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Abstract:



We estimate the maximum-order complexity of a binary sequence in terms of its correlation measures. Roughly speaking, we show that any sequence with small correlation measure up to a sufficiently large order k cannot have very small maximum-order complexity.
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1. Introduction


For a positive integer N, the Nth linear complexity [image: there is no content] of a binary sequence [image: there is no content] is the smallest positive integer L such that there are constants [image: there is no content] with


si+L=cL−1si+L−1+...+c0si,0≤i≤N−L−1.











(We use the convention [image: there is no content] if [image: there is no content] and [image: there is no content] if [image: there is no content].) The Nth linear complexity is a measure for the predictability of a sequence and thus its unsuitability in cryptography. For surveys on linear complexity and related measures of pseudorandomness see [1,2,3,4,5,6].



Let k be a positive integer. Mauduit and Sárközy introduced the (Nth) correlation measure of order k of a binary sequence [image: there is no content] in [7] as


[image: there is no content]








where the maximum is taken over all [image: there is no content] with non-negative integers 0≤d1<d2<...<dk and U such that [image: there is no content]. (Actually, [7] deals with finite sequences [image: there is no content] of length N over [image: there is no content].)



Brandstätter and the second author [8] proved the following relation between the Nth linear complexity and the correlation measures of order k:


L(S,N)≥N−max1≤k≤L(S,N)+1Ck(S,N),N≥1.



(1)







Roughly speaking, any sequence with small correlation measure up to a sufficiently large order k must have a high Nth linear complexity as well.



For example, the Legendre sequence [image: there is no content] defined by


[image: there is no content]








where [image: there is no content] is a prime, satisfies


Ck(L,N)≪kp1/2logp,1≤N≤p,



(2)




and thus (1) implies


N≪L(L,N)p1/2logp,1≤N≤p.











Using [image: there is no content] for any [image: there is no content] we get


L(L,N)≫min{N,p}p1/2logp,N≥1,








see [7,9] (Theorem 9.2). (Here [image: there is no content] is equivalent to [image: there is no content] for some absolute constant c.)



The Nth maximum-order complexity [image: there is no content] of a binary sequence [image: there is no content] is the smallest positive integer M such that there is a polynomial [image: there is no content] with


si+M=f(si,si+1,…,si+M−1),0≤i≤N−M−1,



(3)




see [10,11,12]. Obviously we have


[image: there is no content]








and the maximum-order complexity is a finer measure of pseudorandomness than the linear complexity.



In this paper we analyze the relationship between maximum-order complexity [image: there is no content] and the correlation measures [image: there is no content] of order k. Our main result is the following theorem:



Theorem 1.

For any binary sequence [image: there is no content]we have


M(S,N)≥N−2M(S,N)+1max1≤k≤M(S,N)+1Ck(S,N),N≥1.













Again, any nontrivial bound on [image: there is no content] for all k up to a sufficiently large order provides a nontrivial bound on [image: there is no content]. For example, for the Legendre sequence we get immediately from (2)


N≪2M(L,N)M(L,N)p1/2logp,1≤N≤p.











Now we have either [image: there is no content] and the bound (4) below is trivial or [image: there is no content] which implies


[image: there is no content]



(4)




see also [9] (Theorem 9.3). (Here [image: there is no content] is equivalent to [image: there is no content].)



We prove Theorem 1 in the next section.



The expected value of the Nth maximum-order complexity is of order of magnitude [image: there is no content], see [10] as well as [12] (Remark 4) and references therein. Moreover, by [13] for a sequence of length N with very high probability the correlation measure [image: there is no content] is of order of magnitude [image: there is no content] and thus by Theorem 1 [image: there is no content] which is in good correspondence to the result of [10].



In Section 3 we mention some straightforward extensions.




2. Proof of Theorem 1


Proof. 

Assume [image: there is no content] satisfies (3). If [image: there is no content] for some [image: there is no content], then [image: there is no content]. Equivalently, [image: there is no content] implies [image: there is no content]. Hence, for every [image: there is no content] we have


[image: there is no content]











Summing over [image: there is no content] we get


[image: there is no content]











The left-hand side contains one “main” term [image: there is no content] and [image: there is no content] terms of the form


[image: there is no content]








with [image: there is no content] and [image: there is no content]. Therefore we have


[image: there is no content]








and the result follows. ☐






3. Further Remarks


Theorem 1 can be easily extended to m-ary sequences with [image: there is no content] along the lines of [14]:



Let [image: there is no content] be a primitive mth root of unity. Then we have


∑h=0m−1ξhx=0if and only ifx≢0modm.











As in the proof of Theorem 1 we get


[image: there is no content]











We have one term of absolute value [image: there is no content] and [image: there is no content] terms of the form


[image: there is no content]



(5)




with [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content].



If m is a prime, then [image: there is no content] is a permutation of [image: there is no content] for any h≢0modm and the sums in (5) can be estimated by the correlation measure [image: there is no content] of order k for m-ary sequences as it is defined in [15] and we get


M(S,N)≥N−2mM(S,N)max1≤k≤M(S,N)+1Ck(S,N),N≥1.











If m is composite, [image: there is no content] is not a permutation of [image: there is no content] if [image: there is no content] and we have to substitute the correlation measure of order k by the power correlation measure of order k introduced in [14].



Now we return to the case [image: there is no content].



Even if the correlation measure of order k is large for some small k, we may be still able to derive a nontrivial lower bound on the maximum-order complexity by substituting the correlation measure of order k by its analogue with bounded lags, see [16] for the analogue of (1). For example, the two-prime generator [image: there is no content], see [17], of length [image: there is no content] with two odd primes [image: there is no content] satisfies


[image: there is no content]








if [image: there is no content] and its correlation measure of order 4 is obviously close to [image: there is no content], see [18]. However, if we bound the lags [image: there is no content] one can derive a nontrivial upper bound on the correlation measure of order k with bounded lags including [image: there is no content] as well as lower bounds on the maximum-order complexity using the analogue of Theorem 1 with bounded lags.



Finally, we mention that the lower bound (4) for the Legendre sequence can be extended to Legendre sequences with polynomials using the results of [19] as well as to their generalization using squares in arbitrary finite fields (of odd characteristic) using the results of [20,21]. For sequences defined with a character of order m see [15].
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