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Abstract: Given the difficulties of defining “machine” and “think”, Turing proposed to replace
the question “Can machines think?” with a proxy: how well can an agent engage in sustained
conversation with a human? Though Turing neither described himself as a philosopher nor published
much on philosophical matters, his Imitation Game has stood the test of time. Most understood at
that time that success would not come easy, but few would have guessed just how difficult engaging
in ordinary conversation would turn out to be. Despite the proliferation of language processing tools,
we have seen little progress towards doing well at the Imitation Game. Had Turing instead suggested
ability at games or even translation as a proxy for intelligence, his paper might have been forgotten.
We argue that these and related problems are amenable to mechanical, though sophisticated, formal
techniques. Turing appears to have taken care to select sustained, productive conversation and that
alone as his proxy. Even simple conversation challenges a machine to engage in the rich practice of
human discourse in all its generality and variety.

Keywords: Imitation Game; Turing Test; computational linguistics; artificial intelligence

1. Introduction

When Turing [1] (p. 433) wrote about the difficulty of answering the question “Can
machines think?”, he stated that “If the meaning of the words ‘machine’ and ‘think’ are to
be found by examining how they are commonly used it is difficult to escape the conclusion
that the meaning and the answer to the question, ‘Can machines think?’ is to be sought in
a statistical survey such as a Gallup poll”, which he rightly described as absurd. Instead,
he proposed a proxy called the Imitation Game wherein a machine would engage in
conversation with a rigorous human interrogator with the aim of being judged human.
Doing well at this seemingly singularly human practice would sidestep the difficult tasks
of defining intelligence, human or machine, and would replace the target question.

From Turing’s 1950 paper, which provides sample snippets of conversation between
an interrogator and an imagined machine (which he calls the Witness) mimicking a human,
it is clear that Turing intended that for a machine to be judged human, it needed to directly
respond to tough questions from a demanding interrogator and to sustain, engage in, and
contribute collaboratively to the dialogue.

The Imitation Game came to be known as the Turing Test, but for many the term
“Turing Test” has become confused with Turing’s [1] (p. 442) performance predictions for
computer conversation by the end of the 20th century. He expected that by then an average
interrogator after five minutes of questioning would have not more than a 70 percent
chance of making a correct identification. Thus, after a 2014 Turing Test competition [2]
in which more than 30 percent of human judges considered an unfocussed chatbot called
Eugene Goostman to be human, event organizers claimed the test had been passed. This
news spread quickly through the mainstream media.

Critics [3,4] pointed out this error, which was reflected in the media. Some scholars
used the Goostman episode to advocate for more focused tests [5]; some echoed earlier
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concerns proposing less stringent tests [6]. In fairness to all concerned, Turing’s prediction
about the performance of turn-of-the-century chatbots was remarkably accurate and ar-
guably suggested that he may have considered the stated level of performance a milestone
towards eventual success.

Our response was to examine Turing’s original words to pin down the meaning of his
test. In the course of that project, we revisited a shift in Turing’s thinking between 1948 and
1950, which Hodges [7] (p. 296) said “boldly extended the range of ‘intelligent machinery’
to general conversation”, whereas we consider it a seismic shift that displaced Turing’s
1948 “branches of thought” with unrestricted human-level conversation (the Imitation
Game) as the proxy for testing whether machines could exhibit human-level intelligence.
This has become relevant now (2022) because the last decade has witnessed supra-human
performance by software in several of the very domains Turing named in 1948 (e.g., chess
and translation, but also Go and real-time text-to-speech conversion), perhaps suggesting
that computers capable of unrestricted conversation are on the horizon. For the time being,
however, the needle has barely moved on the Imitation Game.

Thus, the next section elaborates the preceding observations, and the two subsequent
sections go on to discuss how and why several of Turing’s original branches of thought (in
particular, games and certain language recognition/transformation problems) have been
found to be amenable to automation. Then, we then ask whether and what Turing might
have understood about the Imitation Game, as well as games and language processing,
that made conversation qualitatively more difficult to automate than the other branches of
thought—so much so that he did not refer to them in 1950.

To clarify the terminology and assumptions made herein, we use Imitation Game to
refer to the test as proposed by Turing [1] and Turing Test to describe chatbot competitions
and the like. Scholars interpret the Imitation Game differently [8–10]; we interpret the Game
as a competition between a human and a machine programmed to be judged human by a
rigorous interrogator. We remind the reader that the Mind paper does not use phrases such
as “pass the Turing Test” or “pass the Imitation Game”, but instead uses terms like [1] (p. 422)
“do well in the imitation game”—which Turing also did not define explicitly. However, we
believe it is clear from the quality of the Witness’s contributions to the imagined dialogue
that Turing intended the Witness to succeed unequivocally. To quote Harnad [11] (p. 299),
the machine’s capacities would be “life-size and life long; the candidate must be able to
deploy them with anyone, indefinitely”, and they must not be “one-night party tricks . . .
but real, human-scale performance, indistinguishable from our own”. To that, we add
the notion that conversion includes two participants building a shared understanding,
repairing as necessary. Lastly, by language recognition/transformation, we mean the ability to
recognize human language in some form and transform it to another.

