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Abstract: Die-rolling is the cryptographic task where two mistrustful, remote parties wish to generate
a random D-sided die-roll over a communication channel. Optimal quantum protocols for this task
have been given by Aharon and Silman (New Journal of Physics, 2010) but are based on optimal weak
coin-flipping protocols that are currently very complicated and not very well understood. In this
paper, we first present very simple classical protocols for die-rolling that have decent (and sometimes
optimal) security, which is in stark contrast to coin-flipping, bit-commitment, oblivious transfer, and
many other two-party cryptographic primitives. We also present quantum protocols based on the
idea of integer-commitment, a generalization of bit-commitment, where one wishes to commit to an
integer. We analyze these protocols using semidefinite programming and finally give protocols that
are very close to Kitaev’s lower bound for any D ≥ 3. Lastly, we briefly discuss an application of this
work to the quantum state discrimination problem.

Keywords: quantum cryptography; security analysis; semidefinite programming

1. Introduction

Die-rolling is the two-party cryptographic primitive in which two spatially separated parties, Alice
and Bob, wish to agree upon an integer d ∈ [D] := {1, . . . , D}, generated uniformly at random, over
a communication channel. When designing die-rolling protocols, the security goals are:

1. Completeness: If both parties are honest, then their outcomes are the same, uniformly random,
and neither party aborts.

2. Soundness against cheating Bob: If Alice is honest, then a dishonest (i.e., cheating) Bob cannot
influence her protocol outcome away from uniform.

3. Soundness against cheating Alice: If Bob is honest, then a dishonest (i.e., cheating) Alice cannot
influence his protocol outcome away from uniform.

We note here that Alice and Bob start uncorrelated and unentangled. Otherwise, Alice and Bob
could each start with half of the following maximally entangled state

1√
D

∑
d∈[D]

|d〉A |d〉B (1)

and measure in the computational basis to obtain a perfectly correlated, uniformly random die-roll.
Thus, such a primitive would be trivial if they were allowed to start entangled.

Die-rolling is a generalization of a well-studied primitive known as coin-flipping [1], which
is the special case of die-rolling when D = 2. In this paper, we analyze die-rolling protocols
in a similar fashion that is widely adopted for coin-flipping protocols [2–8]. That is, we assume
perfect completeness and calculate the soundness in terms of the cheating probabilities, as defined
by the symbols:
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P∗B,d: The probability with which cheating Bob’s attempt to force honest Alice to accept the outcome
d ∈ [D] happens to succeed.

P∗A,d: The probability with which cheating Alice’s attempt to force honest Bob to accept the outcome
d ∈ [D] happens to succeed.

We are concerned with designing protocols that minimize the maximum of these 2D quantities
since a protocol is only as good as its worst cheating probability. Coincidentally, all of the protocols
we consider in this paper have the property that all of Alice’s cheating probabilities are equal and
similar for a cheating Bob. Therefore, for brevity, we introduce the following shorthand notation:

P∗A := max{P∗A,1, . . . , P∗A,D} and P∗B := max{P∗B,1, . . . , P∗B,D}. (2)

When D = 2, the security definition for die-rolling above aligns with that of strong coin-flipping.
For strong coin-flipping, it was shown by Kitaev [9] that any quantum protocol satisfies P∗A,1P∗B,1 ≥ 1/2
and P∗A,2P∗B,2 ≥ 1/2, implying that at least one party can cheat with probability at least 1/

√
2.

It was later shown by Chailloux and Kerenidis [6] that all four cheating probabilities can be made
arbitrarily close to 1/

√
2 by using optimal quantum protocols for weak coin-flipping as discovered

by Mochon [5].
As pointed out in [10], Kitaev’s proof for the lower bound on coin-flipping extends naturally

to die-rolling; it can be shown that, for any quantum die-rolling protocol, we have

P∗A,dP∗B,d ≥
1
D

(3)

for any d ∈ [D]. This implies the lower bound

max{P∗A, P∗B} ≥ 1/
√

D. (4)

In fact, extending the optimal coin-flipping protocol construction in [6], it was shown by Aharon
and Silman [10] that for D > 2, it is possible to find quantum protocols where the maximum of the
2D probabilities is at most 1/

√
D + δ, for any δ > 0.

The optimal protocols in [6,10] are not explicit as they rely on using Mochon’s optimal weak
coin-flipping protocols as subroutines. Moreover, Mochon’s protocols are very complicated and not
given explicitly, although they have been simplified [11].

The best known explicit quantum protocol for die-rolling, of which we are aware is given in [10].
It uses three messages and has cheating probabilities

P∗A :=
D + 1

2D
and P∗B :=

2D− 1
D2 . (5)

These probabilities have the attractive property of approximating Kitaev’s lower bound in the limit,
but since P∗A → 1/2 as D → ∞, the maximum cheating probability is quite large. (The protocols
considered in this paper have a much different form than these protocols.)

This motivates the work in this paper, which is to find simple and explicit protocols for die-rolling
that approximate Kitaev’s lower bound (4).
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1.1. Simple Classical Protocols

We first show that simple classical protocols exist with decent security.

Protocol 1 (Classical protocol).

• Alice and Bob agree on a parameter m ∈ [D]. (In other words, the value m is fixed and known to both Alice
and Bob.)

• Bob chooses a subset S ⊆ [D] with |S| = m, uniformly at random, and sends S to Alice. If |S| 6= m,
Alice aborts.

