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Abstract: Consciousness and intelligence are properties that can be misunderstood as necessarily de-
pendent. The term artificial intelligence and the kind of problems it managed to solve in recent years
has been shown as an argument to establish that machines experience some sort of consciousness. Fol-
lowing Russell’s analogy, if a machine can do what a conscious human being does, the likelihood that
the machine is conscious increases. However, the social implications of this analogy are catastrophic.
Concretely, if rights are given to entities that can solve the kind of problems that a neurotypical person
can, does the machine have potentially more rights than a person that has a disability? For example,
the autistic syndrome disorder spectrum can make a person unable to solve the kind of problems
that a machine solves. We believe the obvious answer is no, as problem-solving does not imply
consciousness. Consequently, we will argue in this paper how phenomenal consciousness, at least,
cannot be modeled by computational intelligence and why machines do not possess phenomenal
consciousness, although they can potentially develop a higher computational intelligence than human
beings. In order to do so, we try to formulate an objective measure of computational intelligence and
study how it presents in human beings, animals, and machines. Analogously, we study phenomenal
consciousness as a dichotomous variable and how it is distributed in humans, animals, and machines.

Keywords: computational intelligence; phenomenal consciousness

1. Introduction

The concept of consciousness has remained difficult to define and understand [1].
Consciousness (at least, phenomenal consciousness, which will be our main focus) is an
ontologically subjective phenomenon, and the scientific method applies only to epistemo-
logically objective phenomena [2]. Although remarkable progress has been made concern-
ing the definition of physical correlates of consciousness [3], the subjective experience of
consciousness remains elusive. What is more, the multiple realizability assumption means
that there might be different paths to consciousness, with different material substrates or
physical correlates, so the evaluation of correlates is not equivalent to the identification
of consciousness.

We can split the consciousness concept into several associated phenomena. Ned
Block [4] argued that discussions on consciousness often fail to adequately differentiate
between two distinct aspects: phenomenal consciousness (P-consciousness) and access
consciousness (A-consciousness). It should be noted that these concepts predate Block.
Phenomenal consciousness refers to raw experiences, such as moving, colored forms,
sounds, sensations, emotions, and feelings, with our bodies and responses at the core.
These experiences, detached from their impact on behavior, are referred to as qualia. On
the other hand, A-consciousness pertains to the accessibility of information in our minds
for verbal reports, reasoning, and behavioral control. Perception provides access-conscious
information about what we perceive, introspection grants access to information about
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our thoughts, and remembrance provides access-conscious information about the past,
and so forth. Attention is the mechanism that focuses consciousness on a particular set
of information coming from perception, interoception, or remembrance. Although some
philosophers, like Daniel Dennett, [5] question the validity of this distinction, others
generally accept it.

While Block’s classification of two types of consciousness has been influential, some
philosophers, like William Lycan [6], propose a more extensive range. Lycan identifies
at least eight distinct types of consciousness, including organism consciousness, control
consciousness, the consciousness of, state/event consciousness, reportability, introspective
consciousness, subjective consciousness, and self-consciousness. However, even this list
excludes other less recognized forms. Arguably, the most recognizable and relevant forms of
consciousness are phenomenal consciousness, access consciousness, and self-consciousness,
which are defined as the models of our identity that we build based on our experience [7].

Debate persists regarding the coexistence or separability of the different forms of
consciousness, especially access consciousness and phenomenal consciousness, and how
differently to approach each of them, which, as explained, would be identified with the
hard and soft problems, respectively.

The deep divide lies, in other words, between the subjective phenomenon, the relative
to the observer experience of something that the observer is paying attention to, and
the objective phenomena, which can be simulated in a computer even if it is related to
consciousness [8]. For example, we can manipulate colors with computers but we cannot
simulate qualia. We can even simulate the “bottleneck of consciousness” [9] but cannot
simulate the perceived experience of the result.

There is already a vast array of literature that deals with machine simulation of partic-
ular aspects of consciousness (see [10] for a well-structured and comprehensive review).
The main approaches have been the global workspace model, information integration, an
internal self-model, a higher-level representation, and attention mechanisms.

Global workspace theory [11] views the brain as a collection of specialized processors
that provide for sensation, motor control, language, reasoning, and so forth. Conscious
experience is hypothesized to emerge from globally shared information.

Information integration explains consciousness as shared or mutual information
shared among brain regions as they interact in a constructive manner [12].

The internal self-model is based on the idea that our mind includes a model of our
body and how it relates to the space it is embedded in that is supported by certain brain
regions [13].

The higher-level representation theory explains consciousness with a higher pattern
of information encoding, akin to symbolic processing [14].

Finally, some authors point to the attention mechanisms that filter the fraction of
ongoing experience that is experienced as the basis of consciousness. This is one of the
mechanisms that has been simulated more successfully, even being considered at the core
of the recent revolution of generative AI [15]. Another relevant example has been the
simulation of a computational ontology of a person based on historical records [16].

All the previous models have lent themselves to simulation, which has been a fertile
terrain for understanding some of the specific mechanisms of consciousness. These exercises
have even resulted in the description of interesting related phenomena, such as in Axiomatic
Consciousness Theory, a specialized simulation of visual processing based on attention,
which can explain some properties of visual experiences, such as foveal, eye field, in-front,
and the space images [17].

However, how to implement or simulate phenomenal consciousness remains a com-
plete mystery. We cannot simulate the experience of the perception of qualia, such as the
redness of the red color.

We recall the example in the “Mary’s mind experiment”, a blind girl that is an expert
in vision. Although she is an expert, Mary is unable to know what is the difference in
the perception of red or black, as this information comes from qualia and is subjective,
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that is, cannot be represented in an objective manner such as in a book description [18].
This is known as the knowledge argument: and it rests on the idea that someone who has
completely objective knowledge, from the point of view of the scientific method and our
epistemological scope, about another conscious being might yet lack knowledge about how
it feels to have the experiences of that being [19].

