metrics, which reduce within-class variability and augment between-class variability, so that simple error
correction thresholds of bio-cryptosystems provide high classification accuracy. First, a large number
of samples from a development dataset are used to train a global distance metric that differentiates
within-class from between-class samples of the population. Then, once user-specific samples are available
for enrollment, the global metric is tuned to a local user-specific one. Proof-of-concept experiments on two
reference offline signature databases confirm the viability of the proposed approach. Distance metrics are
produced based on concise signature representations consisting of about 20 features and a single prototype.
A signature-based bio-cryptosystem is designed using the produced metrics and has shown average
classification error rates of about 7% and 17% for the PUCPR and the GPDS-300 databases, respectively.
This level of performance is comparable to that obtained with complex state-of-the-art classifiers.

Keywords: distance metric learning; local distance; prototype selection; biometric cryptosystems;
signature verification

1. Introduction

Biometric traits, such as fingerprints, faces, signatures, etc., are strong candidates to replace
traditional passwords and access codes in many security systems, including those for access control
and digital rights management [1]. Since biometrics represent physiological or behavioral traits
of a human, they cannot be lost and they are less likely to be stolen or to be shared. Recently,
some researchers have focused on employing biometrics to operate cryptosystems, such as encryption
and digital signature systems [2]. In such biometric cryptosystems (also known as bio-cryptosystems),
biometric traits replace traditional passwords to protect the cryptography keys (crypto-keys). A user
must provide a genuine biometric sample, e.g., his fingerprint, to retrieve a crypto-key, by which he
accesses confidential information or digitally signs some data.

Several authors have presented bio-cryptosystems. For instance, Soutar et al. [3] and Davida et al. [4]
designed systems based on fingerprints and iris, respectively. These early systems addressed the challenge
in producing robust crypto-keys from variable biometric signals. Davida et al. [5] highlighted the relation
between error correction codes and bio-cryptography in correcting biometric variability. This concept
has been consolidated by Juels and Sudan who proposed two generic bio-cryptographic schemes
called fuzzy commitment (FC) [6] and fuzzy vault (FV) [7]. They consider the query biometric signal
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as a noisy version of its prototype. If the query sample is genuine, the distance between the query and
its prototype is limited, and as a result, this noise can be eliminated by the error correction decoder
and the locked crypto-key is released to its owner.

Most FC and FV implementations focus on more physiological traits such as fingerprints [8],
iris [9], retina [10], face [11]. With samples obtained for such biometrics, intra-class variability is a less
intrinsic property, and results mostly from the acquisition process. For instance, fingerprint-based FVs
are encoded with some minutia points extracted from the enrolled fingerprint. During authentication,
decoding points are extracted from the query fingerprint, and might differ from corresponding
encoding points due to misalignment. Researchers have alleviated such distances by aligning query
and template fingerprints and positioning them that they are within the error correction capacity of
the decoder [8].

Conversely, intra-class variability is a more intrinsic property of behavioral biometrics,
like handwritten signatures, since individuals do not behave identically at all times. For operating
robust systems based on signatures, modeling of high intra-class variations may require employing
high-dimensional feature descriptors and complex classification rules, as found in traditional
signature verification (SV) systems [12]. These tools are not suitable when designing signature-based
bio-cryptosystems since we are restricted by the error correction code functionality (simple distance
threshold) and the compact signal representation. For instance, it has been shown that direct
implementation of an FV scheme based on offline signature images produces unreliable systems
since the inherent variability is too high to model with a simple FV decoder [13].

In this paper, instead of using distance cancellation methods (like aligning samples),
the bio-cryptosystem design problem is addressed by employing the distance metric learning
concept [14]. To that end, a new approach for learning distance metrics called Global-Local Distance
Metric (GLDM) is proposed to produce similar within-class (WC) and dissimilar between-class (BC)
distance measures. Once the metric is learned, its information is used to design the signature-based
bio-cryptosystem. Since the distance metric is designed to minimize the WC and maximize the BC
distance measures, it is more likely that the noise of genuine queries is corrected by the error-correction
decoder of the bio-cryptosystem while impostor queries are not corrected, and thus good classification
accuracy may be obtained.

To initiate a bio-cryptosystem for a user when only few reference samples are available for
enrollment, the proposed approach starts with the learning of a global metric from an independent
(global) development dataset that includes a huge number of samples. Hence, the produced global
distance metric discriminates between the WC and the BC distances for any user even for users who
are not included in the global dataset. Then, when more enrollment samples are available for a specific
user, they are employed to tune his metric, and produce a user-specific (local) distance metric.

Preliminary research on this approach appears in [15,16]. In this paper, the GLDM approach is
proposed under a distance metric formulation of the biometric cryptosystem design problem.

For experimental validation, the UPCR and the GPDS-300 signature verification databases are
used [17,18]. Distance metrics are optimized based on the proposed approach, where the impact of
each processing step on the metric effectiveness is measured by its impact on the separation of WC
and BC distances. The resulting metrics have been used to design signature-based bio-cryptosystems
and the classification error rates are reported.

The rest of the paper is organized as follows. In the next section, the formulation of biometric
cryptosystems as distance metrics is described. Section 3 reviews some distance metric learning
approaches and their relation to the proposed method. Section 4 describes the new Global-Local
Distance Metric (GLDM) learning approach. The experimental methodology is described in Section 5.
Finally, the experimental results are presented and discussed in Section 6.
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2. Problem Statement

Robust bio-cryptosystems (like FC and FV) operate in key-binding mode, where classical
crypto-keys are coupled with a biometric message. In the enrollment phase, a prototype biometric
message encodes the secret key. In the authentication phase, a message is extracted from the query
sample to decode the key. If the query sample is genuine, the distance between the encoding and
decoding messages is limited, and as a result, this distance can be eliminated by the decoder. On the
other hand, if the query sample belongs to another person, or if it is a forged sample, the distance
between the two messages is too high to cancel. Accordingly, the secret key will be unlocked only to
users who apply query samples that are quite similar. Because of practical decoding complexity of such
codes, biometric messages used must be concise. Produce a concise and informative message from
the biometric signals is a challenging task, because the bio-cryptographic decoders are too simple to
differentiate between genuine and forged samples. (Details of how the crypto-key is encoded/decoded
by means of biometrics is out of the scope of this paper. For more details on this aspect see [6,7]).

In this paper, the FV key binding cryptographic scheme is considered [7]. In FVs, a feature vector
Fpur = { f pur

n }N
n=1 of concise dimensionality N is extracted from a biometric enrolled prototype pur of

user u, and it locks the user cryptographic key K. To conceal this locking message from attackers, a set
of chaff (noise) points are mixed with its genuine locking elements.