• Alice selects d ∈ S uniformly at random and tells Bob her selection. If d 6∈ S, Bob aborts.
• Both parties output d.

We see that this is a valid die-rolling protocol as each party outputs the same value d ∈ [D]

and each value occurs with equal probability. As for the cheating probabilities, it is straightforward
to see that

P∗A =
m
D

and P∗B =
1
m

. (6)

Besides being extremely simple, this protocol has the following interesting properties:

• The product P∗A,dP∗B,d = 1/D, for any d ∈ [D], saturates Kitaev’s lower bound for every d ∈ [D].

• For D square and m =
√

D, we have P∗A = P∗B = 1/
√

D, yielding an optimal protocol!
• If D is not square, then one party has a cheating advantage, i.e., P∗A 6= P∗B .

Note that to minimize max{P∗A, P∗B}, it does not make sense to choose m greater than d
√

De or less
than b

√
Dc (where we use the notation bxc to denote the greatest integer y satisfying y ≤ x and

the notation dxe to denote the least integer y satisfying y ≥ x). We can see that for D = 3, D = 7,
or D = 8, for example, choosing the ceiling is better, while, for D = 5 or D = 10, choosing the floor
is better. Thus, we keep both the cases and summarize the overall security of the above protocol in the
following lemma.

Lemma 1. For D ≥ 2, there exists a classical die-rolling protocol satisfying

1√
D
≤ max{P∗A, P∗B} = min

{
d
√

De
D

,
1

b
√

Dc

}
, (7)

which is optimal when D is square.

Note that the special case of D = 2 has either Alice or Bob able to cheat perfectly, which is the
case for all classical coin-flipping protocols. However, Kitaev’s bound on the product of cheating
probabilities is still (trivially) satisfied. For D = 3, we can choose m = 2 to obtain max{P∗A, P∗B} = 2/3
proving that even classical protocols can have nontrivial security, which is vastly different than the
D = 2 case. The values of max{P∗A, P∗B} from Label (7) for D ∈ {2, . . . , 10} are later presented in Table 1.

Table 1. Values of our bounds (as truncated percentages) for various protocols and values of D. We see
that the quantum protocol performs very well, even for D as small as 3.

D 2 3 4 5 6 7 8 9 10

Explicit Protocol in [10] 75% 66% 62% 60% 58% 57% 56% 55% 55%
Our Classical Protocol 100% 66% 50% 50% 50% 42% 37% 33% 33%

Our Quantum Protocol 75% 60% 50% 46% 44% 40% 36% 33% 32%
Kitaev’s lower bound 70% 57% 50% 44% 40% 37% 35% 33% 31%
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We are not aware of other lower bounds for classical die-rolling protocols apart from those implied
by Kitaev’s bounds above. We see that sometimes classical protocols can be optimal, for example
when D is square. We now consider how to design (simple) quantum protocols and see what levels
of security they can offer.

1.2. Simple Quantum Protocols

Many of the best known explicit protocols for strong coin-flipping are based on the idea
of bit-commitment [4,8,12,13]. Optimal protocols are known for bit-commitment as well [14],
but are again based on weak coin-flipping and are thus very complicated.

In this paper, we generalize the above simple, explicit protocols such that Alice commits
to an integer instead of a bit. More precisely, our quantum protocols have the following form.

Protocol 2 (Quantum protocol). A quantum die-rolling protocol based on the idea of integer-commitment,
denoted here as DRIC, is defined as follows:
• Alice and Bob agree on a set of states {|ψ1〉 , . . . , |ψD〉} ⊂ A⊗B. (In other words, the states are fixed and

known to both Alice and Bob.)
• Alice chooses a random a ∈ [D] and creates the state |ψa〉 ∈ A⊗ B and sends the subsystem B to Bob.
• Bob sends a uniformly random b ∈ [D] to Alice.
• Alice reveals a to Bob and sends him the subsystem A.
• Bob checks if A ⊗ B is in state |ψa〉 using the measurement {Πa := |ψa〉 〈ψa| , Πabort := I − Πa}.

Bob accepts/rejects a based on his measurement outcome.
• If Bob does not abort, Alice and Bob output d := (a + b) mod D + 1 ∈ [D].

The special case of D = 2 yields the structure of the simple, explicit coin-flipping protocols
mentioned above. Indeed, these protocols are very easy to describe. One needs only the knowledge
of the D states |ψa〉 and, implicitly, the systems they act on, A and B.

We start by formulating the cheating probabilities of a DRIC-protocol using semidefinite
programming. Once we have established the semidefinite programming cheating strategy formulations,
we are able to analyze the security of DRIC-protocols. Furthermore, we are able to analyze
modifications to such protocols and the corresponding changes in security.

In this paper, we present a DRIC-protocol with near-optimal security. We develop this protocol
in several steps described below.

The first step is to start with a protocol with decent security. To do this, we show how to create
a DRIC-protocol with the same cheating probabilities as in Protocol 1.

Proposition 1. There exists a DRIC-protocol with the same cheating probabilities as in Protocol 1, namely

P∗A =
m
D

and P∗B =
1
m

, (8)

recalling that m ∈ [D] is a parameter fixed by the protocol.

The second step is to give a process that (approximately) balances the maximum cheating
probabilities of Alice and Bob. We accomplish this by modifying the protocol in order to decrease the
overall maximum cheating probability (while possibly increasing lesser cheating probabilities).

