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Abstract: In this paper, we study relativistic bit commitment, which uses timing and location
constraints to achieve information theoretic security. Using those constraints, we consider a relativistic
bit commitment scheme introduced by Lunghi et al. This protocol was shown secure against classical
adversaries as long as the number of rounds performed in the protocol is not too large. In this work,
we study classical attacks on this scheme. We use the correspondence between this protocol and the
CHSHQ game—which is a variant of the CHSH game—to derive cheating strategies for this protocol.
Our attack matches the existing security bound for some range of parameters and shows that the
scaling of the security in the number of rounds is essentially optimal.
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1. Introduction

1.1. Context and State of the Art

The goal of relativistic cryptography is to exploit the no superluminal signaling (NSS) principle
in order to perform various cryptographic tasks. NSS states that no information carrier can travel at
a speed greater than the speed of light. Note that NSS is closely related to the non-signaling principle
that says that a local action performed in a laboratory cannot have an immediate influence outside of
the lab. NSS is more precise since it gives an upper bound on the speed at which such an influence
can propagate. Apart from this physical principle, we want to ensure information-theoretic security
meaning that the proposed schemes cannot be attacked by any classical (nor quantum) computer,
even with infinite computing power. This is in contrast with used schemes, which most often rely on
computational assumptions such as the hardness of factoring [1].

The idea of using physical assumptions laws to ensure information theoretic security for
cryptographic schemes is not a new one. The most striking example in recent years is Quantum Key
Distribution (QKD), which allows two distant parties to distill a secret key with information-theoretic
security [2]. The main idea of QKD is to exchange quantum states on an insecure quantum channel
and check a posteriori whether they have been disturbed. If not, it means that no eavesdropper was
tampering with the quantum channel and the quantum states can be safely used to distill a secret.
In fact, this work provided that the quantum states are not too noisy. QKD is quite practical and has
indeed been widely deployed, but, at the same time, it requires dedicated hardware and can only work
today provided the two parties are not too far away from each other, at most a few hundred kilometers
(see for instance [3] for the current record).

The idea of using the NSS principle for cryptographic protocols originated in a pioneering work by
Kent in 1999 [4] as a way to physically enforce a non communication constraint between the different
agents of one party (the idea of splitting up a party into several agents dates back to [5], but without
an explicit implementation proposal). The original goal of Kent was to bypass the no-go theorems
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for quantum bit-commitment [6,7]. Interestingly, this original protocol was classical and allowed
for several rounds that increased the lifespan of the protocol. However, the protocol required to
exchange messages whose length scaled exponentially in the number of rounds (i.e., the commitment
time) and a feasible implementation was not possible for a large number of rounds. A subsequent
work [8] improved this scaling, but, to our knowledge, no precise time/security tradeoff is available
for this protocol.

More recently, quantum relativistic bit commitment protocols were developed where the parties
exchange quantum systems, with the hope that combining the no superluminal signaling principle
with quantum theory will lead to more secure (but less practical) protocols [9–11]. In particular,
the protocol [10] was implemented in [12]. We note that the scope of relativistic cryptography is not
limited to bit commitment. For instance, there was recently some interest (sparked again by Kent) for
position–verification protocols [13–15], but, contrary to the case of bit commitment, it was shown that
secure position–verification is impossible both in the classical and the quantum settings [16,17].

The original idea of [5] was recently revisited by Crépeau et al. [18] (see also [19]). Based on
this work, Lunghi et al. devised a multi-round bit commitment protocol involving only four agents,
two for Alice and two for Bob [20]. They managed to prove that this protocol, which we call the “FQ
protocol” from now on, remains secure for several rounds, against classical attacks. Unfortunately,
this proof was rather inefficient since the complexity of the protocol (the size of the messages the
agents need to exchange at each round) scaled exponentially with the number of rounds. Recently,
two papers improved the security proof and showed that the complexity of the protocol in fact only
scales logarithmically with the number of rounds [21,22], implying that the commitment time is
essentially unlimited:

Theorem 1 ([21,22]). The FQ relativistic m-round bit commitment protocol is ε-binding with ε = O( m√
Q )

against classical adversaries, meaning that Alice’s cheating probability is at most 1
2 +O( m√

Q ).

While the two proofs of this fact are very different, they rely to some extent on the analysis of
CHSHQ, a non-signaling game that generalizes the well-known CHSH game to the case where inputs
and outputs are not restricted to being bits, but rather belong to FQ the Galois Field of order Q.

Notice that, in the way the cheating probability is defined, a perfectly secure protocol will have
cheating probability of 1

2 for both Alice and Bob and an ε-secure (here ε-binding) protocol will have
a cheating probability of 1

2 + ε. The protocol has (stand-alone) security when ε is small.
Theorem 1 shows that the protocol is secure as long as m�

√
Q, but it was not known for larger

values of Q, in particular when m approaches, or even exceeds Ω(
√

Q). Very recently, this protocol
has been implemented by keeping the agents 7 km apart with a validity time of 24 h [23]. In addition,
it is important to know that the number of bits sent at each round is log(Q) and therefore Q can be
efficiently made exponentially big in the security parameter.

Until now, no cheating strategy has been proposed for this scheme.

1.2. Contributions

Our main contribution is to present the first attack on the FQ protocol. We show the following.