A common belief shared by part of the computer science community, and concretely
in the machine consciousness community [20] and even in part of the philosophy of
mind community and more concretely shared by the connectionism community [21],
is that if an artificial general intelligence [22] is modeled (supposedly via some meta-
learning [23] or transfer learning methodology [24] applied to high capacity deep learning
models [25] and huge datasets), due to emergence, phenomenal consciousness may arise.
Hence, this group of people believes, assuming the multiple realizability philosophy of
mind assumption [26], that an intelligent enough system is the cause of phenomenal
consciousness. Phenomenal consciousness arises then as an epiphenomenon [27], or,
alternatively, intelligence is the cause of phenomenal consciousness or vice-versa. To
justify this relation, it is mandatory to provide an objective definition of intelligence, which
is problematic as the different mentioned communities provide different definitions of
intelligence, particularly computational intelligence. In order to clarify our definition of
intelligence, we provide a clarification attempt in Section 4.

Several objections have been made to Mary’s argument; for example, that qualia are
not information. Hence, Mary would know everything about color. However, we argue
that qualia are indeed phenomenological information (of the form “How it feels to”), being
modeled in the qualia space Q designed by the neuroscientific information integration
theory of Tononi [12]. In particular, Q has an axis for each possible state (activity pattern)
of an information complex (please see Tononi’s paper for more details [12]). Within Q,
each sub mechanism specifies a point corresponding to a repertoire of system states. Most
critically, arrows between repertoires in Q define informational relationships. Consequently,
and given the mathematical information theory [28], qualia is information that would be
unattainable for Mary if she is blind.

In order to continue analyzing the potential statistical, or even metaphysical, causal
relation between phenomenal consciousness and intelligence, it is important to also briefly
describe intelligence. Coming from the psychology community, and in a broad sense,
intelligence is a very general mental capability that, among other things, involves the
ability to reason, plan, solve problems, think abstractly, comprehend complex ideas, learn
quickly, and learn from experience [29]. If these problems are computational, we can
reduce and quantify intelligence as an analytical expression [30], giving rise to the concept
of computational intelligence. We can express it quantitatively and study its relation
with phenomenal consciousness. Here, we argue that computational intelligence would
be an ontologically objective continuous numerical latent variable whose observation is
noisy and obscured by a series of factors such as the personality or mood of the person
being measured.

Computational intelligence can be exhibited by either living beings or machines, giving
rise to what we call machine intelligence [31]. However, AI does not involve phenomena
such as understanding [32], as understanding requires an entity to be aware of the learned
concept. Nevertheless, computational intelligence does not require understanding. For
example, a model can beat any human at chess, while being unaware of doing so. Hence,
we find that computational intelligence, which is a subset of intelligence, does not share a
relation in this example with phenomenal consciousness, which is the focus of this paper
and we will further continue to provide examples such as this one.

The organization of this paper is as follows. First, we illustrate the analogy of Russell,
which is at the root of the belief that intelligence and consciousness are related, and
formalize it from a Bayesian point of view. Then, we provide some simple counter-examples
that show empirical evidence of how unlikely it is for the hypothesis to be true. In an
additional section, we study the concept of intelligence and provide a new definition of
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computational intelligence to more formally reject the mentioned hypothesis. With that
definition, we study the potential causal relationship between phenomenal consciousness
and computational intelligence. Afterward, we formalize how computational intelligence
is not able to model phenomenal consciousness. Finally, we finish the paper with a section
of conclusions and further work.

2. The Social Risks of a Consciousness Directly Correlated with Intelligence

Making the assumption that intelligence and consciousness are related can lead to
catastrophic consequences for society. For instance, this assumption can lead to the unjust
treatment of individuals with low intelligence, such as those with Down syndrome or
severe forms of autism. For example, according to an IQ test, an autistic person may
seem much less intelligent than they are [33]. If they are believed to be less conscious,
they could be granted lesser levels of assistance. This assumption can result in neglect
and discrimination towards individuals with low intelligence. Concretely, one example
of a government treating individuals with cognitive disabilities unfairly is the case of the
eugenics movement in the United States. The movement, which gained traction in the
early 20th century, advocated for the forced sterilization of individuals deemed to have
“feeble-mindedness” or other cognitive disabilities [34]. This was based on the belief that
such individuals were a burden to society and could not contribute to it in any meaningful
way. Many individuals with cognitive disabilities were sterilized against their will, and
this practice continued until the mid-20th century [35]. Such policies could be repeated
if the belief that individuals with cognitive disabilities or low intelligence were seen as
less conscious, and therefore did not require assistance or equal treatment. Therefore, it is
essential to recognize that intelligence and consciousness are complex and multifaceted
concepts that should not be reduced to a single measure or assumption.

3. Russell’s Analogy of Consciousness

In this section, we will present the analogy postulated by Russell about intelligence and
consciousness [36]. Broadly speaking, he states that it is highly probable that consciousness
is the only cause of the intelligent behavior that humans exhibit. It does so by supposing
that if the behavior of people is similar to our own, then, by observation, we can establish a
causal relation that the other people possess consciousness as we do. Literally, from the
Analogy of Russell, we have that:

“We are convinced that other people have thoughts and feelings that are qualitatively
fairly similar to our own. . . it is clear that we must appeal to something that may be
vaguely called analogy. The behavior of other people is in many ways analogous to our
own, and we suppose that it must have analogous causes. What people say is what we
should say if we had certain thoughts, and so we infer that they probably have these
thoughts. . . As it is clear to me that the causal laws governing my behavior have to do
with thoughts. . . how do you know that the gramophone does not think?. . . it is probably
impossible to refute materialism by external observation alone. If we are to believe that
there are thoughts and feelings other than our own, that must be in virtue of some
inference in which our own thoughts and feelings are relevan t. . . establish a rational
connection between belief and data. . . From subjective observation I know that A, which is
a thought or feeling, causes B, which is a bodily act, whatever B is an act of my own body,
A is its cause. I now observe an act of the kind B in a body not my own, and I am having
no thought or feeling of the kind A. But I still believe on the basis of self-observation, that
only A can cause B. I, therefore, infer that there was an A which caused B, though it was
not an A that I could observe.”

