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Abstract: In this essay we critically evaluate the progress that has been made in solving the problem
of meaning in artificial intelligence (AI) and robotics. We remain skeptical about solutions based on
deep neural networks and cognitive robotics, which in our opinion do not fundamentally address the
problem. We agree with the enactive approach to cognitive science that things appear as intrinsically
meaningful for living beings because of their precarious existence as adaptive autopoietic individuals.
But this approach inherits the problem of failing to account for how meaning as such could make
a difference for an agent’s behavior. In a nutshell, if life and mind are identified with physically
deterministic phenomena, then there is no conceptual room for meaning to play a role in its own right.
We argue that this impotence of meaning can be addressed by revising the concept of nature such
that the macroscopic scale of the living can be characterized by physical indeterminacy. We consider
the implications of this revision of the mind-body relationship for synthetic approaches.

Keywords: mind-body problem; 4E cognition; cognitive robotics; artificial life; minimal cognition;
dynamical approach; enactive approach; complex systems

1. Introduction

How can we design artificial agents such that their encounters with the world makes sense to
them, that is, such that the meaningful aspects of those encounters are also experienced from their
own intrinsic perspective as relevant? This is the problem of meaning, which has haunted artificial
intelligence (AI) since the beginning of the field [1]. It has shown itself in different guises along the
way [2], and it is essentially still with us today as more recent approaches to cognitive science continue
the struggle to naturalize meaning [3]. It is important to be aware of this fundamental problem,
especially nowadays when much of the general public, and surprisingly even many high-profile
researchers, have been carried away by the current wave of high-profile advances in AI into believing
that human-level AI is just around the corner, which would imply that this problem has finally been
solved. We will argue that there are good reasons to remain thoroughly skeptical.

This is not the first time that our imagination has been dazzled by technical advances; in fact,
history reveals that this occurs rather regularly [4]. Moreover, the perennial philosophical problem of
how to make room for subjective meaning in a physical world, first articulated in its modern form
by Descartes, remains fundamentally unsolved. The theory of mind that most researchers thought is
the best bet to naturalize meaning, representationalism, has—after over half a century of concerted
effort!—left it completely mysterious as to how mental content as such could make a difference in the
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unfolding of natural processes [5]. Accordingly, there is a growing consensus that new approaches
are required, especially in the form of non-representationalist embodied, dynamical, and enactive
approaches, and one of us has been actively involved in developing such an enactive approach to
AI [6]. But, as we will argue, these non-representationalist approaches to AI have ultimately inherited
the same fundamental difficulty. Even the enactive approach, which has made a substantial effort
to account for value and meaning in a non-representational manner [7], ultimately leaves it equally
mysterious how the subjective, i.e. value, meaning, intention, purpose, etc., as such, on its own terms,
could make a difference for the movements of an agent, if it is assumed that its internal and external
activity is already completely governed by purely dynamical laws. Moreover, this assumption of
state-determinism sits in tension with other commitments of the enactive approach that have received
less attention in the literature, namely its insistence on the groundlessness and the interdependence
of the subjective and the objective, which makes it possible to metaphorically conceive of action as
“laying down a path in walking” [8].

We therefore propose that it is time to step back for a moment and ask ourselves whether the
problem of this failure of naturalizing meaning perhaps not only derives from a faulty concept of mind,
but rather from an inadequate concept of nature. Thus, following a brief review of the problem of
meaning in AI and robotics, we discuss the conceptions of nature that are implicitly presupposed by
representationalist and non-representationalist approaches to cognitive science. We then sketch an
alternative concept of nature, one that places limits on its scope, and which we therefore believe has a
better chance of accounting for the possibility that meaning makes a difference in a material world. We
conclude by discussing the implications of this revised concept of nature for the design of artificial
systems such that they make room for meaning to play a role.

2. The Problem of Meaning in AI and Robotics

As an illustration of the fact that the problem of meaning in AI is still very much with us today,
consider the example of GoogLeNet, a convolutional neural network trained on more than a million
images. It turns out that by adding an imperceptibly small perturbation to an image we can cause
it to misclassify with high confidence such that, for example, an image that was classified correctly
as a panda with 58.7% confidence becomes classified instead as a gibbon with 99.3% confidence [9].
The fact that deep neural networks are easily fooled in this and other ways [10], demonstrates that
their otherwise impressive performance is not based on a meaningful perception of the content of their
input. This continuing problem of meaning that is faced by current high-powered AI can have serious
consequences, for instance in terms of issues surrounding the reliability of self-driving cars.

