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Abstract: Popper argued that a statistical falsification required a prior methodological decision to
regard sufficiently improbable events as ruled out. That suggestion has generated a number of
fruitful approaches, but also a number of apparent paradoxes and ultimately, no clear consensus. It
is still commonly claimed that, since random samples are logically consistent with all the statistical
hypotheses on the table, falsification simply does not apply in realistic statistical settings. We claim
that the situation is considerably improved if we ask a conceptually prior question: when should
a statistical hypothesis be regarded as falsifiable. To that end we propose several different notions
of statistical falsifiability and prove that, whichever definition we prefer, the same hypotheses turn
out to be falsifiable. That shows that statistical falsifiability enjoys a kind of conceptual robustness.
These notions of statistical falsifiability are arrived at by proposing statistical analogues to intuitive
properties enjoyed by exemplary falsifiable hypotheses familiar from classical philosophy of science.
That demonstrates that, to a large extent, this philosophical tradition was on the right conceptual
track. Finally, we demonstrate that, under weak assumptions, the statistically falsifiable hypotheses
correspond precisely to the closed sets in a standard topology on probability measures. That means
that standard techniques from statistics and measure theory can be used to determine exactly which
hypotheses are statistically falsifiable. In other words: the proposed notion of statistical falsifiability
both answers to our conceptual demands and submits to standard mathematical techniques.

Keywords: falsifiability; statistical hypotheses; induction

1. Introduction

Probabilistic theories posed a challenge for Popper’s falsificationism. But, on first
glance, there are strong analogies between “naive” falsificationism, and standard practice
in frequentist hypothesis testing. For example, a standard frequentist test of a sharp null
hypothesis rejects upon observing an event that would be highly improbable if the null
hypothesis were true. Such a test has a very low chance of erroneously rejecting the null
hypothesis. That falls short of, but is closely analogous to, the infallibility of rejecting a uni-
versal law upon observing a countervailing instance. Alternatively, a standard frequentist
test of a sharp null hypothesis has a high chance of erroneously failing to reject if the null
hypothesis is subtly false. That is similar to the fallibility of inferring a universal hypothesis
from finitely many instances. Such analogies are natural and sometimes made explicitly by
statisticians. Here are Gelman and Shalizi [1]:

Extreme p-values indicate that the data violate regularities implied by the model,
or approach doing so. If these were strict violations of deterministic implications,
we could just apply modus tollens . . . as it is, we nonetheless have evidence and
probabilities. Our view of model checking, then, is firmly in the long hypothetico-
deductive tradition, running from Popper (1934/1959) back through Bernard
(1865/1927) and beyond (Laudan, 1981).

Statistical falsification, Gelman and Shalizi suggest, is all but deductive.1 But how extremal,
exactly, does a p-value have to be for a test to count as a falsification? Popper was loathe to
draw the line at any particular value: “It is fairly clear that this ‘practical falsification’ can
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be obtained only through a methodological decision to regard highly improbable events as
ruled out . . . But with what right can they be so regarded? Where are we to draw the line?
Where does this ‘high improbability’ begin?” ([3], p. 182) The problem of when to consider
a statistical hypothesis to be falsified has engendered a significant literature [4–6] but no
universally accepted answer.

A natural idea, due to Fisher [7] and Gillies [4], is to pick some canonical event
that is highly improbable if the hypothesis is true. The problem with this idea, pointed
out by Neyman [8] and given dramatic expression by Redhead [9], is that there is no
unique methodological convention satisfying this property; indeed there may be competing
conventions giving conflicting verdicts on every sample.2 Neyman and Pearson [11] attempt
to solve this uniqueness problem by requiring the falsifying event to have maximum
probability if the hypothesis is false. Falsificationists like Gillies [4] object that this strategy
involves restricting the set of alternatives in artifical ways. But even if we grant the basics
of the Neyman–Pearson framework, there is typically no way to choose a single falsifying
event with “uniformly” maximum probability in all the alternative possibilities in which
the hypothesis is false: one must always favor some alternative over others (See Casella
and Berger [12], p. 393). In short, the question of when to consider an event falsifying
seems to have no answer entirely free of arbitrariness.

Our response to this situation is two-fold. The first response is nicely summarized
by Redhead [9]: “Popper demands in science refutability, not refutation”. The question
of which hypotheses are refutable is at least as important as the question of when data
should be taken to have refuted a hypothesis.3 The existence of a univocal methodological
convention is not necessary for refutability; indeed, if there were a univocal answer, the
problem would no longer have any conventional or methodological aspect. The results
of this work allow us to be fairly ecumenical about which methodology of falsification
should be adopted without losing any clarity about which hypotheses are falsifiable:
Theorem 2 says that a variety of different methodologies of falsification—ranging from
the permissive to the stringent—give rise to exactly the same collection of falsifiable
hypotheses. Moreover, it provides a relatively simple mathematical criterion for identifying
the falsifiable hypotheses. That means scientific controversies about the testability of
hypotheses can be adjudicated without awaiting a precise resolution of the problem of
statistical falsification.

Although the existence of a univocal methodological convention is not necessary for
refutability, what is important is the existence of a coherent set of methodological decisions
exhibiting some desirable properties. Statistical tests are implicit proposals for such a
convention, proposing a falsifying event (rejection region) for every sample size. To the
extent possible, these tests should exhibit the synchronic virtues sought after by Fisher,
Neyman, Pearson and others: at every sample size, if the hypothesis is true, the chance that
it is rejected should be small; and if it is false, the chance that it is rejected should be large.
But excessive focus on these synchronic virtues tends to obscure the social dimensions of
these decisions. Our second response is a plea to consider another axis on which competing
methodological proposals can be compared. If it were adopted by researchers conducting
independent investigations of the same hypothesis, the method should also exhibit certain
diachronic virtues: if the hypothesis is true, the chance that it is falsely rejected should
shrink as monotonically as possible as the investigation is replicated at larger sample
sizes; and similarly, if the hypothesis is false, the chance that it is correctly rejected should
grow as monotonically as possible. In other words: a good methodological convention
would, if adopted, support a pattern of successful replication by independent investigators.
Crucially, possessing the synchronic virtues at every sample size is not sufficient to ensure
the diachronic virtues: care must be taken such that the methodological decisions for
different sample sizes cohere in a particular way.4 Finally, falsifiable hypotheses would be
those for which a methodological convention exhibiting all of these virtues exists.

We end this introductory section with a few comments on routes not taken in the
following. The work of Mayo and Spanos [6] is in its own way a mathematical elaboration



Philosophies 2022, 7, 40 3 of 24

of Popperian falsifiability. It is natural to equate falsifiability with Mayo and Spanos’ severe
testability. Although severe testability is an important notion of independent interest, we
do not adopt this identification—it would be too radical a revision of falsifiability. Roughly,
a hypothesis is severely tested by some evidence if, were the hypothesis false, then with
high probability evidence less favorable to the hypothesis would have been observed.
On that stringent notion, hypotheses like the coin is precisely fair are not severely testable,
since whatever sequence of flips has been observed, a sequence equally favorable to the
precisely fair hypothesis could have been generated by a subtly biased coin. But we take
sharp null hypotheses like the coin is precisely fair as archetypical falsifiable hypotheses.
Finally, it might be justly said that any contemporary philosophical discussion of statistics
should say something about the Bayesian point of view. We do not attempt to fully satisfy
a philosophical Bayesian. But although this work is inspired by a rival philosophical
tradition, it should not be understood as incompatible with Bayesianism. On any of a
number of reasonable correspondence principles, any hypothesis falsifiable by a Bayesian
method will be falsifiable in our sense. Although the question of whether the converse is
true is an interesting one, we do not pursue it here.

2. In Search of Statistical Falsifiability

Accordingly, instead of asking ‘when should a statistical hypothesis be regarded as
falsified?’, we are guided in the following by the question: ‘when should a statistical
hypothesis be regarded falsifiable?’. We suggest that statistical falsifiability will be found
by analogy with exemplars from philosophy of science and the theory of computation.
We have in mind universal hypotheses like ‘all ravens are black’, or co-semidecidable
formal propositions like ‘this program will not halt’. Although there is no a priori bound
on the amount of observation, computation, or proof search required, these hypotheses
may be falsified by suspending judgement until the hypothesis is decisively refuted by the
provision of a non-black raven or a halting event. We wish to call the reader’s attention
to several paradigmatic properties of these falsification methods. We do not claim that
these properties are typically achievable in empirical inquiry; rather, they should be seen as
regulative ideals that falsification methods ought to approximate.

Error Avoidance: Output conclusions are true.

By suspending judgement until the hypothesis is logically incompatible with the evidence,
falsification methods never have to “stick their neck out" by making a conjecture that might
be false.5

Monotonicity: Logically stronger inputs yield logically stronger conclusions.

Exemplary falsification methods never have to retract their previous conclusions; their
conjecture at any later time always entails their conjecture at any previous time. In the
ornithological context, conjectures made on the basis of more observations always entail
conjectures made on the basis of fewer; once a non-black raven has been observed, the
hypothesis is decisively falsified. (We appeal here to an idealization that we later discharge
in the statistical setting: an exemplary method never mistakes a black raven for a non-black
raven). In the computational context, conjectures made on the basis of more computation
always entail conjectures made on the basis of less; once the program has entered a halting
state, it will never exit again.