A goal of this paper is to explain the technology behind the “supra-human” achieve-
ments recently witnessed by way of giving reasons why we believe it is unlikely a machine
will do well at the Imitation Game anytime soon. In our conclusions, we suggest that
dialogue is a kind of practice, a discipline that might initially be learned by rule-following
but eventually transcends the rules, as happens in law, politics, and science. However,
everyone engages in dialogue.

2. Accidental Philosophers and Hard Problems

Though the computers of his era were crude compared to present-day household
gadgets, Turing’s 1950 paper has withstood the test of time. Schieber [12] (p. 135) writes,
“Turing, in proposing his Test, had packaged in one easily graspable form many of the
central problems of philosophy of mind that had exercised people for centuries: the mind–
body problem, how mental states relate to the world, the problem of the existence of other
minds”.

However, Turing’s ideas about machine intelligence appear to have shifted in the
years immediately preceding 1950. In Intelligent Machinery [13], written in 1948 (but not
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published until 1968 [14]), Turing discussed “machine intelligence” at length, suggesting
that a machine might demonstrate its powers in the following “branches of thought”:

1. Various games, e.g., chess, noughts and crosses, bridge, and poker (here we call these
“intellectual games”);

2. The learning of languages;
3. The translation of languages;
4. Cryptography;
5. Mathematics.

In his 1948 manuscript, he writes that “the learning of languages would be the most
impressive, since it is the most human of these activities”, although he does not explicitly
mention dialog with a human. Turing also sketched out a chess-based variant of the
Imitation Game, writing that [13] (p. 431) “It is not difficult to devise a paper machine
which will play a not very bad game of chess”. He also states [13] (p. 412), “Playing against
such a machine gives a definite feeling that one is pitting one’s wits against something
alive”. (Because that era’s computers could not run a full-blown chess-playing program, a
hidden properly trained human player impersonated (so to speak) a machine by rigidly
executing a paper specification of a chess-playing algorithm).

It is striking that Turing’s 1950 Mind paper makes no use of the expression “branches
of thought”. Instead, constructive dialogue with a human becomes the paper’s centerpiece.
Hodges also takes note of this [7] (p. 530), stating that Turing had been careful to choose
as the elements of the 1948 list activities “which involved ‘no contact with the outside
world’ [7]. Hodges continues, “The Mind paper . . . boldly extended the range of ‘intelligent
machinery’ to general conversation (our emphasis)”. We will go further and say that
Turing’s 1950 paper was all the bolder for suggesting that the Imitation Game alone sufficed
to replace the question “Can machines think?”.

Making this shift even more remarkable in hindsight is that significant computational
progress has been made in every branch of thought in Turing’s original list—but little
progress has been made on the Imitation Game.

The next section sketches out recent advances in computer games, the first branch of
thought in Turing’s list. Many have considered such intellectual games a fine testbed for
artificial intelligence because their precise and compact definitions strictly circumscribe
the problem domain, yet the games have held a certain intellectual cachet. However,
as computers demonstrate the ability to defeat world masters at game after game, it
is reasonable to ask whether such performance demonstrates intelligence or just sheer
computing power.

Following the section on games, we discuss current language processing technology,
which bears similarity to the technology used in computer Go. We characterize the current
successes in language processing as language recognition/transformation, where recognized
language fragments are transformed into another form. This section amplifies observations
in the popular press [15,16] that although machines have become more proficient at certain
complex language tasks, they have not become more intelligent, largely because they
remain highly circumscribed and syntactic and because of their inability to manipulate
language according to certain patterns of plausible inference.

Later, we note that Turing’s predictions are borne out: significant progress has not
been made on unrestricted conversation between machines and humans. Hence, Turing in
1951 observed [17] (p. 489) that this would take “at least 100 years”. We further consider
conversation as a practice and revisit the idea [18] that is it not yet known whether the
Imitation Game is a threshold that we can approach stepwise over time or whether it is a
watershed that separates us from machines.

3. What Is Easy about Automating Games and What Is Hard?

Many scholars write that early AI researchers believed expert computer performance
in games would be best achieved by emulating human experts [19,20]. This idea spilled
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into other areas of human expertise such as medical diagnosis [21], where the idea received
media attention [22].

We mostly consider games such as tic-tac-toe (called “noughts and crosses” in [13]),
checkers, chess, and Go, which are all two-person full information games, that is, games
where players take turns and can always see the entire board. An old saying goes that a good
game is easy to learn but hard to master. For all these games, the setup is straightforward,
the rule sets are small (also unambiguous and easily translated to computer code), but in
most cases, they generate a combinatorial explosion of board positions that makes them
difficult to master. This explosion is finite, making it possible in theory for an agent to
consider in finite time every possible outcome of every possible move and guarantee the
best possible result for the agent. Whereas “finite time” might be tractable for a very
small game (e.g., 3 × 3 checkers), for larger games, it may mean many lifetimes. To
manage this, scholars over the years have investigated at least three general approaches to
gaming—imitation of human play, efficient exhaustive search algorithms, and statistical
search methods—which may be combined in various ways.