Theorem 2. There exists an attack on the m-round FQ protocol in which Alice’s cheating probability is

1− 1
2

((
1− 1

Q

) (
1−ω(CHSHQ)

))bm−1
3 c

,

where ω(CHSHQ) is the classical value of the CHSHQ game and m ≥ 3.
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In [24], it was shown for any prime p and integer n that

ω(CHSHQ) =

 Ω(
√

1
Q ) , if Q = p2n,

O(Q− 1
2−ε0) , if Q = p2n+1,

where ε0 is a constant proven to be positive.
In particular, Theorem 2, combined with the above bound, shows that the upper bound of [21,22]

(Theorem 1) is essentially optimal when considering an even prime power:

Corollary 1. For any integer n, prime number p and Q = p2n, there is a cheating strategy for Alice that
achieves success probability

1− 1
2

(
1−Ω(

1√
Q
)

)bm−1
3 c

.

• If m�
√

Q, then the above cheating probability is equal to 1
2 + Ω( m√

Q )− o( m√
Q ).

• If m = t
√

Q, then the above cheating probability is lower bounded by 1 − O(e−
t
3 ), which quickly

approaches 1 as t increases.

From the above bounds, we can conclude that, up to constant factors, our attack is optimal when
Q is an even power of a prime.

We note also that there is an upper bound on the value of CHSHQ when Q is an odd power of
a prime. In this case, we have ω(CHSHQ) = Ω(Q−2/3) [24,25]. From there, we have the following.

Corollary 2. For any integer n, prime number p and Q = p2n+1, there is a cheating strategy for Alice that
achieves success probability

1− 1
2

(
1−Ω(Q−2/3)

)bm−1
3 c .

Therefore, if m = tQ
2
3 , then Alice can cheat with probability 1−O(e−

t
3 ), which quickly converges

to 1 as t increases.
This result also shows that even an improved bound on ω(CHSHQ) variants presented in [26]

cannot be used to improve—except in the constants—the security of the FQ protocol, at least for even
prime powers of Q.

Our second contribution is an extension of this attack to more realistic scenarios from the attacker’s
point of view. In the relativistic model, we assume that cheating Alice can perform communications
between A1 and A2 such that both agents of Alice know exactly the whole transcript of the protocol,
except the last round message sent to the other Alice. Proving security in this setting allows us to
minimize the spacetime requirements in order to achieve security.

However, our attack also assumes this power for cheating Alice, and this could be very challenging
in practice. Therefore, we introduce the notion of propagation time, which corresponds to the number
of rounds ρ that can pass until the Alices are able to send some information to one another. In the
original model, this propagation time is two rounds. We extend Theorem 2 to the following setting:

• The propagation time ρ can be larger than 2;
• The two Alices know the bit they want to reveal only after k0 ≥ 1 rounds. We call k0 the decision time.

Showing that the attack works in this setting ensures that simple countermeasures consisting of
increasing the distance between the two pairs will not significantly reduce the efficiency of the attack.
We show the following.
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Theorem 3. For any propagation time ρ ≥ 2, and any decision time k0, there exists an attack on the m-round
FQ protocol, where Alice’s cheating probability is

1− 1
2

(
(1− 1

Q
) (1−ω(CHSHQ))

)bm−k0−1
ρ+1 c

for m ≥ k0 + 2.

In Section 2, we present the FQ protocol as well as the CHSHQ game. In Section 3, we present our
main result, namely the attack on the FQ protocol. In Section 4, we present the extension of this attack
to more realistic scenarios.

2. Preliminaries

2.1. Bit Commitment

Bit commitment is a cryptographic primitive between two distrustful parties Alice and Bob,
which consists of two phases: a Commit phase and a Reveal phase. Alice has a random bit d at the
beginning of the protocol. In the commit phase, Alice will commit to this value d by performing some
communication protocol such that, at the end of the commit phase, Bob knows no information about d.
In the second phase, the reveal phase, Alice and Bob also perform some communication, which results
in Alice revealing d. A desired property here is that Alice is unable to reveal a bit different from the
one chosen during the commit phase.

In some sense, a bit commitment protocol simulates a digital safe. In the commit phase, Alice
writes her input d on a piece of paper, puts that paper into the safe and sends the safe to Bob. If Bob
has no information about the key safe, then he cannot open it and therefore has no information about d.
In the reveal phase, Alice would send to Bob the key to open the safe. However, she cannot change the
value of the bit in the safe because Bob has control of the safe. This primitive has been widely studied.
However, bit commitment can only be performed with computational security in most usual models.

We now give a formal definition of the bit commitment scheme.

Definition 1. A bit commitment scheme is an interactive protocol between Alice and Bob with two phases,
a Commit phase and a Reveal phase.

• Commit phase. Alice chooses a uniformly random input d that she wants to commit to. To do so, Alice
and Bob perform a communication protocol that corresponds to this commit phase.

• Reveal phase. Alice interacts with Bob in order to reveal d. To do so, they perform a second communication
protocol, where, at the end, Bob should know the value revealed by Alice. Bob, depending on this revealed
value and the interaction with Alice, outputs “Accept” or “Reject”.

We also define the following security requirements for the commitment scheme.

Definition 2. A bit commitment protocol is said to be correct if when both players are honest, Bob never
outputs “Reject”.

A cheating strategy S for Alice can be therefore decomposed into a cheating strategy Scommit
for the commit phase and Sreveal for the reveal phase and we will usually write S = (Scommit, Sreveal).
The goal of a cheating Alice is to choose the value she wants to reveal only after the commit phase.
The reveal strategy Sreveal will depend on the value d she wants to reveal. We denote by Sreveal(d)
Alice’s cheating strategy in the reveal phase for a fixed d.
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Definition 3. For a fixed cheating strategy S = (Scommit, Sreveal) for Alice, we define Alice’s cheating
probability P∗A(S) as

P∗A(S) :=
1
2

Pr[ Alice successfully reveals d = 0|(Scommit, Sreveal(0))]+

1
2

Pr[ Alice successfully reveals d = 1|(Scommit, Sreveal(1))].