Proposition 2. If there exists a DRIC-protocol with cheating probabilities P∗A = α and P∗B = β, then there
exists a DRIC-protocol with maximum cheating probability

max{P∗A, P∗B} ≤
D max{β, α} −min{β, α}

D|β− α|+ D− 1
≤ max{β, α}. (9)
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Moreover, the last inequality is strict when α 6= β yielding a strictly better protocol.

By combining the above two propositions, we are able to obtain the main result of this paper.

Theorem 1. For any D ≥ 2, there exists a (quantum) DRIC-protocol satisfying

1√
D
≤ max{P∗A, P∗B} ≤ min

{
D + b

√
Dc

D(b
√

Dc+ 1)
,

1 + d
√

De
D + d

√
De

}
, (10)

which is strictly better than Protocol 1 when D is not square.

Since min

{
D + b

√
Dc

D(b
√

Dc+ 1)
,

1 + d
√

De
D + d

√
De

}
≈ 1√

D
for large D, this bound is very close to optimal.

To compare numbers, we list the values for D ∈ {2, . . . , 10}, below.
Related literature. Quantum protocols for a closely related cryptographic task known

as string-commitment have been considered [15–19]. Technically, this is the case of integer-commitment
when D = 2n (if the string has n bits). It is worth noting that the quantum protocols considered in this
paper are quite similar, but the security definitions are very different. Roughly speaking, the references
above are concerned with quantum protocols where Alice is able to “cheat” on a bits and Bob is able
to “learn” b bits of information about the n bit string. Multiple protocols and security trade-offs
are given in the above references.

The use of semidefinite programming has been very valuable in the study of quantum
cryptographic protocols (see, for example, [5,7–9,20,21]). Roughly speaking, if one is able to formulate
cheating probabilities as semidefinite programs, then the problem of analyzing cryptographic security
can be translated into a concrete mathematical problem. Moreover, one then has the entire theory
of semidefinite programming at their disposal. This is the approach taken in this work, in order to
shine new light on a cryptographic task using the lens of semidefinite programming.

Moreover, the techniques developed in this paper may find new applications in the study of other
cryptographic primitives. For a simple example, if one changes the definition of the die-rolling
primitive such that non-uniform honest outcome probabilities are allowed, then our approach can
easily handle this modification. Future research involves studying how these techniques can be applied
to other security definitions as well, such as bounding the total variation distance between a “dishonest”
outcome distribution and the ”honest” uniform distribution.

1.3. Kitaev’s Lower Bound and the Quantum State Discrimination Problem

The security analysis of DRIC-protocols has many similarities to the quantum state discrimination
problem. Suppose you are given a quantum state ρ ∈ {ρ1, . . . , ρn} with respective probabilities
p1, . . . , pn. The quantum state discrimination problem is to determine which state you have been given
(by means of measuring it) with the maximum probability of being correct. We only briefly discuss this
problem in this work; the interested reader is referred to the survey [22] and the references therein.

We give a very short proof of Kitaev’s lower bound for the special case of DRIC-protocols.
Afterwards, we show that it can be generalized to show the following bound for the quantum state
discrimination problem.

Proposition 3. If given a state from the set {ρ1, . . . , ρn}, with respective probabilities {p1, . . . , pn}, then there

exists a measurement to learn which state was given with success probability at least λmin

((
∑n

i=1 W−1
i

)−1
)

for any positive definite Hermitian {W1, . . . , Wn} satisfying 〈Wi, ρi〉 ≤ 1, for all i ∈ [n]. Here, λmin denotes
the smallest eigenvalue of a Hermitian matrix.
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Note that the above proposition is indeed independent of the pis and could thus probably
be strengthened. However, we use cryptographic reasoning to argue that this bound can be tight.

1.4. Paper Organization.

In Section 2, we develop the semidefinite programming cheating strategy formulations for Alice
and Bob. In Section 3, we exhibit a DRIC-protocol and then use the semidefinite programming
formulations to prove Proposition 1, that the protocol has the same cheating probabilities as in
Protocol 1. Section 4 shows how to balance the probabilities in a DRIC-protocol by showing how to
reduce Bob’s cheating and then how to reduce Alice’s. Combining these yields a proof of Proposition 2.
Lastly, in Section 5, we give a short proof of Kitaev’s lower bound when applied to DRIC-protocols
and then generalize it to the quantum state discrimination problem to prove Proposition 3.

2. Semidefinite Programming Cheating Strategy Formulations

In this section, we use the theory of semidefinite programming to formulate Alice and
Bob’s maximum cheating probabilities for a DRIC-protocol. The formulations in this section
are a generalization of those for bit-commitment (see [8] and the references therein for details about
this special case).

2.1. Semidefinite Programming

Semidefinite programming is the theory of optimizing a linear function over a positive
semidefinite matrix variable subject to finitely many affine constraints. A semidefinite program (SDP)
can be written in the following form without loss of generality:

p∗ := sup
X
{〈C, X〉 : Φ(X) = B, X � 0}, (11)

where Φ is a linear transformation, C and B are Hermitian, and X � Y means that X−Y is (Hermitian)
positive semidefinite. Note that we are using the Hilbert–Schmidt inner product 〈A, B〉 = Tr(A∗B),
where A∗ is the conjugate-transpose of A.