Russell’s analogy could be roughly summarized as “consciousness, which we can-
not observe can be inferred by behavior, which we can observe”. Russell refers to the
causal laws going from thoughts to behavior. If we understand “having thoughts” in the
hard sense, as the subjective experience in phenomenal consciousness, then for Russell
consciousness would be the cause of behavior (in particular, of intelligent behavior).
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However, we must realize that this reasoning falls prey to the fallacy of affirmation of
the consequent: there are many reasons why an agent may exhibit intelligent behavior. For
instance, the DALLE-2 model generates artistic images but almost all of us would agree it
is not conscious. The same can be said of ChatGPT and its dialogue applications, even in a
stronger manner. The analogy reasoning involves more correlation than causality. Here,
the confounder would be that both human behavior and the behavior of Generative AI are
both the result of human intent.

From a classical logic point of view, Russell states that every living being produces
intelligent behavior, applying modus ponens. However, applying modus tollens if a being
does not exhibit intelligent behavior outside, then it would not be conscious, at least, from
the probabilistic point of view that is considered in the analogy. However, this reasoning
is flawed. For instance, a person suffering from severe autism, may not show intelligent
behavior; hence, following the argument of Russell, there is, at least, a high likelihood that
this person is not conscious. However, this is not true.

Having shown that there are phenomenally conscious human beings that do not exhibit
intelligent behavior according to several estimates or that their computational intelligence
cannot be compared to the ones of computers, we provide another counter-example to the
analogy, coming from the field of artificial intelligence [37]. In particular, we have seen
how, in recent years, due to methodological advantages such as deep learning [25] and
the rise of computational power, intelligent systems have surpassed human abilities in
a series of complex games. Some examples include AlphaGo winning at the Go game
to the world champion [38], IBM Watson winning at Jeopardy [39], and discovering new
unknown chess strategies with deep learning [40]. General intelligence is a broad property,
in the ontological sense, but we can reduce its meaning and provide a definition for a subset
of it. In particular, we can epistemologically measure it as a function of the proportion
of the computational problems that a system can solve from the set of all computational
problems. Following this lower bound of general intelligence, a system implementing all
the known machine learning models and meta-models of them able to solve any task with
sufficient data will, for sure, outperform the performance of human beings in a broad series
of problems and even solve problems that we do not know how to solve, like the protein
folding problem [41].

Following the analogy of Russell, it would seem highly likely that a system that
implements these algorithms would be conscious. It would be even more probable that
such a system is more conscious than any other human being. However, as we will
further show, providing multi-disciplinary arguments, the likelihood that a Turing machine,
which is essentially any known software being executed by a computer, is conscious is
almost zero. Hence, the evidence given by the data shows that the hypothesis that there
is a causal relation between intelligence and consciousness is fallacious. Finally, as an
extreme argument, we can measure the computational intelligence, as in the next section
we will do, of a severely autistic person with respect to a system implementing several
methodologies such as AlphaGo, showing that phenomenal consciousness cannot be
modeled by computational intelligence.

4. Defining Intelligence

Intelligence is a widely known concept that has been assimilated by the computer-
science community to coin the term artificial intelligence. However, artificial intelligence is
a misleading term, as it requires a proper definition of intelligence as a property that can be
modeled with a set of numerical variables.

In particular, multiple definitions of intelligence have been proposed by different
communities but all of them seem to be a reduction of the general meaning of intelligence.
For example, if we include as intelligence the ability to understand and empathize with
another person, this ability requires us to feel the situation that is having the other person.
From a theoretical, relative to the observer and internal point of view, it will not be enough
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to appear to understand or feel by simulation methods based on quantitative measures, it
would need to receive the qualia of the feeling or the idea being understood.

Hence, feeling requires awareness, or phenomenal consciousness, of the person that is
having a conversation. As a consequence, this ability cannot be reduced to a simple set of
numerical variables nor be implemented in a machine. In this section, we make a review
of some of the different definitions of intelligence, to further justify why computational
intelligence cannot model phenomenal consciousness.

4.1. Artificial Intelligence and Deep Learning

Artificial intelligence [37] has another controversial definition. Generally, it is the
science and engineering of making intelligent machines [42]. But, if we want to define the
intelligence of machines, that leads to a circular definition. We prefer to define it as an
objective quantitative measure that is determined by the scope of problems that an artificial
system is able to solve.

In recent years, due to the significant advances in computational power, it has been pos-
sible to implement high-capacity machine-learning models [43] like deep neural networks,
which is usually referred to as deep learning [25]. As we have illustrated in the introduction,
these models, whose capacity includes having more than 500 billion of parameters [44], are
able to solve complex problems like the protein folding problem [41], go and chess [38],
write philosophy articles in a newspaper mocking the type of writings that were usually
only attributed to human beings [45] mastering natural language processing and common
sense tasks and generating art [46]. In essence, deep learning methodologies are able to fit
complex probability distributions by being able to generalize their behavior to tasks that
are only supposed to be solved by humans, making their behavior indistinguishable from
that of humans [47].

However, deep neural networks are software programs that are executed using com-
puter hardware in a CPU (Central Processing Unit), GPU (Graphical Processing Unit),
or TPU (Tensorial Processing Unit). Concretely, these hardware units are part of a Von
Neumann architecture, which is essentially a Turing machine, making deep neural network
algorithms that can be executed by a Von Neumann architecture, hence a Turing machine.
Consequently, as we will further provide arguments for this claim, they lack awareness
or phenomenal consciousness. As a result, they are unable to understand nor experience
the scope of problems that they are solving and merely solve computations involving pat-
tern recognition, independently of their complexity. Hence, artificial intelligence systems
(at least in their current form) only possess computational intelligence [30,31], lacking
understanding as it requires the qualia of the problem being solved. However, a virtue
of computational intelligence is that it can be quantified, as it solves objective problems
belonging to the set of all possible computational problems. In contrast, general human
intelligence, as we will further see, is subjective and relative to the observer, requiring the
qualia generated by understanding, feelings, or empathy and hence impossible to quantify
without reducing it at its essence.