Over the years this overarching problem of meaning has been famously discussed in terms
of a variety of more specific practical and theoretical problems, including the symbol grounding
problem [11], the Chinese room argument [12], and generalizations of the frame problem [13,14].
A decade ago one of us co-authored an article [6] that diagnosed the root cause of this problem of
meaning in AI as a lack of precarious self-individuation of artificial agents (i.e., as a lack of life, see
also [15–17]). That article proposed as an alternative an enactive approach to AI that grounds artificial
agency in both autopoiesis and adaptivity. At that time there were several well-known examples in
the fields of cognitive robotics and artificial life of artificial systems that were either autopoietic [18]
or adaptive [19], but not both. So the outstanding practical challenge of synthesizing an adaptive
autopoietic system, plus compelling arguments derived from the philosophy of the organism that
grounded intrinsic teleology and sense-making in self-regulated self-production [20–22], raised a
tantalizing hope: that the problem of meaning in AI could finally be solved if we somehow managed
to engineer the conditions for the emergence of adaptive autopoietic systems, at least at the level of
habitual behavior or sensorimotor agency [23–25].

However, since then this hard problem of “second-order engineering” enactive AI [6], that
is, of engineering a system that gives rise to an autopoietic individual that, in turn, during its
agent-environment interaction gives rise to adaptive behavior, has essentially been solved, at least
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virtually by using simulation models. Even the simplest models of reaction–diffusion systems can
give rise to spatially individuated ‘spots’ capable of adaptive behaviors, including growing towards
‘nutrient’ sources and moving away from parasitic reactions [26,27]. A more complex example is a
simulation model of a chemical system that supports a protocell that is capable of surviving certain
kinds of perturbations by spontaneously adapting its internal chemical organization [28,29].

Following the enactive approach to value, according to which value is an emergent property of
an autopoietic system’s adaptive interactions [7], the protocell’s tendencies toward its preservation
are intrinsically good, whereas the ones leading to its disintegration are intrinsically bad. Thus, when
the protocell rearranges itself internally and thereby avoids its own disintegration, we can say that it
behaved according to an intrinsic norm which made this a good response. This notion of “behavior
according to an intrinsic norm” is an essential element of the enactive definition of agency [30], and
it has been given a more detailed dynamical treatment based on another simulation model of a
chemotactic protocell [31,32].

But can we say that such a protocell’s adaptive response to the perturbation is significant for
the protocell itself? Does it have an intrinsic sense of having avoided something undesirable, bad, or
imbued with negative valence? In other words, has the problem of meaning really been solved by
combining autopoiesis with adaptivity? One worry, long highlighted by researchers working with real
robots [33], is that simulation is not reality, and the possibility of transferring results from the former to
the latter cannot be taken for granted. More specifically, the precariousness that grounds the concern
inherent in living existence has no counterpart in a computer simulation whose entities are purely
logical and hence essentially immortal [34].

But even in the case of real living beings, it only makes sense to claim that their meaningful
perspective is grounded in their precarious existence if we accept, as Jonas [35] proposed, that their
being is their own doing. An organism actively brings about its own physical existence, and it is this
internal relationship between doing and being that makes the organism a being that is concerned with
what it is doing, in particular with its continued self-preservation [36]. Of course, this is just an initial
sketch and more has to be said about how the enactive approach could account for norms that are not
related to the organism’s need to avoid dying [37,38], for instance by developing detailed accounts
of additional processes of self-generation that are hierarchically decoupled from metabolism [23].
Nevertheless, a fundamental worry would remain: to what extent are we justified in claiming that
the organism’s being is something actively done, rather than merely passively undergone, if all of its
unfolding processes are completely prespecified by a deterministic universe? Such a universe is not
compatible with Jonas’ characterization of life as “needful freedom” [20]. A precarious existence may
be necessary for a meaningful perspective, but so is the freedom to make a genuine difference with
respect to the needs of this existence.