Associated with every SDP is a dual SDP:

d∗ := inf
Y
{〈B, Y〉 : Φ∗(Y) = C + S, S � 0, Y is Hermitian}, (12)

where Φ∗ is the adjoint of Φ.
We refer to the optimization problem (11) as the primal or primal SDP and to the optimization

problem (12) as the dual or dual SDP. We say that the primal is feasible if there exists an X satisfying
the (primal) constraints

Φ(X) = B and X � 0, (13)

and we say the dual is feasible if there exists (Y, S) satisfying the (dual) constraints

Φ∗(Y) = C + S, S � 0, and Y is Hermitian. (14)

Furthermore, if we have X positive definite, then the primal is said to be strictly feasible and if
we have S positive definite, then the dual is said to be strictly feasible.

Semidefinite programming has a rich and powerful duality theory. In particular, we use
the following:

Weak duality: If the primal and dual are both feasible, then p∗ ≤ d∗.
Strong duality: If the primal and dual are both strictly feasible, then p∗ = d∗ and both attain

an optimal solution.
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For more information about semidefinite programming and its duality theory, the reader
is referred to [23].

2.2. Cheating Strategy Formulations

To study a fixed DRIC-protocol, it is convenient to define the following reduced states

ρa := TrA(|ψa〉 〈ψa|) (15)

for all a ∈ [D]. We show that they appear in both the case of cheating Alice and cheating Bob.
Cheating Bob. To see how Bob can cheat, notice that he only has one message that he sends to

Alice. Thus, he must send b ∈ [D] to force the outcome he wishes. For example, if he wishes to force
the outcome d, he would send b such that d = (a + b) mod D + 1. Therefore, he must extract the value
of a from B to accomplish this. Suppose that he measures B with the measurement

{M1, . . . , MD}, (16)

where the outcome of the measurement corresponds to Bob’s guess for a. If Alice chose a ∈ [D],
he succeeds in cheating if his guess is correct, which happens with probability

〈Ma, ρa〉. (17)

Since the choice of Alice’s integer a is uniformly random, we can calculate Bob’s optimal cheating
probability as

P∗B = max

 1
D ∑

a∈[D]

〈Ma, ρa〉 : ∑
a∈[D]

Ma = IB , Ma � 0, ∀a ∈ [D]

 , (18)

noting that the variables being optimized over correspond to a POVM measurement. Note that the
maximum is attained since the set of feasible (M1, . . . , MD) forms a compact set.

Now that Bob’s optimal cheating probability is stated in terms of an SDP, we can examine its dual
as shown in the lemma below.

Lemma 2. For any DRIC-protocol, we have

P∗B = min
{

Tr(X) : X � 1
D

ρa, ∀a ∈ [D]

}
. (19)

Proof. One can check using the definitions (11) and (12) that the optimization problem (19) is the dual
of Label (18). Defining Ma = 1

D IB , for all a ∈ [D], yields a strictly feasible solution for the primal.
In addition, X = IB is a strictly feasible solution for the dual. Thus, by strong duality, both the primal
and dual attain an optimal solution and their optimal values are the same.

We refer to the optimization problem (18) as Bob’s primal SDP and to the optimization problem (19)
as Bob’s dual SDP. The utility of having dual SDP formulations is that any feasible solution yields
an upper bound on the maximum cheating probability. Proving upper bounds on cheating probabilities
would otherwise be a very hard task.

Cheating Alice. If Alice wishes to force Bob to accept outcome d ∈ [D], she must convince him
that the state inA⊗B is indeed |ψa〉, where a is such that d = (a + b) mod D + 1. Note that this choice
of a is determined after learning b from Bob, which occurs with uniform probability.

To quantify the extent to which Alice can cheat, we examine the states Bob has during the protocol.
We know that Bob measures and accepts a with the measurement operator Πa := |ψa〉 〈ψa|. Let (a,A)
be Alice’s last message. Then, Bob’s state at the end of the protocol is given by a density operator σa
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acting on A⊗ B, which is accepted with probability 〈σa, |ψa〉 〈ψa|〉. Note that Alice’s first message
B is in state σ := TrA(σa) which is independent of a (since Alice’s first message does not depend
on a when she cheats). Thus, the states under Bob’s control are subject to the constraints

TrA(σa) = σ, ∀a ∈ [D], Tr(σ) = 1, σ, σ1 . . . , σD � 0. (20)

(Note that Tr(σa) = 1, for all a ∈ [D], is implied by the constraints above, and is thus omitted.) On the
other hand, if Alice maintains a purification of the states above, then, using Uhlmann’s Theorem [24],
she can prepare any set of states satisfying conditions (20).

Thus, we have

P∗A = max

 1
D ∑

a∈[D]

〈σa, |ψa〉 〈ψa|〉 : TrA(σa) = σ, ∀a ∈ [D], Tr(σ) = 1, σ, σ1 . . . , σD � 0

 . (21)

Again, since the set of feasible (σ, σ1, . . . , σD) is compact, the above SDP attains
an optimal solution.

Similar to the case of cheating Bob, we can view the dual of Alice’s cheating SDP above as shown
in the lemma below.

Lemma 3. For any DRIC-protocol, we have

P∗A = min

s : sIB � ∑
a∈[D]

Za, IA ⊗ Za �
1
D
|ψa〉 〈ψa| , ∀a ∈ [D], Za is Hermitian

 . (22)

Proof. It can be checked that Label (22) is in fact the dual of Label (21). By defining σ and each
σ1, . . . , σD to be completely mixed states, we have that the primal is strictly feasible. By defining
s = D + 1 and each Z1, . . . , ZD to be equal to IB , we have that the dual is strictly feasible as well.
The result now holds by applying strong duality.