There are several propositions to quantify the computational intelligence that a system
or an entity possesses. Let π be an entity, for example, a human being, that in every instant
t is able to perform a set of actions A to solve a given problem. An intelligent agent π
would decide, for every instant t, the optimum action a? ∈ A to solve the problem. The
branch of computer science that studies how to train intelligent agents in this framework is
called reinforcement learning [48] and can be directly extrapolated to reality. For example,
if we want to say the optimum phrase to win a negotiation, in every instant t we receive
the sentence of the person that we are negotiating with, her word frequency distributions,
or her emotional state. As a function of all that information, we choose to answer a certain
phrase in a particular manner. As we can see, reinforcement learning can be applied to a
plethora of computational intelligence problems. In fact, reinforcement learning systems are
implemented in robots for planning. We now introduce the analytical expressions of several
measures of intelligence to objectively clarify how they could be modeled mathematically.
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Dealing with these systems, which can perfectly be humans, the universal intelligence
function Υ of a data structure resembling an agent π is given by the following measure [49]:

Υ(π) = ∑
µ∈E

2−K(µ)Vπ
µ . (1)

where µ is a data structure representing an environment from the set E of all computable
reward bounded environments, K(·) is the Kolmogorov complexity, and Vπ

µ := E(∑∞
i=1 Ri)

is the expected sum of future rewards Ri when agent π interacts with environment µ. That
is, the previous expression is a weighted average of how many problems µ ∈ E an agent π
can solve weighted by their difficulty 2−K(µ)Vπ

µ . In particular, this is the reason why Vπ
µ

includes π. Several things are interesting in this expression. First, the set of all computable
reward bounded environments, i.e., would be the set of all computational problems and
is countably infinite. Hence, the intelligence Υ of an agent is not upper-bounded. If we
transform the set E to a set where the area of a problem µ is given as a function of its
difficulty S(µ), with a larger area given to more difficulty with respect to a particular agent
π, the previous measure can be transformed in this abstract, general measure:

Υ(π) =
∫

E
δ(µ | π)S(µ)dµ . (2)

where S(µ) is an oracle function that gives the objective area of a problem µ and δ(µ | π)
is a delta function representing whether the particular problem is solved or not by the
agent π. Recall that the delta function outputs 1 if the problem is solved and 0 otherwise.
As the set is potentially countably infinite, a problem can be decomposed according to
the progress on it in different problems until a simple base problem, each one with a
different area to measure the progress of an agent in the progress of a particular problem.
Interestingly, the integral over the set E gives the area of computational problems being
solved, and this area is infinite. Moreover, an oracle giving a particular objective unbiased
measure of difficulty for every problem would be needed. Depending on the features of
the system, a problem may be more difficult than others, especially for non-computable
problems requiring qualia to be solved. These objections make such a measure impossible
to be unbiasedly implemented in practice but may be a lower bound of the computational
intelligence of a system, animal, or human being.

Another example of an intelligence measure of a system represented by IS for a scope
of tasks sampled from Pscope is now described. We have generalized from the measure
proposed by Chollet, taking into account not only the scope of particular tasks that are
numerable into a set but all the possible tasks that can be performed in our universe, which
is potentially infinite and the one that we believe should be taken into account. Recall that
we want to provide an ontologically objective general measure of computational intelli-
gence [30], as we want to study its relation with an ontologically objective dichotomous
property, which is whether an agent is aware of its phenomenal consciousness. Conse-
quently, any measure that excludes a single property or is noisy or biased, such as the
intelligence quotient, cannot be compared with phenomenal consciousness without being
also the results biased or noisy. Summarizing the main components of the expression,
let PIS,T + EIS,T,C (priors plus experience) represent the total exposure of the system to
information about the problem, including the information it starts with at the beginning
of training represented by C, the curriculum. Let ωT · θT be the subjective value we place
on achieving sufficient skill at T and let GD be the generalization difficulty for agent IS of
solving task T given its curriculum or specific properties of the agent C:

IθT
IS,Pscope

= EPscope [ωT · θT ∑
C∈CurθT

T

[PC ·
GDθT

IS,T,C

PθT
IS,T + EθT

IS,T,C

]]. (3)
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The formula is basically a generalization of Υ that takes into account the previous
knowledge, modeled by the curriculum and the priors, to solve a particular task T. The dif-
ficulty of the task is now modeled by the generalization difficulty and solving a potentially
infinite scope is given as the computing the expectation over Pscope. However, although this
measure takes into account whether an entity is able to generalize from prior knowledge as
a measure of intelligence, we find the same problems as in the previous measure.

In both measures of intelligence, as the set of potential problems is potentially infinite
and not-numerable, any entity would really have a measure of general intelligence of
approximately 0, as it would fail to solve a potentially infinite set of problems. Moreover,
both measures require having an oracle to determine the difficulty of the task. Consequently,
they would both be biased although an objective oracle was able to provide this quantity.

Any measure of intelligence giving any other score rather than zero, although practical,
would be just a lower bound of the true intelligence of the entity, better approximated with
these measures than with the intelligence quotient measure. Hence, it can be useful for
health assessments but never to classify an individual as more intelligent than another
individual or, as we will further see, to say that a being is susceptible to having more or
less likelihood of having phenomenal consciousness. It is critical to provide an abstract
definition of computational intelligence because of two main reasons: First, in order to
study its relation with an ontological property such as phenomenal consciousness, it needs
to possess the same properties as phenomenal consciousness, that is, being ontological,
general and not biased. Second, it can be useful to provide such a definition of intelligence
to shed light on the psychology community to provide less biased estimators to it. Once
again, this definition corresponds to the parameter, and measures such as the intelligence
quotient correspond to the estimator.