3.1. Imitating Humans at Games

Though many consider tic-tac-toe child’s play, luminaries no less distinguished than
Alan Newell and Herbert Simon [20] have provided a complete expert strategy for games
similar to tic-tac-toe by way of “cloning” the behavior of experts. Early computer chess
programs combined book openings and infallible endgame algorithms with the widely-
used technique of hand-crafted numerical evaluation functions [23] (p. 137) that measured
the “goodness” of the positions resulting from each possible move, from which the player
selects the “best” (for example, a simple chess evaluation function might be the sum of
the values of the remaining pieces). The book openings are time-tested, and the useful
endgame strategies mostly infallible, but evaluation functions were heuristics, possibly
designed by capturing expert instincts in an era when it was not possible for computers to
look far ahead.

3.2. Exhaustive Search

Exhaustive search proceeds from a current board position, plays all possible subse-
quent games, then chooses a move that guarantees the computer player a best outcome
against any player, including an equally powerful machine. Minimax [23], an early general-
purpose search algorithm for two-person games, traverses the entire search space and
suggests a move. Alpha–beta search [24] improves on minimax by using earlier search results
to ignore branches that cannot guarantee better results than those already found, but its
worst-case performance is no better. It has an Achilles heel that we will return to: because
these algorithms guarantee an optimal result against an equally strong player, alpha–beta
and minimax will choose a move that guarantees a draw even when there is a possibility of
winning against a weaker player.

Tic-tac-toe (included in [13]), with only a quarter million board positions, is amenable
to this kind of search and remains useful as a testbed for undergraduate AI. As recently as
30 years ago, it was impractical to implement real-time tic-tac-toe with minimax alone.
Alpha–beta search made real-time tic-tac-toe almost instantaneous on the computers avail-
able then and also motivated the search for faster exact algorithms.

To illustrate how far hardware has come, we implemented bare-bones tic-tac-toe in a
few hours using the Python programming language and minimax search with no special
features on a recent MacBook. The game hesitated just perceptibly when deciding an
opening move, but otherwise appeared to choose moves instantaneously.

In 2007, Schaeffer [19] demonstrated that checkers, with a state space of about
1020 positions, is weakly solved, meaning that the result (at least a draw) and a strategy
for achieving it from the beginning of the game are known. To do this, Schaeffer ran
as many as 200 processors almost continuously from 1989 until (about) 2007, one of the
longest-running computations ever. From this, one can reasonably infer that checkers, like
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tic-tac-toe, is deterministic and fully solvable given sufficient resources. Thus, Schaeffer [19]
(p. 1518) writes “Perhaps the biggest contribution of applying AI technology to developing
game-playing programs was the realization that a search-intensive (‘brute-force’) approach
could produce high-quality performance using minimal application-dependent knowledge”
(our italics).

For real-time play, even alpha–beta search is not practical. It remains useful because a
program using alpha–beta search can look ahead twice as far as it can using minimax in the
same amount of time, which makes alpha–beta useful for providing more lookahead in
real-time games, at which point evaluation functions kick in.

3.3. Probabilistic Search

Schaeffer’s weak solvability result makes it difficult to deny that chess and even
Go may be solvable, but given the sizes of their state spaces (1050 states for chess and
10150 for Go), weak solutions are unlikely anytime soon, let alone real-time exhaustive
search solutions [19]. However, just two years after a Go master was defeated by Google’s
AlphaGo, its successor, AlphaZero [25], attained “superhuman” performance not only at
Go but also at chess and shogi (sometimes called Japanese chess), using what we would
call a probabilistic technique.

What is new about AlphaZero is that it learns games entirely from first principles using
extensive unsupervised self-play to build a convolutional neural net (CNN) (initialized
with random parameters) that for any board position returns an expected outcome for the
current player. For chess, this would be a number between −1 and 1, where −1 means loss,
0 means draw, and 1 means win.

During play, AlphaZero builds a Monte Carlo Search Tree. Suppose player A is at the
starting board position pstart (the initial root of the search tree). For each legal move ai
available at pstart, it retrieves a value zi from the CNN for the position pa_i (the result of
moving to ai from pstart), giving player A a set of moves and expected outcomes to choose
from, and the pa_i positions become new leaves/children of pstart in the tree. If Player A
specifically chooses pa_2, a simulated game is played to the conclusion, and all positions
along the path from the root to the end node, including pa_2, are updated to include the
new information. For the rest of this turn, Player A may play as many simulated games as
there is time for, but can now choose between explored and unexplored nodes.