Limiting Convergence: The method converges to ¬H iff H is false.

If all ravens are black, the falsification method may suspend judgement forever; but if there
is some non-black raven, diligent observation will turn up a falsifying instance eventually.
Similarly, if the program eventually halts, the patient observer will notice.6
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We propose that statistical falsifiability will be found if we look for the minimal weak-
ening of these paradigmatic properties that is feasible in statistical contexts. First, some
definitions.7 Inference methods output conjectures on the basis of input information. Here
“information" is understood broadly. One conception of information, articulated explicitly
by Bar-Hillel and Carnap [19] and championed by Floridi [20,21], is true, propositional
semantic content, logically entailing certain relevant possibilities, and logically refuting
others. This notion is prevalent in epistemic logic and many related formal fields—call it the
propositional notion of information. A second conception, ubiquitous in the natural sciences,
is random samples, typically independent and identically distributed, and logically consis-
tent with all relevant possibilities, although more probable under some, and less probable
under others. Call that the statistical notion of information. Of course, statistical informa-
tion can be expressed propositionally. The trouble is that—at least so far as the relevant
possibilities are concerned—the proposition is always the same, since every proposition
about the observed data is logically consistent with every probabilistic proposition.

Statistical methods cannot be expected to be infallible. We liberalize that requirement
as follows:

α-Error Avoidance: For every sample size, the objective chance that the output conclu-
sion is false is not higher than α.

The α-error avoidance property is closely related to frequentist statistical inference. A
confidence interval with coverage probability 1− α is straightforwardly α-error avoiding:
the chance that the interval excludes the true parameter is bounded by α. A hypothesis test
with significance level α is also α-error avoiding, so long as one understands failure to reject
the null hypothesis as recommending suspension of judgment, rather than concluding that
the null hypothesis is true. The chance of falsely rejecting the null is bounded by α, and
failing to reject outputs only the trivially true, or tautological, hypothesis.

We first define a weaker notion. A method is a function from information to conjectures.
A method falsifies hypothesis H in the limit by converging, on increasing information, to
not-H iff H is false. In statistical settings, that means that in all and only the worlds in which
H is false, the chance that L(·) outputs not-H converges to 1 as sample size increases.8 A
method verifies H in the limit if it falsifies not-H in the limit. A method decides H in the limit
if it verifies H and not-H in the limit. Hypothesis H is verifiable, refutable, or decidable in
the limit iff there exists a method that verifies, refutes or decides it in the limit.

Falsification in the limit is a relatively undemanding concept of success — it is consistent
with any finite number of errors and volte-faces prior to convergence. Falsification is a
stronger success notion. Consider the following cycle of definitions.9

F1. Hypothesis H is falsifiable iff there is a monotonic, error avoiding method M that
falsifies H in the limit;

F1.5. Hypothesis H is falsifiable iff there is a method M that falsifies H in the limit, and for
every α > 0, M is α-error avoiding;

F2. Hypothesis H is falsifiable iff for every α > 0 there is an α-error evoiding method that
falsifies H in the limit.

Concept F1 is the familiar one from epistemology, the philosophy of science, and the
theory of computation. Our motivating examples are all of this type. These may be falsified
by suspending judgement until the relevant hypothesis is logically refuted by information.
Although there is no a priori bound on the amount of information (or computation) required,
the outputs of a falsifier are guaranteed to be true, without qualification.

Concept F1.5 weakens concept F1 by requiring only that there exist a method that
avoids error with probability one. Hypotheses of type F1.5 are less frequently encountered
in the wild.10 Concept F1.5 is introduced here to smooth the transition to F2.
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F2 weakens F1.5 by requiring only that for every bound on the chance of error, there
exists a method that achieves the bound. Hypotheses of this type are ubiquitous in statistical
settings. The problem of falsifying that a coin is fair by flipping it indefinitely is an
archetypical problem of the third kind. For any α > 0, there is a consistent hypothesis test
with significance level α that falsifies, in the third sense, that the coin is fair. Moreover, it is
hard to imagine a more stringent notion of falsification that could actually be implemented
in digital circuitry. Electronics operating outside the protective cover of Earth’s atmosphere
are often disturbed by space radiation—energetic ions can flip bits or change the state of
memory cells and registers [22]. Even routine computations performed in space are subject
to non-trivial probabilities of error, although the error rate can be made arbitrarily small by
redundant circuitry, error-correcting codes, or simply by repeating the calculation many
times and taking the modal result. Electronics operating on Earth are less vulnerable, but
are still not immune to these effects.

Since issues of monotonicity are ignored, F2 provides only a partial statistical analogue
for F1. A statistical analogue of monotonicity is suggested by considerations of replication.
Suppose that researchers write a grant to study whether NewDrug is better at treating
migraine than OldDrug. They perform a pre-trial analysis of their methodology and
conclude that if NewDrug is indeed better OldDrug, the objective chance that they will
reject the null hypothesis of “no improvement” is greater than 50%. The funding agency is
satisfied, providing enough funding to perform a pilot study with N = 100. Elated, the
researchers perform the study, and correctly reject the null hypothesis. Now suppose that a
replication study is proposed at sample size 150, but the chance of rejecting has decreased
to 40%. The chance of rejecting correctly, and thereby replicating successfully, has gone
down, even though the first study was correct. Nevertheless, investigators propose going
to the trouble and expense of collecting a larger sample! Such methods are epistemically
defective. They may even be immoral: why expose more patients to potential side effects
for no epistemic gain? Accordingly, consider the following statistical norm:

Monotonicity in chance: If H is false, then the objective chance of rejecting H is strictly
increasing with sample size.

Unfortunately, strict monotonicity is often infeasible (see Lemma 1). Nevertheless, it should
be a regulative ideal that we strive to approximate. The following principle expresses
that aspiration:

α-Monotonicity in chance: If H is false, then for any sample sizes n1 < n2, the objective
chance of rejecting H decreases by no more than α.

That property ensures that collecting a larger sample is never a disastrously bad idea.
Equipped with a notion of statistical monotonicity, we state the final definition in our cycle:

F3. Hypothesis H is falsifiable iff for every α > 0 there is an α-error avoiding and α-
monotonic method that falsifies H in the limit.

F3 seems like a rather modest strengthening of F2. Surprisingly, many standard frequentist
methods satisfy F2, but not F3. Chernick and Liu [23] noticed non-monotonic behavior in
the power function of standard hypothesis tests of the binomial proportion, and proposed
heuristic software solutions. That defect would have precisely the bad consequences that
inspired our statistical notion of monotonicity: attempting replication with a larger sample
might actually be a bad idea. That issue has been raised in consumer safety regulation,
vaccine studies, and agronomy [24–26]. But Chernick and Liu [23] have noticed only the
tip of the iceberg—similar considerations attend all statistical inference methods. One of
the results of this paper (Theorem A1) is that F3 is feasible whenever F2 is. That suggests
that stasticial feasibility is a robust notion; many different formulations yield the same
collection of falsifiable hypotheses.
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It is sometimes more natural to speak not in terms of falsifiability but its dual: verifia-
bility. The falsifiability notions F1, F2, F3 give rise to corresponding notions of verifiability
V1, V2, V3 by letting H be verifiable (in the relevant sense) iff its logical complement ¬H is
falsifiable (in the relevant sense). Then, such archetypical hypotheses as, ‘not all ravens are
black’, or semidecidable formal proposition like ‘this program will halt’ are verifiable in
the sense of V1. The statistical hypotheses that typically serve as composite alternatives to
sharp null hypotheses turn out to be verifiable in the sense of V2 and V3.

Both verifiability and falsifiability are one-sided notions. They can be symmetrized by
defining H to be decidable (in the relevant sense) iff H is both verifiable and falsifiable (in
the relevant sense). That gives rise to the three corresponding decidability concepts D1, D2
and D3. Finite-horizon empirical hypotheses such as ‘the first hundred observed ravens
will be black’ and formal propositions like ‘this program will halt in under a hundred steps’
are decidable in the sense of D1. Typically, simple vs. simple hypothesis testing problems
turn out to be decidable in the sense of D3. However, some more interesting problems also
turn out to be statistically decidable (see Genin and Mayo-Wilson [27]).

3. The Topology of Inquiry

A central insight of Abramsky [28], Vickers [29], Kelly [30] is that falsifiable proposi-
tions of type F1 enjoy the following properties:

C1. If H1, H2 are falsifiable, then so is their disjunction, H1 ∪ H2;
C2. IfH is a (potentially infinite) collection of falsifiable propositions, then their conjunc-

tion, ∩H, is also falsifiable.

Together, C1 and C2 say that falsifiable propositions of type F1 are closed under conjunction,
and finite disjunction. Why the asymmetry? For the same reason that it is possible to falsify
that bread will cease to nourish sometime next week, but not possible to falsify that it will
cease to nourish on some day in the future. It is also important to notice what C1 and C2 do
not say: if H is falsifiable, its negation may not be. To convince yourself of this it suffices to
notice that it is possible to falsify that bread will always nourish, but not that it will cease
to nourish on some day in the future.