4.2. Intelligence Quotient and Similar Approaches

Human intelligence includes a series of skills that are focused on different types of
problems. The set of problems that human intelligence can solve intersects with the set of
computational problems but is not contained in it.

Some examples of this kind of problem include discriminating, which is the most
beautiful color for a particular observer in terms of our perception of the colors, which is the
best action that we should do in a complex personal conflict involving human relationships,
how a person must adapt her emotional state or which is the true notion of a metaphysical
phenomenon. The common feature of all these problems is that they involve qualia,
information about our universe that Turing machines lack. In particular, we consider qualia
as semantic information, in the sense that the observer perceives the quality of color in a
particular way, the redness of red, and not in another one. Consequently, this perception
can be considered a property that may be codified and that is actually transmitted to the
observer by the brain. Although this information is subjective and relative to the observer,
it is still information that can be represented in a qualia space such as in the integrated
information theory, and is transmitted to the phenomenal consciousness observer.

Consequently, from our point of view, we can only measure the intelligence that
a human being shows externally and that is associated with these problems in terms
of correlations, which are a reduction of its true scope but are the only way of being
objective. Since ancient times, human intelligence has been measured through some of
its specific features. For example, in ancient Greece, memory was very valuable. For
instance, Plato, in Phaedrus, saw writing as an undesirable tool for external memory,
where the memory of dialogues was not only seen as a passive repository of information
but also a tool for critical thinking and the creation of new ideas. Then, Rhetoric was
indeed a crucial part of education, law, politics, and literature in ancient Rome [50]. In
particular, Cicero argued that the ideal orator would be knowledgeable in all areas of
human life and understanding, emphasizing the connection between broad knowledge
and the ability to speak persuasively, thus highlighting the close relationship between
rhetoric and intelligence in Roman society [51]. In the past century, abstract reasoning was
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very appreciated and became a critical feature of Stern’s intelligence quotient [52]. Stern’s
intelligence quotient assigns a mental age to a person based on their performance on a
series of tests, including reasoning, logic, language, and more. In particular, he divides the
scored mental age with the chronological age to obtain a simple ratio.

However, several features that are independent of intelligence may affect Stern’s
measure. For example, the subject can be in a sad mood, be an introvert or have some
special condition such as autism. Due to these conditions, the intelligence shown externally
by the subject does not correspond to its true intelligence, in other words, the true human
intelligence would be a latent variable contaminated by noise or any approach that measures
human intelligence as Stern’s intelligence quotient is an approximation to the underlying
intelligence of the subject.

Moreover, as Stern’s test and similar ones include only a subset of all the subjective
problems that a human being is able to solve, the intelligence measured by these tests is a
lower bound of the true intelligence of the human being. Consequently, we believe that
these approximations are very naive, poor, unreliable, culturally biased, and noisy. From
a statistical point of view, the intelligence quotient would be a poor estimator of human
intelligence: biased because it does not test all the areas of intelligence and it is influenced
by Western culture and with high variance as its measurement contains noise because
individuals may be nervous, be shy, have a special condition or simply do not wish to
score high.

Hence, as we can only obtain a measure of intelligence via a test analogous to the one of
Stern, as the quality of the approximation is poor, the value of this random variable cannot
be used in a causal relation with the value of the phenomenal consciousness dichotomous
variable. Recall that these tests are only able to reduce the true underlying intelligence
of a human being, or even a system, as an approximate lower bound. Consequently, this
quantity cannot be established as the cause nor the effect of phenomenal consciousness.

We can illustrate several examples of this statement. For instance, a comatose person
is, according to neuroscience, phenomenally conscious [53] but would score a 0 according
to Stern’s test or similar ones. Another example is natural language generative transformers
like GPT-3. This algorithm is very close to passing the Turing test [47] and performs very
successfully in intelligence quotient tests. However, as we will see in the next section, it
is clear that this system does not possess awareness. Finally, a Down syndrome person
would score fewer points on average than a neurotypical person but clearly possesses
consciousness. These three examples show how computational intelligence and phenome-
nal consciousness are not directly related, therefore refuting Russell’s analogy. An even
more convincing case than the rest is this one: In the science-fiction book The Three-Body
Problem [54], an enormous plethora of people were displayed on a planet acting like a
CPU. Each person acts as a transistor, creating a vast Von Neumann architecture. Most
critically, observe that there is no physical connection between the people acting as transis-
tors. Consequently, according to consciousness theories such as information integration
theory, which requires physical connections [12], or the Pribram–Bohm holoflux theory of
consciousness [55], this people-CPU would be non-conscious as a whole. However, it can
solve the same problems that a high-capacity deep learning model can solve, as the people
CPU can execute a program that implements the deep learning model. This is the most
obvious case where we can see that any algorithm, independent of the degree of intelligence
we can measure concerning its behavior, does not have phenomenal consciousness and
that phenomenal consciousness does not share a relationship concerning intelligence. In
the following section, we will argue how non-computational intelligence may be correlated
with consciousness, but it remains a mystery, and we cannot say objectively if they are
dependent or not.
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5. Intelligence Is Not a Measure of Consciousness

If we accept as absurd that they are dependent, we find some problems. We used in all
the sections of Bayes theorem to model the two hypotheses, entities having or not having
phenomenal consciousness.

Machine Consciousness

The computer science community that studies the potential for consciousness in ma-
chines is called machine consciousness [20]. In particular, the machine consciousness
community, inherits the assumptions of functionalism, like multiple realizability and
connectionism to speculate that systems or robots may develop qualia through the imple-
mentation of expert systems, machine learning models, hybrid methodologies, or other
variants of information processing systems that, in any case, they can be emulated using
Turing machines [20]. However, as illustrated in the previous section with the people-CPU,
the computational intelligence shown by algorithms, independently of its complexity, is
not the cause of phenomenal consciousness. Moreover, as we will illustrate in the following
section, there are more philosophical arguments that provide evidence for the highly remote
hypothesis that computational intelligence is the cause of phenomenal consciousness.