We will not enter more deeply into the enactive approach to grounding meaning here, because
our primary concern lies with how meaning, once present, could make a difference for behavior in the
physical world, no matter how meaning arises in the first place. Thus, for us an even bigger worry
is that even if we were to attribute some minimal intrinsic sense of normativity to a model protocell,
or a living being in a deterministic universe, then this normativity would for all practical purposes
be essentially irrelevant for its adaptive behavior, which may be emergent, but which ultimately is
still completely determined by the system’s dynamical laws. It is therefore in principle possible to
give a complete dynamical account of all of the agent’s activity, and we can identify trajectories that
lead to disintegration and others that lead to adaptation. The key worry is that, given that a complete
dynamical description of the system’s activity is indeed possible, there is no longer any conceptual
room for the agent’s norm as such to make any difference to the behavior. The agent adapts to some
perturbations not because it is somehow concerned about its continued existence, but just because it is
absolutely determined to do so by the overall chemical system’s dynamics.

To put it differently, while at first sight the notion of “behavior according to an intrinsic norm”
suggests that an agent behaves the way it does because that is what is good for it, it is actually more
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correct to say that is behaves that way simply due to certain dynamical constraints on its internal and
interactional dynamics. Whether we label a region of this dynamical state space as being in line (or in
tension) with its norms simply makes no difference for the agent, nor to the unfolding of its trajectories.
Once the agent has started on a particular trajectory, it can never leave that trajectory—even if it is
trajectory that is supposedly intrinsically bad for it. To repeat, in this framework the norm as such
makes absolutely no difference to activity: the behavior is something that is just undergone by the
system, rather than actively chosen to be in accordance with an intrinsic norm.

This dynamical interpretation of emergent normativity in an adaptive autopoietic system, which
should not be controversial for those enactivists who are still committed to state-determinism, places
the protocell in the same class as, let us say, the moon whose trajectory in outer space is constrained by
the gravitational pull of the earth. One the one hand, this dynamical equality between living bodies
and mere objects is good news, since this would imply that the naturalization of normativity has
been achieved. However, this scientific victory of a strict naturalism comes at the considerable cost
of making normativity, and subjectivity more generally, fundamentally ineffective in nature. This
consequence is especially highlighted in Maturana’s original formulations of autopoietic theory [39],
which still leads some to accept the eliminativist claim that living beings are “essentially machines
composed of chains of deterministic processes. Everything that the system does is determined by its
structure at a given moment, not goals or desires about states in the future and not selecting between
features of the environment that harm or benefit the organism” [40] (p. 666).

We believe that this impotence of subjectivity is too steep a price to pay for the naturalization
of meaning, and we are therefore motivated to explore alternatives. Ideally, we would like a theory
of the living that leaves room for meaning and intentional action to make a difference on their own
terms in the natural world. Otherwise the theory is in direct tension with lived experience: when I
act normatively I have the experience that I act this way because I chose to satisfy the norm, and not
because I am simply forced to undergo the behavior [41]. For instance, we wrote this essay because we
believe its arguments to be correct and valuable. But if our writing behavior is actually completely
determined by physical causes, it would mean that this kind of meaningful experience of doing
something for reasons is nothing but an illusion, a misleading epiphenomenon. We would feel free
from physical determination only because of our ignorance about the ultimately unfree causes of
our behavior. This is a pessimistic conclusion that is acceptable to many (e.g. [42]), but it should be
unacceptable for an enactive approach that aims to genuinely heal the division between cognitive
science and human experience [43,44].

This critical assessment of the state-of-the-art of AI and artificial life suggests that the proposal
to solve the problem of meaning by creating artificial agents that are both autopoietic and adaptive
has to be revised. We believe that autopoiesis and adaptivity continue to be important concepts for
the naturalization of meaning, but they do not provide the full story: theoretical room has to be made
such that the normativity of an agent can also make a difference for its unfolding activity in terms of
that normativity as such. As we will argue in the next section, this shortcoming can motivate us to go
beyond the current focus on the individual agent and to consider an enactive theory of meaning, and
of subjectivity more generally, that involves revising the concept of nature as a whole.