For their part, verifiable propositions of type V1 satisfy the dual properties:

O1. If H1 and H2 are verifiable, then so is their conjunction, H1 ∩ H2;
O2. IfH is a (potentially infinite) collection of verifiable propositions, then their disjunc-

tion, ∪H, is also verifiable.

O1 and O2 express the characteristic asymmetries of verifiability. Although it is possible to
verify that bread nourishes for any finite number of days, it is not possible to verify that
bread will continue to nourish into the indefinite future. Moreover, if H is verifiable, its
negation may not be: if bread will cease to nourish, we will read about it in the newspaper;
but nothing we can observe about bread will ever rule out the possibility of a future
dereliction of duty.

Jointly, C1 and C2 ensure that the collection of all propositions of type F1 constitute
the closed sets of a topological space.11 The collection of all propositions of type V1 constitute
the open sets of the topology; and the propositions of type D1 constitute the clopen sets of
the topology. Sets of greater topological complexity are formed by set-theoretic operations
on open and closed sets. The central point of Kelly [30] is that degrees of methodological
accessibility correspond exactly to increasingly ramified levels of topological complexity,
corresponding to elements of the Borel hierarchy. Roughly speaking, the Borel complexity
of a hypothesis measures how complex it is to construct the hypothesis out of logical
combinations of verifiable and falsifiable propositions. Higher levels of Borel complexity
correspond to inductive notions of methodological success, where by inductive we mean
any success notion where the chance of error is unbounded in the short run (see Figure 1).
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Taking falsifiability of type F1 as the fundamental notion, the view sketched above
was worked out in its essentials by Kelly [30] and further generalized by de Brecht and
Yamamoto [31], Genin and Kelly [32] and Baltag et al. [33]. Genin and Kelly [34] exhibit
a topology on probability measures in which the closed sets are exactly the propositions
falsifiable in the sense of F2. That shows that the structure of statistical verifiability is
also topological, at least when issues of monotonicity are ignored. The characteristic
asymmetries are all present: while it is possible to falsify that the coin is fair, it is not
possible to falsify that it is biased.

In this work, we show that hypotheses of type F3 also enjoy a topological structure;
in fact, under a weak assumption, every hypothesis falsifiable in the sense of F2 is also
falsifiable in the sense of F3 (Theorem A1). Imposing the demands of monotonicity does
not make any fewer hypotheses falsifiable. That result provides a kind of cross-check on
our notion of statistical falsifiability: it enjoys the same algebraic closure properties as the
traditional notion F1, familiar from classical philosophy of science.

Figure 1. Pictured is a hierarchy of topological complexity and corresponding notions of methodolog-
ical success. The set of all open sets is referred to as Σ0

1; the set of all closed sets as Π0
1; and the set of

all clopen sets as ∆0
1 = Σ0

1 ∩Π0
1. Depending on whether the Σ0

1 sets are propositions of type V1 or V2,
we get the logical (left) and statistical (right) hierarchies. Sets of greater complexity are built out of Σ0

1
sets by logical operations, e.g., Σ0

2 sets are countable unions of locally closed sets. Inclusion relations
between notions of complexity are also indicated. For more on the notions of methodological success
characterized by higher levels of Borel complexity, see Genin and Kelly [34].

4. The Statistical Setting
4.1. Models, Measures and Samples

A model characterizes the contextually relevant features of a data-generating process.
Models may be quite simple, as when they specify the bias of a coin. Models may also
be elaborate structural hypotheses, as when they specify a set of structural equations
expressing the causal processes by which data are generated. Inquiry typically begins with
the specification of a set of possible models M, any one of which, for all the inquirers
know, may characterize the true data-generating process. Each model θ ∈ M determines a
probability measure, µθ over a common sample space S = (Ω,F ). A sample space is a set of
possible random samples Ω, together with a σ-algebra of events F ⊆ P(Ω) over the set of
samples. Each probability measure µθ is a possible assignments of probabilities to events in
F that is consistent with the axioms of probability and with the constraints specified by the
model θ. We let W be the set {µθ : θ ∈ M}, i.e., the set of all probability measures on the
sample space S generated by possibilities inM.
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A set of modelsM is said to be identified if the map θ 7→ µθ is one-to-one, i.e., if no
two models generate the same probability measure over the space of observable outcomes
S. If two models θ, θ′ generate the same probability measure over the observables, then no
amount of random sampling can possibly distinguish them and the question of whether θ

or θ′ is the generating mechanism is, in a sense, hopeless from a statistical perspective.12 In
the following, we will assume that the set of models is identified. Since each probability
measure uniquely determines a model, we can identify the model with its probabilistic
consequences and drop the subscript θ from our notation.

Call the triple (W, Ω,F ), consisting of a set of probability measures W on a sample
space (Ω,F ), a statistical setup. The inquirer observes events in F , but the hypotheses she
is interested in are typically propositions over W. In paradigmatic cases, an event A in F is
logically consistent with all probability measures in W.

Although measures in W assign probabilities to all events in F , not all these events
are the kinds of events than an agent can observe. No one can tell whether a real-valued
sample point is rational or irrational, or if it is exactly π. For another example, suppose that
region A is the closed interval [1/2, ∞], and that the sample ω happens to land right on the
boundry-point 1/2 of A. Suppose, furthermore, that given enough time and computational
power, the sample ω can be specified to arbitrary, finite precision. No finite degree of
precision: ω ≈ 0.50; ω ≈ 0.500; ω ≈ 0.5000; . . . suffices to determine that ω is truly in A.
But the mere possibility of a sample hitting the boundary of A does not matter statistically,
if the chance of obtaining such a sample is zero, as it typically is, unless there is discrete
probability mass on the point 1

2 . Both these examples hinge on an implicit underlying
topology T on the sample space Ω.

The topology T the sample space reflects what is formally verifiable about the sample
itself. For example, if Ω is the real line, then it is typically verifiable whether a sample
point ω is greater or less than r ∈ R; and whether it lies in the interval (r, s). It is typically
not verifiable whether the sample ω is rational or irrational, or whether it is exactly π.
We assume that these formally verifiable propositions over Ω are closed under finite
conjunctions and arbitrary disjunctions and therefore, form the open sets of a topological
space. Then, the formally decidable proposition in F form the clopen sets of the same
topological space. Furthermore, we assume that the σ-algebra F contains all the verifiable
proposition T , and in fact that it is the least such σ-algebra, i.e., that it is generated by
closing the verifiable propositions under countable unions and negations. A σ-algebra
that arises from a topology in this way is called a Borel algebra and its members are called
Borel sets.

A Borel set A for which µ(bdryA) = 0 is said to be almost surely clopen (decidable) in
µ.13 Say that a collection of Borel sets S is almost surely clopen in µ iff every element of S
is almost surely clopen in µ. We say that a Borel set A is almost surely decidable iff it is
almost surely decidable in every µ in W. Similarly, we say that a collection of Borel sets S
is almost surely clopen iff every element of S is almost surely clopen.

A topological basis I on Ω is a collection of subsets of Ω such that (1) the elements
of I cover Ω; and (2) if E, F are elements of I , then for each ω ∈ E ∩ F, there is G ∈ I
containing ω and contained in E ∩ F. Closing a topological basis under unions generates
a topology, and every topology is generated by some basis. In the following, we will
assume that the topology T on Ω is generated by a basis I that is at most countably infinite
and almost surely clopen. Say that a statistical setup (W, Ω,F ) is feasibly based if F is a
Borel σ-algebra arising from a countable, almost surely clopen basis. That assumption is
satisfied, for example, in the standard case in which the worlds in W are Borel measures
on Rn, and all measures are absolutely continuous with respect to Lebesgue measure, i.e.,
when all measures have probability density functions, which includes normal, chi-square,
exponential, Poisson, and beta distributions. It is also satisfied for discrete distributions
like the binomial, for which the topology on the sample space is the discrete (power set)
topology, so every region in the sample space is clopen. It is satisfied in the particular cases
of Examples 1 and 2.
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Example 1. Consider the outcome of a single coin flip. The set Ω of possible outcomes is {H, T}.
Since every outcome is decidable, the appropriate topology on the sample space is
T = {∅, {H}, {T}, {H, T}}, the discrete topology on Ω. Let W be the set of all probability
measures assigning a bias to the coin. Since every element of T is clopen, every element is also
almost surely clopen.

Example 2. Consider the outcome of a continuous measurement. Then, the sample space Ω is the
set of real numbers. Let the basis I of the sample space topology be the usual interval basis on the
real numbers. That captures the intuition that it is verifiable that the sample landed in some open
interval, but it is not verifiable that it landed exactly on the boundary of an open interval. There
are no non-trivial decidable (clopen) propositions in that topology. However, in typical statistical
applications, W contains only probability measures µ that assign zero probability to the boundary
of an arbitrary open interval. Therefore, every open interval E is almost surely decidable, i.e.,
µ(bdry(E)) = 0.