Definition 4. We define Alice’s optimal cheating probability P∗A as

P∗A := max
S=(Scommit ,Sreveal)

P∗A(S).

We say that a bit commitment is ε sum-binding if P∗A ≤
1
2 + ε.

Here, we used one of several possible definitions for the binding property. This definition is
weak, since it doesn’t necessarily behave well under composition. In order to prove security, even
for relativistic bit commitment protocols, some stronger definitions of security are used (see for
example [22]). While using a stronger security definitions strengthens upper bounds on the cheating
probability, it is by using the weakest security definition that we have the strongest lower bounds on
those cheating probabilities. Since in this paper, we present cheating strategies, i.e., lower bounds,
we use the weak notion of sum-binding.

Another security condition we want to ensure is the hiding property. At the end of the commit
phase, we don’t want Bob to have a lot of information about the committed bit d. This means that to
ensure the hiding property, we will only be interested in a cheating Bob’s strategy during the commit
phase, and a cheating strategy SB for Bob will be a strategy that he will use to try to learn d after the
commit phase.

Definition 5. For a fixed cheating strategy SB for Bob, we define his cheating probability P∗B(S
B) as

P∗B(S
B) := Pr[Bob guesses d after the Commit phase|SB].

Definition 6. We define Bob’s optimal cheating probability P∗B as

P∗B := max
SB

P∗B(S
B).

We say that a bit commitment is ε-hiding if P∗B ≤
1
2 + ε.

2.2. Relativistic Bit Commitment

A relativistic bit commitment scheme is a commitment scheme where we use physical property
that no information carrier can travel faster than the speed of light. In order to take advantage of
this principle, we split Alice (resp. Bob) into two agents A1 and A2 (respectively, B1 and B2). For
each i ∈ {1, 2}, Alicei interacts only with Bobi. If we put the two pairs (A1,B1) and (A2,B2) far apart,
and use some timing constraints, we can create some non-signaling type scenarios. Here, we will only
use the property that the two honest Bobs know their respective location. In particular, there is no trust
needed regarding the location of the cheating parties.

The security definitions for relativistic bit commitment are the ones we presented in the section
above. We will now describe the FQ relativistic bit commitment scheme. This description will consist
of four phases: the preparation phase, the commit phase, the sustain phase and the reveal phase.
The preparation phase is some preprocessing phase that can be done anytime before the protocol.
The sustain phase can be seen as a part of the reveal phase and corresponds to the time where the
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committed bit is safe. We assume here that the two Alices know at the beginning of the sustain phase
the bit d they want to reveal. In Section 4, we will relax this requirement.

The single-round FQ protocol—The single-round version corresponds to the protocol introduced
by Crépeau et al. [18] (see also [19]). Both players, Alice and Bob, have agents A1,A2 and B1,B2

present at two spatial locations, 1 and 2, separated by a distance D. We consider the case where Alice
makes the commitment. The protocol (followed by honest players) consists of four phases: preparation,
commit, sustain and reveal. The sustain phase in the single-round protocol is trivial and simply
consists in waiting for a time less than D/c, which is the time needed for light to travel between the
two locations. The bit commitment protocol goes as follows:

1. Preparation phase: A1,A2 (resp. B1,B2) share a random number a ∈ FQ (resp. x ∈ FQ);
2. Commit phase: B1 sends x to A1, who returns y = a + d× x where d ∈ {0, 1} is the committed bit;
3. Sustain phase: A1 and A2 wait for some time τ < D/c;
4. Reveal phase: A2 reveals the values of d and a to B2 who checks that y = a + d× x.

The multi-round protocol—The protocol above was recently extended to a multi-round
commitment scheme [20]. The main idea to increase the commitment time is to delay the reveal
phase and have A2 commit to the string a instead of revealing it. In fact, the new sustain phase will
now consist of many rounds where the active players (i.e., the player who commits in that given round
and the corresponding player for Bob) alternate between locations 1 and 2, separated by a distance D.
The m-round bit commitment protocol goes as follows:

1. Preparation phase: A1,A2 (resp. B1,B2) share m random numbers a1, . . . , am (resp. x1, . . . , xm) ∈ FQ.
2. Commit phase: B1 sends x1 to A1, who returns y1 = d × x1 + a1, where d ∈ {0, 1} is the

committed bit.
3. Sustain phase: for each round k, with 2 ≤ k < m, Bk mod 2 sends xk to Ak mod 2, who returns

yk = xk × ak−1 + ak.
4. Reveal phase: A1 reveals d and ym = am−1 to B1. Bob checks that ym = αm−1, where we recursively

define α0 := d, αi := yi − xi ∗ αi−1. We defined αi such that it corresponds to what ai “should be”.

The main idea of the multi-round protocol is to delay the reveal phase in order to increase the
commitment time. This delay is obtained by making the passive Alice commit to the value of the string
she was supposed to reveal in the previous round. Since each round increases the total commitment
time by D/c, modulo the time needed for the various algebraic manipulations in FQ, one sees that the
required number of rounds scales linearly with the commitment time one wishes to achieve.

We require that round j finishes before any information about xj−1 reaches the other Alice. For any
j, we therefore have the following: active Alice has no information about xj−1. This means that yj is
independent from xj−1. This will be crucial in order to show security of the protocol. One important
thing to notice is that d, the bit Alice wants to reveal can be decided just after the commit phase.
Therefore, y1 is independent of d but all the other messages y2, . . . , ym can depend on d.