3. Varieties of Naturalization

There are two prominent kinds of explanatory strategies for the naturalization of mind [45].
The dominant strategy is representationalism, which involves accounting for meaning’s place in nature
in terms of mental content, which is typically done by positing some extra mediating factor in the
brain of the agent, namely representational vehicles that intrinsically carry representational content.
An alternative strategy is to account for meaning’s place in nature directly in terms of neural and/or
behavioral dynamics, such as order parameters and phase transitions that guide an agent’s behavior in
relation to environmental features. There are many similarities and also important differences between
these two naturalization strategies, but arguably the most fundamental difference is whether or not
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they add some extra element to nature in order to account for meaning. We will therefore label them
“nature++” and “nature==”, respectively.

3.1. Nature++

Traditionally, AI and cognitive robotics has been inspired by the representationalist strategy of
naturalization in its attempt to synthesize artificial minds [46], which we call the nature++ strategy
because it seeks to add mental content into nature. Representations in classical AI and some forms
of embodied AI can take many forms, such as knowledge bases, cognitive maps, and value systems.
As we already mentioned in the introduction, this naturalization strategy has run into a wide variety
of practical and theoretical problems that can all be seen as different expressions of the problem of
meaning. Simply put, a computer only operates in terms of the logic of its syntax, and it makes no
difference to that operation what the states of the variables are supposed to represent, or whether they
mean anything in the real world at all [47]. This independence of semantic content from syntax is
not all bad, because it entails that the same formal algorithm can be used to solve different practical
problems. From the observer’s perspective the same algorithm or modeled dynamical system could be
interpreted as simulating a chemical reaction–diffusion system, or predatory and prey dynamics, or as
nothing but abstract coupled equations. But, crucially, whether a logical expression such as x = 0.2
refers to the concentration of reactants or of rabbits makes no difference to the code’s execution.

It might be thought that this problem of representational content does not apply to connectionist
AI, and that therefore the current advances in deep artificial neural networks are exempt from this
difficulty. However, despite its preference for sub-symbolic architectures, connectionism is part of
the computational theory of mind broadly conceived [48], and it therefore inherits a version of the
problem of meaning. When explaining the operation of a neural network, dynamical concepts such as
basins of attraction and bifurcations will be entirely sufficient. To return to an earlier example, it simply
makes no difference whether an attractor in the network’s dynamics represents images of pandas or of
gibbons. This irrelevance of representational content for computation also holds for the explanation
of brain activity. While it is certainly possible for scientists to ascribe content to patterns of neural
dynamics, such as working with the activations of a certain brain region as if they were a representation
of the agent’s location or orientation in space, no one has been able to show how such representational
content as such could make a difference to the neural activity [49]. Neuroscientists studying individual
neurons have not yet been forced to appeal to anything other than completely natural processes, that
is, processes known from the rest of nature such as changes in chemical substances and electrical
potential, to explain how and when a neuron will fire.

Given this apparent impotence of the content of representations for the operation of a digital
computer and of the brain, it is not surprising that many researchers avoid appeals to representational
content altogether. Instead they prefer a non-representationalist strategy.

3.2. Nature==

Non-representationalist approaches to AI and cognitive robotics famously started to take off
in 1990s. Examples include behavior-based robotics [50], the dynamical approach to cognition [51],
and certain strands of evolutionary robotics [52]. While the rejection of internal representations can
lead to a kind of dynamical eliminativism, a more popular approach has been to directly identify
aspects of mind with patterns of the brain, or with whole brain-body-world dynamics. Philosophically,
we can conceive of this approach as a suitably updated version of identity theory [53], which is
why we will refer to it as the nature== strategy. Its key claim is that mind should be identified with
emergent properties of neural and/or behavioral dynamics that in turn exert top-down constraints
on those same dynamics. Different versions of this claim have been elaborated by a whole range of
non-representationalist approaches to cognitive science [54–57]. For example, it has been developed
into a scientific research program by Kelso and colleagues, who account for mind in terms of emergent
order parameters. This allows them to identify meaningful actions with constraints that shape the
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agent’s internal dynamics: “In coordination dynamics, intention acts in the same space as the intrinsic
dynamics, attracting the system toward an intended pattern. Intentions constrain and are constrained
by the intrinsic dynamics. They may both stabilize and destabilize patterns of behavior” [58] (p. 222).
On this view, in nature there are just different kinds of dynamics, and nothing else.