Product spaces represent the outcomes of repeated sampling. Let I be an index set,
possibly infinite. Let (Ωi, Ti)i∈I be sample spaces, each with basis Ii. Define the product
(Ω, T ) of the (Ωi, Ti) as follows: let Ω be the Cartesian product of the Ωi; let T be the
product topology, i.e., the topology in which the open sets are unions of Cartesian products
×i∈IOi, where each Oi is an element of Ti, and all but finitely many Oi are equal to Ωi.
When I is finite, the Cartesian products of basis elements in Ii are the intended basis for
T . Let B be the σ-algebra generated by T . Let µi be a probability measure on Bi, the Borel
σ-algebra generated by the Ti. The product measure µ = ×i∈Iµi is the unique measure on
B such that, for each B ∈ B expressible as a Cartesian product of Bi ∈ Bi, where all but
finitely many of the Bi are equal to Ωi, µ(B) = ∏ µi(Bi). (For a simple proof of the existence
of the infinite product measure, see Saeki [37].) Let µ|I| denote the |I|-fold product of µ
with itself. If W is a set of measures, let W |I| denote the set {µ|I| : µ ∈ W}. If B is a Borel
σ-algebra generated by T , let B⊗n be the Borel σ-algebra generated by n-fold product of T
with itself.

4.2. Statistical Tests

A statistical method is a measurable function φ from random samples to propositions
over W, i.e., for every A in the range of φ, its preimage φ−1(A) is an element of F . A test of
a statistical hypothesis H ⊆W is a statistical method ψ : Ω→ {W, Hc}. Call ψ−1(W) the
acceptance region, and ψ−1(Hc) the rejection region of the test.14 The power of test ψ(·) is the
worst-case probability that it rejects truly, i.e., infµ∈Hc µ[ψ−1(Hc)]. The significance level of a
test is the worst-case probability that it rejects falsely, i.e., supµ∈H µ[ψ−1(Hc)].

A test is feasible in µ iff its acceptance region is almost surely decidable in µ. Say that
a test is feasible iff it is feasible in every world in W. More generally, say that a method is
feasible iff the preimage of every element of its range is almost surely decidable in every
world in W. Tests that are not feasible in µ are impossible to implement—as described above,
if the acceptance region is not almost surely clopen in µ, then with non-zero probability, the
sample lands on the boundary of the acceptance region, where one cannot decide whether
to accept or reject. If one were to draw a conclusion at some finite stage, that conclusion
might be reversed in light of further computation. Tests are supposed to solve inductive
problems, not to generate new ones.

Considerations of feasibility provide a new perspective on the assumption that appears
throughout this work: that the basis I is almost surely clopen. If that assumption fails, then
it is not an a priori matter whether geometrically simple zones are suitable acceptance zones
for statistical methods. But if that is not determined a priori, then presumably it must be
investigated by statistical means. That suggests a methodological regress in which we must
use statistical methods to decide which statistical methods are feasible to use. Therefore,
we consider only feasible methods in the following development.



Philosophies 2022, 7, 40 10 of 24

4.3. The Weak Topology

A sequence of measures (µn) converges weakly to µ, written µn ⇒ µ, iff µn(A)→ µ(A),
for every A almost surely clopen in µ. It is immediate that µn ⇒ µ iff for every µ-feasible
test ψ(·), µn(ψ rejects)→ µ(ψ rejects). It follows that no feasible test of H = {µ} achieves
power strictly greater than its significance level. Furthermore, every feasible method
that correctly infers H with high chance in µ, exposes itself to a high chance of error in
“nearby” µn.

It is a standard fact that one can topologize W in such a way that weak convergence
is exactly convergence in the topology.15 That topology is called the weak topology, n.b.:
the weak topology is a topology on probability measures, whereas all previously mentioned
topologies were topologies on random samples. In other words, the open sets of the weak
topology are propositions over W, not over Ω. If we interpret the closure operator in terms
of the weak topology, µ ∈ clA iff there is a sequence (µn) lying in A such that µn ⇒ µ.

If A is an almost surely decidable event in the appropriate σ-algebra then it is immedi-
ate from the definition of weak convergence that {µn : µn(A) > r} and {µn : µn(A) < r}
are open in the weak topology over Wn. In this case, it is also true that {µ : µn(A) > r}
and {µ : µn(A) < r} are open in the weak topology over W. That observation will often be
appealed to in the following. For a proof, see Theorem 2.8 in Billingsley [38].

5. Statistical Falsifiability

Hypothesis H was said to be falsifiable (in the sense of F1) if there is an error avoiding
method that converges on increasing information to not-H iff H is false. That condition
implies that there is a method that achieves every bound on chance of error, and converges
to not-H iff H is false. In statistical settings, one cannot insist on such a high standard
of infallibility. Instead, we say that H is falsifiable in chance iff for every bound on error,
there is a method that achieves it, and that converges in probability to not-H iff H is false.
The reversal of quantifiers expresses the fundamental difference between statistical and
propositional falsifiability. The central point in this section is encapsulated in Theorem 1:
for feasibly based statistical setups, the statistically falsifiable propositions (in the sense of
F2) are exactly the closed sets in the weak topology.

Say that a family (λn)n∈N of feasible tests of H is an α-falsifier in chance of H ⊆ W iff
for all n ∈ N:

BNDERR. µn[λ−1
n (W)] ≥ 1− α, if µ ∈ H;

LIMCON. µn[λ−1
n (Hc)]

n−→ 1, if µ ∈ Hc.

Say that H is α-falsifiable in chance iff there is an α-falsifier in chance of H. Say that H is
falsifiable in chance iff H is α-falsifiable in chance for every α > 0.

Several strengthenings of falsifiability in chance immediately suggest themselves. One
could demand that, in addition to BNDERR, the chance of error vanishes to zero:

VANERR. µn[λ−1
n (W)]

n−→ 1, if µ ∈ H.

A strengthening of this requirement will be taken up in the following section.
Defining statistical verifiability requires no new ideas. Say that H is α-verifiable in

chance iff there is an α-falsifier in chance of Hc. Say that H is verifiable in chance iff Hc is
α-falsifiable in chance for every α > 0.

The central theorem of Genin and Kelly [34] states that, for feasibly based statistical
setups, falsifiability in chance is equivalent to being closed in the weak topology.

Theorem 1 (Fundamental Characterization Theorem). Suppose that the statistical setup
(W, Ω,F ) is feasibly based. Then, for H ⊆W, the following are equivalent:

1. H is α-falsifiable in chance for some α > 0;
2. H is falsifiable in chance;
3. H is closed in the weak topology on W.
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Since a hypothesis is verifiable iff its complement is refutable, the characterization of
statistical verifiability follows immediately.

Since a topological space is determined uniquely by its closed sets, Theorem 1 implies
that the weak topology is the unique topology that characterizes statistical falsifiability (in
the sense of F2), at least under the weak conditions stated in the antecedent of the theorem.
Thus, under those conditions, the weak topology is not merely a convenient formal tool; it
is the fundamental topology for statistical inquiry.

6. Monotonic Falsifiability

In Section 5, we said that (λn) is a statistical falsifier of H if it converges to not-H if H
is false, and otherwise has a small chance of drawing an erroneous conclusion. But that
standard is consistent with a wild see-sawing in the chance of producing the informative
conclusion not-H as sample sizes increase, even if H is false. Of course, it is desirable that
the chance of correctly rejecting H increases with the sample size, i.e., that for all µ ∈ Hc

and n1 < n2,

MON. µn2 [λ−1
n2

(Hc)] > µn1 [λ−1
n1

(Hc)].

Failing to satisfy MON has the perverse consequence that collecting a larger sample might
be a bad idea. Researchers would have to worry whether a failure of replication was
due merely to a clumsily designed statistical method that converges to the truth along a
needlessly circuitous route. Unfortunately, MON is infeasible in typical cases, so long as we
demand that verifiers satisfy VANERR. Lemma 1 expresses that misfortune.

Say that a statistical setup (W, Ω, I) is purely statistical iff for all µ, ν ∈ W and all
events B ∈ B⊗n such that µn(bdryB) = 0, µn(B) > 0 iff νn(B) > 0. This is the formal
expression of the idea that almost surely clopen sample events have no logical bearing on
statistical hypotheses and is easily seen to be a weakening of mutual absolute continuity.

Lemma 1. Suppose that the statistical setup (W, Ω,F ) is feasibly based and purely statistical. Let
H be closed, but not open in the weak topology. If (λn) is an α-falsifier in chance of H, then, (λn)
satisfies VANERR only if it does not satisfy MON.