Because of the number of board positions in chess and Go, it is practically impossible
to physically store all positions and outcomes. The CNN “statistically shmushes” this
information by updating its parameters, which allows it to provide an outcome z for
an arbitrary (and possibly unseen) position p. The user must accept the (possibly mind-
bending) notion that a phenomenal number of board positions and outcomes can be stored
in this way, that the information thus stored can be meaningfully interpolated, and that
updates will not result in significant loss of information obtained earlier. We remark that
some observers remain skeptical about exactly what is stored in neural nets’ parameters [26–28],
but the fact is that they perform well on these well-defined problems.

Rather than saying the CNN “stores” all this information, a better metaphor might be
that it continuously rewrites its evaluation functions as it gains experience, “compressing”
each experience into these evaluation functions, and possibly losing some information
while improving overall play. Thus, AlphaZero is more adventurous than alpha–beta—it
may choose the move with the best expected outcome.

Bridge and poker, two games Turing names in 1948 [13] but not in Mind [1], merit
different kinds of mention. They differ from the games discussed above in that they
introduce uncertainty: cards are shuffled (the introduction of randomness), players cannot
see other players’ hands (incomplete information), and both games have bidding processes
that introduce still more uncertainty, notably bluffing in poker. Nonetheless, they form a
closed system where, in theory, every combination of card shuffle and every possible bid
could be simulated with exhaustive search and have regularities that could be exploited
probabilistically using methods similar to the preceding methods. Google’s PoG (Player of
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Games) already plays high-level poker [29], and at this writing, NukkAI has defeated eight
world bridge champions [30,31].

This kind of uncertainty differs from the kind of uncertainty associated with sub-
jective judgment in some physical sports (e.g., the infield fly in baseball or charging
versus blocking in basketball) or that of real-life unanticipated events such as housing
bubble bursts, pandemics, and unexpected stock market volatility. We will not be surprised
when AlphaZero (or a successor) succeeds at winning all games of real-time bridge, poker,
and Go.

4. What Is Easy about Language Recognition/Transformation and What Is Hard?

The proliferation of successful tools for computational linguistic tasks (e.g., auto-
correct, auto-complete, grammar checkers, speech-to-text transformation, question answer-
ing, automatic subtitling, computer translation, optical character recognition (OCR), and
voice assistants) may lead some to believe that strong performance at the Imitation Game
may come sooner than has been expected. Here, we give our perspectives as to why certain
software tools for these tasks have improved, although at least some of the consumer tools
still rely heavily upon the ability of the humans interpreting the outputs to “auto-correct”
their not infrequent errors. In the end, we conjecture that there is a long way to go before
computers can engage in creative constructive conversation.

We begin by considering the use of context in language recognition/transformation,
with a focus on language translation. We first consider simple language models by way
of introducing the initial successes of the use of context as well as the challenges that
remain; we then move on to transformer technology, which is the state of the art at the time
of writing.

4.1. Early Thoughts on Machine Translation

Like games, languages are easy to learn but hard to master. One problem is that
language can be ambiguous even to a native speaker. As early as 1949, Weaver [32] (p. 19)
noticed that that “insofar as written language is an expression of logical character, . . .
the problem [of translation] is at least formally solvable”. Observing that word-by-word
translation did not work well, he added that meaning could often be disambiguated using
the context of N adjacent words, where N might vary. Some words (‘the’, ‘they’, ‘when’)
require no context, others may be disambiguated with some small N, but others might
require “the whole book”, a next-to-impossible technical challenge at the time.

4.2. Exploiting Context with Conditional Probabilities

Early purely logical (i.e., grammar-based) approaches to computational linguistics did
not yield significant practical results. However, the area gained traction after adopting
statistical approaches.

We begin with early work on part-of-speech (POS) tagging in English. We remark here
that POS tagging was considered a useful first step for larger recognition/transformation
tasks such as translation. To give the flavor of the idea, if POS tags could be attached to
words in an English language fragment, it would become easier to identify sequence of
higher-level structures, for example, subject, indirect object, verb, and direct object. These
might then be mapped into a different higher-level sequence for another language, after
which individual words could be translated. This oversimplifies the translation task, but at
the very least, given a correct tagging, ‘good’ the noun could be distinguished from ‘good’
the adjective.

This effort was bootstrapped by teams of experts (linguists, statisticians, computer
scientists) who manually tagged a significant corpus of fragments of text in context (extracts
from articles, books, newspapers, and scientific papers). One example is the Lancaster–
Oslo–Bergen (LOB) corpus [33], which contained one million words in context, each tagged
with one of 150 tags (the LOB corpus was finer-grained than, say, the Penn TreeBank with
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36 tags plus punctuation marks). For testing taggers, the corpus might be divided into a
900,000-word training corpus and a 100,000-word test corpus.

A simple tagger may be constructed by first computing two kinds of probabilities from
the corpus. The first kind is the probability that a particular tag might display a particular
word; the second is the probability that one tag in a sequence is preceded by another. Given
a language with, say, 50,000 words, one might fear that this creates too many word/tag
and tag/tag parameters. However, many of the parameters are zeroes.