We take seriously the starting point of the nature== strategy that there is as yet no evidence
for representational content playing any role inside nature. In this sense, the physical realization
of meaningful actions lacks something: Maturana is right that from a third-person perspective we
do not find the intentions and goals we experience from a first-person perspective. The physical
basis of meaning does not stand apart from the rest of nature; it does not carry any mark of the
subjective. In this sense nature can be said to be essentially incomplete, as Deacon [59] has highlighted.
However, Deacon’s appeal to incompleteness does not entail a rejection of physicalism because the
non-representationalist strategy of nature== remains available: on this view, meaning just is a certain
kind of pattern of constraints that is nowhere to be found concretely and yet this pattern still effectively
governs activity.

However, while this strategy removes the problem of how representational content could play
a role by denying the existence of content in nature, it does not manage to solve the fundamental
problem of how meaning as such could make a difference on its own terms, over and above the lawful
dynamics, and so we are at best left with another version of epiphenomenalism. Even worse, while
the nature++ strategy is unable to shake the worry that representational content is superfluous for
our best scientific accounts of mind, the nature== strategy further raises the stakes by fostering the
possibility that upon closer inspection mind itself may in the end collapse into nature and become
conceptually eliminated.

3.3. Nature–

Given that the nature++ and nature== strategies give rise to the problem of mental impotence, i.e.
the incapacity of the subjective to make a difference over and above the objective, and assuming that it
is desirable to aim for a naturalization of the mind that leaves room for a role of the subjective in its
own right, a different strategy seems to be called for. Both strategies in their own way suffer from an
overdetermination of meaningful action, in which behavior is conceived of as saturated by objective
determination to such an extent that no conceptual room is left for the subjective as such. How can we
make the necessary conceptual room? More precisely, how can we accept on the one hand that there is
no positive evidence for mind in nature, and yet at the same time accept that meaning as such makes a
genuine difference in the unfolding of natural processes?

Our proposal is to go even further than the nature== strategy: instead of only rejecting the
quest for evidence of the presence of the subjective in nature, we should rather look for evidence of the
absence of the objective in nature. In other words, we propose that when subjectivity is viewed from
an external, third-person perspective, it is forced to appear as objective and therefore cannot appear
as subjective directly, but it can nevertheless manifest itself indirectly through a relative lack of the
normally expected physical determinations compared to those of an ordinary object [60].

The upshot is that while we can try to approximate living beings as state-determined systems,
and even do so with some success, ultimately, their irreducible subjective nature prevents this partial
approximation from being turned into a complete specification. Moreover, we argue that this is not a
practical limitation due to measurement problems or a lack of knowledge. Rather, if our proposal is
correct, this is a necessary limitation when approaching the subjective via an objective perspective,
and as such the limitation can only ever be fully overcome at the price of subjectivity itself: A living
being can never be fully known objectively as long as it is living, but only when it is dead and hence
no longer behaves in accordance with subjective norms. Nevertheless, this in principle limitation of
complete objective determination should itself be objectively detectable in practice. For example, if we
could adapt the classical two-slit experiment of quantum physics to living beings, such that a living
being has to pass between one of two exactly identical slits in a wall, we predict that, just like in the



Philosophies 2019, 4, 14 7 of 14

original particle version, it would be in principle impossible to predict the outcome on a trial-by-trial
basis, no matter how simple the organism and no matter how much we know about the situation. This
kind of experiment would then allow us to try to better understand the processes that give rise to this
uncertainty at the behavioral level, i.e. those which make room for the subjective.

Particularly fitting candidates for studying this intertwining of the subjective and the objective
would be natural phenomena that are physically incomplete systems and whose activity is causally
underdetermined by preceding physical events inside and outside of the system. A good starting
point might actually be to reconsider the autopoietic system: metabolic self-production entails a
self-reference at the core of its being such that it is never fully self-coinciding at any one moment in
time, and this intrinsic circularity makes it formally equivalent to an incomplete system [61]. However,
we would have to overcome the determinism assumed by current models of autopoiesis.