Both of those protocols are perfectly hiding. Moreover, from Theorem 1, the multi-round protocol
is ε sum-binding, with ε = O( m√

Q ).

2.3. The CHSHQ Game

A crucial tool for our attack (and for the previous security analysis) is the CHSHQ two-player game
introduced by Buhrman and Massar [27]. This game is a natural generalization of the CHSH game to
the field FQ, where two cooperating but non-communicating parties, Alice and Bob, are, respectively,
given an input x and y chosen uniformly at random from FQ, and must output two numbers a, b ∈ FQ.
They win the game whenever the condition a + b = x× y is satisfied. The value of a game G, denoted
ω(G), corresponds to the maximum probability of winning the game. A recent result by Bavarian and
Shor [24] establishes bounds on ω(CHSHQ). They show the following.
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Proposition 1. For any prime p and integer n, we have

ω(CHSHQ) =

 Ω(
√

1
Q ) , if Q = p2n,

O(Q− 1
2−ε0) , if Q = p2n+1,

for some absolute constant ε0 > 0.

We define a variant of the CHSHQ game, which we call CHSHQ
γ, which will be well defined

for any γ ∈ [0, 1]. We will use this variant in Section 4, when we will have longer propagation and
decision times.

Definition 7. In CHSHQγ, Alice receives x = 0 with probability γ and a random element x ∈ F∗Q, each

with probability 1−γ
Q−1 . Bob receives an input y according to the same probability distribution. They output,

respectively, a and b in FQ, and they win the game iff a + b = x× y.

In short, CHSHQ
γ is the same game as CHSHQ, but the input distribution of each player is slightly

biased towards 0. We have by definition CHSHQ

1
Q = CHSHQ. When playing CHSHQ

γ, we have:

• The probability that Alice and Bob get (0, 0) is γ2.

• The probability that they get an element (0, i) or (i, 0) with i ∈ F∗Q is equal to γ(1−γ)
Q−1 for each

such element.
• The probability that they get an element (i, j) with i, j ∈ F∗Q is equal to (1−γ)2

(Q−1)2 for each
such element.

In [24], the authors used a shifting technique to show that any strategy for CHSHQ can be
balanced into a strategy with equal winning probability for each input. The technique use relies on
adding a random shift to each of the inputs and changing the strategy accordingly. Inspired by those
techniques, we can show:

Lemma 1. For any γ ∈ [0, 1], ω(CHSHQγ) ≥ ω(CHSHQ).

Proof. As randomized strategies are nothing more than linear combinations of deterministic strategies,
of which winning probability is given by the same linear combination, we can assume that all used
optimal strategies are deterministic without loss of generality.

We consider an optimal strategy S = (s1, s2) for the CHSH game i.e., function s1, s2 : FQ → FQ
such that Prx,y[s1(x) + s2(y) = xy] = ω(CHSHQ), where the probability is over a uniform choice of x
and y. We define px,y := 1 if s1(x) + s2(y) = xy and 0 otherwise, which implies Exy pxy = ω(CHSHQ).

Let Zu,v be the winning probability using S when considering the following input distribution:
Alice receives x = u with probability γ and a random element x ∈ FQ − {u}, each with probability
1−γ
Q−1 . Bob receives an input y = v with probability γ and a random element y ∈ FQ − {v}, each with

probability 1−γ
Q−1 :

Zu,v := γ2 pu,v +
γ(1− γ)

Q− 1

 ∑
x∈FQ−{u}

pxv + ∑
y∈FQ−{v}

puy

+
(1− γ)2

(Q− 1)2 ∑
x∈FQ−{u}
y∈FQ−{v}

pxy. (1)

In particular, Z0,0 corresponds to the probability of winning CHSHQ
γ when using strategy S.

One can check that Eu,v[Zu,v] = ω(CHSHQ), where the probability is over a uniform choice of u and v.
This means that we can fix a pair (u, v) such that Zu,v ≥ ω(CHSHQ).
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We now consider the strategy S′ = (s′1, s′2), where s′1(x) = s1(x + u)− xw and s′2(y) = s2(y + v)−
yu− uv. S′ wins for (x, y) precisely when S wins for (x + u, y + v). Indeed:

s′1(x) + s′2(y) = xy ⇔ s1(x + u)− xv + s2(y + v)− yu− uv = xy
⇔ s1(x + u) + s2(y + v) = (x + u)(y + v).

(2)

Similarly, as before, we define p′xy = 1 if s′1(x) + s′2(y) = x× y and 0 otherwise. From the above
equivalence, we have p′x,y = p(x+u),(y+v). We also define

Z′u,v := γ2 p′u,v +
γ(1− γ)

Q− 1

 ∑
x∈FQ−{u}

p′xv + ∑
y∈FQ−{v}

p′uy

+
(1− γ)2

(Q− 1)2 ∑
x∈FQ−{u}
y∈FQ−{v}

p′xy. (3)

Notice that Z′0,0 corresponds to the probability of winning CHSHQ
γ when using strategy S′.

Moreover, for any (x, y), we have Z′x,y = Zx+u,y+v. From there, we conclude

ω(CHSHQ
γ) ≥ Z′0,0 = Zu,v ≥ ω(CHSHQ), (4)

which proves the desired result.

3. Attack with Perfect Conditions

In this section, we present our construction of a cheating strategy that will be essentially optimal
for some values of Q. The protocol is perfectly hiding. Therefore, we are only interested in the binding
property, i.e., in cheating Alice.