Next, given an input word sequence w1 . . . wn and a set of provisional partial tag
sequences, each of the form t1 . . . tk, each with score s (initially 1), a bare-bones tagging
algorithm could work as follows. Upon seeing word wk+1, s is multiplied by the probabilities
p(wk+1|tj) and p(tj|tk), where tj ranges over all possible tags that might generate wk+1, and
tk is the last tag of the partial sequence. The algorithm proceeds until all possible tags
are assigned to the last input wn and the “winning” tag sequence is then the one with the
highest score overall.

The astute reader will notice that this calculation is proportionate to the probability
that the winning tag sequence generated the observed words, which is the essence of the
Hidden Markov Model (HMM) [34]. This compact description omits many details for
reasons of space, but to understand how it works in real time, consider the following two
sentences.

She was a good human.

She was a good human being.

The word ‘good’ can be a noun (NN), adjective (JJ), or adverb (RB) (as in “she looked
good as dead”), with JJ generating the word between 50–100 times more often (in the LOB)
than the other two tags, while the word ‘human’ is a hundred times more likely to be
generated by JJ than NN. Finally, ‘being’ is 20 times more likely to be BEG (a special tag
for the verb form of ‘being’) than NN. Because the words ‘She’, ‘was’, and ‘a’ belong to
a special category of closed-class words, word that only take on single tags, there is only
one possible initial tag sequence for the first three words: PPP3A-BEDZ-AT. A tagger as
described above chooses the intuitively correct tag sequence JJ-NN for the last two words
of the first sentence but also chooses the intuitively correct sequence JJ-JJ-NN for the second
sentence. That is, the tagger resolves the ambiguity of the tag of the word ‘good’s tag with
this small bit of context.

Overall, the tagging accuracy of such a tagger with a few additional heuristics is about
95–97%, a rate that was impressive in its day. (To minimize the number of parameters
for use on an inexpensive computer, Neufeld and Adams [34] replaced each word in the
corpus with just its last character, reducing the vocabulary to 26 letters of the alphabet plus
some punctuation. That tagger trained and tagged on each symbol’s last letter, achieving
an accuracy of about 70%, a surprise at the time.) A close look at results (correct and
incorrect) from this tagger reinforces two notions: firstly, that language may be full of
regularities to exploit, but secondly, that this tagger is not “smart”, but rather, a high
performer probabilistically.

To understand why, suppose ‘good’ is changed to ‘kind’ in both sentences. The
resulting sentences do not differ much from the originals, but in this case, the successful
tag sequences for the two new sentences have the same initial tags but end with NN-JJ
and NN-JJ-BEG, respectively, instead of JJ-NN and JJ-JJ-BEG. Since the tagger performs so
well generally, and because the two new sentences seem much like the original pair, this is
perhaps troubling. The cause is that kind is so overwhelming likely to be NN that it throws
the rest of the calculation off the rails, and the error propagates.

The problem is akin to what we have called the Watson–Toronto effect [18]. Watson
was constructed by IBM to compete in the television trivia game Jeopardy against human
champions. Its performance astonished viewers until it was given (in the category U.S.
Cities) the clue, “Its largest airport is named for a World War II hero; its second largest, for a
World War II battle”. Watson answered “Toronto”. To North American audiences, this was
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a hysterical blooper, as Toronto is one of Canada’s largest cities. To be fair, Watson “knew”
it was guessing, and despite this error, it soundly defeated the humans.

4.3. Extending Context Flexibly with Transformers

Research on POS tagging has explored many options for improving performance:
larger training datasets, additional annotations, and wider contexts. Fast-forwarding to
2017 [35], the transformer, the present standard for language recognition/transformation,
eliminated the need for an entire category of neural nets. As with games, this advance was
facilitated by using a neural net as a pseudo-database, as well as translating entire phrases,
sentences, and paragraphs at a time.

The training phase for a translation transformer requires the collection of a consider-
able number of input–output (source language/target language) pairs. This distinguishes
translation from game-playing—no set of rules exists (yet) that can generate all possible
legal input sequences, let alone acceptable input–output pairs, so training cannot rely on
the equivalent of self-play.

Testing begins with new source language text where words are embedded into vectors
of real numbers, where entries correspond to word features, and words whose embeddings
are nearby in this multi-dimensional space are considered similar. As with the interpolation
of encoded board positions, the idea of similar words being nearby is also mind-bending,
but the proof of the pudding is in the eating: the software performance is improving.

The goal of translation is to find the “best” vector of output words in the target
language to match the input, with a presumption that not all inputs have been seen such
that the answer can be looked up in a phrasebook. The transformer architecture has the
potential of doing something like what Weaver called “reading the whole book”, which
it accomplishes by using multiples kinds of attention, that is, measures of relationships
between words and sequences of words.

The encoder in the transformer first enriches the initial input with information about
the relationships amongst all the words in the sequence, so that no relationships are lost,
regardless of relative positions in the input sequence, which it feeds to the decoder, which
finds the best output sequence by measuring the relationships within the output sequence
thus far, as well as the relationships between the initial input and the output sequence thus
far as the output sequence is built.