In the authentication phase, a user provides a biometric query signal Qvj, which produces

an unlocking message FQvj = { f
Qvj
n }N

n=1. Each unlocking element f
Qvj
n is matched against all the

locking elements of Fpur , and a matching set is produced. The key K can be unlocked only if the error
of the matching set is within the FV error correction capability ε (The error correction capacity ε of
a FV bio-cryptosystems relies on the sizes of both the cryptographic key and the encoding messages.
Also, for technical issues, the message elements { fn}N

n=1 are quantized in 8-bit words before matching).
There are two sources of matching errors: erasures and noise. In the case of erasures, some unlocking
elements do not match their corresponding locking elements, and so they are therefore not added to
the matching set. In the noise case, some unlocking elements match some of the chaff points, and so
they are therefore added as noise δ

′
to the matching set. For efficient FV implementation, the sum of

these errors may not exceed ε for genuine query signals, while it exceeds it for impostors.
The FV functionality can be formulated as a distance metric as shown in Figure 1. Consider

a prototype pur∗ is selected to lock a cryptographic key K of a user u. During enrollment, each locking
element f pur∗

n locks a piece of information about the key K. During authentication, an unlocking

element f
Qvj
n is extracted from the query sample Qvj, and is matched to all locking elements of the FV.

The unlocking element can locate its corresponding locking element only if their similarity lies within
a matching tolerance δn. Accordingly two corresponding locking and unlocking elements constitute
a distance element:

δn(Qvj, pur∗) = dδ f
Qvj pur∗
n > δne (1)

where we define the operator de as follows:

dxe =
{

1; i f (x is true)

0; otherwise
(2)

and

δ f
Qvj pur∗
n = ‖ f

Qvj
n − f pur∗

n ‖ (3)
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Figure 1. Proposed formulation of the FV functionality as distance metrics: each unlocking element

f
Qvj
n is matched against all locking elements { f pur∗

n }N
n=1, where it succeeds in locating the corresponding

element only if the elements’ dissimilarity is within the modeled tolerance δn. To correctly decode
the FV, and release the locked crypto-key K, the overall distance between the locking and unlocking
messages d(Qvj, pur∗ ), besides the noise error δ

′
(resulting from false matching with chaffs), should not

exceed the error correction capacity ε of the decoder.

The accumulation of the individual distance elements constitutes the FV distance metric:

d(Qvj, pur∗) =
N

∑
n=1

δn(Qvj, pur∗) (4)

Considering the extra noise (chaff) errors δ
′
, the total distance (matching error) between a query

and its prototype should not exceed the FV error correction capacity ε. Accordingly, the proposed
formulation of the FV functionality is:

FV(Qvj, pur∗) = d(d(Qvj, pur∗) + δ
′
) ≤ εe (5)

where the distance is smaller than ε, this function outputs FV = 1, which implies that the locked
cryptographic key is released (that should occur for WC samples where u = v). Otherwise, the function
outputs FV = 0 which implies that the key is not released (that should occur for BC samples where
u 6= v).

To achieve the above condition, an effective distance metric learning approach is needed to
optimize the FV distance metric (defined by Equation (4)), so that the WC and BC distance ranges
are separated. In this case, the simple threshold rule (error correction capacity ε of the FV decoder)
discriminates between genuine and impostor samples with high accuracy.

3. Related Work

The distance metric learning concept has been introduced mainly to enhance the performance
of distance classifiers that take explicit distances (or kernels) as inputs, e.g., KNN, SVM, etc., [14].
For such distance/kernel-based classifiers, a distance function that measures the true proximity
between feature representations (FR) of patterns is firstly designed, and is then fed to the classification
stage. The performance of such classifiers relies on the quality of the employed distance measure,
which in turn relies on the employed FR, the distance function applied to the representation, and the
prototypes that are used as references for distance computations.
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In the literature, such systems are optimized with the use of distance function learning [19],
and/or prototype selection [20]. Distance function learning is done through the optimization of
a parameterized function, so that the WC distances are minimized and BC distances are maximized.
Examples of the employed distance functions are L2 distance [21], Chi-squared [22], weighted
similarity [23], and probability of belongingness to different classes [24]. However, most employed
distance functions take the following form:

d f (FQ, Fp) = (FQ − Fp)T A(FQ − Fp). (6)

where FQ and Fp are the feature representations for the questioned and the prototype samples,
respectively. This technique provides a means of translating hardly separable distributions to a space
where the distributions are more separable. In order to having the conventional pattern recognition
approaches hold in the new space, A is restricted to being a symmetric and positive definite matrix
(or kernel), such that d f (.) is a metric function [19]. According to Equation (6), it is obvious that entries
of the A matrix determine the impact of the pairwise distances between individual features on the
distance measure. Thus, learning A implies feature selection [25]. It has been shown that the accuracy
of this metric increases when full matrices are considered (i.e., not only a diagonal matrix but some
weighted relations among individual distances exist) [26].

Also, it is shown that global distance functions do not frequently represent all classes [27].
Instead, the concept of local distance functions is presented [19]. For instance, the metric tensor concept
is represented, where instead of learning a metric A for the whole population, a specific metric AT is
learned for every class T. This approach becomes complex for large numbers of classes, and some
authors have suggested grouping similar classes under larger classes so that a trade-off between global
and class-specific distance functions can be achieved [23]. Moreover, as indicated earlier, the quality of
the proximity measure also depends on the prototype set used as a reference for distance measuring.
Prototype selection has been extensively studied for distance-based classifiers like KNN [20].

4. Proposed Method

4.1. Overview

Since existing distance learning approaches are mainly designed for the enhanced performance
of generic distance classifiers such as KNN, SVM, etc., there are no specific constraints applied to
either classifier complexity, training size, or employed representation. Conversely, there are restrictions
that apply when designing distance metrics for signature-based bio-cryptography. For instance,
these systems involve a simple thresholding distance classifier which makes it hard to model complex
problems like offline signature verification (OLSV). Moreover, OLSV systems should learn from
limited positive signature samples and almost no forgeries are available during the design phase.
Lastly, the design of such systems requires concise feature representations which might not capable of
alleviating the high variability in the signature images. These design constraints require a specialized
distance learning method for the problem at hand.

In this paper, the distance metric defined by Equation (4) is optimized based on a mixture of
Feature-Distance (FD) space [28,29] and dissimilarity matrix analysis. Figure 2 illustrates the different
distance metric computational spaces. Let us assume a system is designed for U different classes,
where for any class u there are R prototypes (templates) {pur}R

r=1. Also, a class v provides a set of
J questioned samples {Qvj}J

j=1. The distance between a questioned sample Qvj and a prototype pur is
d(Qvj, pur). The distances between all the questioned and prototypes samples constitute a dissimilarity
matrix, where each row contains distances from a specific query to all of the prototypes.

Where questioned and prototype samples belong to the same class, i.e., u = v, the distance sample
is a WC sample (black cells in Figure 2). On the other hand, if questioned and prototype samples
belong to different classes, i.e., u 6= v, then the distance sample is a BC sample (white cells in Figure 2).
An ideal distance metric implies that all the WC distances have zero values, while all the BC distances
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have large values. This occurs when the employed metric d absorbs all the WC variabilities, and detects
all the BC similarities. The proposed approach aims to enlarge the separation between the BC and WC
distance ranges, such that a simple distance threshold rule (like that involved in error correcting codes)
produces accurate classification.