We refer to the optimization problem (21) as Alice’s primal SDP and the optimization problem (22)
as Alice’s dual SDP.

Note that every solution feasible in Alice’s dual SDP has Za being positive semidefinite, for all
a ∈ [D]. We can further assume that each Za is positive definite if we sacrifice the attainment
of an optimal solution. This is because we can take an optimal solution (s, Z1, . . . , ZD) and consider
(s + εD, Z1 + εIB , . . . , ZD + εIB), which is also feasible for any ε > 0, and s + εD approaches s = P∗A
as ε decreases to 0.

Next, we use an analysis similar to one found in [20,25] to simplify the constraint IA⊗Za � |ψa〉 〈ψa|
when Za is positive definite. Since X → ZXZ−1 is an automorphism of the set of positive semidefinite
matrices for any fixed positive definite Z, we have

IA ⊗ Za �
1
D
|ψa〉 〈ψa| ⇐⇒ IA⊗B � (IA ⊗ Z−1/2

a )

(
1
D
|ψa〉 〈ψa|

)
(IA ⊗ Z−1/2

a ). (23)

Note that since the quantity on the right is positive semidefinite with rank at most 1, its largest
eigenvalue is equal to its trace, which is equal to

1
D
〈IA ⊗ Z−1

a , |ψa〉 〈ψa|〉 =
1
D
〈Z−1

a , TrA(|ψa〉 〈ψa|)〉 =
1
D
〈Z−1

a , ρa〉. (24)

Thus, we can rewrite Label (23) as

IA ⊗ Za �
1
D
|ψa〉 〈ψa| ⇐⇒

1
D
〈Z−1

a , ρa〉 ≤ 1 ⇐⇒ 〈Z−1
a , ρa〉 ≤ D. (25)
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Therefore, we have the following lemma.

Lemma 4. For any DRIC-protocol, we have

P∗A = inf

s : sIB � ∑
a∈[D]

Za, 〈Z−1
a , ρa〉 ≤ D, ∀a ∈ [D], Za is positive definite, ∀a ∈ [D]

 . (26)

We also refer to the optimization problem (26) as Alice’s dual SDP and we distinguish them
by equation number.

3. Finding a Decent DRIC-Protocol

In this section, we exhibit a DRIC-protocol that has the same cheating probabilities as Protocol 1:

P∗B =
1
m

and P∗A =
m
D

. (27)

To do this, define Tm to be the subsets of [D] of cardinality m and note that |Tm| =
(

D
m

)
. Consider

the following states

|ψa〉 :=
1√(
D− 1
m− 1

) ∑
S∈Tm : a∈S

|S〉 |S〉 ∈ A⊗ B, (28)

for a ∈ [D], where A = B = C|Tm |. Notice that

ρa := TrA (|ψa〉 〈ψa|) =
1(

D− 1
m− 1

) ∑
S∈Tm : a∈S

|S〉 〈S| . (29)

We now use the cheating SDPs developed in the previous section to analyze the cheating
probabilities of this protocol.

Cheating Bob. To prove that Bob can cheat with probability at least 1/m, suppose he measures
his message from Alice in the computational basis. He then obtains a random subset S ∈ Tm such
that a ∈ S. He then guesses which integer is a and responds with the appropriate choice for b to get
his desired outcome. He succeeds if and only if his guess for a (from the m choices in S) is correct.
This strategy succeeds with probability 1/m. Thus, P∗B ≥ 1/m.

To prove Bob cannot cheat with probability greater than 1/m, notice that X =
1

D
(

D− 1
m− 1

) IB satisfies

X � 1
D

ρa, ∀a ∈ [D], (30)

and thus is feasible in Bob’s dual Label (19). Therefore, P∗B ≤ Tr(X) = 1/m, as desired.
Cheating Alice. Alice can cheat by creating the maximally entangled state

|Tm〉 :=
1√
|Tm|

∑
S∈Tm

|S〉 |S〉 ∈ A⊗ B (31)

and sending B to Bob. After learning b, she sends a such that (a + b) mod D + 1 is her desired outcome.
She also sends A to Bob (without altering it in any way). Thus, her cheating probability is precisely the
probability of her passing Bob’s cheat detection, which is

〈Πa, |Tm〉 〈Tm|〉 = 〈|ψa〉 〈ψa| , |Tm〉 〈Tm|〉 = |〈Tm|ψa〉|2 =
m
D

. (32)
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Therefore, this cheating strategy succeeds with probability m/D, proving P∗A ≥ m/D.
To prove this strategy is optimal, we use Alice’s dual SDP (26). Define

Za :=
1
D ∑

S∈Tm : a∈S
|S〉 〈S|+ ε ∑

S∈Tm : a 6∈S
|S〉 〈S| , (33)

where ε is a small positive constant. Za is invertible and we can write

Z−1
a := D ∑

S∈Tm : a∈S
|S〉 〈S|+ 1

ε ∑
S∈Tm : a 6∈S

|S〉 〈S| . (34)

We see that each Za satisfies 〈Z−1
a , ρa〉 = D, for all a ∈ [D]. In addition,

Za �
1
D ∑

S∈Tm : a∈S
|S〉 〈S|+ εIB , (35)

thus

∑
a∈[D]

Za �
1
D ∑

a∈[D]
∑

S∈Tm : a∈S
|S〉 〈S|+ ε D IB =

(m
D

+ εD
)

IB . (36)

Thus, s =
m
D

+ εD satisfies

s IB � ∑
a∈[D]

Za, (37)

proving P∗A ≤ s =
m
D

+ εD, for all ε > 0. Therefore, P∗A = m/D, as desired.