The idea of the attack is the following. Every three rounds (or more in Section 4), Alice’s agents
have an occasion to play a CHSHQ game. If they win this game, which happens with probability
ω(CHSHQ), they can easily fool Bob (with the provided strategy, sending only zeros until the reveal
phase is fine). If they do not manage to win the CHSHQ game, they just try again three rounds later.
More precisely, for each step of three rounds, the last two rounds are used to play the CHSHQ game.
The first one allows A1 and A2 to determine if they won during the previous step, or calculate
a corrective factor η if they did not. Thus, for a m-round protocol, Alice’s agent can play roughly
m
3 such CHSHQ games. As it is sufficient for them to win one of these games, we see that cheating

probability grows exponentially with the number of rounds. Moreover, at each of these sets of three
rounds, an additional factor (1− 1

Q ) appears. Indeed, if at the third round of the set Bob sends a 0,
Alice is also in a situation in which she can cheat because this 0 makes Alice’s error collapse to zero.
However, the contribution of this additional factor can be neglected (it is only O( 1

Q ), compared to the
O( 1√

Q ) given by CHSHQ).
We assume for now that the propagation time of the information is two rounds. This means that

when Alice(i mod 2) receives xi, the other Alice will know the value of xi at round i + 2. Therefore,
a cheating strategy for Alice is described by a m-tuple of functions S = (s1, . . . , sm), where each si
corresponds to Alice’s output function at round i. The function s1 is a function of x1 and si is a function
of (x0, . . . , xi−2, xi) for i ≥ 1, where we use the convention x0 = d. For each i ≥ 1, xi ∈ FQ and the
output space of each si is FQ.

Consider any fixed cheating strategy S for Alice. At the end of the protocol, Bob checks that
ym = αm−1. When we expand αm−1 as a function of (d, x1, . . . , xm−1), the checking condition, which
we call Cm, becomes

ym = ym−1 − xm−1

(
ym−2 − xm−2

(
. . . . . .− x2(y1 − d · x1) . . .

))
. (5)
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If Equation (5) is not verified, Alice is caught cheating. On the other hand, if Cm is verified, then
Bob cannot distinguish an honest Alice from a dishonest one, and he does not abort.

Let Cm(S, d, x1, . . . , xm−1) be the event that corresponds to the above equality being verified.
Alice’s cheating probability using S, which we denote gm(S), is therefore

gm(S) := Pr
d,x1,...,xm−1

[Cm(S, d, x1, . . . , xm−1)], (6)

where d is a uniformly random bit and x1, . . . , xm−1 are uniformly random elements of FQ. We also
define gm := maxS gm(S), which is Alice’s maximal cheating probability in Pm. In this section,
we present a cheating strategy S for Alice such that

gm(S) =
1
2
+

1
2

(
1− (1−ω(CHSHQ))

bm−1
3 c
)

, (7)

which will prove Theorem 2. In order to do so, we first modify protocol Pm to make it more symmetric
(Section 3.1). Then, we describe our attack (Section 3.2) and we prove its cheating probability
(Section 3.3).

3.1. Symmetrization of the Protocol

We want to describe a recursive strategy for protocol Pm. Unfortunately, this protocol induces
a difference between Alice’s strategy at round 1 ≤ k < m and her strategy at round m. Because of that,
it is difficult to study the protocol recursively.

We therefore consider a modified protocol P ′m, which, as we will show, is a bit easier than Pm

to win, but harder than Pm+1. In this modified version, at round m, Bobm mod 2 sends an additional
random string xm ∈ FQ, and Alicem mod 2 returns ym = xm × am−1 instead of ym = am−1. All other
rounds are unchanged. Similarly, as for Pm, a cheating strategy for Alice S′ can be described as
a m-tuple of functions (s′1, . . . , s′m) that give Alice’s outputs yi depending on her accessible information
at round i.

Bob checks now that ym = xm × αm−1, and, therefore, the condition Alice must satisfy to win is
modified into C ′m(S′, d, x1, . . . , xm), where

C ′m(S′, d, x1, . . . , xm)⇔ ym = xm

(
ym−1 − xm−1

(
ym−2 − xm−2

(
. . . . . .− x2(y1 − d · x1) . . .

)))
. (8)

By expanding C ′m(S′, d, x1, . . . , xm), it can be written down as:

ym = xm · ym−1

− xm · xm−1 · ym−2

+ xm · xm−1 · xm−2 · ym−3
...

...
− (−1)mxm · xm−1 · xm−2 · . . . · x1 · d,

(9)

or using a compact form:

C ′m(S′, d, x1, . . . , xm)⇔ ym =
m−1

∑
i=1

(
(−1)m−i+1yi ·

m

∏
j=i+1

xj

)
− (−1)md ·

m

∏
j=1

xj. (10)

For a cheating strategy S′, Alice’s winning probability g′m(S′) for this modified protocol is therefore
defined as
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g′m(S
′) := Pr

d,x1,...,xm
[C ′m(S′, d, x1, . . . , xm)] and g′m := max

S′
g′m(S

′). (11)

We show the following

Lemma 2. ∀m ≥ 2, we have gm ≤ g′m ≤ gm+1.

Proof.

• For the first inequality, let us consider the optimal strategy S = (s1, . . . , sm) for Pm, where sk
is Alice’s strategy at round k (i.e., a function that outputs yk when given Alice’s knowledge
at round k). Alice’s cheating probability for Pm is gm(S). Consider the following strategy
S′ := (s1, . . . , sm−1, s′m) forP ′m, where s′m(d, x1, . . . , xm−2, xm) := xm · sm(d, x1, . . . , xm−2). S′ allows
for winning on P ′m at least as efficiently as S on Pm because S′ wins whenever S does.
Indeed, suppose that S is a winning strategy for a given (d, x1, . . . , xm−1). This means that
Cm(S, d, x1, . . . , xm−1) is satisfied or equivalently:

sm(d, x1, . . . , xm−2) = ym−1 − xm−1

(
ym−2 − . . . . . .− x2(y1 − d · x1) . . .