δ3(Q11pur)

d(Q11, pur)

Between-class
(BC)

Distances
Within-class

(WC)
Distances

Q11

Q12

Q21

Qv j

p11 p12 p21 pur

Dissimilarity Matrix (D)

Feature-Dissimilarity
(FD) Space

δn(Q11, pur)

d(Qv j, p11)

Du=1

Figure 2. Illustration of computing distance metrics based on the feature distance (FD) and dissimilarity
matrix representations: black and white cells represent WC and BC distances, respectively. The third
dimension represents the Feature-Distance (FD) space. The distances between prototype and query
samples constitute distance cells, which accumulates distance elements computed in the FD space.
The distance cells constitute a dissimilarity matrix, where each row contains the distances from a specific
query to all of the prototypes.

As shown in the figure, a distance measure accumulates some distance elements that are
computed in the FD space, where the distance between a query Qvj and a prototype pur is

measured by the distance between their feature representations { f
Qvj
n }N

n=1 and { f pur
n }N

n=1, respectively
(see Equations (1)–(4)). To enlarge the separation between the WC and BC ranges, individual distance
elements δn(Qvj, pur∗) should be designed properly such that the WC instances will have low values
and the BC instances high values. Since a distance element relies on a specific feature fn and its
associated tolerance δn, these building blocks should be optimized accordingly.

In the case of signature-based bio-cryptography systems, the optimization of the aforementioned
distance metric is a challenging task since a concise representation must be selected from
high-dimensional representations, especially when only a few positive samples and almost no
forgery samples are available for training. We tackle this challenging problem by proposing a hybrid
Global-Local learning framework that also achieves a trade-off between global and local distance
metric approaches [23]. The global learning process overrides the curse -of -dimensionality by using
huge numbers of samples of a development dataset for learning in the original high-dimensional
feature space. Therefore, it becomes feasible for the local learning process to learn in the resulting
reduced space even when limited samples are available for training.

This section provides a detailed description of the proposed GLDM distance metric learning
framework illustrated in Figure 3 (please note that all the algorithms proposed in this paper are
listed in the Figure). In the first step, a large number of samples of a global dataset is used to
design a global distance metric that differentiates between WC and BC samples of the population.
A preliminary feature space of huge dimensionality M is produced and is reduced to a global space
of dimensionality Hg << M through the application of a Boosting Distance Elements (BDE) process.
This BDE process runs in the Feature-Dissimilarity (FD) space resulting from the application of
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a dichotomy transformation, where Hg distance elements are designed by selecting their constituting
features and adjusting their tolerance values.

Global
Set

Local
Set

Feature Extraction

Dichotomy
Transformation

Feature
Filter

Boosting Distance
Elements (BDE)

Algorithm 2

Dissimilarity
Matrix

Generation

Boosting Distance
Elements (BDE)

Algorithm 2

Dichotomy
Transformation

G L

FG

FL

{δFG,Y G}

FL
g F Ḡ

g

{δFLḠ
g ,Y LḠ}

FIg,∆g

FIl,∆l

FIg

p∗

D

Global Distance Metric Learning
(GDM) Algorithm 1

Local Distance Metric Learning
(LDM) Algorithm 3

FG

dg(Q, p) = ∑N
n=1 δgn(Q, p)

δgn(Q, p) =
⌈

δ f Qp
gn > δgn

⌉ dl(Q, p∗) = ∑N
n=1 δln(Q, p∗)

Global Distance Metric Local Distance Metric

δln(Q, p∗) =
⌈

δ f Qp∗
ln > δln

⌉

FIl

Prototype Selection
(PS) Algorithm 4

Select Best
Prototype

Metric Computation

Subset

F Ḡ

Feature
Filter

FL
l F Ḡ

l

∆l

Figure 3. A framework of the Global-Local Distance Metric (GLDM) learning approach: a global
distance metric is designed with a generic dataset and thus applies to any class (user). Once enrolling
samples are available for a specific class (user), they are used to tune the global metric and produce
a local metric.

Then, once enrolling samples are available for a user, they are used to tune the global metric and
produce a local (user-specific) distance metric. The local metric discriminates between the specific-class
WC distances and the BC distances that are computed by comparing class samples to samples of
other classes or forgeries. To this end, the local samples and some samples from the global dataset
are represented in the global space of dimensionality Hg. Additional dichotomy transformation and
BDE processes run in the reduced space to produce a local space of dimensionality Hl < Hg << M.
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Moreover, since different columns in the dissimilarity matrix might differ in accuracy (see Figure 2),
we determine the best signature prototype by selecting the most stable and discriminant column.

Finally, depending on whether or not a local solution is available, either a global or a local distance
metric is computed by employing Equations (1)–(4), using the distance element constituents produced
by the above steps. It is important to note that for both global and local distance metric computations,
only the best N < Hl < Hg << M elements have been used since the metric produced is mainly
designed for building FV systems that require a concise number of locking/unlocking elements.

4.2. Global Distance Metric Learning

Algorithm 1 describes the processing steps for learning global distance metric constituents.
A feature representation FG of high dimensionality M is extracted from a global dataset G and
is translated to the FD space by applying a dichotomy transformation. A boosting distance
elements (BDE) process (Algorithm 2) runs in the FD space producing a set of global feature indexes
FIg = { f igh}

Hg
h=1 and their associated tolerance values ∆g = {δgh}

Hg
h=1, where Hg << M.

Algorithm 1 Global Distance Metric Learning (GDM)

Input: Global set G = {Gs}S
s=1 consists of S samples from different classes.

1: Extract feature representation FG = {FG
s }S

s=1 of high dimensionality M, where FG
s = { f G

sm
}M

m=1.
2: Produce dichotomy transformation δFG = {δFG

ij }S
i,j=1, where δFG

ij = {δ f G
ijm
}M

m=1, δ f G
ijm

= || f G
im
− f G

jm || is a WC

samples if i, j belong to same class, otherwise it is a BC sample.
3: Label dichotomy samples YG = {yG

ij }S
i,j=1, so that yG

ij = 0 for WC and yG
ij = 1 for BC samples.

4: Split {δFG, YG} to a training set T of s1 samples and a validation set V of s2 samples.
5: Run Boosting Distance Elements (BDE) process (Algorithm 2) using T and V → global feature representation

FIg = {FIgh}
Hg

h=1 and associated tolerance ∆g = {δgh}
Hg

h=1, where Hg << M.

Output: Global feature indexes FIg, global tolerance ∆g both of Hg dimensionality.



Cryptography 2017, 1, 22 9 of 23

Algorithm 2 Boosting Distance Elements (BDE)

Input: Training set T = {δFT , YT} = {(δ f t1 , yt1 ), (δ f t2 , yt2 ), ...., (δ f ts1 , yts1 )}, where δ f ts =

{δ f ts
a }A

a=1, y ∈
{

0, 1
}

, B is the number of boosting iterations, [[validation set V = {δFV , YV} =

{(δ f v1 , yv1 ), (δ f v2 , yv
2), ...., (δ f vs2 , yvs2 )}, Be is the early stopping parameter]].