4. Balancing Alice and Bob’s Cheating Probabilities

This section is comprised of two parts. We first focus on reducing Bob’s cheating probabilities,
and then Alice’s.

4.1. Building New Protocols That Reduce Bob’s Cheating

We start with a lemma.

Lemma 5. If there exists a DRIC-protocol with cheating probabilities P∗A = α and P∗B = β, then there exists
another DRIC-protocol with cheating probabilities P∗A = α′ and P∗B = β′, where

β′ ≤ (1− t)β +
t
D

and α′ ≤ (1− t)α + t (38)

for any t ∈ (0, 1).

Proof. To prove this lemma, fix a DRIC-protocol with cheating probabilities P∗A = α and P∗B = β defined
by the states |ψa〉 ∈ A⊗ B, for a ∈ [D]. Extend each of the Hilbert spaces A and B by another basis
vector |⊥〉 and denote these Hilbert spaces by A′ and B′, respectively. In short, A′ := A⊕ span{|⊥〉}
and B′ := B ⊕ span{|⊥〉}. Note that

〈⊥,⊥|ψa〉 = 0, for all a ∈ [D]. (39)

We now analyze the cheating probabilities of Alice and Bob in the new DRIC-protocol defined
by the states

|ψ′a〉 :=
√

1− t |ψa〉+
√

t |⊥,⊥〉 ∈ A′ ⊗B′, for all a ∈ [D]. (40)
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That is, for a fixed value t ∈ (0, 1), we compute the new cheating probabilities. For this, note that

ρ′a := TrA
(
|ψ′a〉 〈ψ′a|

)
= (1− t) ρa + t |⊥〉 〈⊥| , (41)

where ρa := TrA (|ψa〉 〈ψa|).

Intuitively, Alice can cheat more if the states ρa are “close” to each other and Bob can cheat
more if they are “far apart”. What this protocol modification does is make all the states closer
together (by increasing the value of t), which increases Alice’s cheating probability, but, in doing so,
decreases Bob’s. We show below how the cheating probabilities change and how to choose a good
value for t > 0.

Cheating Bob. Let X be an optimal solution to Bob’s dual Label (19) for the original protocol.
Thus, Tr(X) = β and X � 1

D ρa, for all a ∈ [D].
To upper bound Bob’s cheating probability in the new protocol, we show that

X′ := (1− t)X +
t
D
|⊥〉 〈⊥| (42)

is feasible for Bob’s dual for the new protocol. We have

X′ = (1− t)X +
t
D
|⊥〉 〈⊥| � 1− t

D
ρa +

t
D
|⊥〉 〈⊥| = 1

D
ρ′a (43)

for all a ∈ [D]. Thus, X′ is feasible, proving that P∗B ≤ Tr(X′) = (1− t)β + t/D for the new protocol.
Cheating Alice. We now repeat the same process for Alice. Let (s, Z1, . . . , ZD) be a feasible

solution for Alice’s dual SDP (26) for the original protocol. That is, sIB � ∑a∈[D] Za and each positive
definite Za satisfies 〈Z−1

a , ρa〉 ≤ D, for each a ∈ [D]. Define

Z′a := δ Za + ε |⊥〉 〈⊥| , (44)

for a ∈ [D], and for fixed t ∈ (0, 1),

ε :=
s(1− t) + t

D
> 0 and δ := (1− t) +

t
s
> 0. (45)

Notice that
(Z′a)

−1 =
1
δ

Z−1
a +

1
ε
|⊥〉 〈⊥| . (46)

To show the analogous constraints are satisfied with Z′a, recall that 〈|⊥〉 〈⊥| , ρa〉 = 0 for all
a ∈ [D]. Using this, we have

〈(Z′a)
−1, ρ′a〉 =

1
δ
〈Z−1

a , ρ′a〉+
1
ε
〈|⊥〉 〈⊥| , ρ′a〉 ≤

D(1− t)
δ

+
t
ε
= D. (47)

To finish the proof of feasibility, note that

∑
a∈[D]

Z′a = δ ∑
a∈[D]

Za + εD |⊥〉 〈⊥| � δs IB + εD |⊥〉 〈⊥| � s′ IB′ , (48)

where s′ := s(1− t) + t. Since s can be taken to be arbitrarily close to α, we have

P∗A ≤ (α + ε′)(1− t) + t (49)

for all ε′ > 0, finishing the proof.
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Note that this lemma is useful when β > α. In this case, one can choose

t =
β− α

(1− 1/D) + (β− α)
∈ (0, 1) (50)

to equate the upper bounds. If α > β, then no choice of t ∈ (0, 1) will make the two upper bounds
in Lemma 5 equal. We summarize in the following corollary.

Corollary 1. If there exists a DRIC-protocol with cheating probabilities P∗A = α and P∗B = β, with β > α, then
there exists another DRIC-protocol with maximum cheating probability

max{P∗A, P∗B} ≤
Dβ− α

Dβ− Dα + D− 1
< β. (51)

4.2. Building New Protocols That Reduce Alice’s Cheating

In this subsection, we show how to reduce Alice’s cheating probabilities in a DRIC-protocol.