This can be seen in action by using Google Translate to translate the following English
sentences to French:

From the bank by the river, I took some ferns.

From the bank by the river, I took some money.

These are rendered as:

Au bord de la rivière, j’ai pris des fougères.

De la banque au bord de la rivière, j’ai pris de l’argent.

(The preceding translation was performed on 1 June 2022 but does not work if
you break the input into two sentences. For efficiency, it might be restricting
context to a single sentence.)

This section and the preceding skip details. For instance, the LOB corpus happens not
to contain the word ‘feisty’, so one category of solution from that era considers methods for
estimating values for unseen parameters for words and tag sequences not appearing in the
training data. Our presentation of transformers has not included numerous engineering
and mathematical techniques, including how positional information is represented and
teacher-forcing.

One key takeaway is that these technologies have enjoyed ever-increasing empirical
success by training on increasingly large bodies of language, finding ever more features of
language and finding smart ways to store them and ways to approximate given previously
unseen inputs. Moreover, this has been done without ruleset games such as chess have that
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can be used to determine unequivocal success or failure. However, because transformers
use an essentially probabilistic technique to predict outputs, it is implicit in the design that
they will still make errors. Thus, we are not aware of any multilingual jurisdiction that has
relied entirely on machines to translate its statutes, for example.

4.4. Other Language Recognition/Transformation Problems and the Other “Areas of Thought”

Translation offers a useful viewpoint on other language recognition/transformation
tasks. In speech-to-text (widely used for real-time subtitling and text dictation), spoken
language plays the role of the source language, and text acts as the target. This works
because speech can be modeled with a relatively small number of indivisible units of sound
called phonemes, which combine into morphemes (e.g., “un-”, “break-”, “able-”), which in
turn combine into higher forms. The same can be said of optical character recognition
technology. Question answering [36] could be viewed as training with questions as the
source language and answers as the target, which yields the performance we expect from
voice assistants. Text prediction [37] could train a transformer on pairs of language sequence
that follow each other with regularity.

We chose to concentrate on translation to give a reader unfamiliar with the recent
technology a sense of how language sequences may be arithmetized into multi-dimensional
objects in a source format and then may be matched with nearby arithmetized objects in
a target format, and that, when this can be done, this technique may be applied in many
settings, given sufficient resources. Transformer technology is new, and we expect to see
many reports of its successful application in the near future.

What remains interesting is that Turing abandoned his five branches of thought listed
earlier for the Imitation Game. In 1948, he stated that games and cryptography required
little contact with the outside word, and the same was true to a lesser extent of translation
and mathematics, leaving only the learning of languages as depending “rather too much
on sense organs and locomotion to be feasible”. One could debate whether the Imitation
Game is a restatement or extension of “language learning”, but what we consider pivotal
is that he dropped the list and stated that his Imitation Game, though not necessary,
was sufficient.

5. How Conversation Differs
5.1. An Empirical Argument

Perhaps the state of the art gives some insight into the relative difficulty of these
problems. Section 3 explained the current technology behind AlphaZero, a champion at
both chess and Go. To sum up, AlphaZero trains by playing against itself using barely more
than the chess ruleset, taking only hours to learn to play at championship levels, storing
likely-to-win moves in a CNN, which acts as pseudo-database. In play, AlphaZero uses
the clock to explore as many new sequences as possible when unseen board positions arise
and adds them to its “pseudo-database”. For an interesting class of games, the framework
is sufficiently general that a champion can be created simply by loading up a new ruleset.
While we cannot say that this is true for every game in the world, it is safe to say that
computers will be playing many of these games in a league of their own and that many
records will be set. It could even be said that, resource requirements aside, AlphaZero
handles chess much the way it would handle tic-tac-toe.

Language recognition/transformation can be implemented with different configu-
rations of neural and related architectures such as transformers. Depending on the kind
of problem, the transformer is trained on a vast set of relevant input–output pairs that
arithmetizes inputs and outputs, so that given new inputs, it can predict likely outputs.
Its architecture maintains consistency within the input fragment, within the output frag-
ment, and between the input and output fragments. A major difference between games
and language recognition/transformation is that we are not aware of anything analogous
to “self-play” for language. That is, there is no relatively compact ruleset that allows a
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machine to independently build its own pseudo-database. For this reason alone, we claim
that language is different from chess, and this is reflected in the state of the art.

For both games and language recognition/transformation tasks, it is possible (over
time, almost certain) that the underlying algorithms, basically probabilistic, will make
errors for the same reasons technologies did—they remain quasi-statistical predictions.
Present-day language technology might not go off the rails if ‘kind’ is substituted for ‘good’
(as in Section 4.2), but the errors made by current language technologies remain a trope.
We expect this technology to continue to improve, even at the consumer level.

By comparison, progress in machine–human dialogue, as Turing envisioned it, lags.
No machine has been declared (by scientific consensus) to have performed well at the
Imitation Game or, more generally, demonstrated an ability to engage in constructive dialogue.