1: Initialize: FI = φ, ∆ = φ, Dr1(s) = 1
s1

: ∀ s ∈ [1, s1], [[AUC0 = 0, Bec = 0]]
2: b = 1
3: while b ≤ B do

4: a = 1, f ib = 1, δb = 0, eb = 1000
5: for a ≤ A do

6: Choose δa that minimizes ea = ∑s1
s=1 Drb(s)(ea(s)), where ea(s) = (dδ f s

a > δae 6= ys)

7: if ea < eb then

8: f ib ← a, δb ← δa, eb ← ea

9: end if
10: end for
11: FI = FI

⋃
f ib, ∆ = ∆

⋃
δb

12: Choose αb = 1
2 ln( 1−eb

eb
)

13: Update Drb+1(s) =
Drb(s)

Zb
×





e−αb , i f eb(s) = 0

eαb , i f eb(s) = 1



, where Zb is a normalization factor computed so that

Drb+1(s) is a distribution
14: Compute AUC using validation set V and the distance metric: dv = ∑b

bc=1
⌈
δ f v

bc > δbc
⌉

15: if AUC ≤ AUC0 then

16: Bec = Bec + 1
17: else

18: AUC0 = AUC;
19: Bec = 0
20: end if
21: if Bec = Be then

22: Break
23: end if
24: end while

output: FI, ∆

4.2.1. Dichotomy Transformation

The dichotomy transformation is applied to the original feature space F and translates samples
to the feature-distance FD space, where distance elements are selected and optimized. Each distance
element is computed based on a single feature fn and its associated tolerance value δn. To illustrate the
importance of this transformation, consider the example shown in Figure 4. On the left side, objects
from three classes are represented in the feature space F. For simplicity, only two features f1 and
f2 are shown in this figure, while typical representations might have high dimensionality. In this
example, we assume that class 1 has two prototypes p11 and p12. Also, let us consider, for now, that the
employed distance function is the Euclidean distance:

dE(Qvj, pur) =

√√√√ N

∑
n=1

(δ f
Qvj pur
n )2 (7)
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δ1

δ2

δ f1

δ f2

class2

f1

f2

p11Q11

Q21

p12
class1

class3

WC

BC

Feature Space(F) Feature−Distance Space (FD)

dQ31p11

dQ31p21

Q31

dQ21p11

dQ21p21

dE(Q31, p11)

dQ11p12

dQ11p11

dE(Q31, p11)

δ f Q31p11
1

δ f Q31p11
2

Figure 4. Illustration of the transformation from original feature space F (left) to the feature-distance
space FD (right) by applying dichotomy transformation. The distance between two samples in the
F space is translated to a vector in the FD space, where each dimension represents the distance as
measured by a single feature. Three classes are represented in F space (class 1: red, class 2: green and
class 3: black). These three classes are transformed to two classes in FD space (WC: black and BC:
blue). In the FD space, it is easier to rank distance elements by their impact on the enlargement of the
separation between WC and BC distance ranges. Also, in FD space, it is easier to learn a tolerance
value δn for each element δ fn that discriminates between WC and BC samples.

It is clear that a distance metric dE that is built on top of this representation is discriminative.
WC distances (like dE(Q11, p11)) are generally smaller than BC distances (like dE(Q21, p11)).
However, in the feature space F, the impact of each feature on the WC and BC distances is not
clear. With representations of high dimensionality, high number of classes, and a small number of
training samples per class, it is not feasible to select the most discriminative features in the feature
space F.

On the other hand, in the feature-distance space FD, the impact of every individual feature on
the WC and BC distances is clear, (see right side of Figure 4). In this space, a distance dE(Qvj, pur) is
represented by the length of the distance vector dQvj pur , where:

dQvj pur = {δ fn
Qvj pur}N

n=1, (8)

δ f
Qvj pur
n is the absolute feature distance defined by Equation (3).

Accordingly, the impact of each distance element on the overall distance metric (defined by
Equation (7)) is explicit in the FD space. Projecting the dissimilarity vector on different axes of the
FD space, we can determine the discriminative power of each dimension. For instance, it is obvious

that δ f2 is more discriminative than δ f1. For all samples belonging to class 1, (like Q11), δ f
Q1j p1r
2 < δ2

and for all other class samples (like Q21 and Q31), δ f
Qvj p1j
2 > δ2. On the other hand, δ f1 is less

discriminant. For the class 2 query Q21, δ f Q21 p11
1 < δ1, it is the same as with that for the class 1

query Q11. Besides being easier to rank features in the FD space, the multi-class problem with few
training samples per class in F space is transformed into a more tractable two-class problem in the
new space, with more training samples per class. Moreover, in the new space, it is possible to learn
a tolerance value δn, for each dimension δ fn, which discriminates between WC and BC distance
instances. Embedding this tolerance information in computations of the distance metric transforms the
Euclidean metric (defined by Equation (7)), which is sensitive to representation variabilities, into a more
robust metric (defined by Equation (4)).

The aforementioned transformation method is applied for both global and local learning phases.
For the global phase, the original representation of huge dimensionality M is projected to the FD space
to be filtered by a Boosting Distance Elements (BDE) algorithm (Algorithm 2), producing a global space



Cryptography 2017, 1, 22 11 of 23

of reduced dimensionality Hg << M. (see Section 4.3 for use in applying dichotomy transformation
during local distance metric learning).

4.2.2. Boosting Distance Elements

Algorithm 2 describes the BDE process. Training distance samples are represented in the FD
space of a dimensionality A and they are initially given equal weights (Step 1). They are then sent
to a boosting feature selection (BFS) method [30], for fast searching in high dimensional spaces
(Steps 2:20). At each boosting iteration b, the best dimension δ fb is selected, along with the adjustment
of its associated tolerance δb that best splits the WC and BC distances (Steps 5:11). After each boosting
iteration, training samples are given new weights based on the extend to which they are accurately
classified by the current distance element, and the weight distribution Drb+1 is updated accordingly
(Steps 12:13). Before proceeding to the next boosting iteration, the current committee of distance
elements is considered as a distance metric, and is validated using a validation dataset, where the Area
Under the Curve (AUC) is employed for performance validation (The validation step is employed
only during the global learning step, where sufficient numbers of samples exist. On the other hand,
only a training set is used during the local BDE process). Once the maximum number of boosting
iterations B is reached, or a performance degradation is seen for the last Be validations, the process
ends and produces a list of feature indexes FI and their associated tolerances ∆ of length b << A
(Steps 14:19).

This BDE process runs during both the global and local phases. In the global phase, the input is
δFG of dimensionality A = M, and it produces a global representation FIg of dimensionality Hg << M.
(see Section 4.3. for using BDE algorithm during local distance metric learning).