Proof of Lemma 1. Suppose for a contradiction that (λn) is an α-falsifier in chance of H
satisfying VANERR. Since H is not open, there is ν ∈ H ∩ cl(Hc). Since the statistical
setup is purely statistical and (λn) satisfies LIMCON, there must be a sample size n1 such
that 0 < αn1 := νn1 [λ−1

n1
(Hc)]. Let O′ = {µ : αn1 − ε < µn1 [λ−1

n1
(Hc)]}. By construction,

ν ∈ O′. Since (λn) satisfies VANERR, there is n2 > n1 such that νn2 [λ−1
n2

(Hc)] < αn1 − ε.
Let O′′ = {µ : αn1 − ε > µn2 [λ−1

n2
(Hc)]}. By construction, ν ∈ O := O′ ∩O′′. Since (λn)

is feasible, both O′, O′′ are open in the weak topology (see the observation at the end of
Section 4.3). Since open sets are closed under finite conjunction, O is open in the weak
topology. But since ν ∈ cl(Hc), there is µ ∈ Hc ∩O. But then, µn1 [λ−1

n1
(Hc)] > αn1 − ε,

whereas µn2 [λ−1
n2

(Hc)] < αn1 − ε. Therefore, (λn) does not satisfy MON.

But even if strict monotonicity of power is infeasible, it ought to be our regulative
ideal. Say that an α-falsifier (λn)n∈N of H, whether in chance, or almost sure, is α-monotonic
iff for all µ ∈ Hc and n1 < n2:

α-MON µn2 [λ−1
n2

(Hc)] + α > µn1 [λ−1
n1

(Hc)].

Satisfying α-MON ensures that collecting a larger sample is not a disastrously bad idea.
Surprisingly, some standard hypothesis tests fail to satisfy even this weak requirement.
Chernick and Liu [23] noticed non-monotonic behavior in the power function of textbook
tests of the binomial proportion, and proposed heuristic software solutions. The test exhib-
ited in the Genin and Kelly’s proof of Theorem 1 also displays dramatic non-monotonicity
(Figure 2). Others have raised worries of non-monotonicity in consumer safety regulation,
vaccine studies, and agronomy [24–26].



Philosophies 2022, 7, 40 12 of 24

We now articulate a notion of statistical falsifiability that requires α-monotonicity.
Write an ↓ 0 if the sequence (an) converges monotonically to zero. Say that a family
(λn)n∈N of feasible tests of H ⊆W is an α-monotonic falsifier of H iff

MVANERR. For all µ ∈ H, there exists a sequence (αn) such that each αn ≤ α, αn ↓ 0, and
µn[λ−1

n (Hc)] ≤ αn;
LIMCON. For all µ ∈ Hc, µn[λ−1

n (Hc)]
n−→ 1;

α-MON. For all µ ∈W, µn2 [λ−1
n2

(Hc)] + α > µn1 [λ−1
n1

(Hc)], if n1 < n2.

Say that H is α-monotonically falsifiable iff there is an α-monotonic falsifier of H. Say that
H is monotonically falsifiable iff H is α-monotonically falsifiable, for every α > 0. It is clear
that every α-monotonic falsifier of H is also an α-falsifier in chance. However, not every
α-monotonic falsifier of H is an almost sure α-falsifier. The converse also does not hold.

Defining monotonic verifiability requires no new ideas. Say that H is α-monotonically
verifiable in chance iff there is an α-monotonic falsifier of Hc. Say that H is montonically
verifiable iff Hc is α-monotonically refutable for every α > 0.

Figure 2. Diachronic plot of power of typical test of the null hypothesis that a coin is not head-biased,
when p(H) = 0.775. The plot exhibits the characteristic “saw-tooth” shape identified by Chernick
and Liu [23]. Note that the drops in power are significant e.g., >0.07 between sample sizes 31 and 33.

The central theorem of this section states that every statistically falsifiable hypothesis
is also monotonically falsifiable. The proof is provided in the Appendix ??.

Theorem 2. Suppose that the statistical setup (W, Ω,F ) is feasibly based. Then, for H ⊆W, the
following are equivalent:

1. H is α-falsifiable in chance for some α > 0;
2. H is statistically falsifiable;
3. H is monotonically falsifiable;
4. H is closed in the weak topology on W.

The characterization of monotonic verifiability follows immediately.
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7. Conclusions: Falsifiability and Induction

This work is inspired by Popper’s falsificationism and its difficulties with statistical
hypotheses. We have proposed several different notions of statistical falsifiability and
proven that, whichever definition we prefer, the same hypotheses turn out to be falsifiable.
That shows that the notion enjoys a kind of conceptual robustness. Finally, we have demon-
strated that, under weak assumptions, the statistically falsifiable hypotheses correspond
precisely to the closed sets in a standard topology on probability measures. That means that
standard techniques from statistics and measure theory can be used to determine exactly
which hypotheses are statistically falsifiable. Hopefully, this result will be a boon to statis-
tical practice by providing a simple diagnostic for statistical falsifiability—controversies
about testability may be resolved while maintaining an ecumenical attitude about what,
precisely, statistical falsification consists in.

However, this work should not be taken as a wholesale endorsement of Popperian fal-
sificationism. It is easy to generate respectable statistical hypotheses that are not falsifiable
or, for that matter, verifiable. Indeed, many pressing scientific hypotheses are of this nature,
especially when researchers are interested in answering causal questions (see Genin [39]).
These should by no means be regarded as unscientific. The hallmark of these kinds of
hypotheses is that, although it is possible to converge to the truth as sample sizes increase,
it is not possible to do so with finite sample bounds on the probability of error. This fact
should be faced squarely—and not necessarily by searching for stronger assumptions that
make it possible to provide finite sample guarantees.

A large class of scientific problems can be reconstructed in the following way: we
enumerate a collection of disjoint hypothesis H1, H2, . . . in such a way that that ∪n

i=1Hi is
falsifiable no matter how large n is.16 Then, we test longer and longer initial segments,
conjecturing the first hypothesis that we fail to reject. Since the procedure involves nesting
tests, we cannot expect finite sample bounds on the probability of conjecturing a false hy-
pothesis. Nevertheless, this procedure answers pretty closely to a Popperian methodology
of conjectures and refutations. Unlike Popper, we have no problem calling the outcome
of such a procedure—belief in, or acceptance of, the first unrejected hypothesis in the
enumeration—an induction. But is there anything to be said in favor of this natural and
commonplace scientific procedure? Popper hoped that it would produce theories of greater
and greater truthlikeness or verisimilitude. That notion has had a troubled and fascinating
career, which we do not review here.17 There is, so far as we know, no demonstration that
this procedure must produce theories of increasing truthlikeness.18

Let us briefly consider a different idea. Call such a procedure progressive if (1) it
converges in chance to the true Hi (if any is true) and (2) if Hi is true, then the objective
chance of conjecturing Hi increases monotonically with sample size. It should come as no
surprise that this kind of strict monotonicity is not usually feasible. However, it should
be a regulative ideal: say that such a procedure is α-progressive if (1’) it converges in
chance to the true Hi (if any is true) and (2’) if Hi is true, then the objective chance of
conjecturing Hi never decreases by more than α as sample sizes increase. The latter is a
natural generalization of α-MON to problems of theory choice and precludes egregious
backsliding. It should be intuitive that such a procedure can only be α-progressive if the
constituent test are themselves α-monotonic in chance. Genin [45] Theorem 3.6.3, shows
that, for all α > 0 it is possible to produce an α-progressive solution to this problem, so long
as the consitutent tests are chosen to be sufficiently monotonic in chance. The existence of
such tests is guaranteed by Theorem 2. That means that a carefully calibrated methodology
of conjectures and refutations is conducive to progress—it converges to the right answer (if
any candidate is right) with an arbitrarily low degree of backsliding. We hope that these
remarks suggest to some degree the relevance of this work to a positive theory of induction.
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Appendix A. Proof of Theorem 2

In order to prove Theorem 2, we introduce yet another strengthening of statistical
falsifiability. The following strengthens BNDERR to the requirement that the total chance of
error is bounded:

σ-BNDERR. ∑∞
n=1 µn[λ−1

n (W)] ≥ 1− α, if µ ∈ H.

That implies both BNDERR and VANERR, but also, by the Borel-Cantelli lemma, that with
probability one, a verifier makes only finitely many errors on an infinite sample path,
whenever H is true:

SVANERR. µ∞[lim inf λ−1
n (W)] = 1, if µ ∈ H.

We might demand similar asymptotic behavior when H is false. Say that a family
(λn)n∈N of feasible tests of H ⊆W is an almost sure α-falsifer of H iff

σ-BNDERR. ∑∞
n=1 µn[λ−1

n (W)] ≥ 1− α, if µ ∈ H, and
SLIMCON. µ∞[lim inf λ−1

n (Hc)
]
= 1, if µ ∈ Hc.

Say that H is almost surely α-falsifiable iff there is an almost sure α-falsifier of H. Say that H
is almost surely falsifiable iff H is almost surely α-falsifiable, for every α > 0. As usual, we
say that H is almost surely verifiable iff its complement is almost surely falsifiable.
Since almost sure convergence entails convergence in chance, almost sure falsifiable entails
falsifiability in chance.19

In this section, we prove the following, from which Theorem 2 follows immediately.

Theorem A1. Suppose that the statistical setup (W, Ω,F ) is feasibly based. Then, for H ⊆ W,
the following are equivalent:

1. H is α-verifiable in chance for some α > 0;
2. H is monotonically verifiable;
3. H is almost surely verifiable;
4. H is open in the weak topology on W.