Note that nondeterminism is not the same as randomness, as randomness can be generated in
a deterministic manner, e.g. by using a look-up table containing random numbers [62]. Moreover,
non-deterministic behavior can still have some structure over time, albeit a kind of structure that is
only temporarily constrained but never fully determined by preceding physical state. To make room
for such nondeterministic behavior, the overarching system that contains the autopoietic system cannot
be a completely deterministic system, either, which seems to rule out the possibility of using standard
computational simulation. Making this room also seems to rule out the idea that nature is causally
closed and that it will bottom out at some smallest physical scale, and instead suggests that nature is
nonergodic [63] and groundless [64].

We therefore require a concept of nature that is incomplete in a deeper way than simply lacking
evidence of mental content or a mark of the subjective. We must give up the idea of the causal closure
of the universe and accept incompleteness and indeterminacy as essential properties of nature in order
to make room for the subjective in the objective. We will refer to this strategy as nature–.

To many it will seem strange that nature should be conceived of as essentially nondeterministic
and incomplete, but it should be remembered that there is nothing about the concept of nature that
would in principle disallow such properties. To the contrary, we find that nature is nondeterministic
at the quantum level [62]. Similarly, that the phenomenon of entanglement cannot be explained in
traditional terms of cause and effect, which is why Einstein referred to it as spooky action at a distance
and claimed that quantum mechanics must be an incomplete theory, is now simply accepted as a brute
fact about nature. In other words, nature is already sufficiently strange at its core. The nature– strategy
simply amounts to also making conceptual room for nondeterminism and incompleteness at the scale
of everyday physical objects, specifically that of living bodies.

To illustrate this possibility, it is helpful to remember that ethology and psychology have in
practice already developed effective methods of working with the uncertainty of the behavior of the
living, namely in terms of probability functions. The key theoretical difference, from the perspective of
the nature– strategy we are proposing, is that it is misguided to explain away all of this uncertainty by
attributing it to practical limitations of current scientific practices. To the contrary, if we are correct
in claiming that this uncertainty is in fact a result of the indeterminacy through which the subjective
can express itself in objective terms, no future or even idealized scientific practice would be able to
eradicate it completely. Accordingly, the nature– strategy may provide a promising starting point
from which to develop an alternative theory of agency and behavior that can make better sense of
psychology’s widely publicized replication crisis.

To further motivate this strategy, it is worth considering that demonstrations of quantum effects
are slowly being scaled up to larger objects [65], and it is not clear yet at which scale they will stop.
For the case of quantum phenomena, it is already accepted that the uncertainty is inherent in the
phenomena, rather than resulting from methodological inaccuracies. But while the nature– strategy
does not rule out quantum effects directly playing a role at the scale of the living, as suggested for
example by Kauffman [63] (p. 150), it is also open to the even more radical possibility that life has its
own way of being nondeterministic and incomplete.
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From a complex systems perspective on life and mind, this idea is not that far-fetched. It is
already widely accepted that animal life is characterized by structured but empirically unpredictable
behavior, which has been approximated in terms of self-organized chaos [66], metastability [67], and
self-organized criticality [68]. Accordingly, it is but a small conceptual step to add nondeterminism
and incompleteness to this existing mix1. Moreover, in practice it will be difficult to experimentally
distinguish between nondeterministic behavior and deterministic but unpredictable behavior, such
as behavior arising from deterministic chaos. For instance, a study of the spontaneous movement
trajectories of a fly revealed that its behavior could be partially approximated in terms of deterministic
embodied chaotic itinerancy, but that at times it also seemed to exhibit intrinsic randomness [71].

If life really is nondeterministic then it might be more productive to stop trying to capture its
behavior with deterministic models, even of the chaotic kind, and simply capture the irreducible
uncertainty of behavior in probabilistic terms, as has been done for the quantum level in a highly
successful manner. Intriguingly, there is increasing evidence that many aspects of human decision
making are better captured by quantum models compared to standard probabilistic models, giving rise
to a field known as quantum cognition [72]. The nature– strategy suggests that this approach is on the
right track and could be generalized to quantum life. However, this does not mean that we advocate
the abandonment of existing work on deterministic unpredictability. We speculate that the fact that
the brain is highly sensitive to initial conditions and is poised at criticality, is a way of amplifying the
uncertainty that otherwise lies dormant at the core of nature. For instance, Jonas [73] speculated that
living bodies are precariously poised in a state of unstable equilibrium, like an upside-down cone
centered on its tip, such that any infinitely small, and hence practically unobservable, perturbation
would lead to a bifurcation in the system’s dynamics, thus bringing about a new macroscopic state
configuration (e.g. the cone will fall sideways, although it is impossible to predict in which direction).
In this way the indeterminacy inherent in nature would be amplified by the living body’s degrees
of freedom, an amplification which reaches astronomic scales in the human case when we consider
that each of our brain’s 86 billion neurons constitutes a degree of freedom in the nervous system’s
dynamics [74].