Lemma 6. If there exists a DRIC-protocol with cheating probabilities P∗A = α and P∗B = β, then there exists
another DRIC-protocol with cheating probabilities P∗A = α′ and P∗B = β′ where

β′ ≤ (1− t)β + t and α′ ≤ (1− t)α +
t
D

, (52)

for any t ∈ (0, 1).

Proof. To prove this lemma, fix a DRIC-protocol with cheating probabilities P∗A = α and P∗B = β

defined by the states |ψa〉 ∈ A ⊗ B, for a ∈ [D]. Extend each of the Hilbert spaces A and B by the
set of orthogonal basis vectors {|⊥a〉 : a ∈ [D]}, and denote these new Hilbert spaces by A′ and B′,
respectively. In other words,

A′ := A⊕ span{|⊥1〉 , . . . , |⊥D〉} and B′ := B ⊕ span{|⊥1〉 , . . . , |⊥D〉}. (53)

Note that
〈⊥a′′ ,⊥a′ |ψa〉 = 0, for all a, a′, a′′ ∈ [D]. (54)

Again, we analyze the cheating probabilities of Alice and Bob in the new DRIC-protocol defined
by the states

|ψ′a〉 :=
√

1− t |ψa〉+
√

t |⊥a〉 |⊥a〉 ∈ A′ ⊗B′ (55)

for a ∈ [D]. The reduced states are

ρ′a := (1− t) ρa + t |⊥a〉 〈⊥a| (56)

for a ∈ [D], recalling that ρa := TrA(|ψa〉 〈ψa|). We now analyze the cheating probabilities of this new
protocol as a function of t ∈ (0, 1).

Intuitively, this protocol modification works in the opposite manner of the last. Here, we are making
the states farther apart as to decrease Alice’s cheating at the expense of increasing Bob’s.

Cheating Bob. Let X be an optimal solution for Bob’s dual SDP (19) for the original
protocol. Define

X′ := (1− t)X +
t
D ∑

a∈[D]

|⊥a〉 〈⊥a| , (57)

which can easily be seen to be feasible in the dual SDP for the new protocol. Thus, we have
P∗B ≤ Tr(X′) = (1− t)β + t.
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Cheating Alice. Let (s, Z1, . . . , ZD) be a feasible solution for Alice’s dual SDP (26) for the original
protocol. That is, sIB � ∑a∈[D] Za and each positive definite Za satisfies 〈Z−1

a , ρa〉 ≤ D, for each
a ∈ [D].

Define
Z′a := δ Za + ε |⊥a〉 〈⊥a|+ ζ ∑

c∈[D],c 6=a
|⊥c〉 〈⊥c| (58)

for positive constants δ, ε, ζ to be specified later. Note that 〈∑c∈[D],c 6=a |⊥c〉 〈⊥c| , ρ′a〉 = 0, for all
a ∈ [D].

We have Z′a is invertible and we can write its inverse as

(Z′a)
−1 =

1
δ

Z−1
a +

1
ε
|⊥a〉 〈⊥a|+

1
ζ ∑

c∈[D],c 6=a
|⊥c〉 〈⊥c| , (59)

which satisfies

〈(Z′a)
−1, ρ′a〉 =

1
δ
〈Z−1

a , ρ′a〉+
1
ε
〈|⊥a〉 〈⊥a| , ρ′a〉 ≤

D(1− t)
δ

+
t
ε

. (60)

Also note that

∑
a∈[D]

Z′a = δ ∑
a∈[D]

Za + ε ∑
a∈[D]

|⊥a〉 〈⊥a|+ ζ ∑
a∈[D]

∑
c∈[D],c 6=a

|⊥c〉 〈⊥c| (61)

� δs IB + (ε + ζ(D− 1)) ∑
a∈[D]

|⊥a〉 〈⊥a| (62)

� s′ IB′ , (63)

where s′ := max{δs, ε + ζ(D− 1)}. Setting

ε = (1− t)s +
t
D

> 0 and δ = (1− t) +
t

Ds
> 0, (64)

we get 〈(Z′a)−1, ρ′a〉 ≤ D and s′ = (1− t)s + t/D + ζ(D − 1). Since s can be taken to be arbitrarily
close to α, and ζ arbitrarily close to 0, we have P∗A ≤ (α + ε′)(1− t) + t/D + ε′(D− 1) for all ε′ > 0,
finishing the proof.

As opposed to Lemma 5, the above lemma is useful when α > β. Similarly, if β > α, then no choice
of t ∈ (0, 1) will make the two upper bounds in Lemma 6 equal.

By symmetry, we have the following corollary.

Corollary 2. If there exists a DRIC-protocol with cheating probabilities P∗A = α and P∗B = β, with α > β, then
there exists another DRIC-protocol with maximum cheating probability

max{P∗A, P∗B} ≤
Dα− β

Dα− Dβ + D− 1
< α. (65)

Note that if α = β, the quantity Dα−β
Dα−Dβ+D−1 is equal to α(= β). Thus, we still have

max{P∗A, P∗B} ≤
Dα− β

Dα− Dβ + D− 1
(66)

holding, although no protocol modification is necessary. Therefore, Proposition 2 now follows from
combining Corollaries 1 and 2 and the comment above.
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5. Kitaev’s Lower Bound and Quantum State Discrimination

We start this section with a short proof of Kitaev’s lower bound for DRIC-protocols.