To the contrary, however, a convincing case might be made that participation in
conversation might be an extension or variation of question answering and/or language
prediction (using tools like GPT-3 [37]) or some hybrid of the two and thus could be trained
on a vast database of conversations so that upon receiving a fragment of conversation, it
might deliver the best possible response and become increasing accurate over time. Of
course, we cannot say that this is impossible. We also cannot exclude the possibility of a
new technology, perhaps even one that transcends the Turing machine model, that enables
human–machine conversation.

5.2. Watershed versus Threshold

Conversational software can be good and useful without doing well at the Imitation
Game. Even if there are occasional errors, even serious ones, they might be adopted for the
same kinds of reasons as seatbelts and vaccines are: they do more good than harm.

However, in terms of acting as a proxy for intelligence, perhaps it is worth a few
words to repeat what we consider the salient features of conversation. We might build
a machine that makes mundane statements in an elevator or at a dinner table and is not
outed immediately as a machine, but Turing’s conversational snippets show he had more
than this in mind. The machine would be able to actually engage in conversation, reason
about what is being discussed using any number of a possible set of patterns of plausible
inference, and contribute productively to the conversation, while pro-actively repairing
errors as needed. Such a machine need not be all-knowing or “superintelligent” but able to
pass as a human in conversation.

5.2.1. Significance of the Transition between 1948 and 1950

Though the ideas of complexity classes [38] had not entered the lexicon of the day, he
references the shortcomings of his era’s machines with respect to time. In response to a
statement about the possibly millions of years it might take a machine to find a best chess
play, Turing states "To my mind this time factor is the one question which will involve all
the real technical difficulty” [15] (p. 503).

It is possible that Turing contemplated the idea that in theory a machine might be
able to store all possible board positions for chess and look up the best possible move,
something AlphaZero approaches. In addition, he had communicated since 1943 with
Claude Shannon [7] (p. 314), who later published what is called the Shannon–McCarthy
Objection to the Turing Test [39] (pp. v, vi) quoted in [40] (p. 437), which argues that a
very large but finite lookup table could generate appropriate responses in dialogue. Turing
obviously would have disagreed with this, but he might also have contemplated that a
massive phrasebook sufficient for practical translation could be constructed. This may
account for the fact that translation does not appear in his Mind paper, and chess is not
mentioned as a proxy for intelligence.

We wonder if Turing had an inkling that conversation demanded something the other
branches of did not.
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5.2.2. Patterns of Plausible Inference in Language

Recent reports of natural language generators suggest they are far more fluent than
Eliza [41], but some observers have suggested they do not appear to be much smarter [42].
This may be in part because much language uses “shorthand” constructs that might be
called supra-logical, including implied communication, reasoning about generalizations
with implicit exceptions, and reasoning about reasoning [18].

The classic AI example of a failure of implied communication is a robotic agent that
replies “Yes” to “Can you pass the salt?” In that light, consider the first few lines of one of
Turing’s examples [1] (p. 446):

Interrogator: In the first line of your sonnet which reads ‘Shall I compare thee to
a summer’s day’, would not ‘a spring day’ do as well or better?

Witness: It wouldn’t scan.

The interrogator’s opening sentence is a yes/no question, yet the Witness does not
directly answer and instead heads straight into the explanation—“It wouldn’t scan”—which
implies that the answer to the question is “no”. The Interrogator should make this inference,
as part of building their shared understanding as they continue.

In addition, Turing’s Witness understands generalizations with exceptions—winter’s
days are bleak, but Christmas is not. This is also implied knowledge (for a fuller discussion,
see [18]). These patterns of plausible inference do not appear to be part of the AI discourse in
Turing’s era, yet Turing [13] (p. 438) seems to be aware of some of this hidden quality when
he writes, “We seem to be quite content that things should not obey too mathematically
regular rules. By long experience we can pick up and apply the most complicated rules
without being able to enunciate them at all”.

There are two issues at play here. One is the knowledge issue, where the Witness
understands that winter is bleak, but Christmas is not; that is, the Witness understands the
significance of Christmas as something joyous. However, the reasoning problem is that
superficially, the sentences are logically contradictory. Yet, the Witness handles both issues
with facility.

Lastly, Turing’s witness can reason about reasoning, as when the Witness tells the
interrogator “I don’t think you’re serious”. That is, the Witness offers an assessment of
the Interrogator’s entire argument; it is a meta-statement. If, in some other setting, the
Interrogator replied, “I am serious”, together, the parties would undertake to repair their
shared understanding.

We contend that the ubiquity of these forms of plausible reasoning contribute to
making conversation qualitatively significantly different from chess as well as translation.
A human player may think about chess in terms of making an exception to a general rules
or reasoning about the reasoning of the opponent, but that is not the case with AlphaZero,
which proceeds by selecting the best move given the current board. In conversation,
however, the Witness may need to decide whether the Interrogator has made an error or
is simply using generalization with exceptions, and whether it can be ignored safely or
whether the parties need to stop and clarify. In the transformer architecture, the software
just matches an input with the best output.