Our argumentation depends on the assumption that artificial intelligence systems,
like high-capacity deep learning models, are not aware of themselves. As currently an
ensemble of systems would have greater computational intelligence than human beings
and they do not have phenomenal consciousness, this example is a great counter-argument
to the hypothesis that phenomenal consciousness is an epiphenomenon of computational
intelligence or that they are simply dependent variables. Hence, in this section, we will
describe the main counterarguments to the strong artificial intelligence hypothesis, i.e.,
the one saying that complex machines implementing high-capacity models and reasoning
systems may arise consciousness by emergence.

The Nobel laureate Roger Penrose defends its controversial Orch-Or theory that
states that phenomenal consciousness arises at the quantum level inside neurons [56].
Roger Penrose argues that human consciousness cannot be replicated by a computer,
providing a plethora of strong artificial intelligence counter-arguments that show how
understanding and consciousness are non-algorithmic processes and are possibly related
to quantum mechanics.

First, we find the famous Searle Chinese room experiment [57], which highlights the
difference between pattern recognition, or computation, and understanding. A long list
of criticisms has been presented against Searle’s original experiment (a search in Google
Scholar gives more than 10,000 results). We refer the reader to [58] for a detailed account
of responses. Summing up, Searle defends biological naturalism [59], which views con-
sciousness as a biological process and rejects the idea that machines can achieve true
consciousness. Also, we would like to focus on Harnad’s response [60], which focuses
on symbols having a meaning that must be grounded in “robotic functions” that link the
system to the world. Later, he argued that even if these robotic functions were implemented,
“feeling” would be missing [61].

In our words, understanding a language requires an additional mapping that the
observer that lies inside the room lacks. A mapping of every word of the language and the
qualia that the words refer to. Qualia are necessary for understanding, and phenomenal
consciousness is necessary for qualia. Hence, as the machines lack phenomenal conscious-
ness, they are unable to understand a language and consequently all that they do perform
is pattern recognition, in other words, solving complex correlations creating a function
whose input is a sentence of a language, and its output is another sentence of that language.

Recall from previous sections, where we provide the example of the people-CPU that
appears in the science fiction book The Three-Body Problem [54] that was able to perform
complex computations and run algorithms to predict a planetary disaster without using
computers, that performing complex pattern recognition tasks due to the information
processing performed by high capacity deep learning or other statistical models is not
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enough to arise phenomenal consciousness by emergence. Concretely, not only in science
fiction have we found an example of a person-CPU but in a real experiment available on
Youtubeand that has been implemented in a code that is available on Github, we have
found how people were organized smartly in a field emulating a brain to perform an
algorithmic task. If that experiment had more people available, they could solve any
kind of problem that a Turing machine is able to solve. In other words, the Stilwell brain
is also a Turing machine, like quantum or classical computers, that does not possess
phenomenal consciousness. If an external observer does not know whether Stilwell’s brain
is a code, like the one hosted on Github, or people being organized in a smart way, it
could argue that it is intelligent. However, according also to, without loss of generality, the
integrated information theory of consciousness and the Pribram–Bohm holoflux theory of
consciousness, the Stilwell brain or any other brain created by independent entities is an
excellent example that shows how computational intelligence can not model phenomenal
consciousness.

It is also important to consider that all the algorithms that can be executed in a
computer can be solved by Turing machines [62]. Quantum computers are not an exception,
both classical computers and quantum computers are universal Turing machines and,
hence, solve the same kind of problems only with different computational complexity [63].
Nevertheless, humans are able to feel, which requires being able to perceive the qualia
of the feeling and, we have said before, having the phenomenal consciousness required
to feel, a phenomenon that is not able for a Turing machine and that we cannot measure
objectively [64]. If quantum computers are not able to possess the characteristics and
abilities of phenomenal consciousness; hence, the idea of the brain being a quantum
computer or arising phenomenal consciousness by means of a quantum-like procedure is,
at least, a reductionist one, as, in principle, phenomenal consciousness is independent of
this procedure.

Finally, because of the qualia that we experience, we can gain intuition about problems
that do not have an algorithmic solution. It is especially relevant that this intuition, the
experience of being able to understand these problems, cannot be sensed by a computer,
as it cannot perceive qualia. Some examples of noncomputable problems are the halting
problem (to determine from a random computer program description and an input, whether
the program will finish executing the problem, or continue to run forever [65]). Another
example is Hilbert’s tenth problem, which deals with Diophantine equations (equations
involving only sums, products, and powers in which all the constants are integers and the
only solutions of interest are integers). In particular, Hilbert’s problem, which proved to be
undecidable, is described as being able to find an algorithm that decides whether a random
Diophantine equation has an integral solution [66].

Dealing with people suffering from different syndromes such as Down [67] or severe
autism [68], they would score low in Stern’s intelligence quotient and are phenomenally
conscious. This is a counter-example to Russell’s analogy dealing with computational
intelligence. The extreme case would be the one dealing with a comatose person. Concretely,
there is empirical evidence coming from neuroscience that shows how comatose people
have neural correlates of consciousness, which has been called islands of consciousness [53],
conscious states that are neither shaped by sensory input nor able to be expressed by motor
output. Technically, people suffering from a comatose state would be phenomenally
conscious but unable to perform any kind of movement or reaction to any external stimuli.

Lastly, neurobiology gives us evidence that animal brains share features with our
brains dealing with the neural correlates of consciousness [69]. Moreover, neurobiological
evidence shows how animal brains perform similarly to us in dealing with the elaboration
of the primary emotions, which include the foraging-expectancy system, the anger–rage
system, the fear–anxiety system, the separation–distress–panic system, and social–play
circuitry [70]. Although they do not solve mathematical problems nor are able to learn
human languages, birds have great spatial memory [71], dogs great smell [72], ants great
visuals [73]. Hence, computational intelligence cannot model phenomenal consciousness.
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6. Can Computational Intelligence Model Phenomenal Consciousness?