To compute the global distance metric dg, the global representation FIg is reduced for the
first N indexes, where N < Hg << M, and then the global metric dg is computed according to
Equations (1)–(4).

4.3. Local Distance Metric Learning (LDM)

This process runs for every individual class (user), for tuning the global metric dg to the specific
user. Algorithm 3 describes the LDM process. The local set (containing R samples) and a subset of
the global set (containing I samples) are represented in the global representation of dimensionality
Hg produced by above global learning process. Then, they are translated to a global FD space
producing distance samples δFḠL

g , which consist of WC and BC samples of same dimensionality Hg.
These samples are sent to another BDE process that runs in the resulting FD space (as described in
Algorithm 2), and it produces a local space of dimensionality Hl < Hg << M consisting of a set of
local feature indexes FIl = { f ilh}

Hl
h=1 and their associated tolerance values ∆l = {δlh}

Hl
h=1. The resulting

local representation could be employed directly to compute a local distance metric using any available
prototype as a reference; however, we propose a prototype selection process which instead picks the
most stable and discriminant prototype for enhancing the accuracy of the metric.

Algorithm 4 illustrates the prototype selection process. Firstly, the global representations FL
g and

FḠ
g of the local and global sets, respectively, are translated to the reduced local space by means of the

local feature indexes FIl (extracted in Step 6 of Algorithm 3). The produced local representations FL
l and

FḠ
l are used to generate a dissimilarity matrix D. To that end, the local tolerance values ∆l (extracted

in Step 6 of Algorithm 3) are used for the distance metric computations defined by Equations (1)–(4).
The produced matrix D is then used to select the most stable and discriminant prototype p∗.
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Algorithm 3 Local Distance Metric Learning (LDM)

Input: Local set L = {pr}R
r=1 consists of R prototypes of local class, feature representation FG of global set

G of dimensionality M (extracted in Algorithm 1), global feature indexes FIg = { f igh}
Hg

h=1 of dimensionality

Hg (output of Algorithm 1).

1: Extract feature representation FL = {FL
r }R

r=1 of high dimensionality M, where FL
r = { f L

rm
}M

m=1.
2: Select I samples from FG as a forgery subset FḠ.
3: Filter FḠ and FL with FIg and produce global representations FḠ

g and FL
g of dimensionality Hg << M,

for global and local sets, respectively.
4: Produce dichotomy transformation δFLḠ

g = {δFLḠ
gri
}R,I

r,i=1, where δFLḠ
gri

= {δ f LḠ
grih
}Hg

h=1, δ f LḠ
grih

= || f L
grh
− f Ḡ

gih
|| is

a WC samples if i belongs to the local class, otherwise it is a BC sample.
5: Label dichotomy samples YLḠ = {yLḠ

ri }
R,I
r,i=1, so that yLḠ

ri = 0 for WC samples and yLḠ
ri = 1 for BC samples.

6: Run Boosting Distance Elements (BDE) process (Algorithm 2) using {δFLḠ
g , YLḠ

g } as training set T → local

feature representation FIl = {FIlh
}Hl

h=1 and associated tolerance ∆l = {δlh
}Hl

h=1, where Hl < Hg << M.
7: Using the local feature indexes FIl and local feature tolerance ∆l (both learned through above BDE step),

select best prototype p∗ by running Algorithm 4.

Output: Local feature indexes FIl and local feature tolerance ∆l both of dimensionality Hl , best prototype p∗.

Algorithm 4 Prototype Selection (PS)

Input: Global feature representations FḠ
g and FL

g of dimensionality Hg for global and local sets, respectively,

local feature indexes FIl , local feature tolerance ∆l .

1: Filter FG
g and FL

g with FIl and produce local representations FG
l and FL

l of dimensionality Hl < Hg for global

and local sets, respectively.
2: Generate dissimilarity matrix: Du =

⋃R
r=1

⋃V,J
v,j=1,1 dl(Qvj, pur), where dl(Qvj, pur) is computed according to

Equations (1)–(4) using FIl and ∆l .
3: Choose p∗ = pur∗ so that r∗ = argr∈[1,R] {Max(ds(r))}, where ds(r) = ∑v 6=u,j dl(Qvj ,pur)

#BC − ∑v=u,j dl(Qvj ,pur)
#WC .

Output: Best prototype p∗

Figure 5 illustrates the prototype selection method by analyzing a dissimilarity matrix D
and its relation to the FD representation space. On the left side, the WC and BC samples are
represented in the FD space. It is obvious that different prototypes (different columns in the matrix D)
produce different distance values, where significant variability exists for the WC and the BC classes.
Moreover, in this space, it is not clear which prototype is the most informative. On the right side,
distance samples dl(Qvj, pur) are projected to a dissimilarity matrix Du, where each row contains
distances between a specific query to all prototypes and each column contains distances between all
queries to a specific prototype. Here, we investigate a part of D (see Figure 4) for a specific class u = 1.
Further, for simplicity, only two prototypes are shown for class 1 (p11 and p12), and few query samples
have been used (two queries for the local class Q11 and Q12 and two queries for each of the global
classes 2 and 3). However, practical matrices could have a high number of prototypes (columns) and
a high number of queries (rows). Moreover, this illustrative matrix is generated based on two features
only ( f1 and f2), i.e., N = 2, and so the distance values dl ∈ [0, 2]. Nevertheless, practical problems
might include higher dimensionality. For instance, for N = 20 the distance values dl ∈ [0, 20].
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ds(r) = ∑v 6=u, j d(Qv j,pur)

#BC − ∑v=u, j d(Qv j,pur)
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0 0
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ds(1) = 7
4 − 0

2 = 1.75, ds(2) = 8
4 − 0

2 = 2

ds(2)> ds(1)→ r∗ = 2 → p∗ = p12

Figure 5. Illustration of the transformation from the feature-distance (FD) space (left) to the
dissimilarity Matrix D (right). All distance samples that are measured with reference to a specific
prototype in the FD space (WC samples: black and BC samples: blue), are represented as a single
column in the matrix D. Although, selection of best prototype p∗ is not clear in the FD space, simple
analysis of the dissimilarity matrix locates the most stable and discriminant column which in turn
determines the best prototype.

It is clear that the dissimilarity matrix provides an easier way of ranking prototypes according to
their discriminative power. For instance, for class 1, p12 is more discriminative than p11 because
dl(Qvj, p12) = 2 for all BC samples, whereas for p11, dl(Q21, p11) = 1 (because δ f Q21 p11

1 > δ1).
Thus, for this class, measuring the distance relative to p12 results in more isolated WC and BC
distance ranges.

To automate the dissimilarity matrix analysis and the selection of the best prototype, we propose
a distance separability measure:

ds(r) =
∑v 6=u,j dl(Qvj, pur)

#BC
− ∑v=u,j dl(Qvj, pur)

#WC
(9)

The left part of the above equation measures the discriminative power of a prototype where high
values indicate a large separation between global and local samples (BC distances). The right side for
its part measures the stability of a prototype in which low values indicate a small separation between
local samples (WC distances). Accordingly, we select the prototype that maximizes this distance
separability measure and the best prototype is given by:

r∗ = argr∈[1,R] {Max(ds(r))} (10)

Finally, after the best prototype is selected, the optimal local distance metric dl is computed in
accordance with Equations (1)–(4) with reference to p∗.