We remark that a set of papers on such patterns of plausible reasoning appeared as a
Special Issue of Artificial Intelligence in 1980 [43] on nonmonotonic reasoning, alternately
known as common-sense reasoning, that “launched a thousand ships”. For at least a decade,
this was a vigorous subarea of Knowledge Representation. More recently, this idea has
been making a comeback in the context of language understanding [44].

5.2.3. Conversation as a Practice

The preceding features are consistent with our understanding of constructive conversa-
tion as a social practice. Lay people and philosophers alike have observed that certain skills
are learned through a kind of apprenticeship that might begin with rule following then
typically continues until the practitioner goes beyond mere syntactic rule-following. One



Philosophies 2022, 7, 76 12 of 14

writer [45] describes the endpoint of this process as “the higher-order skills of responding
to the complex demands of a rapidly evolving situation—in a word, improvising”.

Knight [46] (p. 317) describes a social practice as follows: “to participate in the sharing
not only of rules but also of goods, and therefore of reasons for action and—potentially, at
least—of cooperative reasoning about action”, which bears considerable similarity to our
idea of dialogue as “collaboratively building a shared understanding”. Knight goes on to
say, “even though a practice cannot be sustained if its participants do not normally act in
accordance with its rules, those rules may be broken or changed in a way that advances the
practice rather than transforms it into a different practice”.

Legal systems (but also moral codes) demonstrate humanity’s attempt to codify rules
of conduct. However, such codes are never complete, since no two cases are identical. At
the very least, they occur in different places or times. Thus, people seek recourse from a
tribunal. In modern times, this might be a judge who decides the case, possibly setting a
precedent, possibly being overruled by a higher court. There is also a relevant discussion
about juries in a review [47] of Abramson [48], who distinguishes the representative and
deliberative conception of juries. The former view considers the jury simply a representative
body of peers. However, a reading of [47] suggests that juries also infuse the practice of
law with a collaborative constructed shared understanding of justice. Burns [47] (pp. 1478,
1479) quotes Abramson [48] (p. 8):

I will argue for . . . a vision that defends the jury as a deliberative rather than a
representative body. Deliberation is a lost virtue in modern democracies; only
the jury still regularly calls upon ordinary citizens to engage each other in a
face-to-face process of debate. No group can win that debate simply by outvoting
others; under the traditional requirement of unanimity, power flows to arguments
that persuade across group lines and speak to a justice common to persons drawn
from different walks of life. By history and design, the jury is centrally about
getting persons to bracket or transcend starting loyalties.

There is much to argue with here, but even persons less idealistic about juries might
agree that the law should not be blind rule-following, but intelligent and ever-evolving
with respect to matters great and small. For an example of a small matter, the reader may
wish to review the stormy controversy about whether wall-mounted televisions are fixtures
or chattel in real-estate transactions and therefore included (or not) in the sale [49].

This concept of a practice suggests there are social human institutions and activities
besides conversation that, while displaying significant regularities, resist capture by a set
of rules. From a computer science perspective, this suggests conversation may belong to
a class of problems distinct from optimization and enumeration problems. We add that
language use is so embedded in other practices that even other language problems, for
example, translation of canonical texts, novels, and even laws, especially between cultures,
may take on a qualitatively greater dimensionality.

Thus, we regard conversation, the collaborative construction of shared understandings,
in this sense is member of the class of practices.

These considerations ground the qualitative belief that the Imitation Game defines a
watershed.

6. Conclusions

Language processing software can be good and useful without doing well at the
Imitation Game. It is also difficult to categorically deny that the capabilities of existing
technologies might be incrementally improved and extended until their performance is
practically indistinguishable from that of humans and, alternately, that altogether new
advances may facilitate this goal.

Nor, on the other hand, does it seem unreasonable to believe that a watershed separates
human and machine performance. Quantitatively, we have argued that the state of the
art is such that a certain class of games appears to have been mastered by machines, and
machines are performing many language transformation/recognition tasks so as to be
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useful for wide deployment, while machines have not yet demonstrated significant ability
at constructive conversation as we understand it. Turing himself seems to have anticipated
at least the relative complexity of language when he defined success at the Imitation Game
in 1950 as a proxy for the question “can machines think?” and set aside tasks such as
chess-playing and translation. However, again, one might argue that Turing’s reference to
time constituting the “real technical difficulty” might suggest he considered only time to be
the problem, and it might be a threshold after all.

We have argued that these quantitative differences may reflect that the Imitation Game
is qualitatively different in that ordinary conversation entails patterns of plausible inference
and may fall into the category of a practice, both of which present problems for automation.

Whether machines ever converse with us, Turing’s vision was far-sighted and wisely
cautious and has also been borne out by experience: unequivocal success at the Imitation
Game remains, if not the hardest, one of the hardest computational problems in the world.
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