We will now formalize Russell’s analogy from a Bayesian point of view. First of all, we
emphasize that we prefer to use the Bayesian framework when we refer to random variables,
as phenomenal consciousness. Concretely, from a Bayesian point of view, consciousness is
a random variable because we do not observe it directly for other individuals except us;
hence, from a Bayesian point of view, we can only reason about it using random variables
until it is possible to reduce the uncertainty about this variable via observations, hence
being a clear example of a random variable from a Bayesian perspective.

The latent, unobservable measure would be whether an entity possesses phenomenal
consciousness or not. We assume here, as we isolate the observer of phenomenal con-
sciousness, in the sense of the defined term awareness by Dehaene, from all the different
features of consciousness such as access consciousness, that phenomenal consciousness
is a dichotomous variable C. Recall that phenomenal consciousness is not being aware of
more or fewer phenomena, as the complexity of the integrated information theory qualia
space φ can model. Phenomenal consciousness, from our definition, is being an observer of
the qualia space generated by a living being. Consequently, you can only be aware of the
qualia space, an observer of the qualia space, or not. Hence, following our assumptions
that phenomenal consciousness is not an epiphenomenon or intrinsically related to the
qualia space but a property of beings to be aware of their qualia space, we define phenome-
nal consciousness as a dichotomous variable of perceiving or not the qualia space that a
being generates.

Let I be the computational intelligence of an entity as defined in previous sections,
denoted by the continuous numerical variable I. A subject S may possess or not have
phenomenal consciousness, but with the current state of science, we are only able to
determine whether it is conscious by looking at the neural correlates of consciousness. If
the system does not have a biological brain or nervous system, science is unable to provide
any clue about the consciousness of S. Then, p(C | S) would be the conditional probability
that a subject S has phenomenal consciousness such that p(C = 1 | S) + P(C = 0 | S) = 1
and p(I | S) is the conditional probability of the computational intelligence of the subject.
Concretely, an intelligence quotient test would not determine the intelligence of S as
a point estimation but the only thing that it would do is to reduce the entropy of the
p(I | S) distribution.

In order to carry out this analysis, we use some concepts from probability theory that
we now review. The first one is the amount of information needed to encode a probability
distribution, also known as entropy. The entropy H(·) can be viewed as a measure of
information for a probability distribution P associated with a random variable X. That is,
it is self-information. It can be used as a measure of the uncertainty of a random variable X.
When the random variable is continuous, we refer to the entropy as differential entropy.
The entropy of a uni-dimensional continuous random variable X with a probability density
function p(x), or differential entropy H[p(X)], is given by the following expression:

H[p(X)] = −
∫

S
p(x) log p(x)dx . (4)

where S is the support of the random variable X, that is, the space where p(x) is defined.
The entropy H(·) is useful to model the following relation: If we have a random variable X
with high entropy H(·), that means that we have low information about the values that it
may take. On the other hand, if we consider a random variable X with low entropy H(·),
it is a sign that we have high information about the potential values that the variable X
can take. In other words, higher knowledge of a random variable implies lower entropy
and vice-versa. Another interesting concept regarding information theory, which we use
in this work, is the mutual information I(X; Y) of two random variables X and Y. Mutual
information is defined as the amount of information that a random variable X contains
about another random variable Y. It is the reduction in the uncertainty of one random
variable X due to the knowledge of the other. Mutual information is a symmetric function.
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Consider two random variables X and Y with a joint probability density function p(x, y)
and marginal probability density functions p(x) and p(y). The mutual information I(X; Y)
is the relative entropy between the joint distribution p(x, y) and the marginal distributions
p(x) and p(y):

I(X; Y) = ∑
x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)
. (5)

Concretely, we define as information gain the amount of information we gain for a particu-
lar random variable knowing the value of the other one.

According to Russell, we know that human beings are likely to be conscious, so
we denote the being of a human being as the dichotomous random variable B. Then,
p(C = 1 | B = 1) = 1 independently on the degree of intelligence. More technically, the
information gain of the intelligence degree I over consciousness, given that the entity is a
human being, is 0.

IG(C, I | B = 1) = 0. (6)

In other words, the entropy H(·) of the conditional probability distribution of con-
sciousness is also conditioned to the degree of computational intelligence of subject S,
which is also a random variable as we do not have direct access to it, is the same one. Then,
in our case, we can illustrate that the entropy on the consciousness random variable for
humans H(C | B = 1) is equal to the conditional entropy on the consciousness for a certain
computational intelligence level I.

H(C | B = 1, I) = H(C | B = 1). (7)

As p(C = 1 | B = 1) = 1, there is no need to show that H(I | B = 1, C = 1) = H(I |
B = 1), as it is obvious. Hence, we have formally shown how, in the case of human beings,
the computational intelligence degree is independent of the phenomenal consciousness
variable. However, until now we have only performed the analysis of computational
intelligence and phenomenal consciousness in the case that the subject is a human being.
Nevertheless, important implications of this analysis need to be taken into account. For
example, we now know that a low measure of computational intelligence, according to
the intelligence quotient of Stern, does not condition the subject from being conscious.
Let p(I) << denote a probability distribution over the computational intelligence for a
subject S having its density concentrated over a low value. Concretely, we know that
p(C = 1 | p(I) <<) = 1. We put here p(I) and not I = k being k a real number as we have
denoted that current measures of intelligence are noisy lower bound over the true value
of intelligence of subject S, which is a random variable. Importantly, we now know with
complete certainty that, in the case of disabilities or certain comatose states, a subject has
phenomenal consciousness.