)
. (12)

Then, since s′m(d, x1, . . . , xm−2, xm) = xm · sm(d, x1, . . . , xm−2), we get

s′m(d, x1, . . . , xm−2, xm) = xm

(
ym−1 − xm−1

(
ym−2 − . . . . . .− x2(y1 − d · x1) . . .

))
, (13)

which implies C ′m(S′, d, x1, . . . , xm), for any xm. From there, we immediately get

gm = gm(S) ≤ g′m(S
′) ≤ g′m. (14)

• For the other inequality, we fix an optimal strategy S′ = (s1, . . . , sm) for P ′m. We consider the
following strategy S := (s1, . . . , sm, 0) for Pm+1, where 0 is the function that always outputs 0,
no matter the inputs. This means that, when performing S, we always have ym+1 = 0. S is at
least as good to win Pm+1 as S′ is to win P ′m. Indeed, if for a tuple (d, x1, . . . , xm), S′ wins on P ′m,
then C ′(S′, d, x1, . . . , xm) holds or equivalently

ym = xm

(
ym−1 − xm−1

(
ym−2 − xm−2

(
. . . . . .− x2(y1 − d · x1) . . .

)))
. (15)

From there, we immediately have

ym+1 = 0 = ym − xm

(
ym−1 − xm−1

(
ym−2 − xm−2

(
. . . . . .− x2(y1 − d · x1) . . .

)))
, (16)

which implies Cm+1(S, d, x1, . . . , xm). From there, we immediately get

g′m = g′m(S
′) ≤ gm+1(S) ≤ gm+1. (17)

The above lemma shows in particular how to transform a strategy for P ′m into a strategy for Pm+1

with at least as good cheating probability. This means that we can study P ′m instead of Pm+1. The first
inequality shows that we do not lose much doing so.
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The above equations can be hard to follow because of the alternating − signs. In order to simplify
calculations, each yi will be mapped to ỹi := (−1)i+1yi. We will mostly use ỹi from now on instead of
yi. With this notation, Alice’s victory condition C ′m(S′, d, x1, . . . , xm) for the protocol becomes:

m

∑
i=1

(
ỹi

m

∏
j=i+1

xj

)
= d

m

∏
j=1

xj. (18)

In the description of the protocol, when we say that Alice outputs ỹi = v for any v, then this
means that Alice outputs yi = (−1)i+1v.

In the next section, we present a cheating strategy for protocol P ′m.

3.2. Description of the Attack

In the previous section, we transformed protocol P into a slightly modified protocol P ′, which
has extra symmetries and for which it will be simpler to construct a recursive cheating strategy. In this
section, we describe this strategy for P ′.

More precisely, we define recursively a strategy with a step of three rounds. The idea is that A1

and A2 will use the two first rounds to play a CHSHQ game and will use the third round as a waiting
in order for both players to know whether they won the game or not.

To initialize, we consider the following strategy for P ′3:

• A1 always outputs ỹ1 = 0.
• A1 and A2 perform the optimal strategy for the CHSHQ game with inputs x1 and x2. Let a and b

be their respective outputs.
• A2 outputs ỹ2 = d× a for round 2 and A1 outputs ỹ3 = x3 × d× b for round 3. Recall that this

means Alice outputs y2 = −(d× a) and y3 = x3 × d× b.

With this strategy, C ′3 becomes x3 × d× (a + b− x1 × x2) = 0. Alice wins if x3 = 0, if d = 0, or if
a + b = x1 × x2. These events are independent, which gives g′3 ≥ 1− 1

2 (1−
1
Q )(1−ω(CHSHQ)).

We now describe a strategy for k + 3 rounds using a strategy for k rounds. We fix a cheating
strategy S′k for Alice for P ′k and we present a cheating strategy S′k+3 for P ′k+3.

Recursive Description of a cheating strategy S′k+3 given S′k

• Rounds 1 to k: Alice performs the strategy S′k to get outputs ỹ1, . . . , ỹk.
• Round k + 1: Alice always outputs ỹk+1 = 0.
• Rounds k + 2 and k + 3: From round k + 2, A1 and A2 both know d, x1, . . . , xk. Let

η := d
k

∏
j=1

xj −
k

∑
i=1

(ỹi

k

∏
j=i+1

xj).

A(k+2) mod 2 and A(k+3) mod 2 perform the optimal strategy for CHSHQ on respective inputs
xk+2 and xk+1 to get respective outputs a and b. Their outputs of the protocol are, respectively,
ỹk+2 = η · a and ỹk+3 = η · b · xk+3. Notice that, if η = 0, which will correspond to the strategy
S′k succeeding to achieve C ′k, and Alice outputs ỹk+2, ỹk+3 = 0 independently of a and b.

In the next section, we will prove the cheating probability achieved by this strategy, which will
imply our main theorem.



Cryptography 2017, 1, 14 12 of 17

3.3. Analysis

Lemma 3. ∀k ≥ 2, g′k satisfies :

1− g′k+3(S
′
k+3) ≤ (1− 1

Q
) (1−ω(CHSHQ)) (1− g′k(S

′
k)).

Proof. We consider P ′k+3. Alice’s winning condition C ′k+3 is:

k+3

∑
i=1

(
ỹi

k+3

∏
j=i+1

xj

)
= d

k+3

∏
j=1

xj, (19)

or by taking apart the last three terms:

ỹk+3
+ xk+3 · ỹk+2
+ xk+3 · xk+2 · ỹk+1

+ xk+3 · xk+2 · xk+1 ·
k
∑

i=1

(
ỹi

k
∏

j=i+1
xj

)
= xk+3 · xk+2 · xk+1 · d

k
∏
j=1

xj.