5. Experimental Methodology

The experiments conducted investigate both the proposed GLDM distance metric learning
approach and the signature-based FV bio-cryptosystem, designed based on the resulting distance
metrics. First, the experimental databases are split into a global (development) set G and an exploitation
set that consists of several local sets (L), one for each user. A preliminary feature representation
(FR) of huge dimensionality M is extracted and used to generate a preliminary dissimilarity matrix.
This matrix is refined several times by applying the different steps of the GLDM learning approach
(as described by Figure 3). The importance of the different processing steps is measured by their impact
on separating the WC and BC distance ranges. The learned distance metrics are then used to design
the target signature-based FV system. Since we proposed the first bio-cryptosystem based on offline
signature images, there is no benchmark available for testing our system, and we make comparison
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with state-of-the-art classical signature verification (SV) systems instead. However, we emphasis here
that this comparative study might be biased because while the FV systems involve a very simple
classification rule (a distance threshold) and employs concise feature representations, the SV systems
might employ complex classification rules and high dimensional representations.

5.1. Databases

Two different offline signature databases have been used for proof-of-concept simulations:
the Brazilian PUCPR database [17], and the GPDS-300 database [18]. Firstly, we executed
a proof-of-concept for GDML prototyping using the PUCPR database, and then the concept is
generalized by testing a GLDM-based FV system using both of the databases. While the PUCPR
database is composed of random, simple and skilled forgeries, the GPDS database for its part is
composed of random and skilled forgeries. Random forgeries occur when the query signature presented
to the system is mislabeled to another user. Further, forgers produce random forgeries when they
know neither the signer’s name nor the signature morphology. For simple forgeries, the forger knows
the writer’s name but not the signature morphology, and can only produce a simple forgery using
his writing style. Finally, skilled forgeries imitate the signatures as they have access to a genuine
signatures sample.

5.1.1. Brazilian PUCPR Database

The PUCPR database contains 7920 samples of signatures that were digitized as 8-bit grayscale
images over 400X1000 pixels at a resolution of 300 dpi. The signatures were provided by 168 of these
writers. For the last 108 writers, there are only 40 genuine signatures per writer, and no forgeries.
We consider these signatures as the global dataset (G), and they are employed for the GDM learning
phase. For the first 60 writers, there are 40 genuine signatures, 10 simple forgeries and 10 skilled
forgeries per writer. These signatures are considered as the exploitation dataset consisting of several
local subsets (L), one per user. Of these, the first 30 genuine signatures have been used for the LDM
learning phase; however, the last 10 genuine signatures and all of the different forgeries have been
used for performance evaluation.

5.1.2. GPDS-300 Database

The GPDS-300 database contains signatures of 300 users, which were digitized as 8-bit grayscale
images at a resolution of 300 dpi. This database contains images of different sizes (varying from
51× 82 to 402× 649 pixels). All users have 24 genuine signatures and 30 skilled forgeries. The database
is split into two parts. One part contains the signatures of the last 140 users and is considered as the
global set (G) used for GDM training. The other part contains the signatures of the first 160 users and
is considered as the exploitation dataset that consists of several local subsets (L), one per user; as well.
Of these, the first 14 genuine signatures have been used for the LDM learning phase; however, the last
10 genuine signatures and all of the forgeries have been used for performance evaluation.

5.2. Global Distance Metric Learning

The processing steps of the GDM learning algorithm (Algorithm 1) are executed using the global
dataset (G) of both databases as follows:

5.2.1. Feature Extraction

The Extended-Shadow-Code (ESC) [31] and Directional Probability Density Function (DPDF) [32]
are employed. Features are extracted based on different grid scales, hence a range of details are
detected in the signature image. A set of 30 grid scales is used for each feature type, producing
60 different single scale feature representations. These representations are then fused to produce a FR
of huge dimensionality, M = 30,201 [29].



Cryptography 2017, 1, 22 15 of 23

5.2.2. Dichotomy Transformation

The initial dissimilarity matrix, is constituted by translating the FR, of M dimensionality, for all
users of G, to a FD space of same dimensionality. As this matrix is huge, not all of its cells are used for
the GDM learning process. Also, to avoid overfitting the G dataset, some of the WC and BC samples
have been used for training, while other sets of samples have been used for validation.

5.2.3. Boosted Global Distance Elements

The BDE process (Algorithm 2) runs using the G learning sets. The number of boosting
iterations B is set to 1000 and the early stopping parameter Be is set to 100. The input dimensionality
A = M = 30,201. For the PUCPR database, the resulting dimensionality Hg = 555, while for the
GPDS-300 database Hg = 697. The global distance metric dg is then computed using the resulting
representation FIg and the associated tolerance values ∆g according to Equations (1)–(4).

5.3. Local Distance Metric Learning

The processing steps of the LDM learning algorithm (Algorithm 3) are executed using the local
dataset (L) of both databases as follows:

5.3.1. Feature Extraction and Filtering

Feature representations FG and FL of high dimensionality M = 30,201 are extracted from the local
dataset L of each user and from a subset Ḡ of the global dataset, which represent negative samples,
respectively. Then, this original representation is filtered by FIg, producing global representations
FḠ

g and FL
g of the global and local training sets, respectively. The dimensionality of the resulting

representation is Hg = 555 for the PUCPR database and Hg = 697 for the GPDS database.

5.3.2. Dichotomy Transformation

The dissimilarity matrix, is constituted by translating the global representations FḠ
g and FL

g to
a FD space of same dimensionality Hg. As this matrix is huge, not all of its cells have been used for the
LDM learning process.

5.3.3. Boosted Local Distance Elements

The BDE process (Algorithm 2) runs using the δFḠL
g learning samples. The number of boosting

iterations B is set to 100 and no early stopping is applied. The input dimensionality are A = Hg = 555
for the PUCPR database and A = Hg = 697 for the GPD-300 database. The local distance metric dl is
then computed using the resulting feature indexes FIl and the associated tolerance values ∆l according
to Equation (4), where only the first N = 20 indexes are used. The dissimilarity cells are re-computed
based on this local metric, and produce a dissimilarity matrix.

5.3.4. Prototype Selection

Finally, the dissimilarity matrix is refined for the best column, by selecting the most stable
and discriminative prototype p∗ that maximizes the distance separability measure as defined by
Equations (9)–(10), where R = 30 for the PUCPR database and R = 14 for the GPDS database.