5.1. Kitaev’s Lower Bound

Let (s, Z1, . . . , ZD) be an optimal solution for Alice’s dual SDP (22), i.e.,

P∗A = s, sIB � ∑
a∈[D]

Za, and IA ⊗ Za �
1
D
|ψa〉 〈ψa| , for all a ∈ [D]. (67)

Note that from the last constraint in the SDP, we require that Za is positive semidefinite for all
a ∈ [D]. We may assume that sIB = ∑D

a=1 Za, without loss of generality, since we can always increase

Z1 to make this the case. i.e., we can redefine Z1 → Z1 +
(

sIB −∑a∈[D] Za

)
, which maintains the

same value for s and still satisfies all of the constraints. Define the matrices Ma := 1
s Za for all a ∈ [D].

We see that this is feasible for Bob’s cheating SDP (18). We thus have that

P∗B ≥
1
D ∑D

a=1〈ρa, Ma〉 = 1
sD ∑D

a=1〈ρa, Za〉 = 1
sD ∑D

a=1〈|ψa〉 〈ψa| , IA ⊗ Za〉 ≥ 1
sD2 ∑D

a=1〈|ψa〉 〈ψa| , |ψa〉 〈ψa|〉, (68)

implying that P∗AP∗B ≥ 1/D, which is precisely Kitaev’s lower bound for die-rolling.

Remark 1. This proof is slightly different than Kitaev’s original proof, which involves combining Bob’s and
Alice’s optimal dual solutions. The above proof takes an optimal dual solution for Alice, and then creates a valid
cheating strategy for Bob. This new perspective could shed light on the nature of dual solutions and their role
in creating point games (which are still regarded as being quite mysterious). Point games are beyond the scope
of this work; the interested reader is referred to [5,7,11] for further details.

5.2. Quantum State Discrimination

Consider now a DRIC-protocol but Alice chooses a ∈ [D] with probably pa (instead of uniformly
at random). Then, the amount Bob can cheat in this modified protocol exactly corresponds to the
success probability of a quantum state discrimination (QSD) problem.

We can easily modify the optimization problem (18) to see that the optimal success probability
in the QSD problem is given by

β := max

 ∑
a∈[D]

pa〈Ma, ρa〉 : ∑
a∈[D]

Ma = IB , Ma � 0, ∀a ∈ [D]

 , (69)

where we denote the optimal value as β (to distinguish its context from cryptographic security for
the moment).

Consider again Alice’s dual SDP (22)

α := min

s : sIB � ∑
a∈[D]

Za, IA ⊗ Za �
1
D
|ψa〉 〈ψa| , ∀a ∈ [D], Za is Hermitian

 . (70)
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Then, repeating the proof of Kitaev’s lower bound above, we get that β α ≥ 1/D. We can bound
β by bounding α:

α = min

s : sIB � ∑
a∈[D]

Za, IA ⊗ Za �
1
D
|ψa〉 〈ψa| , ∀a ∈ [D], Za is Hermitian

 (71)

= inf

s : sIB � ∑
a∈[D]

Za, 〈Z−1
a , ρa〉 ≤ D, ∀a ∈ [D], Za is positive definite, ∀a ∈ [D]

 (72)

= inf

λmax

 ∑
a∈[D]

Za

 : 〈Z−1
a , ρa〉 ≤ D, ∀a ∈ [D], Za is positive definite, ∀a ∈ [D]

 , (73)

where λmax denotes the largest eigenvalue of a Hermitian matrix. Since λmax(A) = (λmin(A−1))−1

for A positive definite, we have

α =

(
sup

{
λmin

((
∑a∈[D] Za

)−1
)

: 〈Z−1
a , ρa〉 ≤ D, ∀a ∈ [D], Za is positive definite, ∀a ∈ [D]

})−1
, (74)

which implies

1
αD = sup

{
λmin

((
∑a∈[D](D Za)

)−1
)

: 〈Z−1
a , ρa〉 ≤ D, ∀a ∈ [D], Za is positive definite, ∀a ∈ [D]

}
. (75)

Proposition 3 now follows by defining Wa := (DZa)−1 for all a ∈ [D].
We briefly discuss how Proposition 3 can be tight. We see that, if we view the QSD problem

from the perspective of a cheating Bob in a DRIC-protocol, then the (non)tightness of Proposition 3
is exactly characterized by the (non)tightness of Kitaev’s lower bound above. Thus, the examples
of DRIC-protocols saturating Kitaev’s lower bound, i.e., P∗B P∗A = 1/D, yield instances of the QSD
problem where Proposition 3 is tight.

6. Conclusions

We have shown simple, near-optimal protocols exist for die-rolling. In contrast to many other
cryptographic primitives, sometimes classical protocols are optimal. When the presented classical
protocols are not optimal, we can find an improvement using quantum protocols.

Open problems include studying die-rolling under different security definitions. For example,
one may wish to see how far from uniform the outcome probabilities can me made in total variation
distance, or some other metric. Another option is to see how secure the protocols are against forcing
subsets of integers. Indeed, the classical protocols presented in this work can allow a cheating party
to force an integer from a chosen subset. This security notion is needed when each party has a number
of desired outcomes. For an example, there are many desired outcomes when playing roulette online.
Is there a simple modification that would provide security in this scenario?
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