Future work should investigate in more detail the possible underlying bases for this amplified
nondeterminism and incompleteness in the behavior of the living. Is it just a brute fact of nature that
living bodies are characterized this way? And will no further understanding be forthcoming, similar
to the current mainstream physics stance regarding the strange nature of quantum mechanics? But
this simplistic equation with quantum physics would overlook the fact that at the macroscopic level of
living bodies a physically nondeterministic behavior can still be a meaningfully determined action.
For example, that I reach for my cup can be physically underdetermined even if we knew the entire
history of the physical universe, and yet I could also tell you that I reached for it because I wanted
to drink my coffee. Accordingly, as Jonas noted, quantum indeterminacy contrasts with behavioral
indeterminacy because in the latter there is another source of evidence: In both cases we are faced
with an event that is physically underdetermined when observed from a third-person perspective,
but in the case of my own behavior I can also experience it from the first-person perspective. From
that perspective I know that the behavior is an intentional action done by myself for reasons that go
beyond the physical conditions that precede it, that is, in accordance with norms. We are aware that
this first-person recognition of the role of normativity in acting does not amount to an explanation of
how a subjective intention can make a difference for objective movement in practice, but at least this
recognition accepts that an intention could make a difference in principle.

1 More specifically, we argue that this is a small conceptual step for a scientific perspective that is already used to dealing
with complex phenomena that are inherently unpredictable. Nevertheless, we acknowledge that this step has profound
implications for our understanding of reality that deserve to be more fully developed in future work, for instance by taking
inspiration from related work in the philosophy of physics [69,70].
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On this view, the fact that the human brain gives our physical indeterminacy the largest degrees
of freedom known in the animal kingdom, at least when the number of neurons is controlled for body
size [74], is the physical complement of our unprecedented subjective capacity for volition, that is,
the basis for human freedom and responsibility. We still do not understand just how the subjective
takes advantage of the openings in the objective to physically exert its will in this manner. But a good
place to start is to simply acknowledge the very possibility of this increasingly complex intertwining
relationship, in which the subjective and the objective make room for each other. As Thompson puts it:
“the cognitive complexity of consciousness increases as a function of the increasing complexity of living
beings. Consciousness depends on physical or biological processes, but it also influences the physical
or biological processes on which it depends” [75] (p. 103). We are in agreement with Thompson
that a proper understanding of how subjectivity is capable of making this difference to how physical
processes unfold will require further revisions of the concept of nature, specifically “a nondualistic
framework in which physical being and experiential being imply each other or derive from something
that is neutral between them” (ibid.: 105). To make sense of this interdependence between mind
and world will not be easy, but we believe that contemporary phenomenology and the enactive
approach are poised to come together to develop the appropriate philosophical framework [44,76].
The enactive approach has shown the way toward a nonreductive naturalization of phenomenology,
and it is now phenomenology’s turn to help us return to the things themselves so that we can develop
a complementary nonreductive phenomenologization of nature [77]2.

4. Discussion

If this nature– strategy is on the right track, then it would mean that digital computers and
classical dynamical systems more generally are inherently unsuitable frameworks for embodying
meaning, given that they are complete and deterministic systems. The upshot is that if we want to
design artificial systems that solve the problem of meaning, then we have to build them such that
their objective determinations (as expressed in terms of systemic completeness, causal closure, state
determinism, etc.) can partially withdraw so as to make room for subjective influences to be able to
make a difference in their own right. Only in this way could an artificial system become a suitable
medium for the embodiment of an agent for whom things show up as meaningful.