5.4. Fuzzy Vault Encoding and Decoding

Once the local distance metric dl is learned, the information embedded in its constituting distance
elements is used for FV encoding and decoding (as described in Section 2). In the encoding phase,
we set the encoding message length N = 20 and the cryptographic key K size to 128-bits. Accordingly,
the distance metric constituents FIl are extracted from the best enrolled signature prototype p∗, and are
quantized in 8-bit words. Then, the cryptographic key K is used to generate a polynomial of k = 7
degree and the quantized features are then projected on the polynomial. The features and their
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projections constitute a set of genuine FV locking points. Finally, a set of z = 180 chaff (noise) points
are generated to conceal the genuine points, and both sets constitute the FV (For more details on how
FV encoding/decoding works, see [6,16]).

During FV decoding, the same FIl features are extracted from the query signature image Q.
The features are quantized and matched with the FV points. Since the distance metric is designed
such that WC distances are small and the BC distances are large, it is expected that most of decoding
features of genuine query samples will match the FV locking points, while only a few features of
impostor queries will match FV points. The matching points are then corrected by the FV error
correction decoder, where we set the error correction capacity ε = 6, and they are used to re-generate
the polynomial and release the cryptographic key K to the user.

5.5. Performance Evaluation

5.5.1. Evaluation of the GLDM Approach

The proposed GLDM approach is evaluated by investigating its power to generate well separated
WC and BC distance ranges. A testing distance matrix is generated for each user of local datasets.

To investigate the different processing steps of the proposed approach, the impacts of the different
learning steps on the separation of the WC and BC clusters are decoupled by employing the following
experimental scenarios:

1. Random distance metric (RDM): N = 20 features are randomly selected from the M feature
extractions, and are used to produce a random distance metric.

2. Global distance metric (GDM): the global metric dg is used for distance computations. This setting
investigates the extend to which a global metric generalizes to unseen classes/users.

3. Strict local distance metric (SLDM): a modified version of the local metric dl is used for distance
computations, where the learned feature tolerance ∆l is not employed. We can thus decouple the
impact of embedding the modeled feature tolerance in the metric computations, and only test
the applicability of tuning the global metric to specific classes/users. In all the above scenarios,
we employed a strict distance metric as a non-tolerant variant of distance metrics, where the
distance element (defined by Equation (1)) is replaced by a strict distance element:

δ̂n(Qvj, pur∗) = dδ f
Qvj pur∗
n = 0e (11)

4. Local distance metric (LDM): the local metric dl is computed as defined by Equations (1)–(4).
Therefore, the impact of absorbing a feature variability, through learning representation variability
(tolerance), is tested in this experiment.

For all the above cases, the testing datasets are used to generate dissimilarity matrices, according
to the investigated scenario. The separability of the WC and BC clusters are then measured by the
Hellinger distance [33]. Assuming normal distributions of the WC and BC clusters, the squared
Hellinger distance between them is given by:

H2
u(WC, BC) = 1−

√
2σ1u σ2u

σ2
1u
+ σ2

2u

e
− 1

4
(µ1u−µ2u )2

σ2
1u

+σ2
2u (12)

where µ1u , µ2u and σ1u , σ2u are the mean and variance values for WC and BC distances for a specific
user u, respectively.

To measure the cluster separability for the different types of forgery, we compute Hrandom, Hsimple
and Hskilled, with the parameters µ and σ of the BC cluster are computed each time, based on the
distances from samples of a specific type of forgeries. Also, we report Hall , where the distribution
parameters are computed according to distance measures of all forgery types. For all cases,
these measures are averaged over all U users:
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Ĥ =
∑U

u=1 Hu

U
(13)

Moreover, since the main target application of the proposed GLDM approach is the development
of a reliable FV system, we decouple here any factor that impacts the recognition accuracy of such
a system other than those related to the GDLM method. More specifically, FV recognition accuracy
relies on the separability of the WC and BC distance ranges (which reflects the effectiveness of the
GLDM approach), as well as on the error correction capacity ε (which is equivalent to the distance
threshold that split the WC and BC ranges (see Equation (5)). Accordingly, we decouple the impact of
the choice of the threshold ε and only test the impact of the metric dl on FV performance. To that end,
we generate ROC (receiver operating curve) curves by computing recognition errors for all possible
distance measures. A ROC curve plots the False Accept Rate (FAR) against the Genuine Accept Rate
(GAR) for all possible thresholds (all distance measures). FAR for a specific threshold is the ratio of
forgery samples with a distance measure smaller than this threshold. GAR is the ratio of genuine
samples with a distance measure smaller than the threshold. In order to have a global assessment of
the FV quality, we compute and average the AUC (area under ROC curves), for all users in the testing
subset. A high AUC indicates more separation between the distance score distributions for the WC
and BC classes.

5.5.2. Evaluation of the GLDM-Based FV System

After evaluating the GLDM approach, we investigate the performance of the FV bio-cryptosystem,
designed based on the learned distance metrics, by employing the same experimental scenarios
mentioned above. To measure actual recognition rates, we apply a fixed FV error correction capacity
ε = 6, where this value is empirically selected to compensate between the FRR and FAR errors (For a key
size of 128-bits, the polynomial degree is K = 7 and the corresponding error correction capacity is ε = 6.
A trade-off between accuracy and security could be achieved by changing the key size (and the error
correction capacity ε accordingly)). Then, we report the average error rate (AER), where

AER = (FRR + FARrand + FARsimp + FARskill)/4 (14)

The False Reject Rate (FRR) is the ratio of rejected genuine queries; FARrand, FARsimp and FARskill
are ratios of accepted random, simple, and skilled forgeries, respectively.

6. Results and Discussion

6.1. Results of the GLDM Approach

Figure 6 illustrates the impact of each processing step on the separation of the WC and BC clusters,
for a specific user. It is obvious that, without distance metric learning, the distance distributions are
overlapped. Learning a global metric using a global dataset increases the separation. This validates
our hypothesis that distance metrics learned based on high dimensional FRs extracted from large
numbers of classes, relatively, generalize for unseen classes. Running a local metric learning process
using class-specific datasets increased separability. This validates our hypothesis that, the global
metrics are adaptable for new classes. Embedding information about feature variability in distance
metric computations increased the stability of the genuine class: for instance, the maximum distance
score for the genuine class decreased from 9 to 5. This validates our hypothesis that the modeling of
representation variability in the FD space absorbs some intrinsic signal variability.
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Figure 6. Distance measure distribution for a specific user from the PUCPR database.

Table 1 shows the average performance, where the Hellinger distance is averaged over all users
and for the different types of forgeries. It is obvious that each processing step increased the distances
between the WC and BC distance distributions, for all types of forgeries. The average distance of all
forgery distributions Ĥall is increased from 0.24 to 0.66. Also, the average AUC is increased by about
47% (from 0.65 to 0.97).

Table 1. Average Hellinger distance over all users of the UPCR database for the different design scenarios.

Variant 1.RDM 2.GDM 3.SLDM 4.LDM

Ĥrandom 0.29 0.60 0.66 0.73
Ĥsimple 0.25 0.55 0.60 0.69
Ĥskilled 0.14 0.43 0.47 0.59
Ĥall 0.24 0.55 0.59 0.66
AUC 0.65 0.77 0.93 0.97

The distance measures reported above are averaged for all prototypes. However, class separation
differs for the different prototypes. For instance, Figure 7 shows distributions of the best and worst
prototypes for a specific user. For the worst prototype, a distance threshold ε = 4 results in FRR = 10%,
FARrandom = 10% and FARskilled = 30%. For the best prototype, FRR = 0%, FARrandom = 0% and
FARskilled = 20%.