In Genin and Kelly [34], it is proven that 1, 3 and 4 are equivalent (see their
Theorem 4.1). The fact that 2 implies 1 is immediate from the definitions. To prove
that 4 implies 2, we proceed largely as in Genin and Kelly [34], but with greater attention
to details.

Recall that a statistical setup (W, Ω,F ) is feasibly based if F is a Borel σ-algebra arising
from I , a countable, almost surely clopen basis. Let A be the algebra generated by I .
Genin and Kelly [34] show that when the statistical setup is feasibly based, the collection
of sets of the form {µ : µ(A) > a}, where a ∈ Q and A ∈ A, is a sub-basis for the weak
topology. That means that every open set in the weak topology over W can be expressed
as a union of finite intersections of elements of the collection. Therefore, we proceed by
showing that every element of that collection is monotonically verifiable (Lemma A2).
We conclude by showing that the monotonically verifiable propositions are closed under
finite intersections (Lemma A3), and countable unions (Lemma A4), which completes the
proof. But first, we prove the somewhat technical Lemma A1, which says that if you have a
countable collection of αi-monotonic verifiers (λ1

n), (λ2
n), . . ., of hypotheses A1, A2, . . . , then
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it is possible to construct a countable collection of mutually independent monotonic verifiers
for the Ai. The idea behind the construction is very rudimentary: you can always render
methods independent by splitting up the sample in the appropriate way.

Lemma A1. Suppose that I is a countable index set and that for i ∈ I, (ψi
n)n∈N is an αi-monotonic

verifier of Ai. Then, there exist (λ1
n), (λ2

n), . . . where each (λi
n)n∈N is an αi-monotonic verifier of

Ai, and for each n, (σ(λi
n), i ∈ I) are mutually independent.

Proof of Lemma A1. The basic idea is to render the (ψi
n) mutually independent by splitting

the sample and feeding it to the individual verifiers according to a triangular dovetailing
scheme. Represented in tabular form:

(ψ1
n) (ψ2

n) (ψ3
n) (ψ4

n) · · ·

ω1
ω2 ω3
ω4 ω5 ω6
ω7 ω8 ω9 ω10
ω11 ω12 ω13 ω14 · · ·

...
...

...
... · · ·

The samples in the ith column of the table are the samples that are fed to the ith veri-
fier. Since the verifiers are essentially functions of disjoint samples, they are mutually
independent. Since the samples are i.i.d. all of the desirable statistical properties of the
verifiers are preserved. For a detailed proof, including all the measure-theoretic niceties,
see Lemma 3.3.2 in Genin [45].

Lemma A2. Suppose that B is almost surely decidable for every µ ∈ W. Then, for all real b, the
hypothesis H = {µ : µ(B) > b} is monotonically verifiable.

Proof of Lemma A2. We restrict attention to the non-trivial cases where b ∈ (0, 1). The
idea is to take an almost sure α-verifier of H and modify it slightly to ensure α-monotonicity.

See Figure A1 for an overview of the proof strategy. Let tn =
√

1
2n ln(π2n2/6α) and

λn(~ω) :=

{
H, if ∑n

i=1 1B(ωi) ≥ dn(b + tn)e,
W, otherwise.

Genin and Kelly [34] Theorem 4.1, show that (λn)n∈N is an a.s. α-verifier. Let

βn(θ) =
n

∑
dn(b+tn)e

(
n
k

)
θk(1− θ)n−k.

Then, βn(µB) = µn[λ−1
n (H)]. It is something of a nuisance that βn(θ) is exactly zero for n

such that dn(b + tn)e > n. Since the tn converge monotonically to 0, this is the case for only
finitely many initial sample sizes n. For example, for b = 0.5, α = 0.05, βn(θ) is non-trivial
for samples sizes larger than 20. Let n0 = min{n : dn(b + tn)e ≤ n}.
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Figure A1. The basic idea of the proof is encapsulated in the figure. For any sample size n, we
construct a step function φn that “almost dominates” the power function βn. The step function
dominates βn for all θ except those for which βn(θ) is less than α, or close to 1. Then, since the
set of steps is finite, and the original test satisfies LIMCON, there must be a sample size σ(n) such
that the power function βσ(n) strictly dominates the step function. Since βσ(n) dominates the step
function, βσ(n)(θ) can only be less than βn(θ) if βn(θ) is less than α, or they are both close to 1. The
loss of power from n to σ(n) is thereby bounded by α. Iterating this process we get a sequence of
“good” sample sizes n, σ(n), σ2(n), . . . such that the power is “almost increasing”. It remains only to
interpolate the intermediate sample sizes with tests that throw out samples until they arrive at the
nearest “good” sample size.

It is worth pointing out some additional features of the βn(θ) that we will be appealing
to in the following. It is evident that, since βn(θ) is a polynomial, it is a continuous function
of the parameter θ. Although it is “obviously” true that, for n ≥ n0, βn(θ) is strictly
increasing in θ, it is surprisingly non-trivial to demonstrate. For an elegant proof of this
fact, see Gilat [46]. It is a standard fact of analysis that that if [a, b], [c, d] are closed real
intervals and f : [a, b]→ [c, d] is a continuous real function, then f is bijective iff it is strictly
increasing. Therefore, for n ≥ n0, βn : [0, 1]→ [0, 1] is bijective.

There are two important properties of the collection (βn(θ))n∈N that follow from the
fact that (λn) is an almost sure verifier: (1) for θ > b, limn βn(θ) = 1; (2) ∑n supθ≤b βn(θ) =

∑n βn(b) < α. The first property follows from LIMCON. The second property follows from
σ-BNDERR and the fact that βn(θ) is increasing. Define αn = βn(b). Note that for n ≥ n0,
αn > 0. Let α∗n = min{αm : n0 ≤ m ≤ n}. For n ≥ n0, let

Kn = max{k ∈ N : α + kαn < 1− α∗n}.

Now, define the increasing step function:

φn(θ) =


0, βn(θ) < α,
α + kαn, α + (k− 1)αn ≤ βn(θ) < α + kαn, k ∈ {1, . . . , Kn},
1− α∗n, βn(θ) ≥ α + Knαn.
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We first show that βn(θ)− φn(θ) < α. If βn(θ) < α, then βn(θ)− φn(θ) ≤ βn(θ) < α.
Furthermore, φn(θ) > βn(θ) for θ such that α ≤ βn(θ) < α + Knαn. Finally, for θ such that
βn(θ) ≥ α + Knαn, βn(θ)− φn(θ) ≤ 1− φn(θ) = α∗n < α.

For n ≥ n0, let θn,i = β−1
n (α + iαn), for i ∈ {0, . . . , Kn}. (The θn,i are well defined

because βn(θ) is surjective whenever n ≥ n0.) Note that since for each i, βn(θn,i) ≥ α,
each θn,i > b. Since limn βn(θ) → 1 for all θ > b, there is a least N > n, such that for all
i ∈ {0, . . . , Kn}, βN(θn,i) > φn(θn,i). For all n, define σ(n) to be the least such N. Define
σ0(n) := n, σ1(n) := σ(n), and σm(n) := σ(σm−1(n)).

We show that βσ(n)(θ) ≥ φn(θ). Suppose that θ < θn,0. Then βn(θ) < α, and φn(θ) =
0 ≤ βσ(n)(θ). Suppose that θn,i ≤ θ < θn,i+1 for i ∈ {0, . . . , Kn − 1}. Then, βσ(n)(θ) ≥
βσ(n)(θn,i) > φn(θn,i) = φn(θ). Finally, suppose that θ ≥ θn,Kn . Then, similarly, βσ(n)(θ) ≥
βσ(n)(θn,Kn) > φn(θn,Kn) = φn(θ).

Now, we show that φσ(n)(θ) ≥ φn(θ). Suppose that βσ(n)(θ) < α. Then, since,
φn(θ) < βσ(n)(θ), it follows that φn(θ) < α, and therefore, φn(θ) = 0 ≤ φσ(n)(θ). Suppose
that α ≤ βσ(n) < α + Kσ(n)ασ(n). Then, φn(θ) ≤ βσ(n)(θ) < φσ(n)(θ). Finally, if βσ(n) ≥
α + Kσ(n)ασ(n), then φσ(n) = 1− α∗

σ(n) ≥ 1− α∗n ≥ φn(θ).
It is now easy to show that βn(θ)− βσm(n)(θ) < α, since βn(θ)− βσm(n)(θ) ≤ βn(θ)−

φσm−1(n)(θ) ≤ βn(θ)− φn(θ) < α. Therefore, for an increasing sequence of “good” sample
sizes, n, σ(n), σ2(n), . . ., the verifier {λn} is α-monotonic. Furthermore, since the sequence
(βσm(n)(b))m∈N converges to zero, there exists a subsequence (βn∗i

(b))i∈N that converges
monotonically to zero. We use these facts to construct a verifier that is α-monotonic, by
patching over the “bad” sample sizes.