In order to design such artificial systems, we do not need to directly create genuine freedom in
such systems, which is too difficult and overly adventurous. Instead, our proposal is much more
modest. What we have to do is only to take seriously that indeterminacy is already dormant in nature
itself, and to find a way to amplify the indeterminacy that already exists in a meaningful manner.
In order to do that systematically it is necessary to learn from life and to better understand how
the brain could intensify such indeterminacy toward meaningful behavior at the macroscopic level.
The key question would therefore be how to liberate this fundamental, primitive indeterminacy in
microscopic nature from the general macroscopic tendency toward stable orders and patterns, i.e., how
to build a mechanism to cancel or counteract such macroscopic trend of nature at particular, localized,
limited, individual focal points. Such a locally intensified negation of the macroscopic tendency toward
stability could create the necessary opening for the subjectivity of an agent.

We can already discern some first steps in this direction in the current literature on AI and robotics.
For representationalist AI it would be important to extend the classical Turing machine in a direction
that would make indeterminacy an intrinsic aspect of its operation, perhaps in terms of entropy arising
from distributed computations [80], or perhaps by taking advantage of decoherence and other noise

2 We focus here on the contributions of phenomenological philosophy because we are most familiar with that tradition. Yet we
certainly recognize that there are other traditions that have much to offer for the development of a suitably revised concept
of nature, including the speculative naturalist philosophy going back to Peirce and Whitehead, as well as contemporary
movements within analytic philosophy that argue for more “liberal” [78] and “relaxed” forms of naturalism [79]. Future
work could compare and contrast these diverse proposals.
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in quantum computing. Initial steps toward incorporating quantum effects into artificial life have
also been reported [81]. This possibility of taking advantage of the indeterminacy of hardware also
puts in new light the insistence of some proponents of embodied cognition on using physical robots
as a testbed for theories of cognition [82]. Even without going to the quantum level, the physical
limitations of robots can be harnessed to produce more life-like behavior: “physical constraints in time
and space do not allow the system to be uniquely optimized and thus give rise to incompleteness
and inconsistency. Actually, in our robot experiments, such inconsistencies arise in every aspect of
cognitive processes including action generation, recognition of perceptual outcomes, and the learning
of resultant new experience.” [83] (p. 252). Similarly, in artificial life there are indications that we need
to complement clean, closed, “minimal” simulation models of cognition [84] with more messy, open,
“massive” or “maximal” physical life-like systems built in hardware [85] or even wetware [86,87].

While these synthetic approaches could lead to the generation of artificial systems that leave room
for subjective meaning to make a difference, just the existence of this opening per se does not entail
that meaning will make a difference in practice. In other words, we suspect that incompleteness and
indeterminacy are necessary but not sufficient conditions for meaning to be effective. At this point
it is not clear what other conditions are required for obtaining sufficiency. One possibility is that it
requires some kind of involvement of life itself: since the origin of life nearly four billion years ago,
life only comes from life, which would mean that in nature at least the subjective is always already
directly participating in the generation of new manifestations of the subjective. This suggests that a
potentially more fruitful synthetic approach to address the problem of meaning could be to incorporate
existing manifestations of the subjective into artificial systems. We can see precursors of this idea in
the cybernetic period, especially in Beer’s and Pask’s attempts to harness the complex dynamics of
animals or whole aquatic ecosystems in adaptive controllers [88] (pp. 231–234). They did not succeed,
but today’s cognitive robotics has started to work again on the incorporation of much simpler living
organisms into its designs, namely bacteria and neural cells [89,90]. Neurons in particular could be
more malleable for this purpose [91].

At the other end of the scale of organismic complexity we find humans, which brings us to
the whole field of human–computer interaction. Indeed, one failsafe way of practically solving the
problem of meaning in AI and robotics is to make sure that there is always a human somewhere in the
behavioral loop. At least in the near future, if the nature– strategy is on the right track, researchers
interested in using a synthetic approach to generate technological advances based on meaning would
be better served shifting their focus from duplicating human understanding in artificial systems, to
directly empowering humans by extending their existing subjective capacities by designing better
interfaces [92]. This would calm misplaced worries about human-like AI taking over the world, and
instead refocus attention and resources on designing interfaces for steering the artificial large-scale
complex adaptive systems that already dominate our lives [93].
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