Figure 7. Distance measure distributions for different prototypes for a specific user in the UPCR database.
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6.2. Results of the GLDM-based FV System

Recognition rates for the FV system, designed based on the learned local distance metric dl ,
are reported in Tables 2 and 3 for the PUCPR and GPDS databases, respectively. For the PUCPR
database (see Table 2), it is clear that each step of the GLDM learning approach enhances the FV
recognition performance and this result is correlated with the distance separability investigations
reported in Table 1. Also, applying the prototype selection method (variant 5) enhances the FV
performance significantly. The recognition rates of this FV variant (where all GLDM processing steps
are executed) is compared to state-of-the-art classical signature verification (SV) systems.

Table 2. Overall error rates (%) provided by systems designed by the PUCPR database.

Application Approach Reference/ # Prototypes FRR FAR AER
Variant Random Simple Skilled

SV

WI

1. Santos [34] 5 10.33 4.41 1.67 15.67 8.02
2. Bertolini [35] 15 11.32 4.32 3.00 6.48 6.28

3. Rivard [29] 1 13.53 0.12 0.43 14.95 7.26
15 9.77 0.02 0.32 10.65 5.19

WD
4. Justino [36]

-

2.17 1.23 3.17 36.57 7.87
5. Batista [37] 9.83 0.00 1.00 20.33 7.79
6. Batista [38] 7.50 0.33 0.50 13.50 5.46

WI-WD 7. Eskander [39] 7.83 0.01 0.17 13.50 5.38

FV Proposed

1. RDM

1

14.57 73.59 72.00 76.74 59.23
2. GDM 36.72 7.13 9.26 22.02 43.47
3. SLDM 28.00 2.00 3.00 22.00 13.75
4. LDM 11.35 2.05 2.39 24.38 10.08
5. p∗ 4.83 0.6 1.5 22.33 7.32

Table 3. Overall error rates (%) provided by systems designed by the GPDS database.

Application Approach Reference/ Using Forgeries FRR FAR AER
Variant In Training Random Skilled Avg

SV

WI 1. Kumar [40]

YES

13.76 – 13.76 – 13.76

WD

2. Ferrer [41] 14.10 – 12.60 – 13.35
3. Solar [42] 16.40 – – 14.20 15.30
4. Ribeiro [43] 20.25 – – 14.67 17.46

5. Batista [38] NO 16.81 – 16.88 – 16.84

WI-WD 6. Eskander [39] 18.06 0 22.71 - 13.96

FV Proposed

1. RDM

NO

23.50 70.07 72.02 - 55.19
2. GDM 48.31 13.60 45.17 - 35.69
3. SLDM 39.00 3.19 16.62 - 19.60
4. LDM 41.98 2.01 12.70 - 18.89
5. P∗ 37.50 0 15.37 - 17.62

The first three SV systems are writer-independent (WI-SV), where a global development
(independent) database is used to generate a global classifier. All systems employed an ensemble
technique such that the classification decision relies on multiple prototypes, and high dimensional
presentations are employed. The other SV systems are writer-dependent (WD-SV), where one
local (dependent) dataset is used to generate a local classifier per user. For these systems,
various complicated techniques, such as the dynamic selection of classifier and ensemble methods,
are employed for enhanced recognition.
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Generally, although the proposed FV implementation can be considered a very simple classifier
(only a distance threshold) with concise feature representations (only 20 features), its recognition rates
are comparable to those of more complex SV systems. For instance, compared to state-of-the-art WI-SV
systems (system 3), where both the FV and SV systems rely on a single prototype for authentication,
the proposed FV bio-cryptosystem has shown similar accuracy, while employing only 20 features
instead of the 555 features present in the SV system [29]. Thus, applying our proposed GLDM learning
approach maintained the performance, while decreasing the representation complexity by about
96% (from 555 to only 20 features). Moreover, digitizing the feature values (as they are represented
in 8-bit words for bio-cryptographic encoding), had no impact on the recognition accuracy. Recently,
the authors proposed a hybrid WI-WD SV system that tunes a global representation to specific users
(see system 7). This system outperforms the aforementioned SV systems and provides similar insights
about the effectiveness of applying a hybrid Global-Local training scheme.

For the GPDS database (see Table 3), each step of the GLDM learning approach enhances the FV
recognition performance, providing results similar to the PUCPR experimental results. Comparisons
with state-of-the art SV systems are promising as well. The first SV system employed a WI-SV
classifier, where skilled forgery samples are used to train the global classifier. The following four
SV systems employed WD-SV classifiers. The first three WD-SV systems also used skilled forgery
samples to train the classifiers. This might bias the performance evaluation process since such
knowledge is not available for training practical SV systems, e.g., banking systems. On the other
hand, for the last WD-SV system, no forgery knowledge is used for training; however, complicated
classification rules, such as the dynamic selection of classifiers and ensemble methods are employed
for enhanced recognition. The hybrid WI-WD SV system outperforms both pure WI and WD systems,
which leads to a similar conclusion as with the PUCPR database experiments, and supports the
hypothesis regarding the effectiveness of tuning global solutions to specific classes. The proposed FV
system has shown performance that are comparable to those of such complicated SV systems, where
no forgery samples are used for training, proving the effectiveness of the proposed GLDM learning
approach and supporting the proposed approach in modeling FV systems as distance metrics.

7. Conclusions

This paper proposed an approach for learning distance metrics adapted for bio-cryptosystem
design. The proposed approach produces global metrics that generalize well to unknown classes that
are not used for training. In addition, these metrics can be further tuned to new classes. This property
permits the design of global classification systems adaptable to specific classes. Moreover, the produced
metrics rely on concise representations, in terms of number of employed feature extractions and
prototypes. This allow the design of systems with limitations in their computational complexity and
that rely on high-dimensional feature representations, such as signature-based bio-cryptosystems.
In addition, the modeling of representation variability and the selection of discriminant prototypes
enhance the distance metric efficiency.

The proposed Global-Local distance metric (GLDM) learning approach is applied to the design
of a key binding bio-cryptosystem based on the fuzzy vault (FV) scheme and handwritten signature
images. To that end, the FV system functionality is formulated as a simple thresholding distance
classifier. It is shown that such a simple classifier provides a level of accuracy that is as high as that of
complex signature verification (SV) systems in the literature.

The proposed approach can also be employed as an intermediate tool for designing traditional
feature-based classifiers, where the produced distance metrics feed distance-based classifiers,
e.g., KNN. Future work will investigate the power of the proposed approach on other applications
(e.g., face recognition, video surveillance, image retrieval, etc.). Also, comparing the effectiveness of
the produced metrics to that of other local distance design methods in the literature is of great interest.
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