(20)

Recall that η := d
k

∏
j=1

xj −
k
∑

i=1
(ỹi

k
∏

j=i+1
xj) ∈ Fq. Using η, we get:

C ′k+3 ⇔ ỹk+3 + xk+3 · ỹk+2 + xk+3 · xk+2 · ỹk+1 = xk+3 · xk+2 · xk+1 · η. (21)

Recall from our protocol description that ỹk+2 = η × a and ỹk+3 = η × b× xk+3, where a and b
are the Alice’s outputs of the CHSHQ game. From there, we have

C ′k+3 ⇔ ỹk+3 + xk+3 · ỹk+2 + xk+3 · xk+2 · ỹk+1 = xk+3 · xk+2 · xk+1 · η
⇔ xk+3 · b · η + xk+3 · a · η + 0 = xk+3 · xk+2 · xk+1 · η
⇔ η · xk+3 · (a + b− xk+1 · xk+2) = 0
⇔ (xk+3 = 0) ∨ (η = 0) ∨ (a + b = xk+1 · xk+2).

(22)

These three events (xk+3 = 0) ; (η = 0) ; (a + b = xk+1 × xk+2) are independent as:

• (xk+3 = 0) only depends on xk+3, and happens with probability 1
Q .

• (η = 0) only depends on d, x1, . . . , xk, and happens with probability g′k(S
′
k).

• (a + b = xk+1 × xk+2) only depends on xk+1 and xk+2 (A1 and A2 optimally play the CHSHQ

game on inputs xk+1, xk+2, ignoring any unnecessary information). This happens therefore with
probability ω(CHSHQ).

Thus, this particular strategy gives

g′k+3(S
′
k+3) = Pr[C ′k+3] = 1− (1− g′k(S

′
k))(1−

1
Q
)(1−ω(CHSHQ)) (23)

or equivalently

1− g′k+3(S
′
k+3) ≤ (1− 1

Q
) (1−ω(CHSHQ)) (1− g′k(S

′
k)). (24)
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We can now prove our main theorem, restated below

Theorem 2. ∀m ≥ 3, we have:

gm ≥ 1− 1
2

((
1− 1

Q

)
(1−ω(CHSHQ))

)bm−1
3 c

.

Proof. By iterating the above lemma, we obtain

1− g′3k(S
′
3k) ≤

((
1− 1

Q

)
(1−ω(CHSHQ))

)k−1
(1− g′3(S

′
3)). (25)

Combining this with the initialization step g′3(S3) ≥ 1− 1
2 (1−

1
Q )(1−ω(CHSHQ)) gives

g′3k ≥ g′3k(S3k) ≥ 1− 1
2

((
1− 1

Q

)
(1−ω(CHSHQ))

)k
. (26)

Using the symmetrization lemma (Lemma 2), we immediately get

g3k+1 ≥ g′3k ≥ 1− 1
2

((
1− 1

Q

)
(1−ω(CHSHQ))

)k
. (27)

If m can be written m = 3k + 1 for some k, we have

gm ≥ 1− 1
2

((
1− 1

Q

)
(1−ω(CHSHQ))

)m−1
3

. (28)

Since gm is an increasing function, we have for all m ≥ 3:

gm ≥ 1− 1
2

((
1− 1

Q

)
(1−ω(CHSHQ))

)bm−1
3 c

. (29)

4. Generalization

In the previous section, we assumed that A1 and A2 can communicate very efficiently, meaning
that the propagation time ρ is two rounds. With such a propagation time, relativistic constraints
ensure that at a given round k, Alice cannot use any information concerning round k− 1. However,
we supposed that she knows everything about the rounds k− 2 and before. Notice that she obviously
has access to the information of round k− 2 because it occurs at the same place than round k.

What happens if A1 and A2 cannot reliably share their knowledge so fast? In this case,
the propagation time ρ will be larger, and at any round k, Alice knows everything about rounds
1, 2, . . . , k− ρ with. We use an even propagation time without loss of generality since computations
rotate between two places, and Alice always knows what happened at rounds k− 2, k− 4, etc. In this
situation, we will show that A1 and A2 cannot just play the CHSHQ game. They will have to play the
CHSHQ

γ game, for some γ that will be specified later.
Another restriction that we do on the cheating players is that A1 and A2 may need some time to

determine the bit d they want to decommit to. We call k0 the round starting from which both A1 and
A2 know if they try to reveal d = 0 or d = 1.

In this more practical setting, we propose the following recursive variant of our attack, for k > k0,
for any propagation time ρ ≥ 2.
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Recursive Description of a Cheating Strategy Sk+ρ+1 given Sk

• Rounds 1 to k: Alice performs the strategy Sk to get outputs ỹ1, . . . , ỹk.
• Rounds k + 1 to k + ρ− 1: Alice outputs ỹk+1, . . . , ỹk+ρ−1 = 0.

• Rounds k + ρ and k + ρ + 1: From round k + ρ, A1 and A2 both know d, x1, . . . , xk. Let

η := d
k

∏
j=1

xj −
k

∑
i=1

(ỹi

k

∏
j=i+1

xj).