Next, we analyze and compare the probability distributions p(C | I) and p(C). Science
gives us evidence that if the entity shares features with the human being biologically
speaking, concretely the neural correlates of consciousness, the subject may be conscious.
We denote with N ∈ [0, 1] a continuous numerical variable that represents the degree
of biological similarity of the brain of the subject with the brain of the human being.
Concretely, current AI systems, denoted with the dichotomous variable A, have A = 0, as
deep neural networks or meta-learning methodologies are just sequences of instructions
sequentially computable by Turing machines as we have shown before, although their name
may be misleading. In particular, every algorithm written in a computer can be solved by a
Turing machine. Critically, the concept of the Turing machine is relevant to the question
of machine consciousness because it provides a framework for thinking about the limits
of computation and because it models correctly any algorithm performed in a computer.
One way in which the Turing machine can be used to clarify the question of machine
consciousness is by providing a way to distinguish between computational processes that
are purely mechanical, such as the ones involved in intelligence as neuroscience shows [74],
and those that involve some form of conscious, or meta-cognition, experience, whose
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physical explanation is not clear [64]. An infinite tape quantum Turing machine would be
able to run a set of algorithms that potentially solve any problem related to intelligence
but whose artificial support would not necessarily perceive qualia, always remaining
unaware of solving any problem. Also, according to some theories of consciousness, such
as the global workspace theory, consciousness involves the integration of information from
different parts of the brain. From this perspective, a machine could be considered conscious
if it is capable of integrating information in a similar way. However, it is not clear whether a
Turing machine, which eventually operates on a fixed set of rules, is capable of this type of
integration. Further work will explain other modeling alternatives like Gualtiero Piccinini,
Nir Fresco, and Marcin Milkowski.

We found a real analogy with P(C) and P(C | N). Concretely, these variables are,
according to evidence found in neurobiology, linearly correlated, i.e., r(C, N) ≈ 1 being
r the correlation coefficient. However, a bird, elephant, dolphin, monkey, or cephalopod,
for example, may score a low computational value p(I) <<. However, again, we find that
conditioning the variable p(I) << to the conditional distribution P(C | N) does not change
the entropy of the distribution:

H(C | N, p(I) <<) = H(C | N). (8)

Finally, we use the example of a meta-learning system to show how the degree of
computational intelligence is not correlated to phenomenal consciousness. Concretely, a
meta-learning system with N = 0 has the biggest computational intelligence known as it is
able to solve a potentially infinite set of computational problems that humans or animals
are not able to solve up-to-date, as we have seen in previous sections. We denote that such
a system has a computational intelligence probability distribution p(I) >>. However, we
know that p(C = 0 | N = 0) = 1, independently of its degree of computational intelligence.
In other words, if we condition the probability to p(I) >>, for all the set of artificial
intelligence systems, we have that p(C = 0 | N = 0) = p(C = 0 | N = 0, p(I) >>) = 1.
Hence, the degree of intelligence does not generate phenomenal consciousness as an
epiphenomenon or by emergence. Concretely, it is the anatomy of the biological brain, or
even less probably the nervous system or body, where supposedly we find, at least, neural
correlates of consciousness. Given all the information and evidence that we have provided,
we could formalize that the information gain of the computational intelligence random
variable given that we know the phenomenal consciousness variable if we marginalize the
kind of entity that may have phenomenal consciousness is 0, i.e., they are independent
random variables independently of the degree of intelligence.

IG(C, I) = 0. (9)

From a Bayesian point of view, this information could be formalized as follows.
Concerning artificial intelligence systems, let p(C = 1 | I, N = 0) be an a priori distribution
representing the probability of the system being conscious, our previous beliefs coming
from Russell’s analogy. Following this analogy, this probability was high as the system
is intelligent and the complementary probability, p(C = 0 | I, N = 0), is low. We have
provided empirical and theoretical evidence showing that this is not true, which we
formalize in the likelihood p(E | C = 1, I, N = 0), being E the evidence we have illustrated
in previous sections. Let p(E) be the marginal likelihood representing the probability of
our evidence being true, which is high due to the fact that it comes from highly cited papers
of various research communities like neurobiology, psychiatry, or philosophy of mind.
Lastly, let p(C = 1/E, I, N = 0) be our posterior beliefs of the hypothesis that artificial
intelligence systems are conscious. As the probability rectifier coefficient is very low, that is
p(E | C = 1, I, N = 0)/p(E), despite having an a priori belief supporting the hypothesis
of conscious artificial intelligence systems, now the posterior belief clearly shows that
p(C = 0/E, I, N = 0) > p(C = 1/E, I, N = 0) significantly. Mainly because computational
intelligence cannot model phenomenal consciousness.
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We would like to discuss several non-conventional computing paradigms under this
framework. The first one is symbolic computation. In particular, recall that first-order logic
framework is a subset of Bayesian inference, as for example, we have p(B|A) = 1 is equal
to A→ B. However, without having to use fuzzy logic, we could have a Bayesian network
p(B|A) = 0.5, being impossible to model under classical first-order logic. As probabilistic
programming is also a subset of the algorithms that can be run in a Turing machine, all
the previous statements hold. Second, current deep learning models and spiking neural
networks, although being fancy for folklore psychology and with brilliant behavior, are
also reducible to binary instructions being executed in a computer, very different from how
a human brain works, so they also belong to Turing’s machine algorithms and previous
statements hold. Finally, we make an exception for future neuromorphic hardware, as the
span of algorithms that may execute and the physical and chemical properties involved
may, we do not know, emerge consciousness. Hence, we place a non-informative prior to
the emergence of consciousness in future neuromorphic hardware systems, leaving the
analysis of these systems for further research.

7. Conclusions and Further Work

Phenomenal consciousness is defined as the awareness of an individual of internal
and external stimuli, of the information processed by the brain, in the form of qualia. In
this work, we have analyzed and shown how Russell’s analogy of consciousness, which
basically states that awareness and intelligence are correlated with high probability, is a
fallacy, at least for computational intelligence. In order to do so, first, we defined what is
phenomenal consciousness and give an objective measure of computational intelligence.
Then, we provided a set of counter-arguments to Russell’s analogy with evidence coming
from neurobiology, psychiatry, or philosophy of mind, where we can see how computa-
tional intelligence cannot model phenomenal consciousness. Consequently, we include a
formalism with probability and information theory to represent this relation. We wonder,
for future work, about the implications of these statements regarding society and ethics.
Another research line is a formal comparison of this work against some consciousness
theories such as Integrated Information Theory.
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