Let π(n) = max{n∗i : n∗i ≤ n}. Let λ∗n(ω1, . . . , ωn) := λπ(n)(ω1, . . . , ωπ(n)). We have
taken pains to ensure that (λ∗n) satisfies α-MON. Since

sup
µ∈Hc

µn[λ−1
n (H)] ≤ βπ(n)(b) ↓n 0,

(λn) satisfies MVANERR. Since (λn) is an almost sure verifier, the set C = {ω ∈ Ω∞ :
λn(ω|n)→ H} has µ∞(C) = 1 for every µ ∈ H. But if the sequence (λn(ω|n)) converges
to H then so does the subsequence (λπ(n)(ω|π(n))). Therefore, C ⊆ C∗ = {ω ∈ Ω∞ :
λπ(n)(ω|π(n)) → H}. Therefore, µ∞[lim inf(λ∗n)−1(H)] = 1, if µ ∈ H, and (λ∗n) satisfies
SLIMCON. A fortiori, it also satisfies LIMCON. Since α > 0 was arbitrary, we are done.

Lemma A3. The monotonically verifiable propositions are closed under finite conjunctions.

Proof of Lemma A3. By Lemma A1, it suffices to show that if (λ1
n), . . . , (λk

n) are mutually
independent αi-monotonic verifiers of A1, . . . , Ak, with α > ∑i αi, then

λn(~ω) =

{
∩k

i=1 Ai, if λi
n(~ω) = Ai for all i ∈ {1, . . . , k},

W, otherwise,

is an α-monotonic verifier of ∩k
i=1 Ai.

Consider the case where k = 2. We first demonstrate that (λn) satisfies MVANERR.
Suppose µ /∈ A1 ∩ A2. Without loss of generality, suppose that µ /∈ A1. By assumption there
exists a sequence (α1

n) such that α1
n < α1, αn ↓ 0 and µn[(λ1

n)
−1(A1)] < α1

n. Noticing that

µn[λ−1
n (A1 ∩ A2)] = µn[(λ1

n)
−1(A1) ∩ (λ2

n)
−1(A2)]

≤ µn[(λ1
n)
−1(A1)]

≤ α1
n,

we see that (λn) also satisfies MVANERR.
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Suppose that µ ∈ A1 ∩ A2. We demonstrate that (λn) satisfies LIMCON.

µn[λ−1
n (A1 ∩ A2)] = µn[(λ1

n)
−1(A1) ∩ (λ2

n)
−1(A2)]

= 1− µn[(λ1
n)
−1(W) ∪ (λ2

n)
−1(W)]

≥ 1− µn[(λ1
n)
−1(W)] + µn[(λ2

n)
−1(W)].

But since µn[(λ1
n)
−1(W) + µn[(λ2

n)
−1(W)]→ 0, it follows that

µn[λ−1
n (A1 ∩ A2)]→ 1.

It remains to show that (λn)n∈N satisfies α-MON. To make the expressions more manageable,
we make the following substitutions:

a
nj
i = µnj [(λi

nj
)−1(Ai)].

Under the assumption of independence:

µn1 [ψ−1
n1

(A1 ∩ A2)]− µn2 [ψ−1
n2

(A1 ∩ A2)] = an1
1 an1

2 − an2
1 an2

2 .

By assumption, either (i) an1
1 − an2

1 < α/2 or (ii) an1
2 − an2

2 < α/2. Assume, without loss of
generality, that (ii). Then,

an1
1 an1

2 − an2
1 an2

2 < an1
1 an1

2 − an2
1 (an1

2 − α/2)

= an1
1 an1

2 − an2
1 an1

2 + an2
1 · α/2

= an1
2 (an1

1 − an2
1 ) + an2

1 · α/2

< an1
2 · α/2 + an2

1 · α/2

≤ α.

The case when k > 2 follows immediately by induction.

Lemma A4. The monotonically verifiable propostions are closed under countable disjunction.

Proof of Lemma A4. By Lemma A1, it suffices to show that if (λ1
n), . . . , (λk

n), . . . , are mu-
tually independent αi-monotonic verifiers of A1, . . . , Ak, . . . , such that ∑∞

i=1 αi converges to
α, then,

λn(~ω) =

{
∪∞

i=1 Ai, if λi
n(~ω) = Ai for some i ∈ {1, . . . , n},

W, otherwise,

is an α-monotonic verifier of ∪∞
i=1 Ai.

We first demonstrate that (λn) satisfies MVANERR. Suppose that µ /∈ ∪∞
i=1 Ai. Then,

for each i there is (αi
n) such that αi

n < αi, αi
n ↓ 0, and µn[(λi

n)
−1(Ai)] ≤ αi

n. Therefore,

µn[λ−1
n (∪∞

i=1 Ai)] = µn[∪n
i=1(λ

i
n)
−1(Ai)]

≤
n

∑
i=1

µn[(λi
n)
−1(Ai)]

≤
∞

∑
i=1

αi
n ≤ α.

It remains to show that Sn = ∑∞
i=1 αi

n converges monotonically to zero as n → ∞.
Since αi

n ≥ αi
n+1 for each i, we have that Sn ≥ Sn+1. Therefore, the sequence (Sn) is

decreasing and bounded below by zero. By the monotone convergence theorem, the
sequence (Sn) converges to its infimum. We show that the infimum is zero. Let ε > 0. Since
the tail of a convergent series tends to zero, there is K such that ∑∞

i=K αi < ε/2. Therefore,
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Tn = ∑∞
i=K αi

n < ε/2. Since Sn = Tn + ∑K−1
i=1 αi

n, and ∑K−1
i=1 αi

n → 0 as n → ∞, there is N
such that Sn < ε for n ≥ N. Since ε was arbitrary, we are done.

Suppose that µ ∈ ∪∞
i=1 Ai. We show that (λn) satisfies LIMCON. Since µ ∈ ∪∞

i=1 Ai,
there is k such that µ ∈ Ak. For n ≥ k,

µn[λ−1
n (∪∞

i=1 Ai)] = µn[∪n
i=1(λ

i
n)
−1(Ai)]

≥ µn[(λk
n)
−1(Ak)].

But since µn[(λk
n)
−1(Ak)]→ 1, we have that µn[λ−1

n (∪∞
i=1 Ai)]→ 1.

It remains to show that (λn) satisfies α-MON. By the inclusion-exclusion formula:

µn[λ−1
n (∪∞

i=1 Ai)] = µn[∪n
i=1(λ

i
n)
−1(Ai)] =

=
n

∑
i=1

µn[(λi
n)
−1(Ai)]− ∑

i<j<n
µn[(λi

n)
−1(Ai) ∩ (λ

j
n)
−1(Aj)]

+ ∑
i<j<k<n

µn[(λi
n)
−1(Ai) ∩ (λ

j
n)
−1(Aj) ∩ (λk

n)
−1(Ak)] + · · ·

+ (−1)n−1µn[∩n
i=1(λ

i
n)
−1(Ai)].

To make the expressions more manageable, we make the following substitutions:

an
i = µn[(λi

n)
−1(Ai)].

Since the verifiers are mutually independent:

µn[λ−1
n (∪i Ai)] =

n

∑
i=1

an
i − ∑

i<j<n
an

i an
j + · · ·+ (−1)n−1an

1 an
2 · · · an

n.

Or, in closed form:

µn[λ−1
n (∪i Ai)] =

n

∑
j=1

(−1)j−1 ∑
I⊂{1,...,n}
|I|=j

∏
i∈I

an
i

.

Furthermore, for n1 < n2,

µn2 [λ−1
n2

(∪i Ai)] = µn2 [∪n2
i=1(λ

i
n2
)−1(Ai)]

≥ µn2 [∪n1
i=1(λ

i
n2
)−1(Ai)]

=
n1

∑
j=1

(−1)j−1 ∑
I⊂{1,...,n1}

|I|=j

∏
i∈I

an2
i

.
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Therefore,

µn1 [λ−1
n1

(∪i Ai)]− µn2 [λ−1
n2

(∪i Ai)] =

=
n1

∑
j=1

(−1)j−1 ∑
I⊂{1,...,n1}

|I|=j

∏
i∈I

an1
i

− n2

∑
j=1

(−1)j−1 ∑
I⊂{1,...,n2}

|I|=j

∏
i∈I

an2
i



≤
n1

∑
j=1

(−1)j−1 ∑
I⊂{1,...,n1}

|I|=j

∏
i∈I

an1
i

− n1

∑
j=1

(−1)j−1 ∑
I⊂{1,...,n1}

|I|=j

∏
i∈I

an2
i



=
n1

∑
j=1

(−1)j−1 ∑
I⊂{1,...,n1}

|I|=j

(
∏
i∈I

an1
i −∏

i∈I
an2

i

).

Next, we demonstrate that

∏
i∈I

an1
i −∏

i∈I
an2

i = ∑
i∈I

(
(an1

i − an2
i ) ∏

j∈I,j<i
an2

j ∏
j∈I,j>i

an1
j

)
.

By induction on |I|. Let k = max i ∈ I.