A1 also knows X = ∏j odd : k+1≤j≤k+ρ xj andA2 knows Y = ∏j even : k+1≤j≤k+ρ xj. A(k+ρ) mod 2

and A(k+ρ+1) mod 2 perform the optimal strategy for CHSHQ
γ with γ := 1 − (1 − 1

Q )
ρ
2 on

respective inputs X and Y to get respective outputs a and b. Their outputs of the protocol are,
respectively, ỹk+ρ = η · a and ỹk+ρ+1 = η · b · xk+ρ+1.

Lemma 4. ∀k ≥ k0, we have

g′k+ρ+1 ≥
(

1− 1
Q

)
(1−ω(CHSHQ)) g′k + 1−

(
1− 1

Q

)
(1−ω(CHSHQ)) .

Proof. This demonstration will be similar to Lemma 3. We consider the cheating strategy described
above. Alice’s winning condition C ′k+ρ+1 is:

k+ρ+1

∑
i=1

(
ỹi

k+ρ+1

∏
j=i+1

xj

)
= d

k+ρ+1

∏
j=1

xj, (30)

or by separating the last ρ + 1 terms:

ỹk+ρ+1
+ xk+ρ+1 · ỹk+ρ

+ 0
...
+ 0

+

(
k+ρ+1

∏
j=k+1

xj

)
k
∑

i=1

(
ỹi

k
∏

j=i+1
xj

)

=

(
k+ρ+1

∏
j=k+1

xj

)
d

k
∏
j=1

xj,

(31)

where d is the bit Alice wants to reveal.

Recall that η := d
k

∏
j=1

xj −
k
∑

i=1
(ỹi

k
∏

j=i+1
xj), which allows to simplify C ′k+ρ+1 as follows:

C ′k+ρ+1 ⇔ ỹk+ρ+1 + xk+ρ+1 · ỹk+ρ =

(
k+ρ+1

∏
j=k+1

xj

)
· η, (32)

⇔ ỹk+ρ+1 + xk+ρ+1 · ỹk+ρ = X ·Y · η. (33)

In her cheating strategy, Alice answers ỹk+ρ = a× η and ỹk+ρ+1 = xk+ρ+1 × b× η, where a and b
are Alices’ answers when playing the CHSHQ

γ game, on inputs X and Y. Thus,

C ′k+ρ+1 ⇔ (xk+ρ+1 = 0) ∨ (η = 0) ∨ (a + b = XY). (34)



Cryptography 2017, 1, 14 15 of 17

The three events (xk+ρ+1 = 0) ; (η = 0) ; (a + b = XY) are independent. The first one occurs
with probability 1

Q , the second one with probability g′k. For the third one, notice that X is a product of
ρ
2 uniformly random number in FQ. Therefore, we have Pr[X = 0] = 1− (1− 1

Q )
ρ
2 = γ and for any

z ∈ F∗Q, Pr[X = z] = 1−γ
Q−1 . Y satisfies the same probability distribution. Therefore, Pr[a + b = XY] is

exactly the probability of winning the CHSHQ
γ game using its optimal strategy.

This gives:

g′k+ρ+1 ≥ 1−
(

1− 1
Q

)
(1− g′k) (1−ω(CHSHQ

γ)) . (35)

Then, using Lemma 1:

g′k+ρ+1 ≥ 1−
(

1− 1
Q

)
(1− g′k) (1−ω(CHSHQ)) , (36)

i.e.,

g′k+ρ+1 ≥
(

1− 1
Q

)
(1−ω(CHSHQ)) g′k + 1−

(
1− 1

Q

)
(1−ω(CHSHQ)) . (37)

Theorem 3. For any k0 ≥ 1 and ρ ≥ 2, for any m ≥ k0 + ρ + 1, we have

gm ≥ 1− 1
2

(
(1− 1

Q
) (1−ω(CHSHQ))

)m−k0−1
ρ+1

.

Proof. We use the recursive inequality from Lemma 4, and the trivial initialization g′k0
≥ 1

2 . This gives
us ∀k ≥ k0, and we have

g′k0+k(ρ+1) ≥ 1− 1
2

(
(1− 1

Q
) (1−ω(CHSHQ))

)k
, (38)

and, by using Lemma 2,

gk0+k(ρ+1)+1 ≥ 1− 1
2

(
(1− 1

Q
) (1−ω(CHSHQ))

)k
. (39)

If m can be written m = k0 + k(ρ + 1) + 1, we have k = m−k0−1
ρ+1 and

gm ≥ 1− 1
2

(
(1− 1

Q
) (1−ω(CHSHQ))

)m−k0−1
ρ+1

. (40)

In order, to conclude, notice that gm is an increasing function in m. We can therefore conclude that

gm ≥ 1− 1
2

(
(1− 1

Q
) (1−ω(CHSHQ))

)bm−k0−1
ρ+1 c

. (41)

5. Conclusions

In this paper, we presented a cheating strategy for the FQ relativistic bit commitment protocol,
which has recently become the most widely studied relativistic bit commitment protocol. We show
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that the security analysis presented in [21,22] is essentially tight, at least when Q is an even power of
a prime. Regarding the non-locality approach of [21], this means that even recent improvements on
non-locality bounds presented in [26] cannot be used to substantially improve the security analysis of
the protocol. An obvious open question is to extend the above results to all values of Q.

We also extended this result in a more realistic scenario. This shows that our cheating strategy
can be easily implemented.

The finality of the relativistic model is to be secure against quantum adversaries so an important
open question is to show the security of this protocol (or another multi-round relativistic bit
commitment) against quantum adversaries. Both the composability approach of [22] and the
non-locality approach of [21] fail in the quantum setting. One possible approach would be to find
designs other than the FQ protocol. The cheating strategy from this paper can be easily adapted to other
similar constructions and can be seen as a guideline of what to avoid in order to have a secure protocol.
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