∏
i∈I

an1
i −∏

i∈I
an2

i = an1
k ∏

i∈I\{k}
an1

i − an1
k ∏

i∈I\{k}
an2

i + (an1
k − an2

k ) ∏
i∈I\{k}

an2
i

= an1
k

 ∏
i∈I\{k}

an1
i − ∏

i∈I\{k}
an2

i

+ (an1
k − an2

k ) ∏
i∈I\{k}

an2
i

= an1
k

 ∑
i∈I\{k}

(an1
i − an2

i ) ∏
j∈I\{k},j<i

an2
j ∏

j∈I\{k},j>i
an1

j

+ (an1
k − an2

k ) ∏
i∈I\{k}

an2
i

= ∑
i∈I\{k}

(
(an1

i − an2
i ) ∏

j∈I,j<i
an2

j ∏
j∈I,j>i

an1
j

)
+ (an1

k − an2
k ) ∏

i∈I\{k}
an2

i

= ∑
i∈I

(
(an1

i − an2
i ) ∏

j∈I,j<i
an2

j ∏
j∈I,j>i

an1
j

)
.
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Therefore,

µn1 [λ−1
n1

(∪i Ai)]− µn2 [λ−1
n2

(∪i Ai)]

≤
n1

∑
j=1

(−1)j−1 ∑
I⊂{1,...,n1}

|I|=j

(
∏
i∈I

an1
i −∏

i∈I
an2

i

)

=
n1

∑
j=1

(−1)j−1 ∑
I⊂{1,...,n1}

|I|=j

∑
i∈I

(
(an1

i − an2
i ) ∏

k∈I,k<i
an2

k ∏
k∈I,k>i

an1
k

)

=
n1

∑
j=1

(−1)j−1
n1

∑
i=1

(an1
i − an2

i ) ∑
I⊂{1,...,n1}
|I|=j,i∈I

∏
k∈I,k<i

an2
k ∏

k∈I,k>i
an1

k

=
n1

∑
i=1

(an1
i − an2

i )
n1

∑
j=1

(−1)j−1 ∑
I⊂{1,...,n1}
|I|=j,i∈I

∏
k∈I,k<i

an2
k ∏

k∈I,k>i
an1

k

Noticing that

n1

∑
j=1

(−1)j−1 ∑
I⊂{1,...,n1}
|I|=j,i∈I

∏
k∈I,k<i

an2
k ∏

k∈I,k>i
an1

k =

=
n1−1

∑
j=1

(−1)j−1 ∑
I⊂{1,...,n1}\{i}

|I|=j

∏
k∈I,k<i

an2
k ∏

k∈I,k>i
an1

k

=
n1−1

∑
j=1

(−1)j−1 ∑
I⊂{1,...,n1}\{i}

|I|=j

µn2

[ ⋂
k∈I,k<i

(λk
n2
)−1(Ak)

]
µn1

[ ⋂
k∈I,k>i

(λk
n1
)−1(Ak)

]

=
n1−1

∑
j=1

(−1)j−1 ∑
I⊂{1,...,n1}\{i}

|I|=j

µn1 × µn2

[ ⋂
k∈I,k>i

(λk
n1
)−1(Ak)×

⋂
k∈I,k<i

(λk
n2
)−1(Ak)

]

= µn1 × µn2

[⋃
k>i

(λk
n1
)−1(Ak)×Ωn2 ∪

⋃
k<i

Ωn1 × (λk
n2
)−1(Ak)

]
≤ 1,

where the last equality follows from the inclusion-exclusion principle. It follows that

µn1 [λ−1
n1

(∪i Ai)]− µn2 [λ−1
n2

(∪i Ai)] ≤
n1

∑
i=1

(an1
i − an2

i )

≤
n1

∑
i=1

αi < α,

as required.

Notes
1 Some frequentists go even further. In their response to the American Statistical Association’s controversial statement on p-values,

Ionides et al. [2] identify frequentist method with deduction, and Bayesian method with induction.
2 Albert [10] answers Redhead’s challenge by suggesting that we drop the fiction that observed variables are continuous. Since we

would like our results to apply directly to problems as formulated in the sciences, where continuous variables are commonplace,
we do not adopt Albert’s solution. However, we assimilate this insight in Sections 4.1 and 4.2 by insisting on “feasible” test
methods, i.e., methods whose verdicts depend only on a discretization of the data, even if the underlying variables are continuous.
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3 For example, the testability of conditional independence hypotheses is an area of active research [13,14] with far-reaching
consequences.

4 Kvanvig [15] makes a parallel point for epistemology: “. . . it is far from obvious that . . . the best way of structuring a fruitful
cognitive life is to concentrate on individual time-slices, and whether knowledge or justification is posessed at each time-slice,
and let the totality . . . get generated by cementing together these time-slices”. Laudan [16] makes a similar point in philosophy
of science: “Progress necessarily involves a . . . process through time. Rationality . . . has tended to be viewed as an atemporal
concept . . . most writers see progress as nothing more than the temporal projection of individual rational choices . . . we may be
able to learn something by inverting the presumed dependence of progress on rationality”.

5 We adopt here the idiom of “negative” falsificationism, according to which one should suspend judgement on a hypothesis unless
it is falsified. “Positive” falsificationism, on the other hand, endorses belief in hypotheses which have passed an appropriate test
(see Musgrave [17], Section 6). If we adopted the positive formulation, we could no longer speak of error avoidance tout court,
but would have to rephrase the norm in terms of avoidance of errors of Type I (false rejection). Not much hinges on the choice,
since the set of falsififiable hypotheses remains the same.

6 Here an astute reader may object: how do we know that observation must turn up an elusive non-black raven if one exists? We
might rephrase the hypothesis as ‘all ravens that will ever be observed are black.’ We might simply appeal to the background
assumptions of inquiry: the method must converge to not-H not in all those possibilities in which H is false, but in all possibilities
in which H is false and the background assumptions of inquiry are true. A more careful answer might require a falsification
method to converge to not-H in a “maximal set” of possibilities in which H is false, e.g., in all those possibilities in which
convergence is compatible with error avoidance. See Lin [18] for a rigorous development of this idea.

7 The definitions in this section are intentionally rather schematic. Hopefully this will aid, rather than hinder, comprehension. All
definitions are formalized in the following.

8 The reader may object: surely no method can be expected to converge to not-H in all the possibilities in which H is false. For
example, what if H is false because the assumption of i.i.d sampling is violated? A more careful formulation requires that the
method converge to not-H in all those worlds in which H is false but the background assumptions of inquiry are true—if it is
statistical falsification which is at issue, then some kind of statistical regularity must be taken for granted.

9 The following are only proto-definitions, leaving many things unspecified. The notion of verification in the limit is here a free
parameter: compatible notions include convergence in propositional information, convergence in probability and almost sure
convergence. The notion of α-error avoidance is also parametric: it can mean that the chance of error at any sample size is
bounded by α, or that the sum of the chances of error over all sample sizes is bounded by α. Each of these concepts will be
developed in detail in the following. These parametric details are omitted here to expose the essential differences between the
three concepts.

10 For a contrived example, suppose it is known that random samples are distributed uniformly on the interval (µ− 1/2, µ + 1/2),
for some unknown parameter µ. Although samples may land outside the interval, they only do so with probability zero. Let H
be the hypothesis that the true parameter is µ. Let M be the method that concludes not-H if some sample lands outside of the
interval (µ− 1/2, µ + 1/2), and draws no non-trivial conclusion otherwise. Then, M is a deductive falsifier of the second type,
although not of the first. Clearly, every falsifier of the first type is a falsifier of the second type.

11 A topological space T is a structure 〈W,V〉 where W is a set, and F is a collection of subsets of W closed under conjunction and
finite disjunction. The elements of V are called the closed sets of T . In our case W is a set of epistemic possibilities, or possible
worlds, and F is the set of falsifiable propositions over W. Although we define a topology here in terms of closed sets, we could
just as easily have done it in terms of open sets since the complement of every closed set is open.

12 See, however, Lin [35], Lin and Zhang [36] for how to proceed when identifiability fails.
13 We use the notation bdryA to denote the set of boundary points of A.
14 The acceptance region is ψ−1(W), rather than ψ−1(H), because failing to reject H licenses only suspension of belief i.e., the trivial

inference W.
15 Every topology gives rise to a kind of convergence by setting µn ⇒ µ iff for every open E containing µ there is N such that µn ∈ E

for n ≥ N. Every kind of convergence gives rise to a topology by letting E ⊆W be open iff for each sequence µn ⇒ µ ∈ E there is
N such that µn ∈ E for n ≥ N. The notion of convergence arising from a topology defined in this way will agree with the original
notion of convergence.

16 For example, if we are interpolating points with polynomials, linear, quadratic, cubic, ... is such a collection, when the hypotheses
are understood in the strict sense. Although the individual hypotheses are not falsifiable—if the truth is linear, quadratic will
never be refuted—unions of inital segments are—if the generating polynomial is of degree greater than 2, we will get a sign.
Many statistical model selection problems also fit this description.

17 See Miller [40], Tichý [41], Oddie [42], Niiniluoto [43,44].
18 Niiniluoto [43] admits: “the problem of estimating verisimilitude is neither more nor less difficult than the traditional problem of

induction”.
19 This entailment holds only for countably additive measures, to which we restrict attention.
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